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Abstract: The N = 2 superconformal field theories that appear at the fixed points
of the renormalization group flows of Landau-Ginsburg models are discussed. Some
of the techniques of singularity theory are employed to deduce properties of these
superconformal theories. These ideas are then used to deduce the relationship
between Calabi-Yau compactifications and tensored discrete series modeis. The
chiral rings of general .V = 2 superconformal theories are also described.
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My intention in this paper is to give an overview of the application of singu-
larity theory to the classification and understanding of N = 2 superconformal field
theories (SCFTs). This paper is based upon the work described in [1-3]. and details
may be found in these references. Closely reiated work has also appeared in [4-6].

The original motivation for this work was to find some universal characteriza-
tion of N = 2 superconformal field theories. There are many known methods of
constructing such theories: Calabi-Yau compactifications {7]. orbifolds [8]. lattices
[9]. free fermions {10]. and tensoring cf discrete series characters [11]. There are
some complex inter-relationships between these constructions—perhaps the most
startling of which is the relationship between Calabi-Yau and tensored discrete se-
ries models {12]. One of my aims here is to show how, by using Landau-Ginsburg
models, one can characterize many of the N = 2 superconformal models that have
been constructed to date. Moreover. this formalism captures the essentials of these
SCFT's in such a simple way that the interrelationships between them frequently
becomes manifest. In particular. it is easy to understand the mysterious relationship
of Calabi-Yau manifolds and tensored discrete series models.

My second purpose here is to introduce an essentially topological characteri-
zation of N = 2 SCFT's, that is, the notion of a chiral® ring. This structure does
not, in general, completely characterize the theory but it does give one an easily
computable method of determining when two models. however constucted, can be
isomorphic and when they cannot be. One should view the chiral ring as a natural
parallel in superconformal field theories of the cohomology algebra of a manifold.
On the other hand. for the N = 2 SCFT's coming from Landau-Ginsburg theories.
the chiral ring takes on a special form that does completely characterize the SCFT.

The basic idea [1.5] is to consider the mean field theory, or Landau-Ginsburg
theory, ccrresponding to a N = 2 supersymmetric statistical mechanical system
[4]. That is, consider an action of the form

S=/dzzd‘ﬂh’(¢',$') + (/d’:d’t)'u'(«b')+/d":d’9*u'(§_")) ()

where K’ is some Kahler form, and 13’ is an arbitrary, analytic superpotential. The
superfielaz @' are complex \' = 2 chiral superfields satisfying

D*®' =D ¢ =0 N

* In this paper the notion of chiral will be used only in the sense of N -
supersymmetry, and not in the sense of holomcrphic or anti-holomorphic.
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In components, the potential for the bosons. 1'(¢'). is equal to |¥11'|? and thus
critical points of 11" correspond to zero energy minima of 1/ or vacuum states of the
theory. As we approach the critical point of the statistical mechanical system the
minima of 1" all come together or coalesce and the long range correfations of the
statistical mechanical system correspond to some N = 2 SCFT. Putting it another
way. we can consider (1) as defining a (non-conformal) N = 2 field theory. We
can then study the behavior of (1) under renormalization group flow towards some
infra-red fixed point. {l shall always assume that there is such a fixed point.) At
the fixed point. the action will define an N = 2 SCFT and the potential will be
degenerate in the mathematical sense. t.e.

det aw )
€ (awqu

where | take the critical point to be at ' = 0. The problem is that, at the fixed
point. the action might. in principle, look nothing like the one with which | started.

=0 (3)

¢ =0

For N = 2 Landau-Ginsburg theories there is a major simplification. First.
the D-terms are irrelevant or marginal in the renormalization group flow. This is
because, at the fixed point, the lowest components of a superfield must have non-
negative conformal dimension (by unitarity), and so the highest component must
have conformal dimension greater than or equal to 2, and are thus irrelevant or
marginal [13]. The D-terms are precisely the highest components of K($*,3").
Thus the only relevant operators ippear in the F-term. or superpotential. The
second important point is that if we assume the non-renormalization theorems hold.
then, apart from wave function renormalization. the superpotential, W, does not
renormalize. These two observations were made in [4]. Their importance is that W’
is an invariant characteristic of the flow and W completely dictates the flow. One
can start with any choice of l\’(tb'.('ﬁ') and scme choice of W. The resulting W at
the fixed point will be unchanged (up to wave function renormalizations). and the
form of IV at the fixed point will be some fixed function that is entirely determined
by the choice of 11", It is this idea that forms the basis of the classification scheme

proposed in [1]. To every analytic function, W, there corresponds an N = 2
superconformal field theory.

We must put some physical restrictions on W. First. W must have at least
one critical paint—which we take to be at &* = 0. Moreover, we require that W be
multi-critical {3). for otherwise all fields will be massive and so freeze out in the infra-
red limit. If all its fields had masses the result would be a trivial theory (with the

central charge zero) whose correlation functions are delta functions. (The Hiibert
space would also be trivial.) We only need to classify 11" up to field re-definitions
since such field re-definitions would only modify the action (1) by irrelevant D-
terms. Moreover, because massive fields freeze out at the infra-red fixed point. the
N = 2 SCFT theory arising from (&) is unchanged if we add some new fields
to the theory with a potential for these new fields that give masses to all the new
fields. Having done this we can also make changes of variables that intermix the
old and new fields. This will still not change the fixed point theory. The foregoing
is the textbook definition of the statement that the N = 2 superconformal fized
point only depends on the stable, singularity type of W.

There are two further conditions that we need to impose on V. The first is
to require that the critical point be isolated. that is, in a small enough neighbor-
hood of ®' = 0 the only solution to g—;‘;,’ = 0 is to take &' = 0. This means
that there are no flat directions in the potential. It also enables us to define
the multiplicity, u. of the critical point: this is the winding number of the map
¢'/1%Y] — (8W/8%')/|dW/D%'| considered as a map from S?"~! < C" to
§n=1 < (C". Because of the foregoing condition, u is always finite. There is
another important consequence of this condition. As we will see, it guarantees that
all fields have strictly positive conformal dimension, and thus the D-terms have
dimension strictly greater than 2. The D-terms are therefore truly irrelevant and
contain no marginal operators. This finite multiplicity condition is made for conve-
nience and it would be interesting to see what would happen if one were to relax
it.

The second condition is also made for convenience, but is physically well mo-
tivated. We require that W be quasi-homogeneous. That is. there are weights, w,.
such that

WA ') = AW(D) . (1)

There are several ways of explaining why we do this. The simplest is to observe
that this requirement is necessary to give all the fields. %'. a well defined conformal
dimension. Indeed. if h, and h, denote the conformal weights of the scalar field &',
then*

h,='l;,= wy . (

3] =
oy

* Equation (5) follows because under the scaling = — A~'z, 8 .= 1~1/26 the
measure scales according to d*2d*8 — A~'d*zd%8 and hence {4) and (5) ensure
that the F-term is unrenormalized.



If we had chosen an arbitrary superpotential then wave function renormalization
would mean that W(®*) would flow to its lowest dimension. quasihomogeneous
part. For example, given a potential ®3 4 &%, the scaling at the fixed point means
that only the &° term survives. Mathematically. many of the stable singularity
types can be represented by quasi-homogemeous functions and thus this physical
restriction is not as strong as it might. at first, seem. The exceptions to this
have the property that the lowest dimensional quasi-homogeneous parts. taken in
isolation. have non-isolated critical points. These exceptions may well correspond
to an interesting class of models, but | shall not consider them here. We can now
apply the vast machinery of singularity theory to these Landau-Ginsburg models.

] Given an analytic function. W(®*), with a critical point at &' = 0, ene defines
the local ring. R of this function by

R=P/J (6

where P is the ring of power series about &' = 0, and J is the ideal in P generated
by all the partial derivatives g—“;v.- of W. The ring, R, has dimension equal to the
multiplicity, u. Moreover, R plays an important rdle in singularity theory. Physically,
it corresponds to all the chiral, primary fields of the theory. This is because one only
gets chiral fields by taking power series in the ®¢. however. these can only become
descendant fields if the power series in question is related to super-derivatives via an
equation of motion. This can only happen if the power series in &¢ has some factor
of g—}”,—. Therefore R consists of precisely the chiral fields that are not descendants,
i.e., primary.

One of the basic theorems of singularity theory tells us that the local ring of
W contains a unique element, p. of maximal scaling dimension. This element is, in

fact, oW
p=det (w) (7)

and has conformal dimension
- 1 ,
hemaz = hmez = Z (E - Wi) (8)
i

There are many other concepts in singularity theory that carry over to physics.
but the foregoing will suffice for my present purposes. | shall now start at the other
end. We know that we have to get an N = 2 superconformal theory at the critical

point, 50 we must get a representation of the \ = 2 superconformal algebra. The
commutation relations of this algebra are

- 1
{Grea:Gaal = 2Lnsm + (n = m 4 20)Jppm + 3¢ [(n +a) - %] bmtno

[LoLn]=(n=m)Lntm + —n(n? = émens

12
[L"’Jm] = "m-]m+n
1
[L"’Gﬁin] = (5" -m¥ G)th+min
[‘]mcﬁiu] = iG$+nta

c
[ Im] = Z8mtn0

(9)
where m and n are integers, and a is a real parameter. in the N.eveu-Schwarz sector

one takes a € Z + % and in the Ramond sector a € Z. Shifting a by an integer
generates isomorphic algebras.

The Landau-Ginsburg theories have an N = 2 superconformal algebra for the
left-moving and right-moving sectors. The generators of the left-moving algebra
will be denoted by G. L and J. and will correspond to holomorphic world-sheet
coordinates, while the right-moving algebra will be denoted by G, L. and 7 and will
correspond to anti-holomorphic coordinates. In the sequel, | will largely suppress
discussion of the right-movers as their treatment exactly parallels the discussion of
the left movers. | shall also work only in the Neveu-Schwarz sector. but one should
bear in mind that there is also a paralle! discussion for the Ramond sector. (The
corresponding theory in the Ramond sector can be obtained by spectral fiow from
the Neveu-Schwarz sector.) For the present | will not restrict myself to Landau-
Ginsburg theories, but will consider an arbitrary (2.2) theory.

A primary state [\¥ > is defined by

GX¥>=0 r> (10)

2] —

Lol >=Jn|¥>=0;

3

21 (1)

{with similar conditions for the right-movers). However. condition (11) is redundant
given (9) and (10). A primary. chirat field, (¥ >, is defined to satisfy (10} and

Gt,,;l¢>=§f,,,|¢>=0 (12)



More precisely, |® >. is the lowest component of a chiral superfield, the other
components will be obtained by acting with G:”2 and G_,,; on |®>. Equation

(12) means that | > is chiral because it has no 6*ord” super-partners.

An immediate consequence of (9). and unitarity. is that for any state |¥ > of
conformal weight h and L'(1) charge g. one has

b2 Slgl (13)

This is a trivial consequence of the inequality

0< G2, ,1¥> P +1G3, ,1¥> P

N (14)
=< \Ill{G:m,anH\I! >

Moreover. for chiral. primary fields one has h = %q. Conversely, it is also elementary
to see that h = }q if and only if |¥ > is chiral and primary.

One can establish a generalization of the Hodge-decomposition theorem: given
any state | >, it inay be written in the form

10> = (&> +G*, )10 > +G7, | E2> (15)

where |® > is chiral and primary. This decomposition is unique in that |® >,
Gj,,zl\lll > and G7, ,,|¥2 > are unique given [T >. (For details see 319

Consider. now. a chiral primary state | >. Using (13). and the fact that
<G L4/,GL; 18> 2 0. it follows that

h< (16)

i

and that h = ¢/6 if and only if
Gl ple>=0 (7

in addition to (10) and (12).

Now consider the spectral flow of the vacuum. That is, consider the SL(2.R)
invariant vacuum of a Hilbert space representing (9) for some value of a € Z +1/2.
Consider what happens to this state as we smoothly change a — a ~ 1, The
Hilbert space flows to some other Hilbert space that represents the original N = 2

superconformal algebras. Moreover. the vacuum state flows to some state |p > in
the new Hilbert space. Since the vacuum satisfies

GEl0> =0 7'2—% (18)
it follows that
+ 3
Gr lp> =0 TE’;)‘
: (19)
Gllp>=0 r2>+;

In other words, |p> is a chiral primary state saturating the bound (16). if a given
N = 2 super-conformal field theory is invariant under this spectral flow then |o > is

the unique state satisfying (19) since it is the spectral flow of the unique SL(2, R)
invariant vacuum,

It is important to remember at this point. that the foregoing spectral flow is
to be performed simultaneously in both the left-moving and right-moving sectors.
Thus |p> will be paired with the corresponding right moving state. It is clearly of
interest to know when an N = 2 SCFT is invariant under this spectral flow. One
simple, sufficient criterion is that the theory be modular invariant, and that every
state satisfy

qg.-qr€Z (20)

where g; and gr are the left-moving and right-moving U(1) changes respectivel:r.*

For theories that are invariant under the spectral flow we have thus shown thot
the Hilbert space of the theory contains a unique, chiral primary field of maximal
conformal dimension

- o]

h=h== 21

c (21)

The N = 2 SCFT's coming from Landau-Ginsburg theories obviously satisfy (20)

and are manifestly modular invariant, and hence the element, p. of the chiral ring.

defined by (7) must coincide with the state |p > defined above. Therefore, combining

(8) and (21). we have shown that the central charge of the N’ = 2 SCFT arising
from a Landau-Ginsburg theory is given by

c=62(}—)—u'.) (22)

* This suffices because modular invariance can be used to relate invariance
under spectral flow to invariance under the corresponding U'(1) twist, and (20)
guarantees that all states are invariant under the twist.




Returning to a general (2,2) superconformal field theory, one can show quite
generally that the chiral, primary fields also define a finite dimensional, polynomial
ring. Moreover, the operator product induces the naive polynomial multiplication
on this ring. Let ®;(w) and ®2(w) be two chiral, primary fields with conformal
weights h; and hy. Let ¥(w) be the leading term in the operator product of these
two fields, i.e.,

81(2)®2(w) = (z —w)*"MPg(w) + - (23)

where h is the conformal weight of ¥(w). Let g be the U(1) charge of ¥(w).
and recall that the U(1) charges of ®;(z) and ®,(w) are 2h; and 2h;. Thus
39 = (A1 + ha). However, 1q < h. with equality if and only if ¥(w) is chiral and
primary. Therefore, define

(@1 ®2)(2) = lim (81(2)82(w)) (24)

This limit is always finite. and is non-zero if and only if the result is both chiral and
primary. In a general N = 2 superconformal field theory I shall define the chiral
ring to be the set of chiral, primary fields with multiplication defined by (24).

More precisely. in any (2,2) SCFT one may define four chiral rings since one
can consider all pairings of chiral and anti-chiral fields in both the left and right
moving sectors. These rings are usually denotad by (¢, ¢), (a,c). (¢,a) and (a,a).
One should also note that (c,c) and (a,a) are conjugate to each other, as are
(a,c) and (c,a). Thus. there are only two independent rings. For Landau-Ginsburg
theories. the (a,c) ring is trivial. consisting only of the vacuum state.

Like chiral rings in Landau-Ginsburg theories, these general chiral rings can
be thought of as quotients P/J, where J is the ideal of vanishing relations, which
consists of all polynomials of chiral, primary fields that vanish as a consequence
of the operator product algebra. Note that any polynomial, ¥, in J (that is, any
vanishing polynomial of chiral primary fields). is necessarily chiral but rot primary.*
One can decompose the state corresponding to ¥ according to (15) and because it
1s chiral and non-primary one has

¥ >=G%, |01 > (29)

for some |¥; >. Thus, in general. the vanishing relations are necessarily D* of
something. Moreover. one can always isolate a set of ¥, that generate the ideal J,

* In general, a chiral field is only required to satisfy (12), and does not nec-
essarily satisfy (10).

and each of these ¥, must also be D~ of something. In a Landau-Ginsburg theory
we know that these ¥,’s can be integrated to give a function superpotential. That
is, there is a function 1 (®*) and a choice of the ¢''s and ¥,’s such that W, - 2t
In general it appears that one can integrate the ¥ ,'s to get a superpotenual.”H'
if (i) the (a,c) and (c.a) rings are trivial, (i) equation (20) is satisfied for all
states in the theory. (iii) all states in the theory are generated from the operator
products of elements of the (c,c) and (a.a) rings. and (iv) all (chiral. chiral). but
not necessarily primary, states of the theory can be obtained from operator products
of a finite number of left-right symmetric chiral. primary fields 4. A heuristic proof
of this statement may be found in [3].

The point | wish to stress, however, is that in general these (c.c) and (a.c )
rings are simple (and from experience, easily computable) substructures of an .\ =
2 superconformal theory that will help to characterize the theory. For Landau-
Ginsburg theories they completely characterize the theory. Moreover, chiral rings
appear to be natural “topological” objects. There is an obvious formal similarity
between chiral rings and the Dolbeault complex. with Gtx/z-G;x/z playing the

role of & and & (while & and § correspond to the right moving GGl
Moreover. under spectral flow to the Ramond sector, one sees that chiral. primary
fields correspond to zero-modes the Dirac-Ramond operators:

CE®>=0e (G +GJ)l#>=0 {26}

For level one, N = 2 coset models on hermitian symmetric spaces [14]. one can
show {3] that the correspondence with the Dolbeault complex is exact. If one grades
the ring of chiral, primary fieids. K. according to their charge (or conformal weight)
then there is a one to one correspondence between the chiral, primary fields of
charge g and the elements of H99(G/H ) (with ¢ suitably normalized).® Moreover.
the ring structure of H*(G/H) appears to coincide with that of R. though this has
not been checked in general. In [3] it was aiso shown that the level one, \' = 2 coset
models on hermitian symmetric spaces are. in fact. Landau-Ginsburg models For
general N = 2 coset models one can show that they are, in general. not Landau-
Ginsburg models.** On the other hand, these models do have large chiral. primary
rings that can be completely characterized. The details may be found in {3]

* For hermitian symmetric spaces H?9(\/} = 0 when p = ¢.
** However, it is possible that some twisted form of these theories might be
Landau-Ginsburg.



As a final application of the Landau-Ginsburg formalism, | shall briefly review
the ideas of [2] that relate compactifications on Calabi-Yau spaces to exactly solvable
\ = 2 superconformal theories. The basic idea is to consider the Landau-Ginsburg
path integral within fields, ®*:

/d@*d@’e'sl”'l (27)

where S is given by (1). One starts with a formal calculation in which one neglects
the kinetic term. One then changes variables according to

V= (@O s @ty (28)

Note that £! = 1 and the ¢'. i = 2,3,---,n, define a coordinate patch on ann -1
dimensional weighted projective space. This change of variables enables us to factor
\ out of the superpotential, i.e., W(®') = yW(£'). The change of variables also
introduces a purely algebraic Jacobian into the path integral. One can show that
the Jacobian is independent of x if and only if

c=6i:=/..f - w.-)=3(n—1) (29)

1]

Assuming that (29) is satisfied, one can integrate out the field x to obtain a path
integral over the £ and £ with a term §(W) in the integrand. This delta function
fixes the bosonic part of £' to lie on the hypersurface W(£*) = 0, and requires the
fermionic part of £* to be tangent to this hypersurface. We thus have converted the
path integral (27) into one over an algebraic hypersurface in an (n — 1)-dimensional
weighted projective space. One can show that (29) is also precisely equivalent
to requiring the first Chern class of this algebraic surface to vanish. Note also
that the right-hand-side of (20) is 3(n — 1). which is the correct central charge for
the .V = 2 superconformal theory defined by an (n — 1)-dimensional Calabi-Yau
compactification. Finally, also note that the change of variables. (28). is only single
valued if we divide the original Landau-Ginsburg model by the symmetry.

&) = e21rn..~, (bj (30)

Thus the Calabi-Yau compactification is really equivalent to the twisted Landau-
Ginsburg model.*

* Dividing by the symmetry (30) is the analogue of Gepner's U(1) projection
n1j.

It is straightforward to generalize the foregoing calculation to Calabi-Yau man-
ifolds that are described by the vanishing of several polynomials in products of
weighted projective spaces,

This calculation is extremely suggestive, but so far. somewhat formal. Obvi-
ously one cannot really drop the kinetic term. However, if one were to keep the
kinetic term and go through the foregoing calculation one would no longer arrive at
a é-function. but would get an axtremely complicated Gaussian. The width of the
Gaussian would be proportionai te the momentum scale at which one was working.
Thus. in the infra-red limit, one would once again approach a é-function of V.
Therefore the proper way to interpret the foregoing calculation is that it shows how
to relate the universality classes of Calabi-Yau manifolds to the universality classes
of Landau-Ginsburg theories. The two theories are not identical, but their N = 2
superconformal infra-red fixed points are.
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