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ABSTRACT II. MATERIALS

Sto;ch;ometr;c Ce-materials with nesl=;Ip%le The more detaied Kcoun.t of work on the serbs
Ce-Ce interactionsshouldhave superior scintillator of Cexl.al..xF 3 samplesobtamodfrom the Optovac
properties. We present two materials: CeF3 and Inc. North Brookrmld,MA, wtl be publishedlater.

CexLal..xP5014. Whte cerium trifluoride is a These.samples are characterizedby emissionspec-tri similar to those publishedbefore, [3]. In this
known scintillator, pentaphoshate is of a limited paper we shall present results.on recent ("new")
usefulness,except as a remarkable model mate_al, samples(Optovac.SA91054) wh,ch cleady_show..an
We show that quenchingin fluoride is respons_le improvementm the levelof uncontrolled_punbes.
for lossof 50% Of the li_t output and is the cau_ Samples of cerium-lanthanumultraphosphatewere
of the, so-called, ultra fast component (2 ns). iFown in our lab usingthe method describedin [4].
USh.t output of fluoride(about 50% of BGO) could

slgnff'mantlyimproved. Deeper understandingof U. RESULTS

Ce-6ystems is needed to fully exploit their F'_.I presentsemissionspectra of CeF3. lt ispotentials.
well known that ionic Ce emission consists of I

I. INTRODUCTION doublet in the ran@ between280 and 310 nra. The
The Ce3. ionandits stoichiometric compounds spectra of Fig. 1 show a much more complicated

are important for scintillators. Luminescenceof Ce structure, extendingto the red, especiallyat low
is fast. eff'_:ient and relatively free of serf-
.-absorption. The 4f level insidethe bandlap cre- 2.0 - , ,
lteS a hole_capturing mechanism necessaryfor
energy transfer, [1]. The lack of extended f-J struc-
tun= ensuresnon--existanceof competing and slow "E=1._ 24 K
transitions. In comparison to Ti. Ce is chprac-

terizecl _ much smaller concentration quenching. _ _n_/_

In stoichmmetricCecompoundsone.expectsI__1" 1.o __//,, zoox
nifi,_nt increase of the "prompt" or thermally in-
dependent" hole trapping, |2], without reduced lu-
minescence efficiency. Therefore a scintillator, _ O.S /_tj
combining the speedof cerium(20-30 ns) endeft'_- //ciency of thallium is a possibility. The proper
choice of the host, taking into account densityand 0.o ' ' '
radiation hardness,would mike this hypothetical 250 ;300 350 40o
scintillator sn ideal choicefor applicationslikePET Wovelencjth (nra)

The pentaphosphate,with its low density, is not l/f. i. fi._ i_l_li=d I=m_lr.e._ II_¢ir. oi ".e="
a viable scint,]lator. However its lattice allows for
maximum isolation of Ce ions which reducesstmn- Cd'_t for &ffereal teape_.r.. F__a w,
Sty ali metal-metal interactions. We will demon-
strate that phosphate is free of ali the comp[P Fqr=¢'_=l4nlie4 lie iii=" (rio nra). Ti_ tartar iii=
cations typical for fluoride. ,_ ii= _,_,. :, :_.,,,=::*:i i; :i..;;_,,:r_:_%

"l/L__ _-. _ _ _ ---<.3 " _........
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manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.
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temperatures. In contrast emission spectra of the both CeF 3 and the pentaphosphate the short wave-

pentaphmphate =hown in Figs. 2 and 3 are, as length component of doublet is Ekely to be partially
reposed previously. [5], much more characteristic sen absorbed in view of the limited Stokes sh_ft, lt
of sm_ple Ce emission which should consist of a is always much more cleady visible at low tempera-

doublet separated by some 2000 cm-1, the ground ture because of the blue shift of the absorption
state spEtting of the 4f levels. There are no add;- edge. In pentaphmphates there are no surp6ses in
t_onal features in the pentaphosphate spectra. In decay times as shown in Fig. 4. The two compo-
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F_. _. Lsminucence ¢_iml_on epe_r= of _wo cmb.ion

_.S Z,u.,m,ceme ,_ec,,'o oi Ce=_al_P_O_41or *=1, _"_ (_X and _0 .m) of ",-." C-P s = 200 X.

.75, ._0, and .I0 rupeciitel_. The wmnj_e=were e._i_ed /,um/n_L_Ctmceepecirsm = MO K i_ _d_o =boron =rod

m/fk _sine rmii_/on _rom I Ru/P,.h lource, reJevanf poe_/_on_ ol hsmine_cencem'e indicated,(300

T_mper._sre,_00K. mat350nra).
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_eter wa_e/ent_ and _e _lo_ m= tor 1_/_ /onder _ 300 ,.,
¢:

wo_ele_ comport=ht. So_l tme_ ¢Aow rentM o! model o: ,'"6I"
200 ,,"

nent_ of the doubletshow the same decayand the _ _oo ,,"
same temperature dependence. The ve.rycurious "6.. o.."
increaseof decaytime with temperature e an ano- _ /"
maly worthy of further sti_dy. The complexity of 0 " " ........

CeF3 spectrashown in Fi_. 1 is construed by the 0.0 0.2 0.4 0.6 0.8 1.0

excitation spe_raofthe shortand Iong2vavelen_gth Cerium concentrotion
sidesof the luminescence,as shownin Fig. S. The

spectra are s;mgar but there ;s a 22(X) cm-1 dif-
ference betweentheir peaks. This clearly demon- F_. _. C.==m_r=_ _=_===_ o! _ o=_=_ /or
strates the presenceof two emitting entities. Since
there is only one Ce site m the fluoride structure, =Ar_k_m_e_.

we suggest that a fraction of the Ce ions is per- ekwhere. [6]. Fig. 7 showsa comparison of laserturbed _)ysomeimpurity, Fig. 6 presentsthe scin-

t_lation decaysof CeF3 for two regionsof ib=sp=c- excited lum|nescenceand scintillatortime resdvedspectra. This figure corrfirmsthe oHl_n of the fast

trum. Clearly the short wavelength ¢oml>_nents componentmsdueto the ionicCe emission. Fig. 8represents a prompt excitation., wh_le tiN. long shows that in pentaphosphatesthe scintillation
wavelengths'siowHsetimeis inductive of a transfer I_ghtoutput is a Gnearfunction of the Ce ¢oncen-
process. The kinet_ of this trilmsfer_ described tration. This .demonstratesthe validityof going to
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_q. 9. Enerfll Irj>ecllraol (,"e._8 a=_ Ce.7b.[,a.jEP60Z,_.Fir. 10. j_cif_n processescameedbyan electron -

Tke eem,olrce B_ 07. _ ,emir. Po.ilpili_e (a): _e eleclron - I_ole l_ir
decalw to esCiton frqped _ Cea+ (CeTE) mi_h_Ise-

the stoichie_netr_c limi_ in non quenchable 11_emtre4t_,e decq or ¢rauelergafr_p;Pmnb_tll (1):

materials. Fig. 9 ipresentsthe energyspectraof the vi"rlew" CeF3 and Ce.75La.25P5014. The positions $ r_qped_*m ($TJ¢) trmqer, iu emere_to a

of photopeaks are close indicating similar lit;ht _r_l¢_Ce ion.
output. The phosphatesam.pies are much smaller

than fluoride, which for !the same fight output a very sh_ rke (and ultra fast component) and
generatesi_rferiorresolution,, the _econc r|:lat|velyslow rise (see Fig. 6). Thedifferencein excitation mechanisms,as introd_Jced

in F;:B.10, seemsto providesn adequate_pla,_.
III. DISCUSSION tion. In the case of Ce erosion there is an "ira.-

Results c_ our investigationsof CeF3 indicate tantaneous" process of, most.likel_, .direct cap-
turing of hole and, consecutively,of electron. In

't,hat this material is j_enerally affected by a this way a CeTE (Ce trapped exciton) is formed
relatively high level of sml:_uritiespreventing any which then tramsfersits energyinto a cl-4" transi-
si_fficant pre;ence of the t_e emissionof Ce ion. tion. This process is fast but not extremely efl'_-

' Howeverwe do not believetl_at emissionbeingable cient, large contribution of Ce emissionh dueto a
to effectively compete with stoichiometric lattice large concentre|fianof Ce ions. This emissiqncon-
canstituent can be entirely due to impurities, lt 'is sis_sof both u_rafast (2 ns) andfast (20 ns) corn-
likely that even relatively insi_ff'mant amoun_ of ponents. This m becausethe spectrumof the ultra
impuritie_ can perturb quite a I_rge number at Las fa.t compone_ttfollowsverycloselythe spectrum o1
ions. We estimate that as much as 50% of the fast component(which wasclearlyidentifiedas co-
total de osited in the crystal may ga to

enerl_ P .... ming from Ce). Unless there are cenf;erswhich are
perturbed ions, [6]. Th_sesttmate m qu_e close not Ce but h_veexactly the samespectrum (whichto experimental data which, at RT, suggest that is not verylikdy) then both componentshave to be
about _ of total emiss;o_comesfrom perturbed dueto Ce ions. Then the onlywayto get this kind
ions. More arguments to support the idea of per- of two exponentialdecayis by assuminga rapid but
turbed Ce ions comes from experiment: somewhat saturable transfer to somespecw._(acceptors) lea-
longer decay times, excitation spectra showing dingto quenchingof Ce emiss;o_and generation of
ener_ shiftstoward lowerenergies. Assumingthat the ultra fast component. After acceptorsare sa-
r levels are not perturbed the shift m e_ectrontc turated the normaldecay, characterizedby the ra-
enerl_ can be estimated from luminescence diative _rfetime,prevails. At this point the nature

excitationspectra to be about 2200 cm-1. of those saturable acceptorsis not clear. One
lt is remarkablethat decays of Ce emissionand could speculateabout serf-quenchingby Ce ions

perturbed Ce emissionare so different, one_howing (or perturbedCe ions) providedthat Ce2+ state k

........ ;--W;--,7 t_1 ..... ,r , . ........... " .................. ,,, "I ' ' '
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pants would be requiredto reproduceeffects pro-'
stable in CeF3 and one of its f2 levelsis r_onant ducede.g. in fluorideby very low levelof uncontrol- .

Ce3+
g I

impurities. In this phosphateis ideal
with d levelof but thesespeculationsare not

sense, an

substantiated by any experimental evidence. .nodelmaterial to be usedin studiesof ali effectsreported here for fluorides, h'ke the nature of
Further studies would be required to clarify this quenchingtrapsor impurityluminescence.problem.

The longer wavelengthofabout emission(,_ > 320 nm) .:,.._.WeconcludeinthatpursuitCe-systemsofbestarescintillators.Verypromi-a decay 35 nsmust.beproduced,by _wev'e; terialsthereare .havin
still some problemsleft which! lira,ted number of centers wh0chvery effectwely

(but relativelyslowly) collectener_ from ali STE in shouldbe adressecl.
their nei_borhood. This kind of transfer explains
the observedkinetics,namely the slow rise time of VI. ACKNOWLEDGEMENTS
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non-radiative quenching, therefore limits the
efficiencyand is to be avoidedrather than become [_]. L._.J_tiea,Wm.S.He_,, _ W.M.Yen, "J_:ila_lon
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studies in order to understand in more details the T.Xo,,_u andS.]LCkin, _/'ke Gromll_ot Lm'tc, _¢_er
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cationscharacteristicof fluoride. We believethat "CePb.Oj4,• Ne_ Ute_t_ Scm_ilio_or',A_I. Ptq_.
this is due to stronKly reduced metal-metal inter-
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