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ABSTRACT 

A technique is presented for calculating bounds on the poloidal field (PF) 
coil currents required to constrain critical plasma shape parameters when plasma 
pressure and current density profiles are changed. Such considerations are important 
in the conceptual design of the PF coils for the Compact Ignition Tokamak (CIT) 
and their electrical power systems in view of the uncertainty in plasma profiles 
and operating scenarios. Four relatively independent coil groups are sufficient to 
find a coil current distribution and equilibrium satisfying a prescribed plasma major 
radius, minor radius, and divertor strike point coordinates. The variation in the coil 
current distribution with plasma profiles tends to be large for external PF systems 
and provides a measure by which coil configurations may be compared. 

v 



1. I N T R O D U C T I O N 

in the design of a divertor for an ignition tokamak,1 it is assumed that the 

separatrix flux surface of the plasma meets the divertor plates at precise locations, 

referred to here as "strike points" (Fig. 1). The heat load on the divertor plates is 

sensitive to changes in the locations of these strike points. Further design constraints 

on the plasma shape include accurately positioning the outer edge of the plasma 

with respect to the radio-frequency (rf) wave launcher and limits on the plasma 

scrape-off relative to the inboard vacuum vessel. 

These requirements lead to several design problems for poloidal field (PF) coil 

configurations. Among these are the feasibility of external PF coils [i.e., not linked 

with the toroidal field (TF) coils] in maintaining the plasma position and strike 

points and the dynamic control of these parameters using some combination of 

internal and external coils. 

We consider the first of these problems in this study and show the sensitivity of 

the coil current distribution to changes in the plasma pressure and current density 
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Fig. 1. CIT vacuum vessel and divertor configuration, showing the strike points 

where the separatrix flux surface meets the divertor plates. 
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profiles for a given PF coil system. The variation of the coil current distribution is 
used as a measure by which different PF coil configurations can be compared. 

2. THE COMPACT IGNITION TOKAMAK POLOIDAL 
FIELD SYSTEM 

The geometry considered here is based on a design of the Compact Ignition 
Tokamak (CIT) 2 with major radius Ri = 1.339 m, minor radius a = 0.411 m, field 
on axis B t = 10.3 T, and plasma current Ip = 9.0 MA. The external ?F coil system 
is similar to that developed for the R% = 1.2 m CIT conceptual design3 and consists 
of seven coil groups labeled PFl through PF7 (Fig. 2) that provide the equilibrium 
vertical field, shaping field, and inductive flux for an elongated (b/a = 2.3) divertor 
plasma. Although the CIT PF system design includes windings internal to the TF 
coils, it is hoped that these can be reserved for dynamic control and carry minimal 
currents. 

ORNL-OWG 87-2084 FED 
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rig. 2. Poloidal field coil configuration for a divertor CIT. 



3 

The central solenoid stack is split into two sections, PF1 and PF2, for added 
flexibility in providing a field null at startup and shaping the plasma cross section 
through a discharge. In this CIT design, the position and size of the shaping field 
coil PF3 are constrained by a structural press on the coil's inboard side and by access 
for a vertical diagnostic port through the plasma major radius on its outboard side. 
Coils PF4 and PF6 are in series with the lower element of the central solenoid, PFl. 
The outer ring coils, PF5 and PF7, provide the major components of the vertical 
field, but PF5 also makes a large contribution to the shaping field or higher-order 
derivatives of the external field. In geüeral, all of the external PF coils contribute 
to the equilibrium, control, and shaping of the CIT plasma and to the flux change, 
which induces the plasma current and ohmically heats the plasma. 

3. COMPUTING THE COIL CURRENT DISTRIBUTION 

The first problem we consider is that of constraining a symmetric, divertor 
plasma boundary to pass through two points on the midplane, (/ZQ - a, 0) and 
(Ro + a, 0), and constraining the separatrix flux surface to intersect prescribed 
inner and outer strike points, (ify, Z\) and {Ro, %o), using external PF coils. The 
free-boundary tokamak magnetohydrodynamic (MHD) equilibrium code NEQ4 is 
used in a mode in which the plasma is limited by a poloidal separatrix, and the 
current in one pair of coils, PF7, is adjusted to make the separatrix flux surface 
pass through (RQ + a, 0). The numerical software package HYBRDl' is used to 
determine the remaining free coil currents as roots of the equation 

F(h) = 0 , 0) 

where 

F = 
On-**)/*. 
(V»o - iM/tf* 

(a-ao)/ao 
/ „ - - JpFJ 

JpFJ 
/pps 

a 0 is a given plasma minor radius, and Vl, V'Oi and ipt are the values of the poloidal 
magnetic flux at the inboard strike point, outboard strike point, and separatrix, 
respectively. For fixed currents in the coil groups PFl, PF4, and PF6 and given 
plasma profile functions, HYBRDl calls NEQ as a subroutine to obtain values of the 
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function F and solves for the coil currents / 0 . For a good initial guess of the solution 

vector, it typically takes seven to nine equilibrium calculations to converge to a 

solution (Fig. 3). The result is a set of CIT PF coil currents / = ( / P F i , • • •, hvi) 

that satisfy the desired properties. 
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Fig. 3. Poloidal flux surfaces for a CIT divertor plasma with separatrix flux 

surface intersecting prescribed strike points, (Ri, Z\) — (0.974 m, 0.996 m) and 

(/lo, Z0) = (1.196 m, 1.162 m). 

4. EFFECT OF PROFILE VARIATIONS 

In the free-boundary solution of the MHD equilibrium equation 

fl2V-(tf-*V,fr)= nRJ{R,Z) (2) 

for the poloidal flux i¡i, the plasma current density is given in terms of the plasma 

pressure, P(if>), and toroidal magnet flux function, F(i¡>) -- RBt, as 



5 

J = R dP/d+ + F/{nR) dF/di, . (3) 

In this analysis, we consider profile functions of the form 

dP/dx = P,{e~A* - e-A)/(e~A - 1) , (4a) 

dF2/dx = 2tR\P.{\lf}j - l)(e~B' - e - f l ) / ( e -» - 1) , (4b) 

where z = (ifr — j>o)/{1'z — ̂ o)i ^o and ij>z are values of the poloidal flux at the mag­
netic axis and separatrix, respectively. NEQ solves Eq. (2) with Dirichlet boundary 
conditions on a rectangular mesh (with dimensions of 65 x 129 for this study), scal­
ing the parameter F* in Eq. (4) during the iterative procedure so that the total 
plasma current Jp = Jj J dR dZ is fixed. 

Plasma current profiles are characterized by the safety factor profile, 

q = RBt/(2*)f l/(R2B9)dl, (5) 

where the integral is along the contour of a poloidal flux surface. For divertor 
equilibria, where Bp = 0 at the separatrix, it is convenient to define a "mean-field" 
safety factor, 

q = RBt/{2*Bp)á \/R2dl (6) 

(where Bp = f Bpdl/ § dl is the average poloidal field on a flux surface), which is 
less sensitive to the presence of the poloidal separatrix, yet retains the dependence 
on toroidicity and plasma shape. At the plasma edge, the mean-field safety factor in 
this study takes on values of q — 2.6-2.7, depending on the location of the poloidal 
separatrix. 

For volume-averaged beta values near the Troyon limit* (0r = 0.03/paf?t), we 
use fij = 0.88 in Eq. (4), resulting in (0) - 6.2-6.4%. We set A = B and vary 
this profile parameter over the interval -4.5 < A < -1.5, obtaining a set of plasma 
current density distributions representing a range of uncertainty in J (Fig. 4), with 
associated mean-field safety factor values on axis of 0.8 < qtx\, < 1.1 (Fig. 5). 
The solution vectors (Table 1) indicate a large redistribution of coil currents and a 
change in the direction of the current in PF5, which are undesirable for electrical 
systems design. 
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Fig. 4. Plasma pressure and current density profiles corresponding to profile 
parameters [Eq. (4)J Bj = 0.88 and (a) A = B = -1.5, (b) A = B = -4.5. 
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Fig. 5. Plasma mean field safety factor q (solid) and MHD safety factor 
q (dotted), corresponding to profile parameters [Eq. (4)] 3j = 0.88 and (a) 
A = B = -1.5, (b) >4 = B = -4.5. 
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Table 1. Value of 9*xu, location of diverter null point, and PF 
coil current distributions for a CIT disertar plasma with 

J2o = 1.339 m, o = 0.411 in, inboard divertor plate strike point 
{Ri, Z\) = (0.974 m, 0.996 m), and outboard divertor 
plate strike point (Ro, Zo) = (1.196 m, 1.162 m), for 
0j = 0.88 and A = B in Eqs. (4a) and (4b). Fixed 

currents: J P P l = 15.0 MA, J P F 4 = 0.488 MA, / P p ( = 0.225 MA. 

Profile parameter A 

- L 5 -4^5 

fud. 0.8 1.1 
Divertor null point 

A*, m 1.104 1.089 
Z„ m 0.955 0.951 

/ P P 2 , MA -6.567 -3.465 
/ P F $ , MA -3.780 -9.174 
ÍPF5, MA -1.772 4.760 
/ P F T , MA -fi.164 3.050 

By changing the magnitude of the current in coil groups that are in series with 

the central ohmic heating (OH) solenoid element by A/ppi = i MA, Aipp* = 

0.032 MA, and A/pp« = 0.015 MA and applying the same analysis, we find an 

"OH" coil current distribution AJ<OH> = (1.000, 0.776,0.304, 0.032, -0.076, 0.015, 

0.030). The flux linkage to the plasma, AV>PF = ]£ Mipli, may be adjusted by 

adding a multiple of this OH distribution to a given solution vector without altering 

the plasma shape or strike point coordinates. For example, adding A / = 2.5A/( O H ) 

to the solutions given in Table 1 (case 1 in Table 2) increases the PF flux swing 

by A^PF = 1-9 V-s (case 2 in Table 2). For given A^pp and (/?), bounds on the 

magnitude of currents in each coil group (with respect to a given range of profile 

uncertainty) are then completely determined by the OH distribution together with 

a set of solution vectors such as those give-.i in Table 1. 

It is insufficient, however, to compute the minimum and maximum coil currents 

for only the high-beta state. Bounds on PF coil current for use in electrical system 

design must be determined for all possible operating scenarios. For given currents 
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Table 2. Coil current distributions, divertor null location, and 
variation in poloidal field volt-seconds for a CIT divertor plasma 
with prescribed major and minor radii, prescribed divertor strike 

point coordinates, and two sets of fixed currents 
in coil groups PF1, PF4, and PF6 

Casel Case 2 

Fixed coil currents, MA 
Jppi 15.000 17.500 
/PP4 0.488 0.569 
/pps 0.225 0.263 

Coil current distributions, MA 
/ppa -6.567 -4.426 
hrs -3.780 -3.019 
Ipps -1.772 -1.963 
IpTJ 6.164 6.239 

Divertor strike point ; 

R** m 1.104 1.106 
Z*i m 0.955 0.954 

PF volt-seconds A^pp, v s 16.31 18.24 

in the coil groups in series with PFl (i.e., PF4 and PF6), limits on coil current 
magnitudes may be set by the requirements for operating at less than the design 
value of beta. Table 3 lists coil currents associated with 0j = 0.44, for which 
average beta values are about half the Troyon limit. A comparison of Tat !es 1 and 
3 indicates that, for comparable values of the mean-field safety factor on axis, the 
maximum current in coil PF2 required to fix the plasma shape and strike points 
occurs at low beta, while the remaining limiting current magnitudes are at high 
beta. 
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Table 3. Value of fads, location of divertor null point, and PF 
coil current distributions for a CIT divertor plasma with 

prescribed major radius, minor radius, and divertor plate strike 
point coordinates, for 0j = 0.44 and A = B in Eqs. (4a) 

and (4b). Fixed currents: Jppi = 15.0 MA, 
ipp 4 = 0.488 MA, / p P a = 0.225 MA. 

Profile parameter A 

-1.0 -3.0 

fuete 0.8 1.1 
Divertor null point 

il»,m 1.110 1.094 
Z», m 0.956 0.950 

JpF2, MA -8.625 -5.928 
¿PF>> MA -3.816 -8.421 
JpF5» MA -1.425 4.171 
JpFT, MA 5.563 _ 2.883 

5. COMPARISON OF COIL SYSTEMS 

In order to compare the merits of two PF coil systems for a divertor plasma, it is 

useful to have a set of measures of the relati /e efficiency of a given coil arrangement 

in maintaining a plasma shape. For ñxed plasma major radius, minor radius, and 

strike point coordinates, we measure the variation in the coil current distribution 

by the quantity 

A/ = [ I ; ( / Í - / ; ) V E / ' ] 1 / 2 ' (7) 
where / = (/j , . . . , J n), / ' = (/{, . . . , I'n) are the coil currents associated with 

plasma current density profiles J and J'. A measure of the change in the plasma 

shape (e.g., plasma elongation and triangularity) is given by 

Az = [(Rz-R't)> + (Zx-ZW, (8) 

where (Rx, Zz) and (R't, Z'z) are the coordinates of the null points corresponding 

to current density profiles J and / ' . 
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As an example, we use the first of these measures [Eq. (7)] to point out the 

advantage of internal PF windings. For / associated with j M ¡ , = 0.8, the solutions 

listed in Table 1 give a variation of AJ = 0.508. Introducing two pairs of ¡n**"nal 

windings (Fig. 6), labeled Cl and C2, we replace two elements of the solution vector 

/e [Eq. (1)J, /PFS and /pFs, with 7ci and /ca and then compute a new solution for 

the profile / ' (defined by 0j = 0.88, A = B = -1.5). This set of solutions (Table 4) 

results in a variation AJ = 0.039, a significant reduction over the all-external coil 

system. Further, no coil currents change direction because of profile differences. 

This example may be summarized by plotting the coil currents associated with 

the broad plasma cunent profile (J) vs those associated with the peaked profile 

(J1), as is done in Fig. 7; the variation in the coil current distribution is represented 

by the distance from the diagonal. It is clear that other strategies exist for using 

internal coils to minimize A/, some of which result in lower total coil currents. 

ORNL-DWG 67-2088 FED 
2.5 

2.0 

1.5 

1.0 

0.5 

I 0 
N 

-0.5 

-1.0 

-1.5 

-2.0 

-2.5 
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 

R(m) 

Fig. 6. Poloidal field coil system for a divertor CIT, including internal conductors 

Cl and C2. 

1 1 1 1 

- D • 
1 1 1 

El 

1 1 

Cl 

- . • dJ mm 
7i •.. 7S. ' ''l'H'í* 

• 

(SI 

1 

- j Í '''lililí^ -

- ( Sk -

i_pfe IS 
• ^sf\ .^ví 

— L J B • 
M 

IS 
' D • 

i i i i 1 1 1 1 1 



11 

Table 4. Value of qM¡,> location of divertor null point, and PF 
coil current distributions for a CIT divertor plasma with 

prescribed major radius, minor radius, and divertor plate 
strike point and with internal coils Cl and C2 used to produce 

a peaked plasma current profile. Fixed currents: 
/ p F l = 15.0 MA, / P F , = -9.174 MA, / P F 4 = 0.488 MA, 

/PF5 = 4.760 MA, / P F « = 0.225 MA. 

Profile parameter A 

-1.5 -4.5 

frris 0.7 1.1 
Divertor null point 

#*» m 1.117 1.089 
Zt, m 0.956 0.951 

/pF2, MA - 6.993 -3.465 
/ci .MA 0.755 0.000 
/C2, MA - 0 779 0.000 
/pF7, MA 3.597 3.050 
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6. CONCLUSIONS 

Forcing the separatrix flux surface to coincide with four prescribed points in the 
poloidal plane, over some range of uncertainty in plasma pressure and current pro­
files, requires four relatively independent coil groups. The degree of independence 
in these coil groups is often limited by physical constraints on their locations, which 
can result in large variations in coil currents due to profile uncertainty. This varia­
tion in the coil current distribution provider a measure for evaluating coil systems 
and changes in coil positions. 

This study shows the feasibility of using external PF coils to position and shape 
the plasma flux surfaces relative to divertor plate strike points, but it points out 
inadequacies in relying entirely on an external coil set in the CIT. 
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