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The four-field-period device TJ-II [1] has a major radius of 1.5 m and an average plasma
radius of 0.10-0.25 m, with a typical plasma aspect ratio Ap of 10.

In the infinite aspect ratio, helically symmetric limit, the region of the stability to low-n
modes has been shown to extend to average betas of at least 40%, for a relatively highly
indented plasma [2]. It is possible to approximate the helically symmetric limit from the actual
TJ-II parameters increasing the number of toroidal periods Ny and choosing the major radius
Ro such as to obtain a constant helical pitch h = N-r/Ro- In this way the aspect ratio per period
is «lsp fixed.

In this work we analyze a shear-less TJ-II configuration with a rotational transform per
period of 0.36 and a vacuum magnetic well of 3.5%. By taking for NTx the values Nj = 3,4, 5,
8, 10, 11,12, 19 and 100 a sequence of equilibria is generated. These equilibria are calculated
with the fixed boundary version of the VMEC code [3]. The Mercier stability properties are
then analvzed.
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Fig. 1: Magnetic Well as a function of the
function of the logarithm of the number of
periods.

Fig. 2: Toroidal and helical shifts
versus logarithm of ihe number of
periods for Bo = T?e.

We compare first the equilibria. For finite beta calculations, we have considered a
pressure profile linear in the toroidal flux. The rotational transform per period and the
boundaries are the same. Since the aspect ratios are different, we expect different values of the
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magnetic well and the toroidal and poloidal shifts. In Fig. 1 we show the differences on the
magnetic well for the vacuum case and at 60 = 7%. We point out that these differences increase
when 60 increases, and are higher for low values of Ny. This is related to the toroidal and
poloidal shifts, that we plot in Fig. 2 at Bo = 7%.We see that increasing the aspect ratio lowers
toroidal shift but has no effect on helical shift [4]. We see also that for Nj = 100 the helical
shift is higher that the toroidal one, as correspond to an almost helically symmetric
configuration. It is also wonh to point out that the differences are more imponant between the
four-period and three-period cases than between the five-period and four-period cases.

We analyze now the Fourier coefficients Rmn and Zm n , which parameterize the
equilibrium flux surfaces in the VMEC code. Fig. 3 shows the Rmn term with m = 2 and n = 2.
Fig. 4 shows the Rmn and Zm n terms with m = 2 and n = 3. It is known that in the perfect
helically symmetric case only the off-diagonal coefficients fm, m ± 1] are not zero. We see that
these coefficients are also the more imponant in the non-symmetric cases, and their value is
almost independent from the number of periods Ny. The diagonal coefficient reduces to a linear
function of the normalized toroidal flux in the helically symmetric limit. That means that its
contribution is the same for all the magnetic surfaces.
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Fig. 3: Fourier coefficient Rmn for m = 2
and n = 2 as a function of the normalized
toroidal flux for N j = 3, 4, 5, 8, 12, 19
and 100. The calculations was at Bo = T%>-

Fig. 4: Fourier coefficients Rmn and
Z m n for m = 2 and n = 3 as a
function of the normalized toroidal
flux for N'T = 3 and 100. The
calculations was at Bo = T7c.

The equilibrium quantities obtained were used to evaluate the Mercier stability criterion. It
can be written as:

DM = Ds + DI + D W + DG > 0

where Ds is the contribution from the shear, Dj is that from net currents, D\y is that from the
magnetic well and DG is that from the geodesic curvature. In the configuration we are
considering, with very low shear and zero current, the first two terms can be neglected. In
configurations with a magnetic well, the term Dw is always positive. The term DG is always
negative. For these cases, we shall also use the following form of the Mercier criterion:

D w / ( - D G ) > l .

The value of this quotient as a function of the logarithm of the number of periods is .shown in
Fig. 5 at BQ = 7% and an average radius ro = 0.913 corresponding to a flux surface near the



boundary. We found that, in all cases we are considering, if DM is positive for this radius it is
also positive for r < ro. In Fig. 6 we show separately the two terms D\v and DQ for N T = 3,4,
5, 8, 12 and 19. The magnetic well term D\v grows faster than DQ when the number of periods
increases, even though the deep of the magnetic well depth is shallower.
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Fig. S: Mercier criterion as a function of
the logarithm of the number of periods at
ro = 0.913 and Go = 7% for N j = 3,4, 5,
8, 12, 19 and 100. The horizontal line
separates the stable (upper) from the
unstable zones.

Fig. 6: Contributions to the Mercicr
criterion from the magnetic well,
D\v. and geodesic curvature, D G , for
as a function of the logarithm of the
number of periods for N j = 3, 4, 5,
8.12 and 19.

It is interesting to see the evolution of the Mercier criterion DM with respect to average
beta. The value of DM as a function of <B> is shown in Fig. 7 for N j = 3, 4, and 5, and for
NT = 8, 10 and 12 in Fig. 8. In these figures, ro = 0.913. For N T = 12 no beta stability limit is
reached, and we see a typical self stabilization behavior. The same result we obtain for higher
NTT- We can say that for N T > 11 all the equilibria are Mercier stable.
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Fig. 7: Mercicr criterion as a function of
<8> at ro = 0.913 for N j = 3. 4, and 5.
The horizontal line separates the stable
(upper) from the unstable zones.

Fig. 8: Mcrcicr criterion as a
function of <B> at ro = 0.913 for
N'T = 8,10 and 12. The horizontal
line separates the stable (upper) from
the unstable zones.



Finally we plot in Fig. 9 the average beta limit as a function of the number of periods.
For low values of N T the average beta limit increases linearly with respect to N j . Al higher
values of N T the average beta limit grows faster.
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Fig. 9: Average beta stability limit as a function
of the number of periods

In reference [5] a similar calculation was done for a different TJ-II configuration and
varying N T between 2 and 6. The configuration was symmetrized by suppressing small
Fourier amplitudes of the boundary and by symmetrizing those which are non-vanishing in
helical symmetry. In the present work no symmetrization was done. For low values of N'T
both calculations yields'the same results.
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