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CHAPTER |. INTRODUCTION l

Chapter 1
Introduction

Three-dimensional vortex filament methods for unbounded, unsteady, in-
viscid, incompressible flow and a vortex tube stretching simulation with the vortex
filament methods are studied in this thesis.

An unbounded, unsteady, inviscid, incompressible flow is governed by Euler’s
equations. From the Biot-Savart induction law, the velocity field can be determined
once one knows the vorticity field. By the theorems of Kelvin and Helmhotz for in-
viscid flow, vortex tubes retain their identity and simply move as material volumes.
Thus it is sufficient to follow the evolution of the vorticity field in Lagrangian coordi-
nates. Vortex methods are based on discretization of the vorticity-containing regions
and pursuit of these discretized elements in a Lagrangian reference frame.

There are several versions of three-dimensional vortex methods. They can
be divided into two categories: vortex blob methods and vortex filament methods.

For vortex blob methods, one initially divides the region into small cells. In
each cell, if it is not vorticity free, one can assume that all the vorticity is concentrated
in a vector element attached to a point convected with the fluid velocity. This vector
element is usually called a vortex particle. To avoid singularity, one must use a
finite vortex core (the so-called “blob”) instead of a point vortex. One computes the
velocity field by the discretized Biot-Savart law, then determines the position of the
vortex blob for the next time step, evaluates the vorticity field, and so on. These

methods have been successfully used in many of two-dimensional flow simulations
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[21, 24, 29, 30, 31, 32, 33, 45, 46, 54, 63, 64, 65]. There are very well developed
theoretical analyses by Hald &; Del Prete [41], Hald [37, 38, 39, 40], Beale & Majda
[7, 8, 9, 10], Beale [5, 6], Anderson & Greengard [1], Perlman [58], Goodman [34],
Chang [14], and Roberts [60] for both two- and three-dimensional methods. In three-
dimensional space, however, there are some difficulties in simulating the motion of
vortex tubes by these methods due to lack of connectivity between blobs.

The three-dimensional vortex filament methods overcome the difficulties
that appear in three-dimensional vortex blob methods. The essential idea, as de-
scribed in Chorin [15, 16, 17], is to chop a vortex tube or filament into a finite
number of segments that are short, thin, circular cylinders with their axes tangen-
tial at a point to the vorticity vector. We evaluate the velocity at both ends of a
segment just as for a vortex blob in vortex blob methods. The connected segments
remain connected. From Kelvin’s circulation theorem and Stokes’ theorem, the cir-
culation around the filament remains constant in our computation. Several authors
have employed this type of method to investigate various complex flows (see del Prete
[28], Chorin [16, 17], Leonard [54, 55], Winckelmans [72], and Knio & Ghoniem [49]).
There are also some theoretical analysis for this type of methods (Greengard [35]).

We try to understand vortex tube stretching from the study of wave prop-
agation along a vortex tube by the self-induced velocity. Vortex filament methods
are a proper numerical tool for this study. Therefore, we will focus our attention on
vortex filament methods. The effects of numerical parameters, the choices of core
functions, and numerical methods for solving the time evolution ordinary differential
equation on accuracy and stability of the vortex filament methods are investigated
in order to distinguish physical vortex stretching from the stretching caused by nu-
merical instability. We also examine the conserved quantities such as kinetic energy,
linear impulse, and total vorticity for various numerical parameters, core functions,
and time integration methods.

A controllable single smooth initial wave datum is important for the study
of wave propagation along a vortex tube. A solitary wave solution for Localized
Induction Approximation (LIA) meets such a requirement. The so-called LIA was

introduced to study a very thin vortex filament (see Arms & Hama [3], Hama [42, 43],
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and Buttke [12]). In the study of LIA, Betchov [11] derived the so-called intrinsic
equation and discovered the helicoid wave on a thin vortex filament by solving this
equation. Later, Hasimoto [44] proved that the intrinsic equation can be reduced to a
nonlinear Schrodinger equation and gave an analytic soliton solution for this equation.
However, a vortex evolving according to the Betchov intrinsic equation does not
stretch or contract [12] whereas study on three-dimensional vortex dynamics shows
that vortex stretching is a common phenomenon. We like to know whether a solitary
wave, with velocity induced by the Biot-Savart law, can propagate in a vortex tube
for a long time without stretching. If there is a stretching in a vortex tube evolution,
what causes the stretching?

Recently, Chorin [IS, 20, 21, 22, 23] has studied vorticity/energy relations.
His studies suggest that the folding of vortex lines or the development of hairpin
structures in turbulent flow are required by energy conservation. To examine this
idea it is critical to compute energy correctly. There are two parts in the computed
energy: one is called the interaction energy, the other is called the self-energy. Chorin
[18, 20, 21] computed the first part by a discretization of a formula due to Lamb [52],
The second part is computed by scaling laws developed by Chorin [18, 19, 20, 22, 23,
24]. We will examine these computations and use them to check our vortex method
computation.

For convergence of numerical scheme and physical validity, we use several
filaments to simulate part of a “fat” vortex tube. Some techniques to treat the
truncated ends of a part of a vortex tube will be given in this thesis.

The thesis is organized as follows:

In Chapter 2, we review the physical background and the derivation of vortex
filament methods. The details of the computational scheme are given.

In Chapter 3, we summarize results of the LIA study of a thin vortex fila-
ment. Derivations of the intrinsic equations and of Hasimoto’s solution are reviewed.
The equivalence of the Betchov intrinsic equation and the nonlinear Schrodinger equa-
tion is proved.

In Chapter 4, following Chorin’s work [18, 19, 20, 21, 22, 23, 24], we study

the conservation of energy and the scaling laws for self-energy. For constant core
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function, we derive a new formula for computing self-energy. We also study certain
properties of this new formula. The numerical schemes for other diagnostics, such as
total vorticity and linear impulse, are given in this chapter.

In Chapter 5, we study the calculation on a part of a vortex tube. The
treatments at truncated ends are given.

In Chapter 6, we present the numerical results with initial solitary wave
data. We study the effects of the numerical methods for solving the time evolution
ordinary differential equation, the core functions, core size, the time tolerance control
constant, number of filaments used to simulate a vortex tube, the distance between
filaments, the pattern of placement of filaments, and the circulation of each filament
on the accuracy of computational results and on vortex stretching (both numerical
and physical). We also study the effect of torsion of the initial solitary wave data on
vortex stretching. We attempt to determine how vortex stretching starts and whether
a solitary wave can propagate for a long time in a vortex tube with velocity induced
by the Biot-Savart law. We will show that core size and torsion of perturbation
wave are the two most sensitive factors in studying vortex stretching: a small torsion
of wave will cause a discontinuity on the velocity component in the direction of the
wave propagation. The long-time propagation of a wave of constant shape on a vortex
tube will be discussed. Results suggest that the long-time propagation of a wave of

constant shape on a vortex tube is possible.
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Chapter 2

Physical Background and

Numerical Schemes

2.1 Physical Background

We consider unbounded, incompressible, inviscid fluid flows. The motion of
such flows is described by Euler’s equations

DuduVyu = —vp 2.1
pedr M “-

Viu=0 2.2

where u(x,i1) = (u,v,w) is the velocity field, x = (x,xj,z) is the position, 7 is time,
V = (d/dx, d/dy,d/dz) is the gradient operator, and P is pressure. Conservation of
mass and incompressibility give equation (2.2). Equations (2.1) express the conser-
vation of momentum for inviscid fluid of constant density. (See Chorin & Marsden
[27, p. 18] or Batchelor [4, p. 75] for details of the derivation of these equations.)

Define the vorticity « as the curl of velocity, i.e.
=Vxu (2.3)

We can write equations (2.1) in terms of vorticity by taking the curl of equations
Q2.D.
—+ Vx((u.V)u) =0 (2.4)
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Figure 2.1. Portion of a vortex line.

Note that V x VP = ( for any scalar function P. The second term in the left side of

equation (2.4) can be written as follows,
Vx[u'Viul=@W@'Vu;, —(c1*Vu+Viuwu, — (u* Vyu;, — w1 Vyu (2.5

The last equality holds by equation (2.2). Substituting equation (2.5) into equation

(2.4), we have the vorticity transport equation
d.
A V) = we Vu 2.6)

where (u' V)u; is the convective term for fluid.
Comparing equations (2.6) with the evolution equations for a material line

element 51 given by Batchelor [4, p. 133]

ori

4+ @' V)5l = (51 V)u 2.7)

we see that vortex lines move as material lines, where a vortex line is defined as a line
in the fluid whose tangent is everywhere parallel to the vorticity vector. In a fluid, a
material line consists of the same fluid particles and move with them in a fluid. The
term {u 1 V)u corresponds to the changes in the vortex lines that come partly from
rigid rotation of the line element due to the component of 5u normal to # and partly
from the stretching or the contraction of the line element due to the component of
Su parallel to u , where 5u is the velocity of the fluid at a point @ relative to that

at a neighboring point P, both @ and P being on the vortex line (see Figure 2.1). In
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two-dimensional incompressible, inviscid flow, this term vanishes. Therefore, vortex
lines in two-dimensional inviscid flow do not stretch.

For any well-defined integrable function 0O(x, f), we know

tt Zm-JODid + 100~ 9

where the integration is along a material curve from point P fo Q. (See Batchelor [4,
p. 133] for a detailed derivation of equation (2.8).)

Vortex lines through every point of a given closed curve Cz, where ¢ repre-
sents the curve moving with the fluid, form a tube called a vortex tube. We define

the circulation of a. vortex tube as
=< v d\ 9
5 " u (2 )

Take the derivative of F with respect to time,

F = —# u,
dt dt Je,
= -0 VP'dl+ F dl 2.10
) JZ 2.10)
where
U+ CrU
F = U dyu
u ' dm

A simple computation shows that F is curl free; i.e.,
VxF=0

Therefore, by Stokes' theorem we have

dF—O 211
dt 20

1.e., the circulation of a vortex tube of inviscid flow is constant in time. This is the

well-known Kelvin circulation theorem [47].
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By Stokes’ theorem, the circulation can be written as

T=/ u-dA (2.12)
Jst

where dA = ndA is an element of the open surface St bounded by the closed curve
Ct.

Consider a piece of vortex tube with two end cross-section faces Si and S
and the surface of the tube Sz Denote the boundaries of Si and S? as Ci and C2,
respectively. Let W1 be the region of this piece of tube with boundary S = Si US*US.i.
By Gauss' theorem and the fact V + ¢J — 0,

0=/ VoudV — furdd— f tordA+ f uidA
JW, JT. JSiUS)? Js,

[ uird4d =0
Jst

since CJ *n = (.

Thus,

o=/ widAd =/ widA+ [ widd=/ urds— [ uirds (2.13)
JsliusS? JSi Js? JCi Jcl

The last equality holds by Stokes'theorem and consideration of the normal directions
of Si and S2. Equation (2.13) shows that the circulation of a vortex tube is the same
for any curve encircling the vortex tube that is the statement of Helmhotz' theorem
(see Chorin & Marsden [27, p. 36]. We call the circulation of a vortex tube the
strength of the tube.

From equations (2.2) and (2.3), we set

u=Vx~" (2.14)

where tE is called a vector potential to be determined. Thus
a, = Vxu = Vx(Vx»P) = -V2> + V(V ' ) (2.15)

If we assume that ™ is divergence free, i.e. V '+ = 0, then

= -V <F (2.16)
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The solution of equation (2.16) in terms of z is

X, ) = Gru = JG(x —X,)a)x,)([ix/ (2.17)

where the volume integral is taken over the region occupied by the fluid, x' is the
position of the volume element dx’, and G'(x) — I/(47r?") is the fundamental solution
for the Laplace operator, where » = |x| and * denotes convolution. One can easily

check that the expressed by equation (2.17) is divergence free. Taking curl of

we find
u = Vx?F = Vx(G*u>) = J /L(x — x') x w)(x)dx' (2.18)
where
r,, | 9G x Ix
Ax)="r(Ixl)o = _W;

is known as a kernel. We write

0 -z vy
IC(x) = K(x)x - 20 —
\ -y ~ 0
then
u—IC*u (2.19)

A singular filament C is a curve on which the vorticity is concentrated with
zero vorticity elsewhere in the fluid. We denote its strength P—the circulation num-

ber. Let vector "l represent a material line element determined by the equation

A =avu + »(«|)

We have

/ udV =P <l (2.20)
Jsv

where SV is a nearly cylindrical piece of element on the filament curve with negligible
cross-section diameter. Thus equation (2.18) becomes, at time ¢ and position x,

_ Ve ! n —__ P/ (x—x") Xdli(x"
u(x ) = T [ A=) x ditx) =—E /8 S 2.21)
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Equation (2.21) is the well-known Biot-Savart law. Notice that equation (2.21) di-
verges with rate 1/|x — x'|2 if x is a point on curve C (see Batchelor [4, p. 94]).
Moreover, it will be shown in the next chapter that a singular filament with nonzero

curvature has infinite self-induced velocity.

2.2 The Smoothed Kernel

The difficulties arising from equation (2.21) for a singular filament force us
to find a way to smooth out the singularity in this equation. Following Beale & Majda
[10] (who have followed an idea of Hald [37] for two-dimensional vortex methods), we
replace the kernel /C by =K' * ~v(x) = a-3 ~(T0, where cr is a parameter to

be chosen. We assume that ijp satisfies the conditions
(i) ip is smooth and rapidly decreasing; i.e.,
\0"tp{x)\ < Cpj(l + |x|2)~] (2.22)
for every muti-index /? and every integer j;

(1)
Jip(x.) dx =1 (2.23)

(iii)
Ixtip(x) dx =0 1< <m— I (2.24)

m is an integer.

The functions ip” are called core functions or cutoff functions; parameter a is known
as core size or cutoff size.
Condition (i) implies that the ip and its Fourier transform are smooth and
rapidly decreasing. Condition (7ii) always holds for ip = ip(r), r — |x| with m even.
Recall equation (2.18), and let Ga — G * ipa. Then
(1€, * u)(x) = JW%X = X - X us(x)dx’
or

Ix — x|
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i'e- dcC
/e(x) = ~“T (xR (2:25)

To find a simple expression for Ka, let us consider @ — [ and assume

dGr /(1)
dr 4irr)

We try to find the relation between / and > We expect

~ TS Vv — > 00 (226)

xf= V2Gi = 7 2Dr{122), Gij = ("

47rr)
v.=/(r
47r(?’2 (2.27)
To have conditions (i)-(m) hold for  f must satisfy
(1) f(r)/73 is a smooth function of 12
2) /(r) > 1asr— o0
(3) W00 f'(7)r2kdr =0 2 <2k <m -2
4) \DVf(r)| < Cjr~l~\ 1 > 1, for each j > [ and a fixed / > m + |
Choosing / that satisfies the above requirements, we get
dGa _ f(v/a)
Or Airr] (2.28)
Therefore,
A'-(x) = (2.29)

There are some explicit expressions for / and 1))

form=2 /(r)=1-¢ 13 Nr) = 13
/(r) = tanhr3 0(r) = "sech2r?
Jor m =4, /&) =f{r) + \rf'(r) »fU) = +rf"(r)]
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Core function 1 ---
Core function 2 --—-
Core function 3 —
Core function 4 ...

Figure 2.2. Four core functions.

12

where /(1) is a function with m = 2. (See Beale & Majda [10].) We plot the following

four core functions in Figure 2.2:

Core function | for | — e~"}
Core function 2 for tanh73
Core function 3 for | + (—1 + |r3)e 13

Core function 4 for tanh #3 + |r3sech2r}

Replace K with Ka in equation (2.21). We find

ua(x,f) = F 7 Ka(x —x") x dl(x') = /C )— —x) x dl(x))
Jc 47r JC a Ix — x'I3

Let us try to get equation (2.30) from
ua = KO*u
By the property of convolution,

*u, = (/C *Ipa) *U = 1C * (Vtr *u>) = )C * Uha

(2.30)

(2.31)
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where

Kl=Vv*w=/ ~ X" "X rix’ (2.32)
JR3

Note that we must perform this operation with caution since not all conditions re-
quired in the distribution theory (see, e.g., Rudin [61]) hold here. Nevertheless, this
operation is valid here subject to a nonregular approach of proof (see Hald [40]), which
is not a topic of this thesis. Thus, the cross section of the filament with vorticity
does not vanish, and the radius of the cross section is determined by a. Remember
that

ipvix.) — <5(x) ns ¢ — 0
where the scalar function <5(x) is the so-called Dirac-function. We can write

w>(x) = f 6(x — x'jusfx'jdx’ (2.33)

2R3
for a singular fdament.

By Helmholtz' theorem, the direction and the magnitude of v> in a material
element with volume SV change with time in the same way as the direction and
magnitude of the vector <| representing a material line element that at t = 0 was
chosen to be parallel to the local vorticity; i.e.,

“*) _ m
MO)|  1«51(0)
Recall equation (2.20), 0>(0)"l/ ~ r<51(0). Therefore,

va(y = [Ca@) *u@®) = J Kli(x{t) - x'(1) x wj(x'(t))dx'(1)

= V[ KIx(t)-x'"(1))xdl(t) (2.34)
Jc

This is equation (2.30). As we can see, this approach gives some indication of physical
meaning of ipa and a.

Now we can start to construct our numerical scheme.

2.3 Vortex Filament Methods

Let us consider first the evolution of an isolated thin tube of vorticity, or

vortex filament with strength F. We divide this filament into small pieces or segments.
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For the jth segment, the two ends are points  and xJ+1. Let (5I" = xJ+1 —x" denote
a vector element of length of jth vortex segment that lies in the volume element sv;.
Thus equation (2.30) can be written as
F % .
x-x")xdlx") [|x-x
' 13

U (X,,)_ SS4 113 /d a ) (2.35)
Notice that we can only carry out computation for the filament with finite length
in reality. This is no problem for the periodic case, but one must be careful for the
nonperiodic situation.

We require [<51j| < h for all j where /i is a predetermined small number.

Thus
- X7 di(x7) ™ [x-x7!" Tj
l x )X' &) NMx-x1!* _ Tj X (2.36)
A, x —x'B a
where
= x - Kxt+i + x4
ri =
Insert equation (2.36) into equation (2.35),
Fj x (31,
3 e (2.37)
J=1 ‘
Knowing u”, solving the ordinary differential equations
;‘ — uff(x,f) (2.38)

we can determine the position for Xj at the next time step f + At. There are various
numerical methods for solving equation (2.38), we have used the first-order Euler’s
method, the second-order Heun’s method, and the fourth-order Runge-Kutta method

in our study. The algorithms are

Fulers method

Xit + Ay) - Xi(f) + Atu(T(x1,f)
Modified trapezoidal method (or second-order Heun's method)

x* = x,(1) + Aiu(l(xi,f)
xfit + Ay) = x7) + |Af(ull(xt,1) + u(x*,1))
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Fourth-order Runge-Kutta method

x| — X T 41u(I(x,, 4
c2) Xi(t) + ~aa(x!),N +
e = xt(t) + Atua(xf\t-\-

Xi(t + At) = x™t) + j+[ua{xi,t)+ Zua(x\'z),, 2+ M
+ 2uai{x@\t + ™) + u,(xS3), ¢ + At)]

As we mentioned on page 6 in Section 2.1, the filament stretches as the flow
evolves; thus 51j and the amount of vorticity carried by this vortex element grow. If
|51j| > h, we split this segment into two from the middle of 51j with length |<51j|/2 to
maintain the partition fine enough for accurate computation.

We also need to control our time step Az since velocity could change
dramatically for the change of curvature, as explained in Section 2.1. The requirement

for the choice of Az at step n is given by
At max |u}'| <C (2.39)

where C is a given constant, u" = ua(xj(tn),tn), and n is the time at step n.

From the consideration of accuracy of the scheme, we require a = hg, 0 <
g < 1, or simply a/h > | (see Beale & Majda [8, 9], Anderson & Greengard [l], and
Greengard [35]).

For the scheme given above, we take the cutoff parameter a as constant for
the whole filament. It is also possible to have a = a(s, f); i.e., we can choose cq for the
jth segment and let each cr, vary to conserve volume of the corresponding segment.
Ie.,

<# + ADIGE+ AQ| = T(OlS1I) (2.40)

We can also attempt to conserve volume by varying a at each time step such that

21 + AQE 1M + AQl = <2(1)E HWI (2.41)
J J
From equation (2.33), the vorticity distribution for a singular filament can

be written as
) =Y, I "x“x'(D))ax,(D)e/x/(f) (2,42)

" JSVj
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and the vorticity distribution for the corresponding nonsigular thin filament is

= X!/ A(x - x'()ax/()dx,(t)

- ACx-x"(0)di(D)

~ TEMrAmAt) (2-43)

1

This is approximately equal to the velocity field described by equation (2.37).
From equation (2.43),

uax,0) = r€Vv(@{iv(0))«51J(0) (2.44)
J
Thus the initial value needed to start our computation is given as the initial vorticity
distribution.

So far, we have completed the description of algorithms of the vortex filament
methods for an isolated thin filament. In real flow, we must use several filaments to
simulate a thick vortex tube. The first reason is that ip/ is an approximation of
the Dirac-function, and the approximation will be inaccurate if we take a too large.
Secondly, the cross section of a numerical filament is always a disc, whereas this is
not true in real flow. The cross section of a real vortex filament or tube should
be deformed as the flow evolves, and the deformation may be seen by using several
filaments to simulate a vortex tube. (See Widnall [69], Widnall et al. [70], Widnall
& Tsai [71], and Knio & Ghoniem [49].)

For several filaments, e.g. M filaments, we can modify equation (2.34) as
follows: iy

uff(x,t)= £ pb") /' K m(x(f) - x'(t)) x d\(¥) (2.45)

Notice that for different numbers of filaments, the circulation and core size may be

chosen to be different. Equation (2.37) can be modified as follows:

i M 00 Sm) x 4l m)

/(=) (2.46)
@ 3)- a
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where ¢t = <m if X is not on any given filamnet and a = or a = {crmai)l”]

if x is on the Ith filament; am may also be varied with time or with arclength and

time to conserve volume.
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Chapter 3

The Self-Induction Approximation

3.1 LIA and Betchov Equation

In this chapter, we follow Betchov [11], Hasimoto [44], and Buttke [12] to find
the velocity induced by a filament itself near a point O on the filament. Parametrize
the vortex line (filament) by arclength s; i.e., r = r(s), and assume 3 = ( at the point
O. Take the derivative of r,

dr dx dy dz
ds ds'ds' ds

where t is the unit tangent vector. Define the curvature & of the filament by

dt

1e.,
dt

ds

where n is the unit normal vector. Define the unit binormal vector b = t x n. The
unit vectors t,n, and b form an orthonormal coordinate system at all points along
the curve r(s). At s = 0, we denote these coordinate vectors as t) = t(0), nl = n(0),

and bl = b(0). Let ro = r(0), for some small positive value L, —L < s < L,

civ v
r(.s) r<0>-|—ss<0> + /\<O>‘|—3 f;p<0>‘|‘0<S>
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Figure 3.1. The curve r(s) near point O in Frenet-Serret coordinate system.

2 3
— 10 + sto + —to + —to + O(s4) (3.1

K$? s3
— 10 + sto B—2~n° " + N(s4)
Thus a curve near O lies roughly on the t-n plane, with no component along the
binormal if we drop the terms with order equal to or higher than s3 (see Figure 3.1).

Similarly,
s2

t(s) = to + KSUo + —to + O(s3)

Pick a point x near O but off the curve r(s) to be x = j/n0 + zb0. Note that the
variable x' in equation (2.21) is actually r here, and d/(x.") = t(s)ds; take the point
0 as origin in Cartesian coordinates, and, after dropping terms of order equal to or

higher than s3, we find

2 2 2
Vs (n0 x t0) + Q(bo X t0)--—-bl

éx - X/}S xt -yt + znl - znsto +

x - xX'2 W Ez)+s2(1 —JK) = g +52(1 _ yl)

where g} = y2 + z2. Let y = g coscf) and z = g sin<j)| then the integrand of equation

(2.21) can be written approximately as

(blcos(f) — n0sin™)y | + t0«Csin</> + b0 — N (UQ X fo)cos<I) + (b0 x to)sin”]
[+ (1 = yKeos<ji>)]i

where (= s/g. Asy — 0,

——[(n0 x to)cos(/> + (bl x to)sin</>] > 0

I+ C2(1 — gKeoscp) ~ 1 + (1
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Because —"—- is an odd function
(i+C2)?

(L/e C
Me (1 +C2>1

We ignore the contribution to the velocity at O arising from parts of the filament

outside the range |s| < L since this part of velocity is bounded in magnitude. Then

r rLle (bOcos<* — nOsin@))g | + bO™

uee D~ J-L,; (1+C)t (
W (bOwsdl> — nsind>) -f bo UL 0(1) (3.2)
2110 dir ¢ ‘

for 7 = 00.
The first term represents the circular motion around a straight filament, and

the second term gives the velocity depending on curvature n of the filament. After

eliminating the first term, we have

N oIk L 33
a Pgrinyg (3-3)

This is called the self-induction approximation or localized induction approximation

[LIA). For nonzero curvature,

<9x

If we consider £:log ~ as a constant, we can write equation (3.3) as

dx hi dto
- lg)to X ds

Tt 41T S

since icbo = t0 x (/en0) = t) x 4*. Let # = if’log g We find

d
X to X @ — Kbo
dt as

After dropping the “hat” and subscript, we get
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We designate ' = and'= Thus equation(3.5) can be written as
x=txt =/b
Since X' = t, and x" = t' = KH, then
x"' = ¢t"= Acn + «(rb — Kt) = —K2t + Krb + Ae
where 1 is the torsion of the curve defined by
r = -b/-n

Since t1n =0,

0=t.n+t.n"=x~+t.n

that is,
t.n' — «
From b 1n = 0, we get
0=b'"'n+b'n"=—r+>b'n'
that is,
b'n'=r
Therefore
nNn=<tn>t+<n'n">nt<b'n'">b=—Kt+rb

where we use the fact that ni1n' = 0. From t+*b = 0, we find
0=t b+t b =Am'b—+l b =tb
With —r = n ' b/, and remembering that b+ b' = 0, we get

b'= -rn

21

(3.6)

(3.7)

(3.8)

(3.9)

We have the well-known Serret-Frenet equations, which consist of equations (3.8) and

(3.9) and
t' = A

(3.10)
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If we take the derivative with respect to s for equation (3.6),
t=(x)'=/cb+ Kb' = Achb — Krn

By the definition of /c,

t'-t'
Thus,
= 2tht =2t" (K'b —/ '
dr (Kb —fem)
= 2t' (/c"b + /¢'D' — KVII — /er'n — Km')
= 2KI ' [/¢"b — K'TII — K'TiT — Kr'n — Kr(rb — «t)]
= 2K(—2K'T — /er'")
—2(K2)'T — 2K2T'
JD)
13 dS
that is,
dnl ~5(K27T) 311
dt ds G.11)
or
k
CZ;; — %' k7 (3.12)

Equation (3.11) is the first intrinsic equation, derived first by Betchov [11],
Now let us derive the second intrinsic equation, also due to Betchov. Start

from the formula K21 = t+ (t' X t"). Thus,

dn2T
Zt St (Xt e (t X)Xt )
Considering
t = /c'b— Km
t/ = K2rt — (2K'T + KT)!l + (K" — KT2)b

{I' = (4K'KT + 2K2T")t + (K3T + KT3 — 3K"T — 3KV — KT")11 + (K" — 3K'T2 — 3Krr')b
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we find
vox ot c2rt + K3b
tox " (KK'T) + K21T' + K'K")! — K2n"n — (K)K'T + fi3rHb
v xIi" = K{K"—3K'T] — s/cre~e — KOKK'T + 2K2T')h

Thus

KM Rkl _ KKT— RTT— REAKK! — SRKE — 85217

= KK" — K K"+ Kax — "IKK"72 — AK277"

—  UK2)" + j(tcd)' — 2[K4 + K2T2 + (K)2]'
ti 1
= h-1T-2[-k, + «v + (,c")2]
8

= T+ N4-47°M2-4(K)2r
= [KK" — (K")2 — 2K2T2 -+ lKAy

(3.13)
On the other hand, using equation (3.11), we find
dK2T Uk? re 1 dr
~dT dr" dt
dK2T idr
- 2ds T+KX¥
— _2(KWT - KT o K ZZ (3.14)
If we combine equations (3.13) and (3.14)
-m2((K))'T + «V)r+ 7 - 4(«HT = 2((*DH'2 +
that is,
KQrr'+ —) - - 4(/cHy'
The second intrinsic equation is
i + N — /\! + aN (B : Km K'K"
27T Ir™Mr + I Z 4(('1)2),1 KK (3.15)

d 2l K 2 K
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or
& —2 3.16
dt - (3.16)

Let us seek some special exact solutions for equations (3.16) and (3.12). We consider
only the case where torsion r = constant and assume K' ™ 0 in this thesis. Thus

equation (3.16) becomes

il
(—+ IJZy =0
Integrating this equation, we find
2k" 12 A4
(LK =7

where A4 is an integral constant that may depend on t. It is equivalent to
A[(,LcOT + (K7-"(K7 =0
or
[d™)2 + K4 — Ak2}' =0

Integrating the above equation again, we get
°K)) +xKd - AK) = C

where C is a constant. It can be written as

N 2K'
(C + AK) — K4y

Integrating the positive branch, we find

S —722 —7 2K'de oy, — I 2dk
J§) (C + AK2 — k)12 yK(o) (C + Ak - k4yc

Let us assume (7 = 0; then

2, JiW+ yiTA2

Let 3= ; then
ic(s,1) = 2/3sech{"[s = /(O]) (3.17)
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Taking the derivatives of equation (3.17), we find

N as3fi&nlifI3fs — f0)])sec\ (3]s —
= —2f3tanh{/3[s - f(1)]}sech{(3[s - f(1)}}

oK

From equation (3.12) and r = constant, we get

dt — 2KT

Thus,
S =2r

Integrating the above, we find
f0) = 2r{t - 10)
Let to = 0 and 2r = c¢. We finally get
K(SN) — 2/3sech[0(s — ct)] (3.18)

We will see in the following section that the intrinsic equations (3.12) and

(3.16) are equivalent to the nonlinear Schrddinger equation.

3.2 Nonlinear Schrodinger equation and Hasimoto

Solitary Wave

Hasimoto [44, 1972] reduced the self-induction approximation [equation (3.5)]

to the nonlinear Schrodinger equation
19V = G+ 2411 1) (3.19)

by the following transformation

ip = Kexp(z ({0 clQ (3.20)

The detailed derivation can also been found in the book by Lamb [51].
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In this section, we prove that the nonlinear Schrodinger equation is actually
equivalent to the Betchov intrinsic equations.
To show this, we integrate the second intrinsic equation (3.16) with respect
to s
J/r Ttlf( —k" T22+ -g(22+ -114”

where 4 = A(t). We can write this equation as

T K —kr' v 1 —KA (3.21)
0

With the help of the first intrinsic equation (3.12), we find

rs ” J
A+ f id( = —(2K'T + KT') -r ~¢~, — KT +2—K3 + 2—KA)
0

or
1 , rs . A H
—(k + i-K i Td() — LIK T + IKT' ¢ K" — KT) | x5 - KA (3.22)
I 0 2 2
We multiply both sides of equation (3.22) by exp(ifo Td(. Then
—.Ia—’[l( exp(‘? ﬁ 7d()] = (K" + zTr'+ 7acV) exp(i ﬁ 7d()
i at Jo Jo

+(K/~+ z/vr)zr exp(z J/ 7d()
0

+1(K2 + A)Kexp(i rs 7dO
Z Jo
)
= ad‘?("exp(!}é‘ rdQJ

+NK2 + ADKexp(i / TdO

, h (3.23)

Using the transformation [equation (3.20)], we get the nonlinear Schrodinger equation
(3.19). Note that every step is reversible. Thus the nonlinear Schrodinger equation
is equivalent to the Betchov intrinsic equations.

To eliminate 4 from equation (3.19), let

= T(s,t) = ip(s, t) exp[—" /" A(Qd(]
7 Jo
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We want to determine the actual shape of the curve that has curvature given
by equation (3.18) with constant torsion r. This has been done by Hasimoto [44].

From equation (3.9),

bn — —I’Ili
From equation (3.8),
x\' = — KTt + 12b
Thus,
—b” = —K-rt + r2b
that is.

rt = ;(bW + r2b)

Taking the derivative with respect to s, we find
|
rt' = [I}(b" + 1r2b)]'
By equation (3.10),

0 = r(t — &1y = [—(bl: + T2b)]/ + KE'
K

that is,
[Ecosh/JAb" + T2b)]/ + 2/3sech/9£b/ = 0 (3.25)
where £ = s — ct. Equation (3.25) can be written as
d3b d2b 2 2_.db 2
+ - + + ??7)— b =
0t tanh?/ e (T2 + dsech2 )dr) b T2tanh?/b = 0 (3.26)
where 7 = (3" and T = 173
Define
~ db
B = b tanh?/b .
7 an (3.27)
We can transform equation (3.26) to
d2B+T+2 h 2)B =0 3.28
dif ( sech ?/)B = (3.28)

which has the trivial solution B = 0 and two linear independent solutions

B+ = (tanh?/  iT)etiTriex
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where e and e+ are constant vectors. The corresponding solutions of equation (3.27)

are
b0 = elOsech» (3.29)
bt = ex(l —T2 2iTtanh77)etl77) (3.30)
where eo is a constant vector.

To have real b with |b] = | satisfying the condition that the filament parallel

to the x-axis at infinity, we choose the linear combination of bo, b+, and b_ as

2/ JO'
b = 0 seh®+ (I —T2— 2iTtanhr))
1
v by \ 1/
0 v

(1 = T2 + 22T tanh?/) ¢'®

! 2 fi sech?/ \
/i[2T tanh?/ cos O — (1 — T2) sin 0] (3.31)
A 727 itanhr/ sinO + (1 — 72) cos 0] )

where /. = and O = T? + 0'it)- The function a(?) is determined by equation
(3.5). Use the Serret-Frenet equations (3.8) and (3.9) and x' — t,

/ 212 sech?/ tanh?/ \
n= (I — 2fi tanh2?) cos O + 2/iT tanh?/ sin O (3.32)
M —(1 — 2/? tanh2?/) sin O — 2f;, T tanh?/ cos O

I — 2/? sech2)/
—2/? sech?/ [tanh?/ cos O -f- T sin 0] (3.33)
N —2/?sech?/ [tanh?/ sin O — T cos 0] j
and
A s — 2j| tanh?/ 7

X = 27sech? cosO (3.34)

UA sprlvn isin O
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If we substitute equations (3.18), (3.31), and (3.34) into equation (3.5), we get
= P2—1) (3.39)
Integrating equation (3.35) and defining (T(0) = 0, we find
a(t) = (/32 - T2)t (3.36)

There is a solitary wave moving along the curve given by equation (3.34). Figure
3.2 shows that the |*| determines the amplitude of curvature k¥ and increasing |T| will
increase the speed of wave and decrease the amplitude of the wave. In a real-time
scale, the soliton speed along the x-axis is iir)p[In(“p) — !]* For r = 0, the soliton
speed on the x-axis should be zero, but the velocity components in both the y and
z directions are not zero; thus the soliton shape changes with time such that the

solitary wave oscillates along the x-direction (Figure 3.3).

3.3 Comments on the LIA

The localized-induction approximation ignores several important aspects of
the dynamics of real concentrated vortices (sec Aref & Flinchem [2] and Leibovich &
Ma [53]).

First, vorticity stretching is absent in this approximation (see Buttke [12]).
However, numerical simulation shows that stretching must happen for a thin filament
in incompressible fluids. Several authors have made new asymptotic equations to
capture the stretching phenomenon for the motion of a thin filament (see Aref &
Flinchem [2], Klein & Majda [48], and Callegari & Ting [13]).

The second defect is that the deformation of the vortex core is not repre-
sented since we have assumed that the term -f- In - is constant. Also, the values of L
and g can not be determined « priori., although the correct time scaling depends on
these values for equation (3.3).

As we have said, this approximation is local. It totally ignores the interaction
between filaments and between two portions of a filament approaching each other

closely.
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Figure 3.2. Perspective views of a solitary wave moving along a filament. The
parameters r = 3.0 and is = 3.0 are for the left figures; r = 2.0 and v = 2.0 are for

the right figures.
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Figure 3.3. Perspective views of a solitary wave motion with r = 0
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Chapter 4

Energy Conservation and Other

Diagnostics

4.1 Some Invariants of Euler’s Equations

We use several invariants of Euler’s equations to check the validity of our
numerical schemes. They are the total vorticity fl, linear impulse I, and kinetic energy

£ of a vortex system defined by

Q = [/ udV (4.1)

I = 21 X X rocrv (42)
|

E = , u udV (4.3)

where we have assumed that the density is one.

For an unbounded flow with zero velocity and zero vorticity at infinity,
for example, the closed ring, the total vorticity fl is zero. The linear impulse I is
independent of time. To see this, we write the vorticity transport equation (2.6) as

du>
& - 1 Vu— (' Vi =V x (u x cu) (4.4)
where we have used the facts that V+u =0 and V 'u; = 0 and the vector identity

Vxivxw)=W'Y)v—w((V'v)—(vVIV)w+ v(V'w)
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Note that the integrating region is fixed in this case. Thus

7t = —therZ bj*xd“?’ﬂfuxi)idv U

Expanding the integrand, performing integration by parts, and using the fact that u

and 1> vanish at infinity, we find

dl
it h X u>dV (4.5)
A simple computation shows
uxuy = “V@ur'u-@Q'Y)u
1 . . d(im)  5(nu) 9(u;u)
21 dx dy dz (4.6)

where the last equality holds, since V'u = 0. Thus the integral of equation (4.5) can
be transformed to a surface integral that is zero because u = 0 at infinity.
The kinetic energy is also conserved. By Euler’s equations (2.1) and (2.2)

and the same argument as above,

dE ﬁ du.dy Ju' [VP + (u' V)u]ldE
dt dt

= - JV/[tuiru +P)u]dV=O

It is possible to find an expression for the total kinetic energy in terms of the
vorticity distribution. Let © be the function defined by the expression u — V x

with the constraint V ' ylI' = 0, as in Chapter 2. From the vector identity

VxP)yru=P (Vxu)—Vi(@uxIE)=P'+ —V:@uxif
we get
E=" udV -/ Vi (@ux V)dVv (4.7)
The second integral vanishes by the same argument as before. Thus
E=2.10 1\ uqy (4.8)
By equation (2.17),
L2z Y viavis) (4.9)

This expression is also called the Lamb integral [52].
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4.2 Numerical Diagnostics

We call the conserved quantities such as kinetic energy, linear impulse, and
total vorticity the diagnostics of our numerical scheme because a good numerical
scheme for solving the Euler’s equation in unbounded region should preserve these
quantities. The discretizations of these diagnostics are based on the same theoretical
analysis used to obtain the schemes for vortex filament methods in Chapter 2. We

adopt the same notations used in Chapter 2. Then, for a single filament,

n [ udv=xr/ d\(
Jwit Jc,
N . N
= £/ di(xX)«rL g, (4.10)
= I=l
- -/ xx iV =L / x x di
Jw, 2 Jc,
p A - p I
= Ij/z\ljéthxxc/lfvé)j;?ajx/\ (4.10)
where aj = (xj+i + Xj)/2.
Similarly, for M filaments,
M v,
0 rm) X] G (4.12)
m=] J=1
1M A
o (4.13)

where aj”l) = (x*™} + x*"))/2.
The energy computation is a little more complicated. From equation (4.9),

| uw>(x) ' w(x')

C SirdvJy Ix —x'l AV)dvix)
NN A XD
X —X'
N N
EEEn+ E En (4.14)
i=1 i"T 1=1

where
Z_7 7 UTX) =~
dvix)dVi(x'
ST Jsv, J§v,  |x —x| {x)dV(x))
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Figure 4.1. A piece of a cylindrical vortex tube.

Now we see that the total kinetic energy in a considered region consists of two parts.
One is the sum of Ea, the self-energy, denoted by Es] the other consists of the
remaining terms, the exchange energy, denoted by Fe.

For these terms £t/ in Ee i ™ j, under the more restrictive condition:
max(|"L,[, 15L1) < 7%

where r,j is the distance between the midpoints of two segments <, and <5l We may

approximate Ejj as usual,

(4.15)

However, it is clear that the terms Ea in Es can not be approximated so simply, and

Eu is also too large to be ignored. Chorin resolved this difficulty by using a scaling
property of Eli [18, 19, 20, 21, 22, 23, 24, 26].

4.3 Scaling Property and Computation of Self-

Energy

To derive the scaling property of self-energy, we consider a piece of a cylin-

drical vortex tube with height 7 and cross-section radius T lying on the coordinate
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system given by Figure 4.1. We denote the total kinetic energy in this piece as E(a, I)]
1e.,
E(@)) St b — x|
(4.16)
Clearly, the vorticity 2 depends on the radius @ and can be written as wa = (©,0,0)
in the given coordinate system. We will assume that the circulation w>a 1 nd(a) =
aA((j) is fixed, where A(a) — nal (one will see the justification later); that is, for a
real parameter ¢ > 0,

£e<T(ex)/A(e<T) = NX)y4((T)

or
C4fx) = 4G(X 4.17)
Thus, let x = ex and X' = ex/,
—p* ) '
Eeaet) — | 1 dy P )i My s det Mgy U>(x)  U.o(X)
’ St J~a  J-\/da'- JO J-eo  —as2n—1y2  JO X — X'
= £df dz I'di |’ dy' 2 ACO
§ir J-a Jo  J-o J \\al—E gg Jy ax < x
S5 4o ” _ ; .y o A V AA(x!
Ty IR s Ce g PP e e 10T XD
vt J—a T d-Val=yI  J0  J= T J-Valy'T  Jo edjx — x'l
cE(aJ)
That is,
E{ea,d) = cE(cr, () (4.18)
Let e = ,, we then find
E{0, ) = aE{L£/a) = (7T1/(7) (4.19)

where 7(£) = E(l,£) 's a single variable function.
To study the properties of 7(£), we assume that the vorticity w>a is constant
in space and time, e.g., 0>(I(x) ' ("(x") = C(cr). Then

/ [dvdz g [dydz' Fdx Fdx' ? |
bT Iscvs IS J Jo Jo N — XY -V —yY A {z — )N
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where S(cr) = {(,z) 1 y] + z) < ¢2}. Since

ﬁ rt
/ dx / dx'—AjZ
Jo Jo ME -x))+ G -y + (2 - 2)]

= 2nn N+ yc TN/ yvIN IV

22U+ -y + (z' - z)]
+2
-+ [z - 2))
Let y = pcos 0, z= psin”®, y' = p'cos 0, and z' = p'smO’". Then
7(1) p#F  r2% i Fi
(S(TT) J{)i /Jo 40do jo J/o dpap’pp’
2 1In I+ V1 +p)-fp?— 2pp'cos(0 — 0)

772

—2YP + p) + p2 — 2pp’ cos(0 — 0)
T\n[p} + p™* — 2pp’ cos(0 — 0)]
-\-2Up2 + p? — 2pp’ cos{0 — (4.20)

Let us look at the asymptotical behavior of 7¢¥%). For I — +oo,

T{l) (7(1) /?* ri ri ¥l
' - /d0do’ / /  dpdp'pp’
("llolinl am Jo Jo Jo Jo peppp
I+ \JD - p) +p?— 2pp’ cos(0 — 0
1’1%0 In"

a1~/ .. /. MdO'A#£ £ dpdp'pp’

ol
'c()

That is,
T(£) ~ constant1I\Wwl for I  Aoo (4.21)

To find the asymptotical formula of 7{1) for » > 0, we take the derivative of 7{1),

dT (7(1) /1’217* ok ri rl
- /= d0odO" /| dpdp pp'
J1 ST Jo Jo Jo Jo peppp
2In A pl + p'?— 2pp'cos(# — 0)

In p? +p2—2pp'cos(0— 0) |
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0.6*1%1-—
0.845*1*log(l) ---

Figure 4.2. Asymptotical properties of 7(£) with C(\) = .

Then
dl ‘
o 29T T 0 ) s pp
£ dl 41T Jo Jo Jo Jo Up'l V p2 — 2pp'cos(0 - 6)
Thus,
7(l) ~ constant1[) for f— 0 (4.22)

Figure 4.2 shows the asymptotical properties of 7(Z), where (7(1) = 1. For f —* 0, the
asymptotical function is 0.6 F2. For £ — oo the asymptotical function is 0.845£InT

Now the question is how to compute 7(/). Once we find a way to compute
7(l), we can make a data base and use interpolation and equation (4.19) to compute
E(a,l) for any given a and /. Since the vorticity > depends on core structure, we
should not assume UJ to be a constant vector. We must evaluate 7(/) from equation
(4.16). Therefore we need to compute  first. From equations (2.43) and (2.27) and
the definition of Vv(x) at page 10 Chapter 2,

£ [ 'UWH)

uv(x.h mJc  orl
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41 Jslj 1l

r
. 4.23
G E (4.23)
where r = |x — x'| and a] = |[XJ+I+X] _ X|2 prom "ie equality, we can see that
will(ex,t) = x<*,(I(x, t)
e
which justifies the assumption of equation (4.17). From equation (4.23),
S o) /27T 1 /-r 27T rl rt
/A6 1 dp I dz1 cw/ dp/ dz
772 128x3 ~o ‘0 p*/o */0 Jo P Jo
AL 29

: (4.24)

\Jp? + /)7 — 2pp'cos(d — d') + 2 — 2")2

Using standard integration schemes such as the trapezoidal sum and Gaussian inte-
gration methods (see, for example, Stoer & Bulirsch [68, pp. 121, 142]), we can easily
generate a data base for various core functions. The self-energy can be computed as

N

E, = yvxtc/f) (4.25)
i-1

where /t = |dljj.
In Figure 4.3, We plot the 7(1)s for the four core functions given in Chapter

2, where the label in the picture is defined as follows:

Core function 1 is | — e-r
Core function 2 is tanh #3
Core function 3 is | + (—I + |r3)e~13

Core function 4 is tanh 13 -f |1r3sech2r}

In the future, the kinetic energy is given by the approximate expression
E = Ee + Es

where Ee = Eij, Ej = and Es is given by equation (4.25).
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core function 1 ---
core function 2 ---
core function 3 —
core function 4 ..

Figure 4.3. T(C)s corresponding to four core functions.

plane x=a

Portion of vortex tube Wt moving with the flow

plane x=b

Figure 4.4. A portion of a. vortex tube.
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4.4 The Limitations of the Diagnostics

We studied the invariants of Euler’s equations such as kinetic energy, total
vorticity, and linear impulse. We also derived the numerical schemes for computing
these invariants. It is important to note that all the derivation in previous sections
in this chapter is carried out in whole three-dimensional space R3. However, in our
study, we often take only a portion of space, for example, the x direction bounded and
the y and z directions unbounded, for an unbounded flow (see Figure 4.4). The chosen

portion moves with the flow. We therefore designate the volume of that portion as
Wt = {(x,y,z,) . a(t) < x < b(t), -oo <y,z < +00}.

It is of practical interest to know whether the quantities discussed in previous sections
are conserved in the restricted circumstance.
It is clear that the total vorticity in the given portion Wt does not vanish.

However, the total vorticity in the given portion W is independent of time,

_ A ;
df udk = &L G uar— F vx2lap

dt Jwi dt Jwt Iw, Dt
= -/ Vx (VP)dV =0
Jw,

where we have used Euler’s equations (2.1) and (2.2).

Generally, in the restricted region Wt the kinetic energy is not conserved,
and equation (4.9) is not equivalent to equation (4.3) due to the nonvanishing bound-
ary terms. We denote u = (u,v,w)l, u = (£,CI7)\ an<* ~ = (a, PiVY- Let us
compute dE/dt on Wi,

cLE
dt

u1 VPdV
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where u = (u, v, w) and we used the fact that
u' VP =V@P) - (V'u)P = V(uP)

since V 'u = 0. The last surface integration does not vanish unless u = 0 or P = 0
at both planes x = a and x = b. Therefore the kinetic energy E in the restricted
region Wi is not conserved generally. The second term of equation (4.7) can not be

eliminated generally on the restricted portion Wt because

Vo (ux P) =JR2[{vv ~ w/3)\x=b]dA(y,z)

Thus, on the restricted portion IT*, equation (4.9) is not equivalent to equation (4.3)
generally.
The linear impulse in the restricted region Wi is also not conserved generally.

Let us compute dl/dt,

Z; J/{v é)_’x X wdv =§C, (uxw+xx %d 14
where
/ uxudV = [ [-V(u-u) 3(uu) d(vu)  <9(um)
" 'z dx dy az 1
— J-[i2[(uv) x=bldA(y"z)
{ ~Jie[(uw)\*=b}dA(v,z) )
and

/ xx —dV =1 xx (u*Y)udV
Jw, Dt Jw,

Both the surface integration and the integration fWi x X (u 1 V)udV do not vanish
generally. Therefore, di/dt ~ 0; that is, the linear impulse in the restricted region Wi
is not conserved.

For a straight filament lying on, or parallel to, the x-axis with the velocity
field induced by itself, the discussion about kinetic energy and linear impulse in
previous sections is valid for the portion within the region Wz In this case, y —

constant, 2 = constant, it = 0, £ = 0, and 7 = 0. Thus vx = 0 and = (0 from
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the definition of w> and /3 = 0, 7 = 0 by equation (2.17). With these facts and the
assumption that u and z vanish at infinity, we can eliminate all of the boundary
terms generated in our calculation as well as the integration JW(x x 1 V)udVh
This argument explains that in our numerical computation the kinetic energy
E can remain constant as long as the perturbation waves stay far from the steady
boundaries and start to vary once the boundaries are affected by perturbation waves.
From the analysis given in this section, in the computation of a portion of
a vortex tube moving with the flow, we know that the total vorticity remains a good
diagnostic of a numerical algorithm; the kinetic energy can be used as a diagnostic
of a numerical algorithm only if there is no perturbation near the boundaries of the
considered region on the vortex tube, and the linear impulse cannot be used as a
diagnostic of a numerical algorithm because any perturbation on the vortex tube in

the considered region will change the linear impulse.
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Chapter 5

Calculations on Part of a Vortex

Tube

It is often convenient to calculate part of a (possibly infinitly long) vortex
tube. To do this, we must truncate the uncomputed tails of the vortex tube. This
Chapter discusses how this can be done.

Consider first a straight vortex tube. Assume that the tube consists of a
bundle of straight parallel filaments with equal circulation. To simplify the discus-
sion, we assume that the straight filaments are parallel to the x-axis. Thus a plane
perpendicular to these filaments should be parallel to the y-z plane. Denote a plane
parallel to the y-z plane and passing through the point (x,0,0) on the x-axis by Px.
Thus P is the y-z plane. We define the velocity center Cv(x) on the plane Px as
the point where the y-z component of velocity is zero, as shown in Figure 5.2. There
may be several velocity centers. For simplicity, we consider only the pattern of the
velocity distribution shown in Figure 5.2. Thus, there is only one velocity center on
a given plane Px. Let Cv be a curve consisting of all Cv(x), see Figure 5.1.

The filaments away from the center curve Cv will rotate around the Cv. We
can also see that the rotation speed at various points (Xx,),z) changes according to
the values of the y and z coordinates. For an infinitly long straight vortex tube, the
velocity distribution on the plane Px with a different x is the same. Thus, all points

on the same straight filament should rotate with the same speed around the velocity
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filament

vortex tube

Figure 5.1. A finite part of an infinitly long vortex tube.

center curve Cv. Without proper treatment at the truncated ends, a computational
result of part of a vortex tube will not preserve the above property due to the loss of
the appropriate contribution from the truncated parts during the computation. Near
the truncated ends, the computed velocity magnitude will be quite different from the
velocity magnitude induced by whole vortex tube. Consequently, the points on the
same straight filament will rotate with different speeds. A physically unreasonable
twisting of filaments will start at the truncated ends and quickly spread to the middle
parts.

The way to eliminate this physically unreasonable twisting of filaments is to
recover the correct velocity intensity near the truncated ends. We have used two ways
to do so in our computation: (1) treat the data periodically, which is a conventional
method of dealing with this kind of situation, and (2) extend each filament with
straight lines at both ends. Both of the methods are simple to implement in the
computation. Both methods require extension on both ends. The extension on each
end is equivalent to adding the terms into the summation in equation (2.46). For the

first method, we copy the computed part at each end and connect it to the previous
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Figure 5.2. Cross-section velocity fields around various numbers of filaments. The

symbol indicates the position at which a filament crosses the section plane.
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part. In the second method, for each filament, at each end, we copy the end segment
N times and connect them to each other at the end. With both treatments, the

three-dimensional vortex filament method scheme [equation (2.46)] can be modified

as follows:
I M Vo ,,(m) x £i(m) Jm) Am) v d™) ;("d  =m) 1Um)
ua(x t) r(m) Yu_ i— 2 U —x d/fj ,
’ Air m/=\i J=1 (I’H)3 JI a fm)3 7 A 2 ((-)D3 s
where

X — |[(xj+1 +XJ)
X — |(xi+i + XJ)

x- 1(xJ+H +X7J)

r, = Ird
ri = 17
For the periodic treatment,
A XN+ A Xj — X1 A ¢ Xi — (xN+i — Xj) \
Vs XJ] = V
\
For the straight line extension,
ANy 1 — 1 A
/ 0O, X \ (2% 1 —x12
DA+T X] Vv
v ZN+) ) \ ZN+

where 1i = XM, x2 — 2ajvtl —xjy, Xi = x;j, and o2 = 2a:! — x2. One should modify
the scheme of straight line extension to deal with the situation of perturbed waves
passing through the truncated ends. We suggest that in a computation, one follow
the wave shape of interest, add new segments (or new grid) at the forward truncated
end, and drop segments at the opposite end. We may call this a moving Lagrangian
grid method. With this method, we can study the long-time behavior of a wave with
limited computer memory space. The theoretical validity of this method is based on
the observation that the behavior of a wave in a part of a vortex tube is governed
mainly by this part of the vortex tube as long as the wave stays in the middle of the

part and the truncated ends have been treated appropriately.
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Chapter 6

Numerical Results

6.1 Goal and Experimental Design

We present our numerical results in this chapter. Our goal is to answer the

following questions:

A. What are the effects on the accuracy of our vortex filament scheme of the choices
of the numerical methods for solving the time evolution ordinary differential

equation, the core functions, and the parameters?
B. What are the main factors causing numerical and physical vortex stretching?

Solitary wave propagation along a vortex tube is the physical-model problem we study
here to provide answers for the above questions. Besides, solitary wave propagation
along a vortex tube is an interesting research sub ject in itself. In particular, we would

like also to know
C. Can a solitary wave propagate along a vortex tube for a long time?
The numerical and physical factors we are going to examine are the following:

1. the numerical method we choose to solve the time evolution ordinary differential

equation;

2. the core function we construct to approximate the singular Biot-Savart kernel,
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3. the core size a defined at page 10, Chapter 2;

4. the time tolerance control constant C;

5. the number of filaments we use to simulate a vortex tube;

6. the distance between filaments;

7. the placement partten of filaments used to simulate a vortex tube;

8. the circulation F defined in equation (2.9); and

9. the torsion r of the initial solitary wave data generated by equation (3.34).

In the list, the numerical method solving the time evolution ordinary differential
equation, the core function, the time tolerance control constant C, and the number
of filaments in the simulation of a vortex tube are clearly numerical factors. The
accuracy of our results and the efficiency of our computation depend on these factors.
The circulation F and the torsion r of the initial solitary wave data are physical
factors chosen in accordance with the physical phenomenon we attempt to simulate.
The core size, the distance between filaments, and the placement partten of filaments
have both numerical and physical significance, which we will explain in later sections.

To answer question A, we must examine the sensitivity of our numerical
algorithm to the factors 1-8 listed above. In a computational result, a vortex tube
stretching can be caused by either the computational inaccuracy or physical nature, or
both. We will try to distinguish the different causes of the vortex stretching appearing
in our results whenever it is possible. The answers to questions A to B will help us
to answer question C.

In our vortex filament method, we split a segment in two if the length of
this segment is larger than a predetermined positive number. When a filament starts
stretching, the total arclength of the filament will grow very quickly. Thus, the
number of segments for the filament grows quickly. Therefore, the total arclength
is a direct measurement of vortex stretching. The total arclength is proportional to

the total number of segments. Both numerical inaccuracy and the physical nature
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of the vorticity field can cause vortex stretching in our numerical result. A vortex
dynamic system is a highly unstable physical system. The numerical errors often
introduce high-frequency perturbation waves with small torsion. Such waves easily
cause violent stretching, as we will explain in a later section. This type of stretching
is numerical stretching. The distinction between physical stretching and numerical
stretching is not always possible. We usually must look at the geometric pattern of a
perturbation wave and the location of the appearance of the wave to decide whether
the perturbation wave is caused by numerical error or by physical instability and thus
distinguish physical stretching from numerical stretching.

Computer memory limits the maximum number of segments per fdament.
If the number of segments for any filament exceeds the maximum value, our compu-
tation is stopped at that step. Thus, the smaller the number of steps for which our
computation can be carried out, the more stretching we get for the simulated vortex
tube. If a computation can be carried out till the allowed maximum step, then the
total number of segments at that step reflects the stretching of the simulated vortex
tube; the larger number of total segments implies more stretching in the computation.

The elapsed time is an indicator of the efficiency of our computation and a
diagnostic of the accuracy of the computational results, because the slower growth of
the elapsed time usually means that the time tolerance of each step is too small and
thus may be not efficient. The rapid growth of the elapsed time means that the time
tolerance of each step is large and may therefore cause inaccuracy.

The kinetic energy, total vorticity, and linear impulse are conserved quanti-
ties in an unbounded region for the Euler equations. Thus, in an unbounded region,
a variation from the initial value of each of these quantities indicates error. However,
as we have explained in the last section of Chapter 4, in the computation of a portion
of a vortex tube, the case in which we are interested for all computations in this
Chapter, the kinetic energy is approximately conserved only if perturbation waves
are far from the truncated ends and linear impulse is not conserved at all as long as
there are perturbations in the computed portion of a vortex tube. The total vorticity
is conserved in all cases. Therefore, a variation from the initial value of the total

vorticity indicates error. If the kinetic energy is conserved, we can be sure that our
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computational results are accurate, but a variation of kinetic energy in the data does
not necessaryly mean that the result is bad (inaccurate). We should not use linear
impulse as a diagnostic of our numerical schemes in this case.

Therefore, we use the following quantities to measure the accuracy and the

vortex stretching of our computational results:
1. the number of time steps in a computation;
2. the number of segments at the last computational step;
3. the total arclength at the last computational step;

4. the elapsed time, i.e., the accumulated sum of the time tolerances for each

computational step from the beginning to the last step;
5. the total kinetic energy; and
6. the total vorticity.

In each numerical experiment, we generate vortex filament curves from equa-
tion (3.34) with predetermined parameters. Thus, there is a solitary wave in each
initial vortex filament curve. Each curve approaches at infinity a line parallel to the
x-axis. Therefore, we should see the solitary wave in each filament propagating along
the x-axis. There are three parameters that may change the shape of the initial curve:
(1) the torsion r, (2) the parameter rq and (3) the initial time parameter which
merely determines the position of the initial solitary wave. The significance of the first
two parameters has been explained in Section 2 of Chapter 3. In our computation, we
record the measurements described above and the propagation behavior of the initial
solitary wave for various combinations of the investigated factors. We will use tables
to display the results in terms of the first four measurements: the total number of
computational steps, the total number of segments at the last computational step,
the total arclength at the last computational step, and the elapsed time. We will give
figures to illustrate three measurements if needed. Finally, we will analyze the results

obtained and try to find answers for our questions.
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6.2 Numerical Factors

In this section we examine the factors that affect the accuracy of our com-
putation and try to find a reasonable combination of choices of the factors that can
give accurate results. The stretching now is a measurement of accuracy of our com-
putation; that is, more stretching indicates more error in computation because these
examined factors have no physical significance. These factors are the number of fil-
aments used to simulate a vortex tube, the numerical method for solving the time
evolution ordinary differential equation, the core function, and the time tolerance
control constant C.

We start the discussion with the number of filaments used to simulate a
vortex tube. In Chapter 3, we derived the solitary wave solution for the localized
induction approximation of a thin vortex tube. To understand a wave motion in an
inviscid incompressible flow, we would like to determine the propagation behavior of
the solitary wave in the velocity field induced by a thin vortex tube governed by the
Biot-Savart law. A single filament can be viewed as a thin vortex tube. However,
the lack of change of core structure in the cross section of a filament makes the
simulation of a thin vortex tube by a single filament physically unreasonable, because
the shape of a vortex tube core is not preserved (see [56, 57, 59, 49]). Moreover,
for a “fat” vortex tube, it is unreasonable to approximate the tube by one filament
with large core size because, mathematically, it is unreasonable to approximate the
singular kernel A'(x) given at Chapter 2 by the smoothed one Ka{x) with large a—
the core size. The convergence theory shows that to have a better approximation for
a vortex method, one should choose the time tolerance and the spatial-mesh size as
a function of the gradients of vorticity. The bigger the gradients of the vorticity, the
smaller the time tolerance and the spatial mesh size. The several filament simulation
of a vortex tube seems a good way to solve these problems. Note that when we
increase the number of filaments, we should decrease the circulation of each filament
to preserve the total circulation of the simulated vortex tube. Nevertheless, the one
filament simulations of a thin vortex tube give us some useful information on vortex

stretching and how vortex filament methods respond to various parameters. Our



CHAPTER 6. NUMERICAL RESULTS 53

Table 6.1. The total number of computational steps, the total number of segments
at the last computational step, the total arclength at the last computational step,
and the elapsed time for various core functions and numerical schemes for solving

ODE with one filament.

1 filament with core size ¢ = 0.4,
to = —o0.1, C =005 T -5.0
and periodic treatment at truncated ends

Methods Core Steps At the Last Step
No. Seg. Time Arclength
I 200 752 3.83 23.74
Euler 2 200 804 3.44 26.25
3 157 993 2.10 34.05
4 124 979 1.79 34.30
| 200 416 5.32 10.84
Heun 2 200 408 4.68 10.75
3 200 588 3.02 18.58
4 200 547 2.90 17.31
I 200 422 5.68 10.76
RK4 2 200 406 4.70 10.69
3 200 521 3.08 16.30
4 200 503 2.92 15.23

studies of vortex filament methods and vortex stretching begin with the one filament
simulations of a thin vortex tube; therefore, we should provide the data of the one
filament simulations of a thin vortex tube.

Theoretically, computational accuracy will increase as a vortex tube is simu-
lated with an increasing number of filaments. However the simulations of our physical-
model problem require long filaments and, therefore, many segments for each filament
and long time computations to obtain enough information to understand the ques-
tions raised at beginning of this Chapter. The cost of computation and the capacity of
current computer memories do not permit us to simulate a vortex tube with many fil-
aments. We will provide results of one filament simulations and three or four filament

simulations for some of the following computational experiments.
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In this section, all initial data for our computation are generated by equation
(2.33) with r = 3.0, is = 2.0. The length ds of each segment is 0.04 initially. A segment
must split in two if its length is longer than 0.05. The computation is terminated if
there is a filament with more than 1000 segments.

We examine the following numerical methods for solving the time evolution
ordinary differential equation: (1) the first-order Euler’s method, (2) the second-order
modified trapezoidal method (the second-order Heun’s method), and (3) the fourth
order Runge-Kutta method (RK4). These schemes are given on page 14, Chapter 2.

The core functions we examine are the following:

Core 1. 1 —er;
Core 2: tanh?3;
Core 3: 1+ (-1 + |1r3)e-T3

Core 4 : tanhr3 + |r3sech2r?

We make runs with each numerical method and each core function for one filament.
In Table 6.1, we list the total number of computational steps, the total number of
segments at the last computational step, the total arclength at the last computa-
tional step, and the elapsed time. In Table 6.2, we list the results from the runs with
the second-order Heun’s method and the fourth-order Runge-Kutta method and for
several core functions for three filaments. We also give, in Table 6.2, the compar-
ison results for two treatments of the truncated ends: periodicity and straight line
extension.

From Table 6.1 we can see that the vortex filament method is much less
accurate with the first-order Euler method for solving the time evolution ordinary
differential equation than with the other two methods. Therefore, we did not make
runs for three filaments with the Euler method solving the time evolution ordinary
differential equation. There is no great difference between the second-order modified
trapezoidal method and the fourth-order Runge-Kutta method. We will use the
fourth-order Runge-Kutta method for the rest of our runs in this Chapter.

Both Table 6.1 and Table 6.2 show that the various core functions produce

different results. We can not really see, however, which core function gives us a more
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Table 6.2. The total number of computational steps, the total number of segments
at the last computational step, the total arclength at the last computational step,
and the elapsed time for various core functions, numerical schemes for solving the
time evolution ordinary differential equation, and extension methods at truncated

ends with three filaments.

Methods

Heun

RK4

3 filaments with core size a = 0.4,
H=-0.1, C=0.05r=5.0
200 time steps

Core

Extension

Method at Ends

period
straight lines
period
straight lines
period
straight lines
period
straight lines
period
straight lines
period
straight lines
period
straight lines
period
straight lines

At the Last Step
Time Arclength

No. Seg.
1417
1428
1348
1362
1385
1384
1179
1179
1385
1391
1343
1363
1390
1387
1184
1184

2.000
2.000
1.860
1.885
1.010
1.010
0.710
0.710
2.000
2.000
1.945
2.000
1.015
1.015
0.715
0.715

38.98212
38.96558
35.99836
36.36842
42.93497
42.98206
36.72602
36.72324
37.75273
37.78472
35.32752
35.83455
42.82489
42.85716
36.98255
36.97923
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For various core functions (I filament)

core 1
core 2
core 3
core 4

Figure 6.1. The velocity distribution on a. plane perpendicular to a straight vortex

tube for various core functions.

accurate solution because the behavior of a core function is governed by the core size.
Each core function responds to a same value of core size differently, as can be seen
from Figure 6.1.

From Table 6.2 we see that the treatment of the truncated ends makes very
little difference to our computational results. However, different treatments at the
ends will cause a great difference if the perturbation has traveled to the ends. In the
runs made for Table 6.2, we did not compute long enough to see the difference in the
results.

At the suggestion of Raid [36], we plot the relationship between arclength
and computational step at a given elapsed time in Figure 6.2 for various numerical
methods and core functions. The data are from the same runs that give the results
presented in Table 6.1 and Table 6.2. With a given core function, the number of
computational steps and the arclength produced by various numerical methods should
be close to each other at the same elapsed time if all of the numerical methods give

accurate solutions. Thus from Figure 6.2 (a), we can see immediately that results
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At elapsed time 2.90 with 1 filament

At elapsed time 0.71 with 3 filaments

Core
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steps
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2
3
4

x O+ o0

Figure 6.2 The relationships between arclength and computational steps at

given elapsed times for various numerical methods and core functions.
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produced with the first-order Euler method are inaccurate. The core functions behave
differently, as we expected, with one exception: in Figure 6.2 (c) the results with core
function | and core function 2 are in good agreement because of the short time
span. For shorter time span, the two method- -the second-order modified trapezoidal
method and the fourth-order Runge-Kutta method—give close agreement. Figure 6.2
(b) may indicate that the fourth-order Runge-Kutta method could be better than the
second-order modified trapezoidal method for longer time spans.

The total kinetic energy is approximately conserved for all runs except for
the runs made with the first-order Euler method. With the second-order and the
fourth-order numerical methods, the percentages P of maximum variation from initial

total kinetic energy, where

p— }Imaxzmwn total enerqy — initial total enerayl « 100

initial total energy

are
6.2 ~ 6.5 for core | and 2,

13 ~ 14  for core 3, » with one filament computation
18 ~ 19  for core 4,
7.3 ~ 10 for all four core functions with three filaments
With the first-order Euler method, the percentage is 20 ~ 30. Similarly, to measure
the variation of the total vorticity, we compute the percentages with the following

formulations:

\\total vorticity with max magnitude — initial total vorticity\\lxloo

P, vortici initi ici.
total vorticity \\initial total vorticity\\

The percentages of variation for total vorticity are 0.02 ~ 0.1 for all cases. Thus the
total vorticity is well conserved. Figure 6.3 shows how the diagnostic quantities—the
total kinetic energy and the total vorticity—typically behave in the computation.

From equation (2.39),
At max |iff| < C
5 ,

The time tolerance control constant C is one of the factors determining the accuracy

of our computational results. However, if C is too small, the computational cost will



CHAPTER 6. NUMERICAL RESULTS 59

Table 6.3. The total number of computational steps, the total number of segments
at the last computational step, the total arclength at the last computational step,

and the elapsed time for various time tolerance control constants C.

4 filaments with core function 4, F = 5.0,
the 4th order Runge-Kutta method,
core size a = 0.2, /) = —0.2,
distance between filaments = (.05,
and periodic treatment at truncated ends

c  Steps At the Last Step

No. Seg. Time Arclength
0.02 250 1709 0.15750  64.04793
0.03 250 1778 0.24875  64.27265
0.04 250 1879 0.31375  65.23524
0.05 250 1934 0.33125  66.26626
0.06 250 3518 0.43500  119.03595
0.07 175 3624 0.43500  122.79700
0.10 162 3647 0.42500  124.47843
0.02 250 1709 0.15750  64,04793
0.03 132 1710 0.15750  64.04794
0.04 125 1709 0.15750  64.04791
0.05 111 1710 0.15750  64.04775
0.06 65 1710 0.15625  64.04724
0.07 63 1710 0.15750  64.04726

0.10 55 1713 0.15750  64.04207
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Total Vorticity Kinetic Energy

Figure 6.3. The diagnostics of computation for three filaments with RK4 and core

function 4.

be quite high. In Table 6.3 we see that when we increase C, the elapsed time, the
number of segments and arclength at the last computational step are increased, and
the number of time steps to reach a given value of elapsed time is decreased. The
dramatic increase in the number of segments and arclength at the last computational
step and the decrease of the number of time steps to reach the elapsed time 0.1575
at C = 0.06 indicate that the computational results with the paramenters given at
head of Table 6.3 are not accurate for C > 0.05. We should note that the choice of C
depends on the maximum amplitude of the velocity on the filaments, and therefore

depends on the circulation F.

6.3 The Circulation F and Factors Affecting the

Placement of Filaments

The circulation F of a vortex tube is a physical factor. However, the circu-
lation F for each filament used to simulate a given vortex tube is determined by the
circulation of the vortex tube and the number of filaments used in the simulation.
We should decrease the circulation F of each filament when we increase the number

of filaments in the simulation to match the correct circulation of the simulated vor-
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Table 6.4. The total number of computational steps, the total number of segments
at the last computational step, the total arclength at the last computational step,

and the elapsed time for various circulations F and distances between filaments.

4 filaments with core function 4, C = (.05,
the 4th order Runge-Kutta method,

core size a = 0.2, 1) = —0.2,
and periodic treatment at truncated ends
F Dist. between Steps At the Last Step
Filaments No. Seg. Time Arclength
1.0 250 2616 2.05500 90.07765
3.0 0.05 250 2163 0.62750 74.81861
5.0 250 1934 0.33125 66.26626
0.01 250 2295 0.50375 78.91651
0.02 250 2009 0.45000 68.28120
5.0 0.05 250 1934 0.33125 66.26626
0.08 250 2027 0.31375 67.64354
0.10 239 3337 0.29875  110.62826
0.20 101 3261 0.17625  114.06007

tex tube. From Table 6.4 we see that with the other factors constant, the number
of segments, the elapsed time, and arclength at the last step are increased when we
increase F for each filament. This is understandable because, from equation (2.46),
increasing F will increases the amplitude of velocity, whereas, from equation (2.39),
increasing the amplitude of the velocity for given constant C will decrease the time-
step tolerance A¢. Thus, one should choose the time-step tolerance control constant
C after F is determined to get accurate results with lowest computational cost.

The change of distance between filaments (in multifilament simulations)
could produce different velocity distribution, as illustrated in Figure 6.5 for four fila-
ments and Figure 6.4 for two filaments. Table 6.4 shows that increasing the distance
between filaments will decrease the elapsed time at the last step but will not give
a monotonical variation of the number of segments and arclength at the last time
step. For a thin vortex tube, with smaller distance between filaments, the results will

be closer to the results obtained with a one filament simulation with the parameters
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Figure 6.4. Cross-section velocity fields around 2 filaments with distances 0.1, 0.2,

0.4, and 1.0, respectively. The symbol indicates the position at which a filament

crosses the section plane.
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For various distances between filaments (4 filaments)

distance 0.05 -
distance O
distance 0.2 -
distance 0.3 --
distance 0.4
distance 1

Figure 6.5. The velocity distribution on a plane perpendicular to a straight vor-
tex tube changes as the distance between filaments increases, with other parameters

constant.

Different pattern (4 filaments)

iymmetry with center ---
symmetry no center ---
sheet ---

Figure 6.6. The velocity distribution on a plane perpendicular to a straight vortex

tube for various placement partten of filaments.
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describing the same simulated vortex tube. With the distance increasing and passing
a certain limit, we find that, in the computational results, the vortex-line stretching
happens sooner and more violently, as can be seen in Table 6.4. For each set of
given parameters, there is a critical value for the distance between filaments at which
the least stretching happens in the computational result. In Table 6.4, this value is
obtained around 0.05. We should note that with the same set of parameters given
in Table 6.4, for the one filament computation in Table 6.2, the higher stretching is
seen from the computational result. Thus, with distance between filaments smaller
than the critical value, 0.05, in Table 6.4, more stretching will be seen in a compu-
tational result because that the several filaments simulation behaves more like the
one filament simulation with smaller distance between filaments. Therefore, to avoid
higher stretching in a simulation of a vortex tube by a bundle of filaments, we should
choose the distance between filaments close to certain critical value. Note that vortex
stretching could be physical. Therefore, it may not be reasonable to put our effort
into eliminating all stretching.

With fewer filaments in the simulation, a change in the placement partten
of filaments does not have a strong impact on the velocity distribution, as shown in
Figure 6.6. However, we should note that with many filaments, the placement partten
of filaments does affect the velocity distribution; the pattern must match the vorticity

field we wish to model.

6.4 Core Size

As discussed in Section 2 of this chapter, the core size should not be too large
because of the mathematical unreasonableness to approximate the singular kernel
A"(x) by /O(x) with large core size a. The core size is an important numerical factor.
However, we could think of core size as the thickness of our filaments, and we could
consider that the core size has real a physical meaning for a thin vortex filament.
We would like to find the reasonable numerical range of choices of core size and the
response of our computational results to these choices.

Figure 6.7 shows that, with various core sizes, the induced velocity distribu-
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Table 6.5. The total number of computational steps, the total number of segments
at the last computational step, the total arclength at the last computational step,

and the elapsed time for increasing core size with one filament.

1 filaments with F = 5.0, C = 0.05, 7 = —0.2,
the 4th order Runge-Kutta method,
and periodic treatment at truncated ends

Core Core Steps At the Last Step
Functions Size No. Seg. Time Arclength

0.05 88 878 0.3975 31.29
0.08 237 963 1.785 34.16
0.09 238 978 1.9025 33.67
0.095 241 983 1.945 33.78
0.10 240 972 1.975 33.34

core | 0.11 234 987 2.025 34.03
0.15 193 979 2.03 34.50
0.20 142 977 2.01 33.86
0.25 146 993 222 34.41
0.30 218 992 4.04 33.21
0.35 250 636 5.34 19.03
0.40 250 602 6.64 17.00
0.05 61 953 0.14063 33.90
0.08 51 948 0.1725 33.27
0.09 168 980 0.8175 32.02
0.10 250 502 1.655 16.52
0.15 250 512 1.99 16.70
0.20 250 813 2.18 28.18

core 4 0.25 213 991 2.16 34.12
0.30 157 993 2.09 34.51
0.35 149 982 2.15 34.09
0.40 237 997 3.29 33.05
0.45 250 685 423 21.47
0.50 250 602 5.00 16.83
0.55 250 575 5.20 16.56

0.60 250 695 10.00 16.64
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Table 6.6. The total number of computational steps, the total number of segments

at the last computational step, the total arclength at the last computational step,

and the elapsed time for increasing core size with four filaments.

Core

size
0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.55
0.60

4 filaments with core function 4,

the 4th order Runge-Kutta method,
r=5.0, C=0.05 to=—0.2

distance between filaments = (.05,

and periodic treatment at truncated ends

At the Last Step

Steps

142
250
250
250
236
250
250
250
250

No. Seg.
2798
2113
1934
2264
3314
2519
2451
2257
2219

Time
0.08937
0.31250
0.33125

0.435

0.5975

0.7075

1.25
1.25
1.29

Arclength
97.46644
69.65556
66.26626
81.34734
113.05148
84.75277
72.87434
67.20053
66.05207
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For various sizes of core (4 filaments)

core size 0
core size 0
core size 0
core size 0
core size 0

Figure 6.7. The velocity distributions on a plane perpendicular to a straight vortex

tube for various core sizes.

tions vary. In Table 6.5 and Table 6.6, we display the results of the total number of
time steps, the number of total segments at the last computational step, the elapsed
time, and the total arclength at the last computational step for runs made with vari-
ous core sizes. The maximum number of computational steps is 250 for each run. The
maximum number of segments for each filament is 1000. Therefore, a run stopped
with fewer than 250 computing steps indicates that a violent stretching occurred. The
smaller the total steps for a run, the sooner a violent stretching occurs. If a run is
stopped with a total of 250 computing steps, the total number of segments measures
the degree and the rate of stretching for each run. The vortex stretching behavior
can be better illustrated by figures (see Figure 6.8 for the one filament simulation).
It is interesting to see from Tables 6.5 and 6.6 that the rate of stretching does not
respond monotonically to the core size. Such a phenomenon is shown directly in
Table 6.6 in terms of arclength for runs with core function 4 for a simulation with a
single filament and for runs made with four filaments in Table 6.6. In Table 6.5, for

core function | and a single filament, the arclengths at the last step are close to each
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other for different cases because the violent stretchings occur before the 250th com-
putational step for most runs. Krasny [50] has reported the nonmonotonical response
to core sizes for a two-dimensional blob method with a different core structure from
the one used here. In Table 6.5, for core function 4 with a single filament, we see
that nonstretching wave propagation occurs with core sizes in two regions around 0.1
and 0.55. In Table 6.6, the nonstretching wave propagation occurs with core sizes in
two other regions around 0.2 and 0.6. In Table 6.5, the values of arclength are close
to each other for those runs terminated before the 250th step. Thus, the number of
segments grows rapidly once stretching starts in a run. From both Tables 6.5 and 6.6,
we see that the total elapsed time increases when we increase the core size. It means
that the time tolerance A¢ for each step determined by equation (2.39) is larger for
larger core size; that is, the maximum amplitude of the velocity increases when we
increase the core size, as shown by Figure 6.7.

Figure 6.8 shows the geometric shapes of waves propagating in one filament
for various core sizes. The data correspond to the results in Table 6.5 with core
function 4. In all the runs, the initial solitary wave can propagate without signifi-
cantly changing shape for certain computational steps, then either splits into several
waves for those no violent stretching runs or starts to stretch with different geometric
shapes depending on the core sizes and other parameters. For smaller core size, the
propagation of the initial solitary wave is closer the analytic solution of LIA in terms
of the phase of the wave. For a core size equal to 0.55, we see a smaller wave split
from the original one with a stable shape propagating in the positive direction on the
x-axis. Later, several waves split from the original wave and move off. When the core
size is 0.35, stretching happens soon after some perturbation appears in front of the
initial wave. A similar phenomenon occurs in the run made with core size 0.2, but
the geometric structure of the stretching is quite different. All stretching happens
in a narrow region in the x-direction; that is, the stretching does not spread along
the x-direction. In the case of a core size @ — 0.2, a long arm comes out from the
filament and wraps around the axis on which the filament is lying. When we decrease
the core size from 0.4 to 0.2, the geometric structure of the stretching varies from a

spiral structure to a two-arm structure, at a core size of around 0.3, and changes back
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Figure 6.9. Plot of the total kinetic energies corresponding to 5 core sizes
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to a one-arm structure at a core size of around 0.2. For a core size equal to 0.1, we
see a wave splitting from the original wave and propagating with a stable shape; this
split wave has a longer wave length than the one seen in the case with a core size of
0.55. With a core size of 0.09 or smaller, the stretching starts at two truncated ends,
then gradually affects the middle. We think that this may be caused by truncation
error. However, the original solitary wave propagates with a better preserved shape
and phase speed. These descriptions of the geometric structure and evolution of a
wave propagating on one filament as a function of core size also apply to runs with
core function | (Table 6.5) and to the simulation with three filaments (Table 6.6).
For the simulation with a single filament, the one-arm structure appears whenever
the stretching happens near the original wave and the core size is less than or equal
to 0.15. For the simulation with three filaments, if an arm grows far from the center,
it may spread along the filaments in the direction opposite to the direction of wave
propagation. The physical explanation of this phenomenon is that for stretching, the
near center part moves with a speed higher than the part far from the center in the
x-direction because the induced velocity is smaller far from the center.

In Figure 6.9, we plot the total kinetic energies corresponding to the same
five core sizes in Table 6.5, with core function 4. Figure 6.9 shows that the total
kinetic energy is well conserved for various core sizes as long as there is no violent
stretching. Figure 6.9 shows the nonmonotonical response of numerical results to
core sizes. The result with core size 0.09 is physically unacceptable because the wide
variation of kinetic energy. The total vorticity is well conserved.

Some authors vary core size in their version of vortex methods (see Leonard
[54, 55], Siggia [66], Winckelmans [72], and Chorin [25]). We have examined this
treatment of the core. The results produced by varying the core size are always worse
than the results produced by constant core size; namely, the violent stretching always

happens in fewer computational steps for a run made with varying core size.
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Table 6.7. The total number of computational steps, the total number of segments
at the last computational step, the total arclength at the last computational step,

and the elapsed time for increasing wave torsion r of initial data.

core function 4, F = 5.0, C = 0.05, to = —0.2,
the 4th order Runge-Kutta method,
distance between filaments = 0.05,
and periodic treatment at truncated ends

one filament four filaments

r Step At the Last Step Step At the Last Step

No. Seg. Time Arclength No. Seg. Time Arclength
6.0 300 670 6.0000 16.15896 300 1950 0.75000  64.77505
5.0 300 647 6.0000 16.22601 300 1955 0.73125  64.38577
45 300 647 3.3400 17.03079 300 2605 0.60250  83.75597
40 234 988 24300  33.53885 300 2749 0.49125  92.79603
3.0 259 989 22200  34.90552 300 2335 0.39375  80.63711
2.5 300 512 2.6800  16.30441 300 2047 0.38625  70.28714
20 300 456 3.0000  16.23470 300 1860 0.38125  64.67449
1.0 90 968 0.5750  34.41537 118 3849 0.14750  136.68418
0.5 77 990 0.3925  34.96001 72 3677 0.09000  130.69027
0.0 67 992 0.2425  35.26452 70 3490 0.05313  125.24485

6.5 The Torsion r in the Initial Solitary Wave and

Vortex Stretching

The torsion r of initial solitary wave is clearly a physical factor. We have
mentioned at page 29, Chapter 3 that increasing |r| will increase the speed and
decrease the amplitude of the initial solitary wave. Geometrically, with smaller r, a
given curve will be closer to a plane curve. When r = 0, the given curve lies in a
plane (see Spivak [67, p. 38]). In our computations, we find that vortex stretching
always starts at a part of a wave whose curve is almost a plane curve; i.e., the curve
has a small torsion. We consider this observation in this section and attempt to give

an explanation.
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Using Hasimoto’s solitary wave as initial datum determined by the torsion
r and the curvature, we wish to see the effects of varying r on the vortex stretching.
The results are displayed in Table 6.7, which ahows that vortex line stretching does
not respond to the initial wave torsion r monotonically. However, if r is small enough,
for example, in Table 6.7 if r < 1.0, the vortex stretching does occur directly on the
initial solitary wave, whereas if r > 1.0, the stretching only occurs if there is a new
wave with small torsion produced from the original solitary wave. Thus we think
that a perturbation wave with small torsion on a vortex tube may be one of most
important causes of vortex tube stretching.

In Figure 6.10, we plot the y-z coordinate plane slice of the velocity distri-
bution induced by initial solitary wave data with various torsions r (the slice is taken
where the wave amplitude is maximum). We can see that if r is small the velocity
will be distributed less evenly on the slice through the peak of the wave. However,
such uneven velocity distributions on the slices do not necessarily cause vortex line
stretching. This can be seen in Figure 6.10 and Table 6.7. In Figure 6.10, for r = 2.0,
on the y-z coordinate plane slice through the wave peak, we have an uneven velocity
distribution, whereas in Table 6.7 the corresponding computation shows no significant
stretching.

In Figure 6.11, we plot the x-z plane slice (i.e., the plane in three-dimensional
space with y = 0) of the velocity distribution induced by initial solitary wave data
with various values of r. In the cases r = 2.0 and r = 4.0, the horizontal component
(i.e., x-component) of the velocity distribution on the whole wave points in the same
direction, whereas in the case r = 1.0, the sign of the horizontal component of velocity
at and near the peak changes, which causes stretching because the vortex filaments
are bent at the middle of the wave. For the case r = 0, the velocity distribution on
the x-z plane is symmetric, with the line of symmetry passing through the peak of the
wave. On the line of symmetry, the velocity is vertical, which can be considered as a
discontinuity of the horizontal component of the velocity field. Such a discontinuity
causes violent stretching.

We now consider the stretching that happens after the initial wave propa-

gates for a while along a vortex tube. In Figure 6.12 we plot the x-z plane slices of
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Figure 6.11. The y = 0 slice of velocity distribution induced by initial solitary wave

data with various torsions r.
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Step 200 Step 270 Step 200

Figure 6.12. The y = ( slice of velocity distribution induced by initial solitary wave

data with torsion r = 4.0.
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the velocity distribution for r = 4.0 at computational steps from 200 to 280, which
illustrates the process of vortex stretching. One can see that from step 200 to step 240
the discontinuity of x-component velocity is developed at the right front of the wave,
which has small torsion (on our two-dimensional projection pictures, this can be seen
as a vertical or nearly vertical line). The stretching happens where an x-component
velocity discontinuity is present. The figure clearly shows that the particles at the left
side of the discontinuity move with much greater speed than the particles at the right
side of the discontinuity; thus, the particles from the left side of the discontinuity
will accumulate at the discontinuity. This accumulation of particles will increase the
velocity in the y- and z-components and cause stretching.

We have also observed that, when stretching happens, there will be some
vortex segments right on or over the maximum velocity region on the y-z plane. It
is clear that once some vortex segments pass over the maximum velocity region on
the y-z plane, the vortex lines will bend and stretch in the peak velocity area in
the y-z plane, and form so-called “hairpin” or horseshoe structures because points
at and near the velocity peak move faster than other points. These structures, of
course, will change the local velocity distribution and cause more stretching. To
illustrate our observation, in Figure 6.13, we plot the velocity distribution on the
y-z plane at where the vortex lines stretches for step 230, 250, 280, and 300 with
r = 4.0 for initial data. Figure 6.14 shows the two-dimensional projection views and
three-dimensional perspective view at these computational steps. After the stretching
starts, the analysis of the velocity distribution inside the stretching area can not
provide too much information for studying the evolution of the stretching structure.
One may need other physical tools such as statistical mechanics to understand the

further developments of the vortex stretching (see Chorin [26]).

6.6 Summary and Discussion

We have investigated nine factors listed in the first section of this chapter.
Most questions we posed at the beginning of this chapter have been answered at this

point. We summarize these answers here.



CHAPTER 6. NUMERICAL RESULTS

Step 230 at x = 3.12

UC <
AN %1/%2

Step 280 at x = 3.77774

e

Step 250 at x - 3.48

v NN

i/t

RN NNY S/ﬂ}//

Step 300 at x = 3.88814

A4

80

Figure 6.13 The y-z plane slice of velocity distribution induced by wave initially

with torsion r = 4.0 where the vortex lines stretches.
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Figure 6.14. Two- and three-dimensional views of computation results for r = 4.0

at steps 230, 250, 280, and 300 as examples of vortex lines stretching.
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A. In our study, the higher-order numerical methods used to solve the time evolution
ordinary differential equation generally give us more accurate results. The vor-
tex tube simulation becomes more accurate as the number of fdaments increases.
The time tolerance control constant C is important to obtain an accurate re-
sult. Generally speaking, the smaller C we use, the higher accuracy we obtain,
but the computation become more expensive. The choice of C depends on the
circulation F. The core function is core size dependent. Core sizes too big or
too small give inaccurate results. With core size in a reasonable range, the
vortex fdaments behave differently for different choice of core sizes. With this
information, for each numerical experiment, we can choose those parameters

properly to avoid inaccuracy in our computation.

B. Core size and wave torsion are the two most sensitive factors in studying vortex
stretching. We believe that a small torsion of a wave will cause a near discon-
tinuity on the velocity component in the direction of wave propagation. This

near discontinuity causes the violent stretching of the vortex tube.

Question C is equivalent to the question of whether a discontinuity in a cer-
tain velocity component must occur in the evolution of a vortex tube. We have not
obtained enough evidence to answer this question fully. However, with periodic data,
we observed that, with certain initial solitary wave data and proper choice of param-
eters, some wave shapes persist in the periodic computing box. This phenomenon,
reported elsewhere (see Samuel and Donnelly [62]), indicates that a solitary wave
can propagate along a vortex tube for a long time; otherwise, the shape should be
destroyed soon after passing the boundary of the periodic computing box because
of the nonsmooth connection at the boundaries. Research on this subject without a

periodic assumption is in progress.
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Chapter 7

Conclusions

We have presented three-dimensional vortex methods for unsteady, inviscid,
incompressible flow. We have investigated the effects of various numerical parame-
ters, core functions and numerical methods for solving the time evolution ordinary
differential equation on the accuracy of the numerical scheme. Vortex stretching phe-
nomena have been studied. We reviewed the localized induction approximation and
its solitary wave solution. We have also studied some diagnostics such as conservation
of energy, total vorticity, and linear impulse for our vortex filament scheme.

We have reviewed the localized induction approximation and given the de-
tailed derivation. We have proved the equivalence of the Betchov intrinsic equations
and the nonlinear Schrodinger equation. By solving the Betchov intrinsic equations
under the assumption that torsion r is constant, we obtained the same solution for
curvature K as Hasimoto [44]. Then, following a method introduced by Hasimoto
[44], we translated the intrinsic solution to the solution in the Cartesian coordinate
system. The resulting wave is a solitary wave, as first found by Hasimoto [44],

In the study of diagnostics, we have given the detailed derivation of numeri-
cal schemes for computing kinetic energy, total vorticity, and linear impulse. We have
also studied the scaling property of energy conservation, and given some asymptotical
properties of energy scaling formulation in a small cylindrical vortex segment. We
have found that these diagnostics may not be suitable for the computation of part of

a vortex tube because those quantities may not be conserved in the part.
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To simulate a finite part of an infinitly long vortex tube, we must deal with
two truncated ends. We have treated the truncated ends using two methods: a
periodic extension of the data and an smooth extension of the ends by straight lines.
The choice of method depends on the problem.

In the study of the effects of numerical parameters, core functions and nu-
merical methods for solving the time evolution ordinary differential equation on ac-
curacy, we have found that to obtain accurate results, the time tolerance control
constant C must be chosen smaller than a certain bound, which can only be de-
termined after other parameters are given; the circulation F is the most important
parameter for the choice of C. The choice of core function has an effect on the accu-
racy of the computation, but the accuracy can be improved for each core function by
adjusting other parameters, especially the core size. We have tested three numerical
methods for solving the time evolution ordinary differential equation: the first-order
Euler method, the second-order modified trapezoidal method, and the fourth-order
Runge-Kutta method. The accuracy of computation increases as the order increases.
There is significant improvement in the accuracy from the first-order method to the
second-order method, but not much improvement from the second-order method to
the fourth-order method. We found that vortex stretching and accuracy of computa-
tion are sensitive to core size. The stretching behavior of our results does not respond
to the core size monotonically. However, it is generally true that too small a core size
generates high-frequency perturbation waves at places far from the given initial per-
turbation wave. Such high-frequency perturbation waves most likely represent the
computational error, and too large a core size gives us an inaccurate approximation
of the singular kernel.

The simulation of a large diameter vortex tube by several filaments is nat-
ural. We believe that the computation will be more accurate with more filaments
simulating a vortex tube. This conjecture comes from the observation that, even
with straight filaments, the stretching may still occur on the plane perpendicular to
the straight filaments, thus, more filaments will surely provide more detail of the
stretching on that plane and make the simulation, especially the core structure, more

accurate. The distance between filaments is important for obtaining accurate simula-
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tions with several filaments. The computation is more accurate with filaments closer
together, but the number of filaments must be increased to match the diameter of the
simulated vortex tube; otherwise, for a fixed number of filaments, the computation
results will be closer to the results from a one filament simulation. We should mention
that with many filaments, we can simulate not only a large diameter vortex but also
shear flows and tubes with noncircular vortex core structures.

We have studied the beginning stage of vortex tube stretching and have seen
that violent stretching mostly occurs and remains in a plane perpendicular to the
vortex lines. It appears that a small torsion of a perturbation wave is an important
cause of vortex tube stretching. When stretching happens, there are always some
points reaching the maximum velocity on a cross plane, which causes the formation
of “hairpin” structures. Is there a properly constructed perturbation wave that can
travel along a vortex tube simulated by vortex filaments without violent stretching?
This cpiestion is associated with the question of whether a solitary wave can survive
on a vortex tube for a long time, which remains open. But, with certain periodic data
and properly chosen combinations of parameters, we have seen certain wave shapes

persist in the periodic computing box.
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