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My intention in this paper is to give an overview of the application of singu-

larity theory to the classification and understanding of A' = 2 superconformal field

theories (SCFTs). This paper is based upon the work described in [1-3). and details

may be found in these references. Closely related work has also appeared in |4-6]

The original motivation for this work was to find some universal characteriza-

tion of N = 2 superconformal field theories. There are many known methods of

constructing such theories: Calabi-Yau compactifications (7). orbifolds |8]. lattices

(9). free fermions [10]. and tensoring cf discrete series characters [11]. There are

some complex inter-relationships between these constructions—perhaps the most

startling of which is the relationship between Calabi-Yau and tensored discrete se-

ries models [12]. One of my aims here is to show how. by using Landau-Ginsburg

models, one can characterize many of the Ar = 2 superconformal models that have

been constructed to date. Moreover, this formalism captures the essentials of these

SCFT's in such a simple way that the interrelationships between them frequently

becomes manifest. In particular, it is easy to understand the mysterious relationship

of Calabi-Yau manifolds and tensored discrete series models.

My second purpose here is to introduce an essentially topological characteri-

zation of N = 2 SCFTs. that is, the notion of a chiral* ring. This structure does

not. in general, completely characterize the theory but it does give one an easily

computable method of determining when two models, however constucted. can be

isomorphic and when they cannot be. One should view the chiral ring as a natural

parallel in superconformal field theories of the cohomology algebra of a manifold.

On the other hand, for the N = 2 SCFT's coming from Landau-Ginsburg theories,

the chiral ring takes on a special form that does completely characterize the SCFT

The basic idea [1,5] is to consider the mean field theory, or Landau-Ginsburg

theory, corresponding to a Ar = 2 supersymmetric statistical mechanical system

[4]. That is. consider an action of the form

= f (Jdarda«-W'(

where A' is some Kahler form, and IV is an arbitrary, analytic superpotentiol The

superfields <!>' are complex .V = 2 chiral superfields satisfying

=0

* In this paper the notion of chiral will be used only in the sense of .V
supersymmetry, and not in the sense of holomcrphic or ami-holomorphic.
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In components, the potential for the bosons. \'(d>'). is equal to | V H ' | 2 and thus

critical points of I I ' correspond to zero energy minima of V or vacuum states of the

theory. As we approach the critical point of the statistical mechanical system the

minima of V all come together or coalesce and the long range correlations of the

statistical mechanical system correspond to some N = 2 SCFT. Putting it another

way. we can consider (1) as defining a (non-conformal) Ar = 2 field theory. We

can then study the behavior of (1) under renormalization group flow towards some

infra-red fixed point. (I shall always assume that there is such a fixed point.) At

the fixed point, the action will define an N = 2 SCFT and the potential will be

degenerate in the mathematical sense, i.e.

(3)

where I take the critical point to be at $ ' = 0. The problem is that, at the fixed

point, the action might, in principle, look nothing like the one with which I started.

For A' = 2 Landau-Ginsburg theories there is a major simplification. First,

the D-terms are irrelevant or marginal in the renormalization group flow. This is

because, at the fixed point, the lowest components of a superfield must have non-

negative conformal dimension (by unitarity), and so the highest component must

have conformal dimension greater than or equal to 2. and are thus irrelevant or

marginal [13], The Z?-terms are piecisely the highest components of A ' ( $ ' , $ ' ) .

Thus the only relevant operators appear in the F-term. or superpotential. The

second important point is that if we assume the non-renormalization theorems hold.

then, apart from wave function renormalization. the superpotential, W. does not

renormalize. These two observations were made in [4], Their importance is that W

is an invariant characteristic of the flow and W completely dictates the flow. One

can start with any choice of A ' ( * \ # ' ) and some choice of IV. The resulting W at

the fixed point will be unchanged (up to wave function rcnormalizations). and the

form of A' at the fixed point will be some fixed function that is entirely determined

by the choice of H'. It is this idea that forms the basis of the classification scheme

proposed in [1|. To every analytic function. W. there corresponds an N = 2

superconformal field theory.

We must put some physical restrictions on W. First. W must have at least

one critical point—which we take to be at * ' = 0. Moreover, we require that W be

multi-critical (3). for otherwise all fields will be massive and so freeze out in the infra-

red limit. If all its fields had masses the result would be a trivial theory (with the

central charge zero) whose correlation functions are delta functions. (The Hiibert

space would also be trivial.) We only need to classify W up to field re-definitions

since such field re-definitions would only modify the action (1) by irrelevant D-

terms. Moreover, because massive fields freeze out at the infra-red fixed point, the

N = 2 SCFT theory arising from H'(<J>') is unchanged if we add some new fields

to the theory with a potential for these new fields that give masses to all the new

fields. Having done this we can also make changes of variables that intermix the

old and new fields. This will still not change the fixed point theory. The foregoing

is the textbook definition of the statement that the N = 2 superconformal fixed

point only depends on the stable, singularity type of W.

There are two further conditions that we need to impose on W. The first is

to require that the critical point be isolated, that is. in a small enough neighbor-

hood of $ ' = 0 the only solution to §^r = 0 is to take $ ' = 0. This means

that there are no flat directions in the potential. It also enables us to define

the multiplicity, n. of the critical point: this is the winding number of the map

* ' / | * ' | -+ {dW/dQ^/ldW/d&l considered as a map from S 2 " " 1 < Cn to

£2n-i < Qn Because of the foregoing condition, n is always finite. There is

another important consequence of this condition. As we will see. it guarantees that

all fields have strictly positive conformal dimension, and thus the D-terms have

dimension strictly greater than 2. The D-terms are therefore truly irrelevant and

contain no marginal operators. This finite multiplicity condition is made for conve-

nience and it would be interesting to see what would happen if one were to relax

it.

The second condition is also made for convenience, but is physically well mo-

tivated. We require that W be quasi-homogeneous. That is. there are weights, u;,.

such that

There are several ways of explaining why we do this. The simplest is to observe

that this requirement is necessary to give all the fields, ' I 1 ' , a well defined conformal

dimension. Indeed, if h, and Ti, denote the conformal weights of the scalar field $ ' .

then*

* Equation (5) follows because under the scaling J — A~'r, (> •-* A"1/2f? the

measure scales according to cPzd?6 -* \~]<p!cP8 and hence (4) and (5) ensure

that the F-term is unrenorm&lized.



If we had chosen an arbitrary superpotential then wave function renormalization

would mean that W ( $ ' ) would flow to its lowest dimension, quasihomogeneous

part. For example, given a potential $ 3 + $ 5 . the scaling at the fixed point means

that only the $ 3 term survives. Mathematically, many of the stable singularity

types can be represented by quasi-homogemeous functions and thus this physical

restriction is not as strong as it might, at first, seem. The exceptions to this

have the property that the lowest dimensional quasi-homogeneous parts, taken in

isolation, have non-isolated critical points. These exceptions may well correspond

to an interesting class of models, but I shall not consider them here. We can now

apply the vast machinery of singularity theory to these Landau-Ginsburg models.

Given an analytic function. W ( $ ' ) . with a critical point at $ ' = 0. oie defines

the local ring, ft of this function by

n = P/J (6)

where P is the ring of power series about $ ' = 0, and J is the ideal in P generated

by all the partial derivatives §y£ of W. The ring. 11. has dimension equal to the

multiplicity. \i. Moreover, R. plays an important role in singularity theory. Physically,

it corresponds to all the chiral. primary fields of the theory. This is because one only

gets chiral fields by taking power series in the $ ' . however, these can only become

descendant fields if the power series in question is related to super-derivatives via an

equation of motion. This can only happen if the power series in $ ' has some factor

of f^p. Therefore "R. consists of precisely the chiral fields that are not descendants,

i.e., primary.

One of the basic theorems of singularity theory tells us that the local ring of

IV contains a unique element, p. of maximal scaling dimension. This element is. in

and has conformal dimension

(8)

There are many other concepts in singularity theory that carry over to physics,

but the foregoing will suffice for my present purposes. I shall now start at the other

end. We know that we have to get an N = 2 superconformal theory at the critical

point, so we must get a representation of the .X = 2 superconformal algebra. The
commutation relations of this algebra are

{^+ a ,G-_ 0} = 2Ln+m + (n - m + 2a)Jn+m + ^c L + a)2 - I | Am+n 0

—

= (-n - m T a)G±
n+m±a

Kn±o

(J.,Jm]=|«m+n,0

(9)

where m and n are integers, and a is a real parameter. In the Neveu-Schwarz sector

one takes a € Z + £ and in the Ramond sector a € Z. Shifting a by an integer

generates isomorphic algebras.

The Landau-Ginsburg theories have an N = 2 superconformal algebra for the

left-moving and right-moving sectors. The generators of the left-moving algebra

will be denoted by G. L and J. and will correspond to holomorphic world-sheet

coordinates, while the right-moving algebra will be denoted by G. Z. and J and will

correspond to anti-holomorphic coordinates. In the sequel. I will largely suppress

discussion of the right-movers as their treatment exactly parallels the discussion of

the left movers. I shall also work only in the Neveu-Schwarz sector, but one should

bear in mind that there is also a parallel discussion for the Ramond sector. (The

corresponding theory in the Ramond sector can be obtained by spectral flow from

the Neveu-Schwarz sector.) For the present I will not restrict myself to Landau-

Ginsburg theories, but will consider an arbitrary (2.2) theory.

A primary state | * > is defined by

(10)

(11)

(with similar conditions for the right-movers). However, condition (11) is redundant

given (9) and (10). A primary, chiral field. |$ >. is defined to satisfy (10) and

G!,,2 (12)



More precisely. | * > . is the lowest component of a chiral superfield, the other

components will be obtained by acting with GZU2 and G _ 1 / 2 on | * > . Equation

(12) means that | * > is chiral because it has no 6+ or 0 super-partners.

An immediate consequence of (9). and unitarity. is that for any state |>P > of

conformal weight h and f ( l ) charge q. one has

h>hq\ (13)

This is a trivial consequence of the inequality

0< |G±1/2 |*>|2 + |
(14)

Moreover, for chiral. primary fields one has h = ^q. Conversely, it is also elementary

to see that h = \q if and only if | * > is chiral and primary.

One can establish a generalization of the Hodge-decomposition theorem: given

any state I * >. it may be written in the form

I* > = (15)

where |$ > is chiral and primary. This decomposition is unique in that |$ > .

^ ' - I / I I * 1 > a n d G + i / 2 l * s > a r e u n i ( l u e 8 i v e n l * > - (For details see [3].)

Consider, now. a chiral primary state |$ > . Using (13). and the fact that

t j / 2 | * > > 0. it follows that

(16)

and that h = c/6 if and only if

G! 3/2 (17)

in addition to (10) and (12).

Now consider the spectral flow of the vacuum. That is. consider the SL(2.7Z)

invariant vacuum of a Hilbert space representing (9) for some value of a 6 Z+ 1/2.

Consider what happens to this state as we smoothly change a -* a - I, The

Hilbert space flows to some other Hilbert space that represents the original Ar = 2

superconformal algebras. Moreover, the vacuum state flows to some state \p > in

the new Hilbert space. Since the vacuum satisfies

it follows that

=0

G+|p>=0 > - -
- ~ 0

(1S)

(19)

In other words, \p> is a chiral primary state saturating the bound (16). If a given

N = 2 super-conformal field theory is invariant under this spectral flow then \p > is

the unique state satisfying (19) since it is the spectral flow of the unique 51(2 , R)

invariant vacuum.

It is important to remember at this point, that the foregoing spectral flow is

to be performed simultaneously in both the left-moving and right-moving sectors.

Thus \p > will be paired with the corresponding right moving state. It is clearly of

interest to know when an N = 2 5CFT is invariant under this spectral flow. One

simple, sufficient criterion is that the theory be modular invariant, and that every

state satisfy

qi-qit€Z (20)

where qi and qn are the left-moving and right-moving £7(1) changes respectivel:/.*

For theories that are invariant under the spectral flow we have thus shown ttuH

the Hilbert space of the theory contains a unique, chiral primary field of maximal

conformal dimension

(21)*-!-§
The N = 2 SCFT"s coming from Landau-Ginsburg theories obviously satisfy (20)

and are manifestly modular invariant, and hence the element, p. of the chiral ring,

defined by (7) must coincide with the state \p > defined above. Therefore, combining

(8) and (21), we have shown that the central charge of the A' = 2 SCFT arising

from a Landau-Ginsburg theory is given by

c = (22)

* This suffices because modular invariance can be used to relate invariance
under spectral flow to invariance under the corresponding C'(l) twist, and (20)
guarantees that all states are invariant under the twist.



Returning to a general (2,2) superconformal field theory, one can show quite

generally that the chiral. primary fields also define a finite dimensional, polynomial

ring. Moreover, the operator product induces the naive polynomial multiplication

on this ring. Let $i(u>) and $2(u>) be two chiral. primary fields with conformal

weights /»! and h?. Let * (u)) be the leading term in the operator product of these

two fields, i.e.,

) = (2 - w ) h - h l - h ' < 5 / ( w ) + ••• (23)

where h is the conformal weight of $(u>). Let g be the U(\) charge of ty(w),

and recall that the U(l) charges of $ i ( z ) and $ 2 (w) are 2/i, and 2h2. Thus

ig = (hi + h2). However. \q < h. with equality if and only if $ (w) is chiral and

primary. Therefore, define

(*i-*2)(*)» li (24)

This limit is always vinite. and is non-zero if and only if the result is both chiral and

primary. In a general N = 2 superconformal field theory I shall define the chiral

ring to be the set of chiral. primary fields with multiplication defined by (24).

More precisely, in any (2,2) SCFT one may define four chiral rings since one

can consider all pairings of chiral and anti-chiral fields in both the left and right

moving sectors. These rings are usually denotsd by (c,c), (a,c), (c,a) and (a,a).

One should also note that (c,c) and (a,a) are conjugate to each other, as are

(a,c) and (c,a). Thus, there are only two independent rings. For Landau-Ginsburg

theories, the (a, c) ring is trivial, consisting only of the vacuum state.

Like chiral rings in Landau-Ginsburg theories, these general chiral rings can

be thought of as quotients P/J. where J is the ideal of vanishing relations, which

consists of all polynomials of chiral, primary fields that vanish as a consequence

of the operator product algebra. Note that any polynomial, * . in J (that is, any

vanishing polynomial of chiral primary fields), is necessarily chiral but not primary.*

One can decompose the state corresponding to # according to (15) and because it

is chiral and non-primary one has

!*>=<?+ |Y,> (25)

for some | * i > . Thus, in general, the vanishing relations are necessarily Z>+ of

something. Moreover, one can always isolate a set of tf; that generate the ideal J.

* In general, a chiral field is only required to satisfy (12), and does not nec-
essarily satisfy (10).

and each of these <I'j must also be D~ of something. In a Landau-Ginsburg theory

we know that these "P/s can be integrated to give a function superpotential That

is. there is a function l l ' ( * ' ) and a choice of the <J>'s and * / s such that ' I 1 , ;'—

In general it appears that one can integrate the 4>/s to get a superpotentiai. I f

if (i) the (a,c) and (c.a) rings are trivial, (ii) equation (20) is satisfied for all

states in the theory, (iii) all states in the theory are generated from the operator

products of elements of the (c,c) and [a.a) rings, and (iv) all (chiral. chiral). but

not necessarily primary, states of the theory can be obtained from operator products

of a finite number of left-right symmetric chiral. primary fields <I>\ A heuristic proof

of this statement may be found in [3].

The point I wish to stress, however, is that in general these (c.c) and («.< 1

rings are simple (and from experience, easily computable) substructures of an .V -

2 superconformal theory that will help to characterize the theory. For Landau-

Ginsburg theories they completely characterize the theory. Moreover, chiral rings

appear to be natural "topological" objects. There is an obvious formal similarity

between chiral rings and the Dolbeault complex, with G t 1 / 2 . G + 1 / 2 playing the

role of d and 6 (while d and 6 correspond to the right moving G_l/2.G\i/2).

Moreover, under spectral flow to the Ramond sector, one sees that chiral. primary

fields correspond to zero-modes the Dirac-Ramond operators:

(20)

For level one. Ar = 2 coset models on hermitian symmetric spaces |14J. one can

show [3] that the correspondence with the Dolbeault complex is exact If one grades

the ring of chiral, primary fieids. 1Z. according to their charge (or conformal weight)

then there is a one to one correspondence between the chiral. primary fields of

charge q and the elements of # « ' « ( G / t f ) (with q suitably normalized).* Moreover.

the ring structure of H'(G/H) appears to coincide with that of R. though this has

not been checked in general. In [3] it was also shown that the level one. .V _ •: coset

models on hermitian symmetric spaces are. in fact. Landau-Ginsburg models For

general N = 2 coset models one can show that they are. in general, not Landau-

Ginsburg models.** On the other hand, these models do have large chiral. primary

rings that can be completely characterized. The details may be found m [3]

* For hermitian symmetric spaces HPi<l{M) = 0 when p * q.

** However, it is possible that some twisted form of these theories might be

Landau-Ginsburg.



As a final application of the Landau-Ginsburg formalism, I shall briefly review

the ideas of [2] that relate compactifications on Calabi-Yau spaces to exactly solvable

.V - 2 superconformal theories. The basic idea is to consider the Landau-Ginsburg

path integral within fields, $ ' :

Pifi'e'Sl*'.*'] (27)

where 5 is given by (1). One starts with a formal calculation in which one neglects

the kinetic term. One then changes variables according to

v H (28)

Note that £' = 1 and the £'. i = 2,3, • • •, n, define a coordinate patch on an n — 1

dimensional weighted projective space. This change of variables enables us to factor

\ out of the superpotential. i.e.. W(i') = x W ( t ' ) . The change of variables also

introduces a purely algebraic Jacobian into the path integral. One can show that

the Jacobian is independent of \ if and only if

w,)=3(n- 1) (29)

Assuming that (29) is satisfied, one can integrate out the field \ to obtain a path

integral over the £' and £* with a term 6{W) in the integrand. This delta function

fixes the bosonic part of £' to lie on the hypersurface W(£ ' ) = 0, and requires the

fermionic part of (,' to be tangent to this hypersurface. We thus have converted the

path integral (27) into one over an algebraic hypersurface in an (n — l)-dimensional

weighted projective space. One can show that (29) is also precisely equivalent

to requiring the first Chern class of this algebraic surface to vanish. Note also

that the right-hand-side of (20) is 3(n - 1), which is the correct central charge for

the .V = 2 superconformal theory defined by an (n - l)-dimensional Calabi-Yau

compactification. Finally, also note that the change of variables. (28). is only single

valued if we divide the original Landau-Ginsburg model by the symmetry.

$ ; _ ei*«-: $> (30)

Thus the Calabi-Yau compactification is really equivalent to the twisted Landau-

Ginsburg model.*

Dividing by the symmetry (30) is the analogue of Gepner's 17(1) projection
HI].

It is straightforward to generalize the foregoing calculation to Calabi-Yau man-

ifolds that are described by the vanishing of several polynomials in products of

weighted projective spaces.

This calculation is extremely suggestive, but so far. somewhat formal. Obvi-

ously one cannot really drop the kinetic term. However, if one were to keep the

kinetic term and go through the foregoing calculation one would no longer arrive at

a ^'-function, but would get an extremely complicated Gaussian. The width of the

Gaussian would be proportional to the momentum scale at which one was working.

Thus, in the infra-red limit, one would once again approach a ^-function of IV.

Therefore the proper way to interpret the foregoing calculation is that it shows how

to relate the universality classes of Calabi-Yau manifolds to the universality classes

of Landau-Ginsburg theories. The two theories are not identical, but their N = 2

superconformal infra-red fixed points are.
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