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Chapter 1 

Introduction

Three-dimensional vortex filament methods for unbounded, unsteady, in- 

viscid, incompressible flow and a vortex tube stretching simulation with the vortex 
filament methods are studied in this thesis.

An unbounded, unsteady, inviscid, incompressible flow is governed by Euler’s 
equations. From the Biot-Savart induction law, the velocity field can be determined 
once one knows the vorticity field. By the theorems of Kelvin and Helmhotz for in­
viscid flow, vortex tubes retain their identity and simply move as material volumes. 
Thus it is sufficient to follow the evolution of the vorticity field in Lagrangian coordi­
nates. Vortex methods are based on discretization of the vorticity-containing regions 
and pursuit of these discretized elements in a Lagrangian reference frame.

There are several versions of three-dimensional vortex methods. They can 
be divided into two categories: vortex blob methods and vortex filament methods.

For vortex blob methods, one initially divides the region into small cells. In 
each cell, if it is not vorticity free, one can assume that all the vorticity is concentrated 
in a vector element attached to a point convected with the fluid velocity. This vector 
element is usually called a vortex particle. To avoid singularity, one must use a 
finite vortex core (the so-called “blob”) instead of a point vortex. One computes the 
velocity field by the discretized Biot-Savart law, then determines the position of the 
vortex blob for the next time step, evaluates the vorticity field, and so on. These 
methods have been successfully used in many of two-dimensional flow simulations
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[21, 24, 29, 30, 31, 32, 33, 45, 46, 54, 63, 64, 65]. There are very well developed 
theoretical analyses by Hald &; Del Prete [41], Hald [37, 38, 39, 40], Beale &: Majda 
[7, 8, 9, 10], Beale [5, 6], Anderson & Greengard [1], Perlman [58], Goodman [34], 
Chang [14], and Roberts [60] for both two- and three-dimensional methods. In three- 
dimensional space, however, there are some difficulties in simulating the motion of 
vortex tubes by these methods due to lack of connectivity between blobs.

The three-dimensional vortex filament methods overcome the difficulties 
that appear in three-dimensional vortex blob methods. The essential idea, as de­
scribed in Chorin [15, 16, 17], is to chop a vortex tube or filament into a finite 
number of segments that are short, thin, circular cylinders with their axes tangen­
tial at a point to the vorticity vector. We evaluate the velocity at both ends of a 
segment just as for a vortex blob in vortex blob methods. The connected segments 
remain connected. From Kelvin’s circulation theorem and Stokes’ theorem, the cir­
culation around the filament remains constant in our computation. Several authors 
have employed this type of method to investigate various complex flows (see del Prete 
[28], Chorin [16, 17], Leonard [54, 55], Winckelmans [72], and Knio & Ghoniem [49]). 
There are also some theoretical analysis for this type of methods (Greengard [35]).

We try to understand vortex tube stretching from the study of wave prop­
agation along a vortex tube by the self-induced velocity. Vortex filament methods 
are a proper numerical tool for this study. Therefore, we will focus our attention on 
vortex filament methods. The effects of numerical parameters, the choices of core 
functions, and numerical methods for solving the time evolution ordinary differential 
equation on accuracy and stability of the vortex filament methods are investigated 
in order to distinguish physical vortex stretching from the stretching caused by nu­
merical instability. We also examine the conserved quantities such as kinetic energy, 
linear impulse, and total vorticity for various numerical parameters, core functions, 
and time integration methods.

A controllable single smooth initial wave datum is important for the study 
of wave propagation along a vortex tube. A solitary wave solution for Localized 

Induction Approximation (LIA) meets such a requirement. The so-called LIA was 

introduced to study a very thin vortex filament (see Arms & Hama [3], Hama [42, 43],
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and Buttke [12]). In the study of LIA, Betchov [11] derived the so-called intrinsic 
equation and discovered the helicoid wave on a thin vortex filament by solving this 
equation. Later, Hasimoto [44] proved that the intrinsic equation can be reduced to a 
nonlinear Schrodinger equation and gave an analytic soliton solution for this equation. 
However, a vortex evolving according to the Betchov intrinsic equation does not 
stretch or contract [12] whereas study on three-dimensional vortex dynamics shows 
that vortex stretching is a common phenomenon. We like to know whether a solitary 
wave, with velocity induced by the Biot-Savart law, can propagate in a vortex tube 
for a long time without stretching. If there is a stretching in a vortex tube evolution, 
what causes the stretching?

Recently, Chorin [IS, 20, 21, 22, 23] has studied vorticity/energy relations. 
His studies suggest that the folding of vortex lines or the development of hairpin 
structures in turbulent flow are required by energy conservation. To examine this 
idea it is critical to compute energy correctly. There are two parts in the computed 
energy: one is called the interaction energy, the other is called the self-energy. Chorin 
[18, 20, 21] computed the first part by a discretization of a formula due to Lamb [52], 
The second part is computed by scaling laws developed by Chorin [18, 19, 20, 22, 23, 
24]. We will examine these computations and use them to check our vortex method 
computation.

For convergence of numerical scheme and physical validity, we use several 
filaments to simulate part of a “fat” vortex tube. Some techniques to treat the 
truncated ends of a part of a vortex tube will be given in this thesis.

The thesis is organized as follows:

In Chapter 2, we review the physical background and the derivation of vortex 
filament methods. The details of the computational scheme are given.

In Chapter 3, we summarize results of the LIA study of a thin vortex fila­
ment. Derivations of the intrinsic equations and of Hasimoto’s solution are reviewed. 
The equivalence of the Betchov intrinsic equation and the nonlinear Schrodinger equa­
tion is proved.

In Chapter 4, following Chorin’s work [18, 19, 20, 21, 22, 23, 24], we study 
the conservation of energy and the scaling laws for self-energy. For constant core
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function, we derive a new formula for computing self-energy. We also study certain 
properties of this new formula. The numerical schemes for other diagnostics, such as 
total vorticity and linear impulse, are given in this chapter.

In Chapter 5, we study the calculation on a part of a vortex tube. The 
treatments at truncated ends are given.

In Chapter 6, we present the numerical results with initial solitary wave 
data. We study the effects of the numerical methods for solving the time evolution 
ordinary differential equation, the core functions, core size, the time tolerance control 
constant, number of filaments used to simulate a vortex tube, the distance between 
filaments, the pattern of placement of filaments, and the circulation of each filament 
on the accuracy of computational results and on vortex stretching (both numerical 
and physical). We also study the effect of torsion of the initial solitary wave data on 

vortex stretching. We attempt to determine how vortex stretching starts and whether 
a solitary wave can propagate for a long time in a vortex tube with velocity induced 
by the Biot-Savart law. We will show that core size and torsion of perturbation 
wave are the two most sensitive factors in studying vortex stretching: a small torsion 
of wave will cause a discontinuity on the velocity component in the direction of the 
wave propagation. The long-time propagation of a wave of constant shape on a vortex 
tube will be discussed. Results suggest that the long-time propagation of a wave of 
constant shape on a vortex tube is possible.
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Chapter 2

Physical Background and 

Numerical Schemes

2.1 Physical Background

We consider unbounded, incompressible, inviscid fluid flows. The motion of 
such flows is described by Euler’s equations

Du du
Dt dt + (u • V)u = —VP

V • u = 0

(2.1)

(2.2)

where u(x,i) = (u,v,w) is the velocity field, x = (x,xj,z) is the position, t is time, 
V = (d/dx, d/dy,d/dz) is the gradient operator, and P is pressure. Conservation of 
mass and incompressibility give equation (2.2). Equations (2.1) express the conser­
vation of momentum for inviscid fluid of constant density. (See Chorin &; Marsden 
[27, p. 18] or Batchelor [4, p. 75] for details of the derivation of these equations.)

Define the vorticity u as the curl of velocity, i.e.

= V x u (2.3)

We can write equations (2.1) in terms of vorticity by taking the curl of equations
(2.1),

—+ Vx((u.V)u) = 0 (2.4)
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Figure 2.1. Portion of a vortex line.

Note that V x VP = 0 for any scalar function P. The second term in the left side of 
equation (2.4) can be written as follows,

V x [(u • V)u] = (u • V)u; — (cj • V)u + (V ■ u)u; — (u • V)u; — (u> ■ V)u (2.5)

The last equality holds by equation (2.2). Substituting equation (2.5) into equation 
(2.4), we have the vorticity transport equation

du
— + (u • V)o> = (w • V)u (2.6)

where (u • V)u; is the convective term for fluid.
Comparing equations (2.6) with the evolution equations for a material line 

element 51 given by Batchelor [4, p. 133]
o ri

— + (u • V)51 = (51 • V)u (2.7)

we see that vortex lines move as material lines, where a vortex line is defined as a line 
in the fluid whose tangent is everywhere parallel to the vorticity vector. In a fluid, a 
material line consists of the same fluid particles and move with them in a fluid. The 
term {u ■ V)u corresponds to the changes in the vortex lines that come partly from 
rigid rotation of the line element due to the component of 5u normal to u and partly 
from the stretching or the contraction of the line element due to the component of 
5u parallel to u , where 5u is the velocity of the fluid at a point Q relative to that 
at a neighboring point P, both Q and P being on the vortex line (see Figure 2.1). In



CHAPTER 2. PHYSICAL BACKGROUND AND NUMERICAL SCHEMES 7

two-dimensional incompressible, inviscid flow, this term vanishes. Therefore, vortex 
lines in two-dimensional inviscid flow do not stretch.

For any well-defined integrable function 0(x, f), we know

d Fp rp DOTtim-JQDid' + IQ0^-^ <2-8>
where the integration is along a material curve from point P to Q. (See Batchelor [4, 
p. 133] for a detailed derivation of equation (2.8).)

Vortex lines through every point of a given closed curve Ct, where t repre­
sents the curve moving with the fluid, form a tube called a vortex tube. We define 
the circulation of a. vortex tube as

T=<p u • d\ 
Jct (2.9)

Take the derivative of F with respect to time,

-^F = —
dt dt • d\t u

Jc,

= - 0 VP • dl + f F dl 
Jc, Jc, (2.10)

where

F =
U • C^U 

U • dyu 

u • dm

A simple computation shows that F is curl free; i.e.,

V x F = 0

Therefore, by Stokes’ theorem we have

d
dt

F = 0 (2.11)

i.e., the circulation of a vortex tube of inviscid flow is constant in time. This is the 
well-known Kelvin circulation theorem [47].
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By Stokes’ theorem, the circulation can be written as

T = / u-dA (2.12)
Jst

where dA = ndA is an element of the open surface St bounded by the closed curve

Ct.
Consider a piece of vortex tube with two end cross-section faces Si and S2 

and the surface of the tube St. Denote the boundaries of Si and S2 as Ci and C2, 
respectively. Let Wt be the region of this piece of tube with boundary S = Si US^USi. 
By Gauss’ theorem and the fact V • cj — 0,

0 = / V • udV — f uj ■ dA — f to ■ dA + f u ■ dA
JW, JT. JSiUS2 Js,

[ u ■ dA = 0
Jst

since cj • n = 0.
Thus,

0=[ uj ■ dA = / uj ■ dA + [ uj ■ dA = / u ■ ds — [ u ■ ds (2.13)
Js1uS2 JSi Js2 JCi Jc2

The last equality holds by Stokes’ theorem and consideration of the normal directions
of Si and S2. Equation (2.13) shows that the circulation of a vortex tube is the same 
for any curve encircling the vortex tube that is the statement of Helmhotz’ theorem 
(see Chorin & Marsden [27, p. 36]. We call the circulation of a vortex tube the 
strength of the tube.

From equations (2.2) and (2.3), we set

u = V x ^ (2.14)

where tE is called a vector potential to be determined. Thus

a, = Vxu = Vx(Vx»P) = -V2^ + V(V • V) (2.15)

If we assume that ^ is divergence free, i.e. V • ^ = 0, then

= -V2<F (2.16)
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The solution of equation (2.16) in terms of u is

^(x, t) = G * u = J G'(x — x,)a)(x,)(ix/ (2.17)

where the volume integral is taken over the region occupied by the fluid, x' is the 
position of the volume element dx', and G'(x) — l/(47r?') is the fundamental solution 

for the Laplace operator, where r = |x| and * denotes convolution. One can easily 
check that the expressed by equation (2.17) is divergence free. Taking curl of 

we find
u = Vx?F = Vx(G*u>) = J /L(x — x') x u)(x')dx' (2.18)

where
r,, \ 9G x lx
A(x)==^r(lxl)o = -—347r r

is known as a kernel. We write

IC(x) = K(x)x
47T7’:

0
2

\ -y ^

-z y 
0 —x

0

then
u — 1C * u (2.19)

A singular filament C is a curve on which the vorticity is concentrated with 
zero vorticity elsewhere in the fluid. We denote its strength P—the circulation num­
ber. Let vector ^1 represent a material line element determined by the equation

^1 = a • vu + »(|«|)

We have
/ udV = P <51 (2.20)
Jsv

where SV is a nearly cylindrical piece of element on the filament curve with negligible 
cross-section diameter. Thus equation (2.18) becomes, at time t and position x,

P /■ (x — x') X dl(x')u(x, t) = T [ A'(x — x') x dl(x') =----- /
Jc dx Jc ,/|3 (2.21)
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Equation (2.21) is the well-known Biot-Savart law. Notice that equation (2.21) di­
verges with rate l/|x — x'|2 if x is a point on curve C (see Batchelor [4, p. 94]). 
Moreover, it will be shown in the next chapter that a singular filament with nonzero 
curvature has infinite self-induced velocity.

2.2 The Smoothed Kernel

The difficulties arising from equation (2.21) for a singular filament force us 
to find a way to smooth out the singularity in this equation. Following Beale & Majda
[10] (who have followed an idea of Hald [37] for two-dimensional vortex methods), we
replace the kernel /C by = K' * ^v(x) = a-3 ^(tO, where cr is a parameter to
be chosen. We assume that ip satisfies the conditions

(i) ip is smooth and rapidly decreasing; i.e.,

\0^tp{x)\ < Cpj(l + |x|2)~J (2.22)

for every muti-index /? and every integer j;

(11) J ip(x.) dx = 1 (2.23)

(iii)

I x^ip(x) dx = 0 1 < |/?| < m — 1 (2.24)

m is an integer.

The functions ip^ are called core functions or cutoff functions; parameter a is known 
as core size or cutoff size.

Condition (i) implies that the ip and its Fourier transform are smooth and 
rapidly decreasing. Condition (iii) always holds for ip = ip(r), r — |x| with m even. 

Recall equation (2.18), and let Ga — G * ipa. Then

C f)Cr X —(1C, * u,)(x) = / ^(|x - x'|)j------- - x u;(x')dx'
J or |x — x I
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i‘e-’ dC
/c(x) = ^T(|x|)R (2-25)

To find a simple expression for Ka, let us consider a — 1 and assume

dGr _ /(r)
dr 4irr2

We try to find the relation between / and ?/>. We expect

aGi ac i—— ~ —— =-------as r —
dr dr dx?’2 > oo (2.26)

-xf = V2Gi = ?’_2Dr{r2Z), Gi} = f'(r)
47rr2

v. = /,(r>
47r?’2 (2.27)

To have conditions (i)-(m) hold for f must satisfy

(1) f(r)/r3 is a smooth function of r2

(2) /(r) —> 1 as r —> oo

(3) Jo00 f'(r)r2kdr = 0 2 < 2k < m - 2

(4) \D\f(r)| < Cjr~l~\ r > 1, for each j > l and a fixed / > m + 1

Choosing / that satisfies the above requirements, we get

dGa _ f(r/a)
Or Airr2

Therefore,

A'-(x) =

There are some explicit expressions for / and t/):

(2.28)

for m = 2, /(r) = 1 - e r3 ^(r) = r3

/(r) = tanhr3 0(r) = ^sech2r3
for m = 4, /4(r) = f{r) + \rf'(r) xfU) = + rf"(r)]

(2.29)
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Core function 1 ---
Core function 2 ---
Core function 3 --
Core function 4 ...

r

Figure 2.2. Four core functions.

where /(r) is a function with m = 2. (See Beale & Majda [10].) We plot the following 
four core functions in Figure 2.2:

Core function 1 for 1 — e~'’3 
Core function 2 for tanh 7’3 
Core function 3 for 1 + ( — 1 + |r3)e_r3 

Core function 4 for tanh r3 + |r3sech2r3

Replace K with Ka in equation (2.21). We find

ua(x,f) = F l Ka(x — x') x dl(x') = /(———) —
Jc 47r Jc a

Let us try to get equation (2.30) from

- x') x dl(x;) 
lx — x'l3 (2.30)

ua = K,0*u

By the property of convolution,

* u; = (/C * Ipa) * U = 1C * (Vtr * u>) = )C * U)a (2.31)
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where
^<7 = Vv * w = / ~ x'^x^rix' (2.32)

J R3
Note that we must perform this operation with caution since not all conditions re­
quired in the distribution theory (see, e.g., Rudin [61]) hold here. Nevertheless, this 
operation is valid here subject to a nonregular approach of proof (see Hald [40]), which 
is not a topic of this thesis. Thus, the cross section of the filament with vorticity 
does not vanish, and the radius of the cross section is determined by a. Remember 
that

ipvix.) —> <5(x) ns c —» 0

where the scalar function <5(x) is the so-called Dirac-function. We can write

u>(x) = f 6(x — x'jusfx'jdx' (2.33)
2 R3

for a singular fdament.
By Helmholtz’ theorem, the direction and the magnitude of u> in a material 

element with volume SV change with time in the same way as the direction and 
magnitude of the vector <51 representing a material line element that at t = 0 was 
chosen to be parallel to the local vorticity; i.e.,

“(*) _ m
M0)| I«51(0)|

Recall equation (2.20), o>(0)^l/ ~ r<51(0). Therefore,

ua(t) = IC.a(t) * u(t) = J Kl7(x{t) - x'(t)) x uj(x'(t))dx'(t)

= V [ KJx(t)-x'(t))xdl(t) (2.34)
Jc

This is equation (2.30). As we can see, this approach gives some indication of physical 
meaning of ipa and a.

Now we can start to construct our numerical scheme.

2.3 Vortex Filament Methods

Let us consider first the evolution of an isolated thin tube of vorticity, or 
vortex filament with strength F. We divide this filament into small pieces or segments.
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For the jth segment, the two ends are points and xJ+1. Let (51^ = xJ+1 — x^ denote 

a vector element of length of jth vortex segment that lies in the volume element 8Vj. 

Thus equation (2.30) can be written as
F °o .

u'(x,,)=“sS4 (x - x') x dl(x') |x - x'
r113 /(J a ■) (2.35)

Notice that we can only carry out computation for the filament with finite length 
in reality. This is no problem for the periodic case, but one must be careful for the 
nonperiodic situation.

We require |<51j| < h for all j where /i is a predetermined small number.

Thus

lA,
(x - X7) X dl(x7) ^[x-x7!^ _ Tj X

X — X '|3 a (2.36)

where
= x - Kxt+i + x4

ri =

Insert equation (2.36) into equation (2.35),

J=1

Fj X (51,
/(-)7'j ' (7

Knowing u^, solving the ordinary differential equations
fix
dt = uff(x,f)

(2.37)

(2.38)

we can determine the position for Xj at the next time step f + At. There are various 
numerical methods for solving equation (2.38), we have used the first-order Euler’s 
method, the second-order Heun’s method, and the fourth-order Runge-Kutta method 
in our study. The algorithms are

Euler’s method

Xi(t + At) - Xi(f) + Atu(T(xi,f)

Modified trapezoidal method (or second-order Heun’s method)

x* = x,(i) + Aiu(T(xi,f) 
xfit + At) = x^f) + |Af(uCT(xt,i) + u(x*,i))
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Fourth-order Runge-Kutta method

x| = X;(i) + 4iu(T(x, , i)

c!2)
rU)

2

Xi(t) + ^ucr(x!1),^ +
= xt(t) + Atua(x(f\t-\-

Xi(t + At) = x^t) + j+[ua{xi,t)+ 2ua(x\i,,t+!) A(

+ 2ua{x(t2\t + ^) + u,(xS3), t + At)]

As we mentioned on page 6 in Section 2.1, the filament stretches as the flow 
evolves; thus 51j and the amount of vorticity carried by this vortex element grow. If 
|51j| > h, we split this segment into two from the middle of 51j with length |<51j|/2 to 
maintain the partition fine enough for accurate computation.

We also need to control our time step At since velocity could change 
dramatically for the change of curvature, as explained in Section 2.1. The requirement 
for the choice of At at step n is given by

At max |u"| < C 
i J

(2.39)

where C is a given constant, u" = ua(xj(tn),tn), and tn is the time at step n.
From the consideration of accuracy of the scheme, we require a = hq, 0 < 

q < 1, or simply a/h > 1 (see Beale & Majda [8, 9], Anderson & Greengard [1], and 
Greengard [35]).

For the scheme given above, we take the cutoff parameter a as constant for 
the whole filament. It is also possible to have a = a(s, f); i.e., we can choose cq for the 
jth segment and let each cr, vary to conserve volume of the corresponding segment. 
I.e.,

<# + Af)l«j(f + A()| = CT|(()|«S1J(()| (2.40)

We can also attempt to conserve volume by varying a at each time step such that

<r2(i + A()E l^(' + A()l = <r2(i)E H WI (2.41)
J j

From equation (2.33), the vorticity distribution for a singular filament can 
be written as

t) = Y, I ^(x “ x'(f))a;(x,(f))c/x/(f)
■ JSVj

(2,42)
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and the vorticity distribution for the corresponding nonsigular thin filament is

= X! / ^(x - x'(f))a;(x/(t))dx,(t) 
i Jsv>

= ^(x-x'(t))di(f)

~ TEMrAmAt) (2-43)
i

This is approximately equal to the velocity field described by equation (2.37).
From equation (2.43),

uax,0) = r£Vv(iV(0))«51J(0) (2.44)
j

Thus the initial value needed to start our computation is given as the initial vorticity 

distribution.
So far, we have completed the description of algorithms of the vortex filament 

methods for an isolated thin filament. In real flow, we must use several filaments to 
simulate a thick vortex tube. The first reason is that ip(7 is an approximation of 
the Dirac-function, and the approximation will be inaccurate if we take a too large. 
Secondly, the cross section of a numerical filament is always a disc, whereas this is 
not true in real flow. The cross section of a real vortex filament or tube should 
be deformed as the flow evolves, and the deformation may be seen by using several 
filaments to simulate a vortex tube. (See Widnall [69], Widnall et al. [70], Widnall 
& Tsai [71], and Knio & Ghoniem [49].)

For several filaments, e.g. M filaments, we can modify equation (2.34) as

follows:
ivj

uff(x,t)= £ pb") / K^m(x(f) - x'(t)) x d\(t) (2.45)

Notice that for different numbers of filaments, the circulation and core size may be 
chosen to be different. Equation (2.37) can be modified as follows:

i M oo Sm) x <51 (m)

(r ;)-
/(^-)

a
(2.46)
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where cr = <rm if x is not on any given filamnet and a = or a = {crmai)1^2

if x is on the 1th filament; am may also be varied with time or with arclength and 
time to conserve volume.
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Chapter 3

The Self-Induction Approximation

3.1 LI A and Betchov Equation

In this chapter, we follow Betchov [11], Hasimoto [44], and Buttke [12] to find 
the velocity induced by a filament itself near a point 0 on the filament. Parametrize 
the vortex line (filament) by arclength 5; i.e., r = r(s), and assume 3 = 0 at the point 
O. Take the derivative of r,

dr dx dy dz (
ds ds ' ds’ ds

where t is the unit tangent vector. Define the curvature ac of the filament by

dt

i.e.,
dt
ds

where n is the unit normal vector. Define the unit binormal vector b = t x n. The 
unit vectors t,n, and b form an orthonormal coordinate system at all points along 
the curve r(s). At 5 = 0, we denote these coordinate vectors as t0 = t(0), n0 = n(0), 
and b0 = b(0). Let ro = r(0), for some small positive value L, —L < s < L,

r(.s)
civ d?v

r<0>+ss<0> + ^<0>+3f;p<0>+0<s>
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Figure 3.1. The curve r(s) near point 0 in Frenet-Serret coordinate system.

2 3

— r0 + sto + —to + —to + 0(s4) (3.1)

KS2 s3
— ro + sto H—2~n° ^ + ^(,s4)

Thus a curve near 0 lies roughly on the t-n plane, with no component along the 
binormal if we drop the terms with order equal to or higher than s3 (see Figure 3.1). 
Similarly,

s2
t(s) = to + KSUo + —to + 0(s3)

Pick a point x near O but off the curve r(s) to be x = j/n0 + zb0. Note that the 
variable x' in equation (2.21) is actually r here, and dl(x.') = t(s)ds; take the point 
0 as origin in Cartesian coordinates, and, after dropping terms of order equal to or 
higher than s3, we find

2 2 2/ /x Vs , ZS ...(x - x ) x t -yt0 + zn0 - znsto + —(n0 x t0) + —(b0 x t0)----^-b0

|x — x'|2 y2 E z2 + s2(l — jjk) = g2 + 52(1 — y/c)

where g2 = y2 + z2. Let y = g coscf) and z = g sin<j)\ then the integrand of equation 
(2.21) can be written approximately as

(b0cos(f) - n0sin^)y 1 + t0«:Csin</!> + b0^ - ^[(uq x to)cos<l) + (b0 x to)sin^]
[1 + (2(1 - yKcos<ji>)]i

where ( = s/g. As y —> 0,

— [(n0 x to)cos(/> + (b0 x to)sin</>] -> 0 

1 + C2(l — gKcoscf)) ~ 1 + C2
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Because —^—- is an odd function 
(i+C2)?

(L/e C 
-Me (1 +C2)1

= 0

We ignore the contribution to the velocity at O arising from parts of the filament 
outside the range |s| < L since this part of velocity is bounded in magnitude. Then

u(x, i) ~

/"'w'

r rL!e (b0cos<^ - n0sin(j))g 1 + b0^

Ttt J-L,g (1+C2)t C
r Fk l

-—(b0cos<j!> - n0sind>) -f bo —In — + 0(1) 
Zttq dir g (3.2)

for - —> oo. e
The first term represents the circular motion around a straight filament, and 

the second term gives the velocity depending on curvature n of the filament. After 
eliminating the first term, we have

<9x
dt

Tk L 
b0-— In — 47T q

(3.3)

This is called the self-induction approximation or localized induction approximation 
[LIA). For nonzero curvature,

<9x L
—---- > oo, as----- > oo
dt ’ g

If we consider £:log ^ as a constant, we can write equation (3.3) as

dx
Tt — hi —)t0 x47T q

dto

ds (3.4)

since icbo = t0 x (/cn0) = t0 x 4*. Let t = if log L. We find
as 4k ^ g

dx
dt

, dt0
to X —— — Kboas

After dropping the “hat” and subscript, we get
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We designate ' = and' = Thus equation(3.5) can be written as

x = t x t' = /cb (3.6)

Since x' = t, and x" == t' = kh, then

x"' = t" = Ac'n + «:(rb — Kt) = —K2t + Krb + Ae'n 

where r is the torsion of the curve defined by

r = -b/-n (3.7)

Since t ■ n = 0,
0 = t7 • n + t • n' = k + t • n'

that is,
t • n' = —k

From b ■ n = 0, we get

0 = b' • n + b • n' = —r + b • n'

that is,
b • n' = r

Therefore

n' =< t • n' > t+ < n • n' > n+ < b • n' > b = —Kt + rb (3.8)

where we use the fact that n ■ n' = 0. From t • b = 0, we find

0 = t' • b + t • b' = Acn • b +1 • b; = t • b'

With —r = n • b/, and remembering that b • b' = 0, we get

b' = -rn (3.9)

We have the well-known Serret-Frenet equations, which consist of equations (3.8) and 
(3.9) and

t' = Acn (3.10)
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If we take the derivative with respect to s for equation (3.6),

t = (x)' = /c'b + Kb' = Ac'b — Krn

By the definition of /c,
t'-t'

Thus,

that is,

or

= 2t'• t = 2t'• (K'b -/crn)'dt v J
= 2t' • (/c"b + /c'b' — kVii — /cr'n — Km')

= 2kii • [/c"b — k'tii — k'tii — Kr'n — Kr(rb — «t)] 

= 2k(—2k't — /cr')

—2(k2)'t — 2k2t'
J(^T)
“ ds

dn2 ^5(k2t)
dt ds

d* o / /
—- = —ZK T — KT
dt

(3.11)

(3.12)

Equation (3.11) is the first intrinsic equation, derived first by Betchov [11],
Now let us derive the second intrinsic equation, also due to Betchov. Start 

from the formula k2t = t • (t' x t"). Thus,

dn2T
dt

= t • (t' X t") + t • (t X t") + t ■ (t' X t )

Considering

t = /c'b — Krn

t/ = K2rt — (2k't + Kt')!! + (k" — KT2)b

{!' = (4k'kt + 2K2T')t + (k3t + kt3 — 3k"t — 3kV — kt")ii + (k'" — 3k't2 — 3Krr')b
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we find

t' x t" c2rt + K3b

Thus

t x t" (kk't2 + k2tt' + k'k")! — K2n"n — (k2 k't + fi:3r')b

tr x i" = k{k"' — 3k't2 — S/crr^t — k(\kk't + 2K2T')h

9k2t
dt

3 / / 2 2 l l a i HI o/2 o 2 /= KK — KKT— KTT— KK+KK — oKK. T — 6K TT
= kk" — k k" + kak — 'Ikk't2 — Ak2tt'

= Uk2)'" + j(tc4)' - 2[k4 + k2t2 + (k')2]'
t-i 1

= h-iT-2[-k, + «v + (,c')2]'
8

= ^r + ^4-4^r2-4(K')2r

= [kk" - (k')2 - 2k2t2 + l-KAy 

On the other hand, using equation (3.11), we find

dK2T
~dT

Uk2
dt

o dT 
■T + K2 —dt

= -2-

dK2T i dr
ds T + K ¥

,2\l— —2((K2yT + K2t')t + K i dr
dt

(3.13)

(3.14)

If we combine equations (3.13) and (3.14)

-■2((k!)'t + «V)r + ^ - 4(«')T - 2((*!)'r2 +

that is,

K2(2rr'+ —) - - 4(/c')2j'

The second intrinsic equation is

2TT' + ^ = Ir^!r + I^Z_4(('i')2),i k”' k'k"
dt 2L K2 2 K2 + kk' (3.15)
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or
dr , k
dt

<7 - 72>' (3.16)

Let us seek some special exact solutions for equations (3.16) and (3.12). We consider 

only the case where torsion r = constant and assume k' ^ 0 in this thesis. Thus 
equation (3.16) becomes Jf

Integrating this equation, we find

/ 2 /v ') \ 1
(— + K2y = 0

2 k" 2 A 
I K —77K. I

where A is an integral constant that may depend on t. It is equivalent to

4[(,cOT + (k7-^(k7 = o

or
[d^')2 + K4 - Ak2}' = 0 

Integrating the above equation again, we get

°(k')2 + k4 - Ak2 = C

where C is a constant. It can be written as

2k'
±-(c + Ak2 - K4y/2

Integrating the positive branch, we find

s-m=r 2K'dc 2dk
J Si

Let us assume (7 = 0; then

wr,-L
s0 (C + Ak2 - k4)1/2 yK(5o) (C + Ak2 - k4yc

Let (3 = ; then

2 , /i4/2 + yj7^2
= ;-----------

ic(s,i) = 2/3sech{^[s - /(()]) (3.17)
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Taking the derivatives of equation (3.17), we find

dn— = -2/32ft&n\i{l3[s - f(t)]}sec\\{(3[s -

c)k
— = —2f32 tanh{/3[s - f(t)]}sech{(3[s - f(t)}}

From equation (3.12) and r = constant, we get

Thus,

Integrating the above, we find

dt - 2kt

f = 2r

f(t) = 2r{t - t0)

Let to = 0 and 2r = c. We finally get

k(sN) — 2/3sech[0(s — ct)] (3.18)

We will see in the following section that the intrinsic equations (3.12) and 
(3.16) are equivalent to the nonlinear Schrddinger equation.

3.2 Nonlinear Schrodinger equation and Hasimoto 

Solitary Wave

Hasimoto [44, 1972] reduced the self-induction approximation [equation (3.5)] 
to the nonlinear Schrodinger equation

1 <9'0 d2V> 1 , / , , 127 i! = a?+ 2^1 +A)

by the following transformation

ip = Kexp(z / tcIQ 
do

(3.19)

(3.20)

The detailed derivation can also been found in the book by Lamb [51].
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In this section, we prove that the nonlinear Schrodinger equation is actually 

equivalent to the Betchov intrinsic equations.
To show this, we integrate the second intrinsic equation (3.16) with respect

to s
r - j, k" 2 1 2 1 „
/ Tci( —--------- T2 + -K2 + -A

Jo K 2
where A = A(t). We can write this equation as

; I Td(
Jo

II 2 i ^ 3 i ^ a
k — kt T T -kA

With the help of the first intrinsic equation (3.12), we find
rs ^ J

A: + / id( = —(2k't + kt') -f ^(/^/, — kt2 + -k3 + -kA)
Jo 2 2

or
1 rs ,11
—(k + i-K / Td() — LIk t + Ikt' -f k" — kt2 -\—k3 -\—kA 
i Jo 2 2

We multiply both sides of equation (3.22) by exp(i fo Td(). Then

Id . fs . fs
- —[k exp(? / Td()] = (k" + zTr'+ zacV) exp(z / Td()
i at Jo Jo

+(k/+ z/vr)zr exp(z / Td()
Jo

1 , rs+ -(k2 + A)Kexp(i TdQ 
Z Jo

d2 fs
= a?('‘exp(!yo rdQ]

+ ^(k2 + A)Kexp(i [ TdQ 

Z Jo

(3.21)

(3.22)

(3.23)

Using the transformation [equation (3.20)], we get the nonlinear Schrodinger equation 
(3.19). Note that every step is reversible. Thus the nonlinear Schrodinger equation 
is equivalent to the Betchov intrinsic equations.

To eliminate A from equation (3.19), let
rt= T(s,t) = ip(s, t) exp[—^ / A(Qd(]

Z Jo
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We want to determine the actual shape of the curve that has curvature given 

by equation (3.18) with constant torsion r. This has been done by Hasimoto [44]. 
From equation (3.9),

bn i= —rn

From equation (3.8),

Thus,

that is.

tx\' = —KTt + r2b

— b” = —K-rt + r2b 

rt = —(bw + r2b)
K

Taking the derivative with respect to .s, we find

1

By equation (3.10),

that is,

rt' = [-(b" + r2b)]'
K

0 = r(t/ — kii) = [—(b/; + T2b)]/ + kE' 
k

[—cosh/J^b" + T2b)]/ + 2/3sech/9£b/ = 0
ZfJ

where £ = s — ct. Equation (3.25) can be written as

d3b d2b 2 2 db 2
+ tanh?/——- + (T2 + dsech2??)-—b T2tanh?/b = 0 dr)-* dr)* dr)

where 7/ = (3^ and T = t j (3.
Define

^ dbB = ——b tanh?/b 
dr)

We can transform equation (3.26) to

d2B
dif + (T + 2sech ?/)B = 0

(3.25)

(3.26)

(3.27)

(3.28)

which has the trivial solution B = 0 and two linear independent solutions

B± = (tanh?/ iT)e±lTrie±
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where e_ and e+ are constant vectors. The corresponding solutions of equation (3.27) 

are

b0 = e0sech?7 (3.29)

b± = e±(l — T2 2;iTtanh77)e±l77) (3.30)

where eo is a constant vector.
To have real b with |b| = 1 satisfying the condition that the filament parallel 

to the x-axis at infinity, we choose the linear combination of bo, b+, and b_ as

b =

/2/^ 

0 
0

sech?? +

\ u /

/o'

2 
1

\ 2 /

(1 — T'2 — 2iT tanhr/) e20

l

0 '

V 2 /

(1 - T2 + 2zT tanh?/) e i'0

\2 fi sech?/
/i[2T tanh?/ cos 0 — (1 — T2) sin 0] (3.31)

^ /?.[271tanhr/ sin0 + (1 — T2) cos 0] )

where /?. = and 0 = T?/ + o'it)- The function a(t) is determined by equation 
(3.5). Use the Serret-Frenet equations (3.8) and (3.9) and x' — t,

/ ___________ _ \
n =

2/? sech?/ tanh?/
— (1 — 2fi tanh2?/) cos 0 + 2[iT tanh?/ sin 0 

^ —(1 — 2/? tanh2?/) sin 0 — 2fj,T tanh?/ cos 0
(3.32)

and

1 — 2/? sech2?/
—2/? sech?/ [tanh?/ cos 0 -f- T sin 0]

^ —2/? sech?/ [tanh?/ sin 0 — T cos 0] j

^ s — 2j| tanh?/ ^

(3.33)

x = 2^ sech?/ cos 0
C)A sprlvn isin 0

(3.34)
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If we substitute equations (3.18), (3.31), and (3.34) into equation (3.5), we get

= P2-t2 (3.35)

Integrating equation (3.35) and defining (t(0) = 0, we find

a(t) = (/32 - T2)t (3.36)

There is a solitary wave moving along the curve given by equation (3.34). Figure
3.2 shows that the |^| determines the amplitude of curvature k and increasing |t| will 
increase the speed of wave and decrease the amplitude of the wave. In a real-time 
scale, the soliton speed along the x-axis is iir)p[ln(“p) — !]• For r = 0, the soliton 
speed on the x-axis should be zero, but the velocity components in both the y and 
z directions are not zero; thus the soliton shape changes with time such that the 
solitary wave oscillates along the x-direction (Figure 3.3).

3.3 Comments on the LIA

The localized-induction approximation ignores several important aspects of 
the dynamics of real concentrated vortices (sec Aref & Flinchem [2] and Leibovich & 
Ma [53]).

First, vorticity stretching is absent in this approximation (see Buttke [12]). 
However, numerical simulation shows that stretching must happen for a thin filament 
in incompressible fluids. Several authors have made new asymptotic equations to 
capture the stretching phenomenon for the motion of a thin filament (see Aref & 
Flinchem [2], Klein & Majda [48], and Callegari & Ting [13]).

The second defect is that the deformation of the vortex core is not repre­
sented since we have assumed that the term -f- In - is constant. Also, the values of L 
and g can not be determined a priori., although the correct time scaling depends on 
these values for equation (3.3).

As we have said, this approximation is local. It totally ignores the interaction 
between filaments and between two portions of a filament approaching each other 
closely.
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T A U 2

Figure 3.2. Perspective views of a solitary wave moving along a filament. The 
parameters r = 3.0 and is = 3.0 are for the left figures; r = 2.0 and v = 2.0 are for 
the right figures.
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Figure 3.3. Perspective views of a solitary wave motion with r = 0
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Chapter 4

Energy Conservation and Other 

Diagnostics

4.1 Some Invariants of Euler’s Equations

We use several invariants of Euler’s equations to check the validity of our 
numerical schemes. They are the total vorticity fl, linear impulse I, and kinetic energy 
£ of a vortex system defined by

Q =

I =

E =

/ udV
1
2
1
2

X X locIV 

u • udV

(4.1)

(4.2)

(4.3)

where we have assumed that the density is one.

For an unbounded flow with zero velocity and zero vorticity at infinity, 
for example, the closed ring, the total vorticity fl is zero. The linear impulse I is 
independent of time. To see this, we write the vorticity transport equation (2.6) as

du>
— = {u> ■ V)u — (u • V)u> = V x (u x cu) (4.4)

where we have used the facts that V • u = 0 and V • u; = 0 and the vector identity 

V x (v x w) = (w • Y)v — w(V • v) — (v ■ V)w + v(V • w)
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Note that the integrating region is fixed in this case. Thus 
dl l f du> rTr l f rT_ ,7t = -2hxjrdV = 2J*x^*(uxu,)]dv

Expanding the integrand, performing integration by parts, and using the fact that u 
and u> vanish at infinity, we find

dl
dt h x u>dV (4.5)

A simple computation shows

u x u; = ^V(u • u) - (u • Y)u

1_. . d(im) 5(nu) 9(u;u)
2 K ’ dx dy dz (4.6)

where the last equality holds, since V • u = 0. Thus the integral of equation (4.5) can 
be transformed to a surface integral that is zero because u = 0 at infinity.

The kinetic energy is also conserved. By Euler’s equations (2.1) and (2.2) 
and the same argument as above, 

dE f du
dt h dt

■dV J u • [VP + (u • V)u]dE

= - J V ■ [(l-u ■ u + P)u]dV = 0

It is possible to find an expression for the total kinetic energy in terms of the 
vorticity distribution. Let ^ be the function defined by the expression u — V x 
with the constraint V • yl' = 0, as in Chapter 2. From the vector identity

we get

(V x IP") • u = IP" • (V x u) — V • (u x lE) = IP' • — V • (u x if")

E=^ udV - / V • (u x V)dV

The second integral vanishes by the same argument as before. Thus
1E = 2.l T' ■ udV

(4.7)

(4.8)

By equation (2.17),
E-hn u ■ u

dV{x)dV{x.')

This expression is also called the Lamb integral [52].

(4.9)
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4.2 Numerical Diagnostics

We call the conserved quantities such as kinetic energy, linear impulse, and 

total vorticity the diagnostics of our numerical scheme because a good numerical 
scheme for solving the Euler’s equation in unbounded region should preserve these 
quantities. The discretizations of these diagnostics are based on the same theoretical 
analysis used to obtain the schemes for vortex filament methods in Chapter 2. We 
adopt the same notations used in Chapter 2. Then, for a single filament,

n [ udv = r / d\(
Jwt Jc,

N . N
= r£/ di(x)«r£ <51,

j=i
r

j=i
1 - - [ xx uhIV = — / x x dl

2 Jw, 2 Jc,
p A' - p TV

= t ^ A x x c/1 ~ 9 ^ aj x ^- j=l JSh “ j=l

(4.10)

(4.11)

where aj = (xj+i + Xj)/2.
Similarly, for M filaments,

M TV„
0 r(m) X] <5i (m)

jm=l
M

J=1
i M A'

(m)

(4.12)

(4.13)
m=l i=i

where aj”l) = (x*™} + x*''l))/2.

The energy computation is a little more complicated. From equation (4.9),
1

E = —
u>(x) • w(x')

dV(x)dV{x')
Sir Jv Jv |x —x'l

N N ' ' ^(x) • ^(x')
X — X'

N N
E E En + E En
i=l i^T 1=1

(4.14)

Ll I
Stt Jsv, J5

ut(x) • <^(x')

Stt Jsv, Jsv, |x —x'|
dV{x)dV(x')

where
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X

y

Figure 4.1. A piece of a cylindrical vortex tube.

Now we see that the total kinetic energy in a considered region consists of two parts. 
One is the sum of Ea, the self-energy, denoted by Es] the other consists of the 
remaining terms, the exchange energy, denoted by Ee.

For these terms EtJ in Ee, i ^ j, under the more restrictive condition:

max(|^l,|, 1(51,1) < 7'ij

where r,j is the distance between the midpoints of two segments <51, and <51j. We may 
approximate Eij as usual,

(4.15)

However, it is clear that the terms Ea in Es can not be approximated so simply, and
Eu is also too large to be ignored. Chorin resolved this difficulty by using a scaling 
property of El% [18, 19, 20, 21, 22, 23, 24, 26].

4.3 Scaling Property and Computation of Self- 

Energy

To derive the scaling property of self-energy, we consider a piece of a cylin­
drical vortex tube with height I and cross-section radius <t lying on the coordinate
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system given by Figure 4.1. We denote the total kinetic energy in this piece as E(a, I)]

i.e.,

E(aJ) Stt \x — x'|
(4.16)

Clearly, the vorticity u depends on the radius a and can be written as u>a = (^,0,0) 
in the given coordinate system. We will assume that the circulation u>a ■ nA(a) = 
^aA((j) is fixed, where A(a) — na2 (one will see the justification later); that is, for a 
real parameter e > 0,

£e<7(cx)/4(e<7) = ^(x)y4((T)

or
C4fx) = 4g(x

Thus, let x = ex and x' = ex', 

E(ea,e£) —
1 rea r\/e2cr2 — y* rea r/ dy / ,_____dz / dx / dy' / /______ dz' / dx

J— ccr J — \/12 cr^ — JO J— ea •/ —a/c2<72 —Ty'2 JO

(4.17)

,, /■«' ,U>„(x) • U.„(x')
Stt j—io

t
Stt
,5

x — x'

- f df, dz I'di [’ dy' d? -^(^O
Stt J-a Jo J-o J ~ J0■ \J~aT—yE Jo

dz' / dx'
X — X'

'J°2-y2 , C , r . , rV°2-y'2 , , re , /o^(x) • ^^(x')r° rx/v -y r*- r<r ryo^-y r
— — / dy ____dz dx dy' / ____ dz' / dx

hTT J—a d — \/a’2 — y’2 JO J—<r J-\/a2-y'2 Jo
cE(aJ)

e4|x - x'l

That is,

Let e = we then find/T 1

E{ea,d) = cE(cr, (.) (4.18)

E{cj, I) = aE{l,£/a) = (7T(I/(7) (4.19)

where T(£) = E(l,£) 's a single variable function.
To study the properties of T(£), we assume that the vorticity u>a is constant 

in space and time, e.g., o>CT(x) • (^(x') = C(cr). Then

m
/ [ dydz j [ dy'dz' f dx f dx' ?____  1

b/T JS(\)J JS(\) J Jo Jo N^x' — XY -\- (^y' — yY A {^z' — z)^
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where S(cr) = {(y,z) : y2 + z2 < cr2}. Since
fe rt
/ dx / dx'—j=

Jo Jo . (t'^J[x' - x)2 + (y' - y}2 + (z' - z)2

= 2nn ^ + ycT^/^yl^Jv^j2

—2\Jt2 + {y' - y)2 + (z' - z)2 

+2

- y)2 + [z - z)2]

Let y = p cos 0, z = psin^, y' = p' cos O', and z' = p'smO'. Then
(7(1) n* r2* n /-i

m Stt

rlir r2x rl rl
/ / dOdO' / / dpdp'pp'

Jo Jo Jo Jo
I + \!I2 + p2 -f p'2 — 2pp' cos(0 — O')21 ■ In

—2\fp + p2 + p’ 
2 , „/2

v2 — 2pp' cos(0 — O')

T\n[p2 + p'* — 2pp' cos(0 — 0')]
-\-2\Jp2 + p'2 — 2pp' cos{0 —

Let us look at the asymptotical behavior of T{t). For I —> +oo, 
T{I) _ (7(1) r2* r2, n n 

("llollnl 47T
rZ?c rin rl rl
/ / dOdO' / / dpdp'pp'

Jo Jo Jo Jo
I + \JI2 -{- p2 + p'2 — 2pp’ cos(0 — O')

lim^ + oo ln^

l^/„ /„ MdO'£ £ dpdp'pp'

'C(l)

• 1

That is,

T(£) ~ constant ■ I\w I f or I A oo

(4.20)

(4.21)

To find the asymptotical formula of T{1) for ^ > 0, we take the derivative of T{1),
dT _ (7(1) rl* d* ri rl
Jl Stt

r27r rZn rl rl
/ / dOdO' / / dpdp pp'

Jo Jo Jo Jo
2 In 

In

A p2 + p'2 — 2pp' cos(# — O')

p2 + p'2 — 2pp' cos(0 — O') |
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0.6*1*1-------
0.845*l*log(l) ---

Figure 4.2. Asymptotical properties of T(£) with C(\) = 1.

Then

dl
IdThm £ dl

C(l)
47T

r2TT /*27r /*1 /‘l
/ / dddO' / / Jpr/p'

Jo Jo Jo Jo
pp

\Jp'1 V p'2 — 2pp' cos(0 - 6')

Thus,
T(l) ~ constant ■ l2 for f —> 0 (4.22)

Figure 4.2 shows the asymptotical properties of T(l), where (7(1) = 1. For f —* 0, the 
asymptotical function is 0.6 F2. For £ —> oo the asymptotical function is 0.845 £ In T 

Now the question is how to compute T(l). Once we find a way to compute 
T(l), we can make a data base and use interpolation and equation (4.19) to compute 
E(a,l) for any given a and l. Since the vorticity u> depends on core structure, we 
should not assume uj to be a constant vector. We must evaluate T(l) from equation 
(4.16). Therefore we need to compute first. From equations (2.43) and (2.27) and 
the definition of Vv(x) at page 10 Chapter 2,

uv(x,f) £ [ /'UW*')
47T Jc, or2
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47t<t Jslj r2

r
4x(j E

i=i
(4.23)

where r = |x — x'| and a] = |xj+i+xj _ x|2_ prom ^ie equality, we can see that

w£CT(ex,t) = _x<*,(T(x, t)
e'2

which justifies the assumption of equation (4.17). From equation (4.23),

r2
m 128x3

/•27T yl /-r y27T rl rt
/ d6 I dp I dz I cW / dp' / dz' 

^0 -'O */0 */0 Jo Jo
i v-'ATPP Z_>j—1 a?a) (4.24)

\Jp2 + f)'2 — 2pp'cos(d — d') + (2 — 2')2

Using standard integration schemes such as the trapezoidal sum and Gaussian inte­
gration methods (see, for example, Stoer &; Bulirsch [68, pp. 121, 142]), we can easily 
generate a data base for various core functions. The self-energy can be computed as

N
e, = yvxtc/f,) (4.25)

i-1

where It = |dljj.

In Figure 4.3, We plot the T(I)s for the four core functions given in Chapter 
2, where the label in the picture is defined as follows:

Core function 1 is 1 — e-r 
Core function 2 is tanh r3 

Core function 3 is 1 + ( —1 + |r3)e~r3 
Core function 4 is tanh r3 -f |r3sech2r3

In the future, the kinetic energy is given by the approximate expression

E = Ee + Es

where Ee = Eij, Etj = and Es is given by equation (4.25).
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core function 1 ---
core function 2 ---
core function 3 --
core function 4 ..

0.3 -

0.2 -

Figure 4.3. T(C)s corresponding to four core functions.

plane x=a

Portion of vortex tube W t moving with the flow

plane x=b

Figure 4.4. A portion of a. vortex tube.
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4.4 The Limitations of the Diagnostics

We studied the invariants of Euler’s equations such as kinetic energy, total 
vorticity, and linear impulse. We also derived the numerical schemes for computing 
these invariants. It is important to note that all the derivation in previous sections 
in this chapter is carried out in whole three-dimensional space R3. However, in our 
study, we often take only a portion of space, for example, the x direction bounded and 
the y and z directions unbounded, for an unbounded flow (see Figure 4.4). The chosen 
portion moves with the flow. We therefore designate the volume of that portion as

Wt = {(x,y,z,) : a(t) < x < b(t), -oo <y,z < +oo}.

It is of practical interest to know whether the quantities discussed in previous sections 
are conserved in the restricted circumstance.

It is clear that the total vorticity in the given portion Wt does not vanish. 
However, the total vorticity in the given portion Wt is independent of time,

d f „, d f ^ , /■ „ D u
dt

I udV = ^ [ 
Jwt dt Jwt

V x udV — f V x „ 
Jw, Dt dV

= - / V x (VP)dV = 0 
Jw,

where we have used Euler’s equations (2.1) and (2.2).
Generally, in the restricted region Wt, the kinetic energy is not conserved, 

and equation (4.9) is not equivalent to equation (4.3) due to the nonvanishing bound­

ary terms. We denote u = (u,v,w)1, u = (£,C?7)\ an<^ ^ = {a, PiVY- Let us 
compute dE/dt on Wt,

cLE
dt

u ■ VPdV
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where u = (u, v, w) and we used the fact that

u • VP = V(uP) - (V • u)P = V(uP)

since V • u = 0. The last surface integration does not vanish unless u = 0 or P = 0 

at both planes x = a and x = b. Therefore the kinetic energy E in the restricted 
region Wt is not conserved generally. The second term of equation (4.7) can not be 
eliminated generally on the restricted portion Wt because

^ V • (u x !P) = Jr2[{vv ~ w/3)\xx=ba]dA(y,z)

Thus, on the restricted portion IT*, equation (4.9) is not equivalent to equation (4.3) 
generally.

The linear impulse in the restricted region Wt is also not conserved generally. 
Let us compute dl/dt,

D , .... f , Duc/I
dt

f D f Du
/ tt-(x x u)dV =/ (uxw+xx ~^~)dV 

Jw, DD ’ Jw, Dt1

where

/ uxudV = [ [-V(u-u)
Jw, Jw, 2

3(uu) d(vu) <9(um)
w,"Z ' dx dy dz

- J-[i2[(uv)\x=ba\dA(y^z)
{ -Jie[(uw)\*=ba}dA(y,z) )

]dV

and
/ x x —dV = I x x (u • Y)udV 

Jw, Dt Jw,

Both the surface integration and the integration fWi x X (u ■ V)udV do not vanish 
generally. Therefore, dl/dt ^ 0; that is, the linear impulse in the restricted region Wt 
is not conserved.

For a straight filament lying on, or parallel to, the x-axis with the velocity 
field induced by itself, the discussion about kinetic energy and linear impulse in 

previous sections is valid for the portion within the region Wt. In this case, y — 
constant, 2 = constant, rt = 0, £ = 0, and 7 = 0. Thus vx = 0 and = 0 from
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the definition of u> and /3 = 0, 77 = 0 by equation (2.17). With these facts and the 
assumption that u and u vanish at infinity, we can eliminate all of the boundary 
terms generated in our calculation as well as the integration JW( x x ■ V)udVh

This argument explains that in our numerical computation the kinetic energy 
E can remain constant as long as the perturbation waves stay far from the steady 
boundaries and start to vary once the boundaries are affected by perturbation waves.

From the analysis given in this section, in the computation of a portion of 
a vortex tube moving with the flow, we know that the total vorticity remains a good 
diagnostic of a numerical algorithm; the kinetic energy can be used as a diagnostic 
of a numerical algorithm only if there is no perturbation near the boundaries of the 
considered region on the vortex tube, and the linear impulse cannot be used as a 
diagnostic of a numerical algorithm because any perturbation on the vortex tube in 
the considered region will change the linear impulse.
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Chapter 5

Calculations on Part of a Vortex 

Tube

It is often convenient to calculate part of a (possibly infinitly long) vortex 

tube. To do this, we must truncate the uncomputed tails of the vortex tube. This 
Chapter discusses how this can be done.

Consider first a straight vortex tube. Assume that the tube consists of a 
bundle of straight parallel filaments with equal circulation. To simplify the discus­
sion, we assume that the straight filaments are parallel to the x-axis. Thus a plane 
perpendicular to these filaments should be parallel to the y-z plane. Denote a plane 
parallel to the y-z plane and passing through the point (x,0,0) on the x-axis by Px. 
Thus P0 is the y-z plane. We define the velocity center Cv(x) on the plane Px as 
the point where the y-z component of velocity is zero, as shown in Figure 5.2. There 

may be several velocity centers. For simplicity, we consider only the pattern of the 
velocity distribution shown in Figure 5.2. Thus, there is only one velocity center on 
a given plane Px. Let Cv be a curve consisting of all Cv(x), see Figure 5.1.

The filaments away from the center curve Cv will rotate around the Cv. We 
can also see that the rotation speed at various points (x,y,z) changes according to 
the values of the y and z coordinates. For an infinitly long straight vortex tube, the 
velocity distribution on the plane Px with a different x is the same. Thus, all points 

on the same straight filament should rotate with the same speed around the velocity
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filament

vortex tube

Figure 5.1. A finite part of an infinitly long vortex tube.

center curve Cv. Without proper treatment at the truncated ends, a computational 
result of part of a vortex tube will not preserve the above property due to the loss of 
the appropriate contribution from the truncated parts during the computation. Near 
the truncated ends, the computed velocity magnitude will be quite different from the 
velocity magnitude induced by whole vortex tube. Consequently, the points on the 
same straight filament will rotate with different speeds. A physically unreasonable 
twisting of filaments will start at the truncated ends and quickly spread to the middle 
parts.

The way to eliminate this physically unreasonable twisting of filaments is to 
recover the correct velocity intensity near the truncated ends. We have used two ways 
to do so in our computation: (1) treat the data periodically, which is a conventional 
method of dealing with this kind of situation, and (2) extend each filament with 
straight lines at both ends. Both of the methods are simple to implement in the 
computation. Both methods require extension on both ends. The extension on each 
end is equivalent to adding the terms into the summation in equation (2.46). For the 
first method, we copy the computed part at each end and connect it to the previous
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Figure 5.2. Cross-section velocity fields around various numbers of filaments. The 
symbol indicates the position at which a filament crosses the section plane.
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part. In the second method, for each filament, at each end, we copy the end segment 
N times and connect them to each other at the end. With both treatments, the 
three-dimensional vortex filament method scheme [equation (2.46)] can be modified 

as follows:

ua(x,t)

where

1 M 

Air

JVm „(m) x £i(m) Jm) Am) v rd™) ;:("d =(m) rUm)r(m) yu_i—2 'JIJ —x d[j 1

^ (rH)3 J[ a (f(.m))3 J[ a n (f.(-))3 nm=i j=l

r, =

x - |(xj+i + xj) 
x - |(xi+i + xj) 
x- l(xJ+l +xj) 
Ird

ri = Tj\
For the periodic treatment,

^ XN+1 A Xj — X1 ^

Vj

\

xj =

For the straight line extension,
/ O, \Xj—2

Dn+i

V zN+\ )

XJ

( Xi - (xN+i - Xj) \

V:

( 2^j_i - xi_2 ^

Vn+\

\ zN+\

where .Ti = x^+i, x2 — 2a:jv+1 — xjy, Xi = Xj, and 0:2 = 2a:! — x2. One should modify 
the scheme of straight line extension to deal with the situation of perturbed waves 
passing through the truncated ends. We suggest that in a computation, one follow 
the wave shape of interest, add new segments (or new grid) at the forward truncated 
end, and drop segments at the opposite end. We may call this a moving Lagrangian 
grid method. With this method, we can study the long-time behavior of a wave with 
limited computer memory space. The theoretical validity of this method is based on 
the observation that the behavior of a wave in a part of a vortex tube is governed 

mainly by this part of the vortex tube as long as the wave stays in the middle of the 

part and the truncated ends have been treated appropriately.
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Chapter 6

Numerical Results

6.1 Goal and Experimental Design

We present our numerical results in this chapter. Our goal is to answer the 
following questions:

A. What are the effects on the accuracy of our vortex filament scheme of the choices
of the numerical methods for solving the time evolution ordinary differential 
equation, the core functions, and the parameters?

B. What are the main factors causing numerical and physical vortex stretching?

Solitary wave propagation along a vortex tube is the physical-model problem we study 
here to provide answers for the above questions. Besides, solitary wave propagation 
along a vortex tube is an interesting research sub ject in itself. In particular, we would 
like also to know

C. Can a solitary wave propagate along a vortex tube for a long time?

The numerical and physical factors we are going to examine are the following:

1. the numerical method we choose to solve the time evolution ordinary differential 
equation;

2. the core function we construct to approximate the singular Biot-Savart kernel;
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3. the core size a defined at page 10, Chapter 2;

4. the time tolerance control constant C;

5. the number of filaments we use to simulate a vortex tube;

6. the distance between filaments;

7. the placement partten of filaments used to simulate a vortex tube;

8. the circulation F defined in equation (2.9); and

9. the torsion r of the initial solitary wave data generated by equation (3.34).

In the list, the numerical method solving the time evolution ordinary differential 
equation, the core function, the time tolerance control constant C, and the number 
of filaments in the simulation of a vortex tube are clearly numerical factors. The 
accuracy of our results and the efficiency of our computation depend on these factors. 
The circulation F and the torsion r of the initial solitary wave data are physical 
factors chosen in accordance with the physical phenomenon we attempt to simulate. 
The core size, the distance between filaments, and the placement partten of filaments 
have both numerical and physical significance, which we will explain in later sections.

To answer question A, we must examine the sensitivity of our numerical 
algorithm to the factors 1-8 listed above. In a computational result, a vortex tube 
stretching can be caused by either the computational inaccuracy or physical nature, or 
both. We will try to distinguish the different causes of the vortex stretching appearing 
in our results whenever it is possible. The answers to questions A to B will help us 
to answer question C.

In our vortex filament method, we split a segment in two if the length of 
this segment is larger than a predetermined positive number. When a filament starts 
stretching, the total arclength of the filament will grow very quickly. Thus, the 

number of segments for the filament grows quickly. Therefore, the total arclength 
is a direct measurement of vortex stretching. The total arclength is proportional to 
the total number of segments. Both numerical inaccuracy and the physical nature
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of the vorticity field can cause vortex stretching in our numerical result. A vortex 
dynamic system is a highly unstable physical system. The numerical errors often 
introduce high-frequency perturbation waves with small torsion. Such waves easily 
cause violent stretching, as we will explain in a later section. This type of stretching 
is numerical stretching. The distinction between physical stretching and numerical 
stretching is not always possible. We usually must look at the geometric pattern of a 
perturbation wave and the location of the appearance of the wave to decide whether 
the perturbation wave is caused by numerical error or by physical instability and thus 
distinguish physical stretching from numerical stretching.

Computer memory limits the maximum number of segments per fdament. 
If the number of segments for any filament exceeds the maximum value, our compu­
tation is stopped at that step. Thus, the smaller the number of steps for which our 
computation can be carried out, the more stretching we get for the simulated vortex 
tube. If a computation can be carried out till the allowed maximum step, then the 
total number of segments at that step reflects the stretching of the simulated vortex 
tube; the larger number of total segments implies more stretching in the computation.

The elapsed time is an indicator of the efficiency of our computation and a 
diagnostic of the accuracy of the computational results, because the slower growth of 
the elapsed time usually means that the time tolerance of each step is too small and 
thus may be not efficient. The rapid growth of the elapsed time means that the time 
tolerance of each step is large and may therefore cause inaccuracy.

The kinetic energy, total vorticity, and linear impulse are conserved quanti­
ties in an unbounded region for the Euler equations. Thus, in an unbounded region, 
a variation from the initial value of each of these quantities indicates error. However, 
as we have explained in the last section of Chapter 4, in the computation of a portion 
of a vortex tube, the case in which we are interested for all computations in this 
Chapter, the kinetic energy is approximately conserved only if perturbation waves 
are far from the truncated ends and linear impulse is not conserved at all as long as 
there are perturbations in the computed portion of a vortex tube. The total vorticity 

is conserved in all cases. Therefore, a variation from the initial value of the total 
vorticity indicates error. If the kinetic energy is conserved, we can be sure that our
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computational results are accurate, but a variation of kinetic energy in the data does 
not necessaryly mean that the result is bad (inaccurate). We should not use linear 
impulse as a diagnostic of our numerical schemes in this case.

Therefore, we use the following quantities to measure the accuracy and the 
vortex stretching of our computational results:

1. the number of time steps in a computation;

2. the number of segments at the last computational step;

3. the total arclength at the last computational step;

4. the elapsed time, i.e., the accumulated sum of the time tolerances for each 
computational step from the beginning to the last step;

5. the total kinetic energy; and

6. the total vorticity.

In each numerical experiment, we generate vortex filament curves from equa­
tion (3.34) with predetermined parameters. Thus, there is a solitary wave in each 
initial vortex filament curve. Each curve approaches at infinity a line parallel to the 

x-axis. Therefore, we should see the solitary wave in each filament propagating along 
the x-axis. There are three parameters that may change the shape of the initial curve: 
(1) the torsion r, (2) the parameter rq and (3) the initial time parameter which 
merely determines the position of the initial solitary wave. The significance of the first 
two parameters has been explained in Section 2 of Chapter 3. In our computation, we 
record the measurements described above and the propagation behavior of the initial 
solitary wave for various combinations of the investigated factors. We will use tables 
to display the results in terms of the first four measurements: the total number of 
computational steps, the total number of segments at the last computational step, 
the total arclength at the last computational step, and the elapsed time. We will give 
figures to illustrate three measurements if needed. Finally, we will analyze the results 
obtained and try to find answers for our questions.
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6.2 Numerical Factors

In this section we examine the factors that affect the accuracy of our com­

putation and try to find a reasonable combination of choices of the factors that can 
give accurate results. The stretching now is a measurement of accuracy of our com­

putation; that is, more stretching indicates more error in computation because these 
examined factors have no physical significance. These factors are the number of fil­
aments used to simulate a vortex tube, the numerical method for solving the time 
evolution ordinary differential equation, the core function, and the time tolerance 
control constant C.

We start the discussion with the number of filaments used to simulate a 
vortex tube. In Chapter 3, we derived the solitary wave solution for the localized 

induction approximation of a thin vortex tube. To understand a wave motion in an 
inviscid incompressible flow, we would like to determine the propagation behavior of 
the solitary wave in the velocity field induced by a thin vortex tube governed by the 
Biot-Savart law. A single filament can be viewed as a thin vortex tube. However, 
the lack of change of core structure in the cross section of a filament makes the 
simulation of a thin vortex tube by a single filament physically unreasonable, because 
the shape of a vortex tube core is not preserved (see [56, 57, 59, 49]). Moreover, 
for a “fat” vortex tube, it is unreasonable to approximate the tube by one filament 
with large core size because, mathematically, it is unreasonable to approximate the 
singular kernel A'(x) given at Chapter 2 by the smoothed one Ka{x) with large a— 
the core size. The convergence theory shows that to have a better approximation for 
a vortex method, one should choose the time tolerance and the spatial-mesh size as 
a function of the gradients of vorticity. The bigger the gradients of the vorticity, the 
smaller the time tolerance and the spatial mesh size. The several filament simulation 
of a vortex tube seems a good way to solve these problems. Note that when we 
increase the number of filaments, we should decrease the circulation of each filament 
to preserve the total circulation of the simulated vortex tube. Nevertheless, the one 
filament simulations of a thin vortex tube give us some useful information on vortex 

stretching and how vortex filament methods respond to various parameters. Our
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Table 6.1. The total number of computational steps, the total number of segments 
at the last computational step, the total arclength at the last computational step, 
and the elapsed time for various core functions and numerical schemes for solving 
ODE with one filament.

1 filament with core size cr = 0.4, 
to = -0.1, C = 0.05, r - 5.0

and periodic treatment at truncated ends
Methods Core Steps At the Last Step

No. Seg. Time Arclength
1 200 752 3.83 23.74

Euler 2 200 804 3.44 26.25
3 157 993 2.10 34.05
4 124 979 1.79 34.30
1 200 416 5.32 10.84

Heun 2 200 408 4.68 10.75
3 200 588 3.02 18.58
4 200 547 2.90 17.31
1 200 422 5.68 10.76

RK4 2 200 406 4.70 10.69
3 200 521 3.08 16.30
4 200 503 2.92 15.23

studies of vortex filament methods and vortex stretching begin with the one filament 
simulations of a thin vortex tube; therefore, we should provide the data of the one 
filament simulations of a thin vortex tube.

Theoretically, computational accuracy will increase as a vortex tube is simu­
lated with an increasing number of filaments. However the simulations of our physical- 
model problem require long filaments and, therefore, many segments for each filament 
and long time computations to obtain enough information to understand the ques­
tions raised at beginning of this Chapter. The cost of computation and the capacity of 

current computer memories do not permit us to simulate a vortex tube with many fil­
aments. We will provide results of one filament simulations and three or four filament 
simulations for some of the following computational experiments.
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In this section, all initial data for our computation are generated by equation 

(2.33) with r = 3.0, is = 2.0. The length ds of each segment is 0.04 initially. A segment 
must split in two if its length is longer than 0.05. The computation is terminated if 
there is a filament with more than 1000 segments.

We examine the following numerical methods for solving the time evolution 
ordinary differential equation: (1) the first-order Euler’s method, (2) the second-order 
modified trapezoidal method (the second-order Heun’s method), and (3) the fourth 
order Runge-Kutta method (RK4). These schemes are given on page 14, Chapter 2. 

The core functions we examine are the following:

Core 1 : 1 - e r ;
Core 2 : tanh ?’3;
Core 3 : 1 + (-1 + |r3)e-7’3;

Core 4 : tanhr3 + |r3sech2r3

We make runs with each numerical method and each core function for one filament. 
In Table 6.1, we list the total number of computational steps, the total number of 
segments at the last computational step, the total arclength at the last computa­
tional step, and the elapsed time. In Table 6.2, we list the results from the runs with 
the second-order Heun’s method and the fourth-order Runge-Kutta method and for 
several core functions for three filaments. We also give, in Table 6.2, the compar­

ison results for two treatments of the truncated ends: periodicity and straight line 
extension.

From Table 6.1 we can see that the vortex filament method is much less 
accurate with the first-order Euler method for solving the time evolution ordinary 
differential equation than with the other two methods. Therefore, we did not make 
runs for three filaments with the Euler method solving the time evolution ordinary 
differential equation. There is no great difference between the second-order modified 
trapezoidal method and the fourth-order Runge-Kutta method. We will use the 
fourth-order Runge-Kutta method for the rest of our runs in this Chapter.

Both Table 6.1 and Table 6.2 show that the various core functions produce 
different results. We can not really see, however, which core function gives us a more
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Table 6.2. The total number of computational steps, the total number of segments 
at the last computational step, the total arclength at the last computational step, 
and the elapsed time for various core functions, numerical schemes for solving the 
time evolution ordinary differential equation, and extension methods at truncated 
ends with three filaments.

3 filaments with core size a = 0.4,
t0 = -0.1, C == 0.05, r = 5.0

200 time steps
Methods Core Extension At the Last Step

Method at Ends No. Seg. Time Arclength
1 period 1417 2.000 38.98212

straight lines 1428 2.000 38.96558
2 period 1348 1.860 35.99836

Heun straight lines 1362 1.885 36.36842
3 period 1385 1.010 42.93497

straight lines 1384 1.010 42.98206
4 period 1179 0.710 36.72602

straight lines 1179 0.710 36.72324
1 period 1385 2.000 37.75273

straight lines 1391 2.000 37.78472
2 period 1343 1.945 35.32752

RK4 straight lines 1363 2.000 35.83455
3 period 1390 1.015 42.82489

straight lines 1387 1.015 42.85716
4 period 1184 0.715 36.98255

straight lines 1184 0.715 36.97923
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For various core functions (1 filament)

core 1
core 2
core 3
core 4

Figure 6.1. The velocity distribution on a. plane perpendicular to a straight vortex 
tube for various core functions.

accurate solution because the behavior of a core function is governed by the core size. 
Each core function responds to a same value of core size differently, as can be seen 

from Figure 6.1.
From Table 6.2 we see that the treatment of the truncated ends makes very 

little difference to our computational results. However, different treatments at the 
ends will cause a great difference if the perturbation has traveled to the ends. In the 
runs made for Table 6.2, we did not compute long enough to see the difference in the 

results.
At the suggestion of Raid [36], we plot the relationship between arclength 

and computational step at a given elapsed time in Figure 6.2 for various numerical 
methods and core functions. The data are from the same runs that give the results 
presented in Table 6.1 and Table 6.2. With a given core function, the number of 
computational steps and the arclength produced by various numerical methods should 
be close to each other at the same elapsed time if all of the numerical methods give 
accurate solutions. Thus from Figure 6.2 (a), we can see immediately that results
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At elapaed time 1.80 with 1 filament
35
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Euler method --
Heun method ---
RK4 method ---

Core function 1 •
Core function 2 ♦ 
Core function 3 3 
Core function 4 X

(a)
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i!

At elapsed time 2.90 with 1 filament

-C■M
C 0 i—IU>-i03

At elapsed time 0.71 with 3 filaments

Heun method ---
RK4 method ---

Core function 1 o 
Core function 2 +
Core function 3 □ 
Core function A x

steps

Figure 6.2 The relationships between arclength and computational steps at the
given elapsed times for various numerical methods and core functions.
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produced with the first-order Euler method are inaccurate. The core functions behave 
differently, as we expected, with one exception: in Figure 6.2 (c) the results with core 
function 1 and core function 2 are in good agreement because of the short time 
span. For shorter time span, the two method- -the second-order modified trapezoidal 
method and the fourth-order Runge-Kutta method—give close agreement. Figure 6.2 
(b) may indicate that the fourth-order Runge-Kutta method could be better than the 

second-order modified trapezoidal method for longer time spans.
The total kinetic energy is approximately conserved for all runs except for 

the runs made with the first-order Euler method. With the second-order and the 
fourth-order numerical methods, the percentages P of maximum variation from initial 

total kinetic energy, where

„ Imaximwn total enerqy — initial total eneraylP = J------------------ , , , , ,------------------------- — x 100
initial total energy

> with one filament computation

are
6.2 ~ 6.5 for core 1 and 2,
13 ~ 14 for core 3,
18 ~ 19 for core 4,

7.3 ~ 10 for all four core functions with three filaments 

With the first-order Euler method, the percentage is 20 ~ 30. Similarly, to measure 
the variation of the total vorticity, we compute the percentages with the following 
formulations:

\\total vorticity with max magnitude — initial total vorticity\\
P,total vorticity ■xlOO\\initial total vorticity\\

The percentages of variation for total vorticity are 0.02 ~ 0.1 for all cases. Thus the 
total vorticity is well conserved. Figure 6.3 shows how the diagnostic quantities—the 
total kinetic energy and the total vorticity—typically behave in the computation. 

From equation (2.39),

At max | iff | < C
3 '

The time tolerance control constant C is one of the factors determining the accuracy 
of our computational results. However, if C is too small, the computational cost will
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Table 6.3. The total number of computational steps, the total number of segments 
at the last computational step, the total arclength at the last computational step, 
and the elapsed time for various time tolerance control constants C.

4 filaments with core function 4, F = 5.0, 
the 4th order Runge-Kutta method, 

core size cr = 0.2, t0 = —0.2, 
distance between filaments = 0.05, 

and periodic treatment at truncated ends
c Steps At the Last Step

No. Seg. Time Arclength
0.02 250 1709 0.15750 64.04793
0.03 250 1778 0.24875 64.27265
0.04 250 1879 0.31375 65.23524
0.05 250 1934 0.33125 66.26626
0.06 250 3518 0.43500 119.03595
0.07 175 3624 0.43500 122.79700
0.10 162 3647 0.42500 124.47843
0.02 250 1709 0.15750 64,04793
0.03 132 1710 0.15750 64.04794
0.04 125 1709 0.15750 64.04791
0.05 111 1710 0.15750 64.04775
0.06 65 1710 0.15625 64.04724
0.07 63 1710 0.15750 64.04726
0.10 55 1713 0.15750 64.04207
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Total Vorticity

x component - 
y component - 
z component -

Kinetic Energy

time

Figure 6.3. The diagnostics of computation for three filaments with RK4 and core 
function 4.

be quite high. In Table 6.3 we see that when we increase C, the elapsed time, the 
number of segments and arclength at the last computational step are increased, and 
the number of time steps to reach a given value of elapsed time is decreased. The 
dramatic increase in the number of segments and arclength at the last computational 
step and the decrease of the number of time steps to reach the elapsed time 0.1575 
at C = 0.06 indicate that the computational results with the paramenters given at 
head of Table 6.3 are not accurate for C > 0.05. We should note that the choice of C 
depends on the maximum amplitude of the velocity on the filaments, and therefore 
depends on the circulation F.

6.3 The Circulation F and Factors Affecting the 

Placement of Filaments

The circulation F of a vortex tube is a physical factor. However, the circu­

lation F for each filament used to simulate a given vortex tube is determined by the 
circulation of the vortex tube and the number of filaments used in the simulation. 
We should decrease the circulation F of each filament when we increase the number 
of filaments in the simulation to match the correct circulation of the simulated vor-
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Table 6.4. The total number of computational steps, the total number of segments 
at the last computational step, the total arclength at the last computational step, 
and the elapsed time for various circulations F and distances between filaments.

4 filaments with core function 4, C = 0.05, 
the 4th order Runge-Kutta method, 

core size a = 0.2, t0 = —0.2, 
and periodic treatment at truncated ends

F Dist. between 
Filaments

Steps At the Last Step
No. Seg. Time Arclength

1.0 250 2616 2.05500 90.07765
3.0 0.05 250 2163 0.62750 74.81861
5.0 250 1934 0.33125 66.26626

0.01 250 2295 0.50375 78.91651
0.02 250 2009 0.45000 68.28120

5.0 0.05 250 1934 0.33125 66.26626
0.08 250 2027 0.31375 67.64354
0.10 239 3337 0.29875 110.62826
0.20 101 3261 0.17625 114.06007

tex tube. From Table 6.4 we see that with the other factors constant, the number 
of segments, the elapsed time, and arclength at the last step are increased when we 
increase F for each filament. This is understandable because, from equation (2.46), 
increasing F will increases the amplitude of velocity, whereas, from equation (2.39), 

increasing the amplitude of the velocity for given constant C will decrease the time- 
step tolerance At. Thus, one should choose the time-step tolerance control constant 
C after F is determined to get accurate results with lowest computational cost.

The change of distance between filaments (in multifilament simulations) 
could produce different velocity distribution, as illustrated in Figure 6.5 for four fila­
ments and Figure 6.4 for two filaments. Table 6.4 shows that increasing the distance 
between filaments will decrease the elapsed time at the last step but will not give 
a monotonical variation of the number of segments and arclength at the last time 

step. For a thin vortex tube, with smaller distance between filaments, the results will 
be closer to the results obtained with a one filament simulation with the parameters
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Figure 6.4. Cross-section velocity fields around 2 filaments with distances 0.1, 0.2, 
0.4, and 1.0, respectively. The symbol indicates the position at which a filament
crosses the section plane.
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For various distances between filaments (4 filaments)

distance 0.05 - 
distance 0.1- 
distance 0.2 - 
distance 0.3 -- 
distance 0.4 - 
distance 1.0-

y

Figure 6.5. The velocity distribution on a plane perpendicular to a straight vor­
tex tube changes as the distance between filaments increases, with other parameters 
constant.

Different pattern (4 filaments)

iymmetry with center ---
symmetry no center ---

sheet ---

Figure 6.6. The velocity distribution on a plane perpendicular to a straight vortex 
tube for various placement partten of filaments.
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describing the same simulated vortex tube. With the distance increasing and passing 

a certain limit, we find that, in the computational results, the vortex-line stretching 
happens sooner and more violently, as can be seen in Table 6.4. For each set of 
given parameters, there is a critical value for the distance between filaments at which 
the least stretching happens in the computational result. In Table 6.4, this value is 
obtained around 0.05. We should note that with the same set of parameters given 
in Table 6.4, for the one filament computation in Table 6.2, the higher stretching is 
seen from the computational result. Thus, with distance between filaments smaller 
than the critical value, 0.05, in Table 6.4, more stretching will be seen in a compu­
tational result because that the several filaments simulation behaves more like the 
one filament simulation with smaller distance between filaments. Therefore, to avoid 
higher stretching in a simulation of a vortex tube by a bundle of filaments, we should 
choose the distance between filaments close to certain critical value. Note that vortex 
stretching could be physical. Therefore, it may not be reasonable to put our effort 

into eliminating all stretching.
With fewer filaments in the simulation, a change in the placement partten 

of filaments does not have a strong impact on the velocity distribution, as shown in 
Figure 6.6. However, we should note that with many filaments, the placement partten 
of filaments does affect the velocity distribution; the pattern must match the vorticity 
field we wish to model.

6.4 Core Size

As discussed in Section 2 of this chapter, the core size should not be too large 
because of the mathematical unreasonableness to approximate the singular kernel 

A"(x) by /O(x) with large core size a. The core size is an important numerical factor. 
However, we could think of core size as the thickness of our filaments, and we could 
consider that the core size has real a physical meaning for a thin vortex filament. 
We would like to find the reasonable numerical range of choices of core size and the 

response of our computational results to these choices.
Figure 6.7 shows that, with various core sizes, the induced velocity distribu-
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Table 6.5. The total number of computational steps, the total number of segments 
at the last computational step, the total arclength at the last computational step, 
and the elapsed time for increasing core size with one filament.

1 filaments with F = 5.0, C = 0.05, t0 = —0.2, 
the 4th order Runge-Kutta method, 

and periodic treatment at truncated ends
Core Core Steps At the Last Step

Functions Size No. Seg. Time Arclength
0.05 88 878 0.3975 31.29
0.08 237 963 1.785 34.16
0.09 238 978 1.9025 33.67

0.095 241 983 1.945 33.78
0.10 240 972 1.975 33.34

core 1 0.11 234 987 2.025 34.03
0.15 193 979 2.03 34.50
0.20 142 977 2.01 33.86
0.25 146 993 2.22 34.41
0.30 218 992 4.04 33.21
0.35 250 636 5.34 19.03
0.40 250 602 6.64 17.00
0.05 61 953 0.14063 33.90
0.08 51 948 0.1725 33.27
0.09 168 980 0.8175 32.02
0.10 250 502 1.655 16.52
0.15 250 512 1.99 16.70
0.20 250 813 2.18 28.18

core 4 0.25 213 991 2.16 34.12
0.30 157 993 2.09 34.51
0.35 149 982 2.15 34.09
0.40 237 997 3.29 33.05
0.45 250 685 4.23 21.47
0.50 250 602 5.00 16.83
0.55 250 575 5.20 16.56
0.60 250 695 10.00 16.64
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Table 6.6. The total number of computational steps, the total number of segments 
at the last computational step, the total arclength at the last computational step, 
and the elapsed time for increasing core size with four filaments.

4 filaments with core function 4, 
the 4th order Runge-Kutta method,

r = 5.0, C = 0.05, to = -0.2,
distance between filaments = 0.05, 

and periodic treatment at truncated ends
Core
size

Steps At the Last Step
No. Seg. Time Arclength

0.10 142 2798 0.08937 97.46644
0.15 250 2113 0.31250 69.65556
0.20 250 1934 0.33125 66.26626
0.25 250 2264 0.435 81.34734
0.30 236 3314 0.5975 113.05148
0.40 250 2519 0.7075 84.75277
0.50 250 2451 1.25 72.87434
0.55 250 2257 1.25 67.20053
0.60 250 2219 1.29 66.05207
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For various sizes of core (4 filaments)

core size 0.1 ---
core size 0.2
core size 0.3 -
core size 0.4
core size 0.5 ---

Figure 6.7. The velocity distributions on a plane perpendicular to a straight vortex 
tube for various core sizes.

tions vary. In Table 6.5 and Table 6.6, we display the results of the total number of 
time steps, the number of total segments at the last computational step, the elapsed 
time, and the total arclength at the last computational step for runs made with vari­
ous core sizes. The maximum number of computational steps is 250 for each run. The 
maximum number of segments for each filament is 1000. Therefore, a run stopped 
with fewer than 250 computing steps indicates that a violent stretching occurred. The 
smaller the total steps for a run, the sooner a violent stretching occurs. If a run is 
stopped with a total of 250 computing steps, the total number of segments measures 
the degree and the rate of stretching for each run. The vortex stretching behavior 
can be better illustrated by figures (see Figure 6.8 for the one filament simulation). 
It is interesting to see from Tables 6.5 and 6.6 that the rate of stretching does not 
respond monotonically to the core size. Such a phenomenon is shown directly in 
Table 6.6 in terms of arclength for runs with core function 4 for a simulation with a 
single filament and for runs made with four filaments in Table 6.6. In Table 6.5, for 

core function 1 and a single filament, the arclengths at the last step are close to each
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other for different cases because the violent stretchings occur before the 250th com­
putational step for most runs. Krasny [50] has reported the nonmonotonical response 
to core sizes for a two-dimensional blob method with a different core structure from 
the one used here. In Table 6.5, for core function 4 with a single filament, we see 
that nonstretching wave propagation occurs with core sizes in two regions around 0.1 
and 0.55. In Table 6.6, the nonstretching wave propagation occurs with core sizes in 
two other regions around 0.2 and 0.6. In Table 6.5, the values of arclength are close 
to each other for those runs terminated before the 250th step. Thus, the number of 
segments grows rapidly once stretching starts in a run. From both Tables 6.5 and 6.6, 
we see that the total elapsed time increases when we increase the core size. It means 
that the time tolerance At for each step determined by equation (2.39) is larger for 
larger core size; that is, the maximum amplitude of the velocity increases when we 
increase the core size, as shown by Figure 6.7.

Figure 6.8 shows the geometric shapes of waves propagating in one filament 
for various core sizes. The data correspond to the results in Table 6.5 with core 
function 4. In all the runs, the initial solitary wave can propagate without signifi­
cantly changing shape for certain computational steps, then either splits into several 
waves for those no violent stretching runs or starts to stretch with different geometric 
shapes depending on the core sizes and other parameters. For smaller core size, the 
propagation of the initial solitary wave is closer the analytic solution of LIA in terms 
of the phase of the wave. For a core size equal to 0.55, we see a smaller wave split 
from the original one with a stable shape propagating in the positive direction on the 
x-axis. Later, several waves split from the original wave and move off. When the core 
size is 0.35, stretching happens soon after some perturbation appears in front of the 
initial wave. A similar phenomenon occurs in the run made with core size 0.2, but 
the geometric structure of the stretching is quite different. All stretching happens 
in a narrow region in the x-direction; that is, the stretching does not spread along 
the x-direction. In the case of a core size a — 0.2, a long arm comes out from the 
filament and wraps around the axis on which the filament is lying. When we decrease 

the core size from 0.4 to 0.2, the geometric structure of the stretching varies from a 
spiral structure to a two-arm structure, at a core size of around 0.3, and changes back
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Core size 0.09
Core size 0.1
Core size 0.2

Core size 0.35
Core size O.S&'tt--
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Figure 6.9. Plot of the total kinetic energies corresponding to 5 core sizes
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to a one-arm structure at a core size of around 0.2. For a core size equal to 0.1, we 
see a wave splitting from the original wave and propagating with a stable shape; this 
split wave has a longer wave length than the one seen in the case with a core size of 
0.55. With a core size of 0.09 or smaller, the stretching starts at two truncated ends, 
then gradually affects the middle. We think that this may be caused by truncation 
error. However, the original solitary wave propagates with a better preserved shape 
and phase speed. These descriptions of the geometric structure and evolution of a 
wave propagating on one filament as a function of core size also apply to runs with 
core function 1 (Table 6.5) and to the simulation with three filaments (Table 6.6). 
For the simulation with a single filament, the one-arm structure appears whenever 
the stretching happens near the original wave and the core size is less than or equal 
to 0.15. For the simulation with three filaments, if an arm grows far from the center, 
it may spread along the filaments in the direction opposite to the direction of wave 
propagation. The physical explanation of this phenomenon is that for stretching, the 
near center part moves with a speed higher than the part far from the center in the 
x-direction because the induced velocity is smaller far from the center.

In Figure 6.9, we plot the total kinetic energies corresponding to the same 
five core sizes in Table 6.5, with core function 4. Figure 6.9 shows that the total 
kinetic energy is well conserved for various core sizes as long as there is no violent 
stretching. Figure 6.9 shows the nonmonotonical response of numerical results to 
core sizes. The result with core size 0.09 is physically unacceptable because the wide 
variation of kinetic energy. The total vorticity is well conserved.

Some authors vary core size in their version of vortex methods (see Leonard 
[54, 55], Siggia [66], Winckelmans [72], and Chorin [25]). We have examined this 
treatment of the core. The results produced by varying the core size are always worse 
than the results produced by constant core size; namely, the violent stretching always 
happens in fewer computational steps for a run made with varying core size.
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Table 6.7. The total number of computational steps, the total number of segments 
at the last computational step, the total arclength at the last computational step, 
and the elapsed time for increasing wave torsion r of initial data.

core function 4, F = 5.0, C = 0.05, to = —0.2, 
the 4th order Runge-Kutta method, 

distance between filaments = 0.05, 
and periodic treatment at truncated ends

one filament four filaments
r Step At the Last Step Step At the Last Step

No. Seg. Time Arclength No. Seg. Time Arclength
6.0 300 670 6.0000 16.15896 300 1950 0.75000 64.77505
5.0 300 647 6.0000 16.22601 300 1955 0.73125 64.38577
4.5 300 647 3.3400 17.03079 300 2605 0.60250 83.75597
4.0 234 988 2.4300 33.53885 300 2749 0.49125 92.79603
3.0 259 989 2.2200 34.90552 300 2335 0.39375 80.63711
2.5 300 512 2.6800 16.30441 300 2047 0.38625 70.28714
2.0 300 456 3.0000 16.23470 300 1860 0.38125 64.67449
1.0 90 968 0.5750 34.41537 118 3849 0.14750 136.68418
0.5 77 990 0.3925 34.96001 72 3677 0.09000 130.69027
0.0 67 992 0.2425 35.26452 70 3490 0.05313 125.24485

6.5 The Torsion r in the Initial Solitary Wave and 

Vortex Stretching

The torsion r of initial solitary wave is clearly a physical factor. We have 
mentioned at page 29, Chapter 3 that increasing |r| will increase the speed and 
decrease the amplitude of the initial solitary wave. Geometrically, with smaller r, a 
given curve will be closer to a plane curve. When r = 0, the given curve lies in a 
plane (see Spivak [67, p. 38]). In our computations, we find that vortex stretching 
always starts at a part of a wave whose curve is almost a plane curve; i.e., the curve 
has a small torsion. We consider this observation in this section and attempt to give 

an explanation.
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Using Hasimoto’s solitary wave as initial datum determined by the torsion 
r and the curvature, we wish to see the effects of varying r on the vortex stretching. 
The results are displayed in Table 6.7, which ahows that vortex line stretching does 
not respond to the initial wave torsion r monotonically. However, if r is small enough, 
for example, in Table 6.7 if r < 1.0, the vortex stretching does occur directly on the 
initial solitary wave, whereas if r > 1.0, the stretching only occurs if there is a new 
wave with small torsion produced from the original solitary wave. Thus we think 
that a perturbation wave with small torsion on a vortex tube may be one of most 
important causes of vortex tube stretching.

In Figure 6.10, we plot the y-z coordinate plane slice of the velocity distri­
bution induced by initial solitary wave data with various torsions r (the slice is taken 
where the wave amplitude is maximum). We can see that if r is small the velocity 
will be distributed less evenly on the slice through the peak of the wave. However, 
such uneven velocity distributions on the slices do not necessarily cause vortex line 
stretching. This can be seen in Figure 6.10 and Table 6.7. In Figure 6.10, for r = 2.0, 
on the y-z coordinate plane slice through the wave peak, we have an uneven velocity 
distribution, whereas in Table 6.7 the corresponding computation shows no significant 
stretching.

In Figure 6.11, we plot the x-z plane slice (i.e., the plane in three-dimensional 
space with y = 0) of the velocity distribution induced by initial solitary wave data 
with various values of r. In the cases r = 2.0 and r = 4.0, the horizontal component 
(i.e., x-component) of the velocity distribution on the whole wave points in the same 
direction, whereas in the case r = 1.0, the sign of the horizontal component of velocity 
at and near the peak changes, which causes stretching because the vortex filaments 
are bent at the middle of the wave. For the case r = 0, the velocity distribution on 
the x-z plane is symmetric, with the line of symmetry passing through the peak of the 
wave. On the line of symmetry, the velocity is vertical, which can be considered as a 
discontinuity of the horizontal component of the velocity field. Such a discontinuity 
causes violent stretching.

We now consider the stretching that happens after the initial wave propa­
gates for a while along a vortex tube. In Figure 6.12 we plot the x-z plane slices of



CHAPTER 6. NUMERICAL RESULTS 76

T = 1.0 T = 2.0

s / / / / f r r /
s / S f t t t / /

. \ \ \ \ \ \ , V \ \ 1 \ \
, 1 M t t I
, f r 11 t t , /11111

ww
I M 1 i I 1 1

/ / / /

a.im*oi
»*)O¥Ull\*rT0R

•-•MI *01
lUXIMUIf’VcCTOI

Figure 6.10. The y-z plane slice of velocity distribution induced by initial solitary
wave data with various torsions r. The slice is taken at the peak wave amplitude.
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Figure 6.11. The y = 0 slice of velocity distribution induced by initial solitary wave
data with various torsions r.
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Step 200 Step 270 Step 200

Figure 6.12. The y = 0 slice of velocity distribution induced by initial solitary wave

data with torsion r = 4.0.
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the velocity distribution for r = 4.0 at computational steps from 200 to 280, which 
illustrates the process of vortex stretching. One can see that from step 200 to step 240 
the discontinuity of x-component velocity is developed at the right front of the wave, 
which has small torsion (on our two-dimensional projection pictures, this can be seen 
as a vertical or nearly vertical line). The stretching happens where an x-component 
velocity discontinuity is present. The figure clearly shows that the particles at the left 
side of the discontinuity move with much greater speed than the particles at the right 
side of the discontinuity; thus, the particles from the left side of the discontinuity 
will accumulate at the discontinuity. This accumulation of particles will increase the 
velocity in the y- and z-components and cause stretching.

We have also observed that, when stretching happens, there will be some 
vortex segments right on or over the maximum velocity region on the y-z plane. It 
is clear that once some vortex segments pass over the maximum velocity region on 
the y-z plane, the vortex lines will bend and stretch in the peak velocity area in 
the y-z plane, and form so-called “hairpin” or horseshoe structures because points 
at and near the velocity peak move faster than other points. These structures, of 
course, will change the local velocity distribution and cause more stretching. To 
illustrate our observation, in Figure 6.13, we plot the velocity distribution on the 
y-z plane at where the vortex lines stretches for step 230, 250, 280, and 300 with 
r = 4.0 for initial data. Figure 6.14 shows the two-dimensional projection views and 
three-dimensional perspective view at these computational steps. After the stretching 
starts, the analysis of the velocity distribution inside the stretching area can not 
provide too much information for studying the evolution of the stretching structure. 
One may need other physical tools such as statistical mechanics to understand the 
further developments of the vortex stretching (see Chorin [26]).

6.6 Summary and Discussion

We have investigated nine factors listed in the first section of this chapter. 
Most questions we posed at the beginning of this chapter have been answered at this 
point. We summarize these answers here.
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Figure 6.13 The y-z plane slice of velocity distribution induced by wave initially
with torsion r = 4.0 where the vortex lines stretches.
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2-D PROJECTIONS OF VORTEX FILAMENTS
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Figure 6.14. Two- and three-dimensional views of computation results for r = 4.0 
at steps 230, 250, 280, and 300 as examples of vortex lines stretching.
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A. In our study, the higher-order numerical methods used to solve the time evolution
ordinary differential equation generally give us more accurate results. The vor­
tex tube simulation becomes more accurate as the number of fdaments increases. 
The time tolerance control constant C is important to obtain an accurate re­
sult. Generally speaking, the smaller C we use, the higher accuracy we obtain, 
but the computation become more expensive. The choice of C depends on the 
circulation F. The core function is core size dependent. Core sizes too big or 
too small give inaccurate results. With core size in a reasonable range, the 
vortex fdaments behave differently for different choice of core sizes. With this 
information, for each numerical experiment, we can choose those parameters 
properly to avoid inaccuracy in our computation.

B. Core size and wave torsion are the two most sensitive factors in studying vortex
stretching. We believe that a small torsion of a wave will cause a near discon­
tinuity on the velocity component in the direction of wave propagation. This 
near discontinuity causes the violent stretching of the vortex tube.

Question C is equivalent to the question of whether a discontinuity in a cer­
tain velocity component must occur in the evolution of a vortex tube. We have not 
obtained enough evidence to answer this question fully. However, with periodic data, 
we observed that, with certain initial solitary wave data and proper choice of param­
eters, some wave shapes persist in the periodic computing box. This phenomenon, 
reported elsewhere (see Samuel and Donnelly [62]), indicates that a solitary wave 

can propagate along a vortex tube for a long time; otherwise, the shape should be 
destroyed soon after passing the boundary of the periodic computing box because 
of the nonsmooth connection at the boundaries. Research on this subject without a 
periodic assumption is in progress.
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Chapter 7 

Conclusions

We have presented three-dimensional vortex methods for unsteady, inviscid, 
incompressible flow. We have investigated the effects of various numerical parame­
ters, core functions and numerical methods for solving the time evolution ordinary 
differential equation on the accuracy of the numerical scheme. Vortex stretching phe­
nomena have been studied. We reviewed the localized induction approximation and 
its solitary wave solution. We have also studied some diagnostics such as conservation 
of energy, total vorticity, and linear impulse for our vortex filament scheme.

We have reviewed the localized induction approximation and given the de­
tailed derivation. We have proved the equivalence of the Betchov intrinsic equations 
and the nonlinear Schrodinger equation. By solving the Betchov intrinsic equations 
under the assumption that torsion r is constant, we obtained the same solution for 
curvature k as Hasimoto [44]. Then, following a method introduced by Hasimoto 
[44], we translated the intrinsic solution to the solution in the Cartesian coordinate 
system. The resulting wave is a solitary wave, as first found by Hasimoto [44],

In the study of diagnostics, we have given the detailed derivation of numeri­
cal schemes for computing kinetic energy, total vorticity, and linear impulse. We have 
also studied the scaling property of energy conservation, and given some asymptotical 
properties of energy scaling formulation in a small cylindrical vortex segment. We 
have found that these diagnostics may not be suitable for the computation of part of 
a vortex tube because those quantities may not be conserved in the part.
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To simulate a finite part of an infinitly long vortex tube, we must deal with 
two truncated ends. We have treated the truncated ends using two methods: a 
periodic extension of the data and an smooth extension of the ends by straight lines. 
The choice of method depends on the problem.

In the study of the effects of numerical parameters, core functions and nu­
merical methods for solving the time evolution ordinary differential equation on ac­
curacy, we have found that to obtain accurate results, the time tolerance control 
constant C must be chosen smaller than a certain bound, which can only be de­
termined after other parameters are given; the circulation F is the most important 
parameter for the choice of C. The choice of core function has an effect on the accu­
racy of the computation, but the accuracy can be improved for each core function by 
adjusting other parameters, especially the core size. We have tested three numerical 
methods for solving the time evolution ordinary differential equation: the first-order 
Euler method, the second-order modified trapezoidal method, and the fourth-order 
Runge-Kutta method. The accuracy of computation increases as the order increases. 
There is significant improvement in the accuracy from the first-order method to the 
second-order method, but not much improvement from the second-order method to 
the fourth-order method. We found that vortex stretching and accuracy of computa­
tion are sensitive to core size. The stretching behavior of our results does not respond 

to the core size monotonically. However, it is generally true that too small a core size 
generates high-frequency perturbation waves at places far from the given initial per­
turbation wave. Such high-frequency perturbation waves most likely represent the 
computational error, and too large a core size gives us an inaccurate approximation 
of the singular kernel.

The simulation of a large diameter vortex tube by several filaments is nat­
ural. We believe that the computation will be more accurate with more filaments 
simulating a vortex tube. This conjecture comes from the observation that, even 
with straight filaments, the stretching may still occur on the plane perpendicular to 
the straight filaments, thus, more filaments will surely provide more detail of the 

stretching on that plane and make the simulation, especially the core structure, more 
accurate. The distance between filaments is important for obtaining accurate simula­
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tions with several filaments. The computation is more accurate with filaments closer 

together, but the number of filaments must be increased to match the diameter of the 
simulated vortex tube; otherwise, for a fixed number of filaments, the computation 
results will be closer to the results from a one filament simulation. We should mention 
that with many filaments, we can simulate not only a large diameter vortex but also 
shear flows and tubes with noncircular vortex core structures.

We have studied the beginning stage of vortex tube stretching and have seen 
that violent stretching mostly occurs and remains in a plane perpendicular to the 
vortex lines. It appears that a small torsion of a perturbation wave is an important 
cause of vortex tube stretching. When stretching happens, there are always some 
points reaching the maximum velocity on a cross plane, which causes the formation 
of “hairpin” structures. Is there a properly constructed perturbation wave that can 
travel along a vortex tube simulated by vortex filaments without violent stretching? 
This cpiestion is associated with the question of whether a solitary wave can survive 
on a vortex tube for a long time, which remains open. But, with certain periodic data 
and properly chosen combinations of parameters, we have seen certain wave shapes 
persist in the periodic computing box.
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