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ABSTRACT

A comparison of two methodologies for the analysis of uncer-
tainty in risk analyses is presented. One methodology combines
approximate methods for confidence interval estimation of system
reliability with a bounding approach for information derived from
expert opinion. The other method employs Bayesian arguments to
construct probability distributions for component reliabilities
using data from experiments and observation and expert opinion.
The system reliability distribution is then derived using a
conventional Monte Carlo analysis.

An extensive discussion of the differences between confidence
intervals and Bayesian probability intervals precedes the com-
parison. The comparison is made using a trial problem from the
Arkansas Nuclear One-Unit 1 Nuclear Power Plant. It is concluded
that the Maximus/Bounding methodology tends to produce somewhat
longer intervals than the Bayes/Monte Carlo method, although this
finding is based on comparisons made under nonidentical assump-
tions regarding the treatment of operator recovery rates. The
Bayes/Monte Carlo method is shown to produce useful information
regarding the importance of uncertainty about each component's
reliability in determining overall uncertainty.
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1. INTRODUCTION

The recognition of the existence of wajor uncertainties 1in
the performance of probabilistic risk assessments (PRAs) has led
various NRC-sponsored programs to assess the impact of
uncertainties. Examples of two such programs are the Risk
Methods 1Integration and Evaluation Program (RMIEP) and the
Phenomenology and Risk Uncertainty Evaluation Program (PRUEP),
which will provide a PRA for the La Salle Plant. Methods for
performing uncertainty analysis are being developed in the PRA
Methods Improvement Program and PRUEP. Recently, Spencer and
Easterling (1984b) presented a demonstration of a statistical
methodology for fault-tree uncertainty analysis referred to as
"Maximus/bounding." A second report by Easterling, Spencer and
Diegert (1985) provides directions for RMIEP with respect to
estimation, uncertainty analysis and sensitivity analysis.
Within this second report it is noted that other statistical
methods could be used for "calculating approximate statistical
confidence limits for general functions of multiple parameters.”
One of these methods 1is an "uninformative" Bayesian analysis.
The purpose of this report is to compare the results of the
statistically-based Maximus/bounding methodology and an alterna-
tive statistically based methodology referred to as Bayes/Monte
Carlo. The trial problem in Spencer and Easterling (1984b) is
used as a vehicle for this comparison. The techniques are
compared on the basis of range of applicability or generality,
interpretability of the output, ease of applicability, and
sensitivity/uncertainty analysis capability.

The analysis of risks from technological hazards requires
estimation of types of risks, their magnitudes, and their likeli-
hoods. Further, a comprehensive analysis will gquantify the
uncertainties in the risk estimates. The analysis of the preci-
sion of the risk estimates is known as an uncertainty analysis.

UNCERTAINTY The analysis of the precision of the risk esti-
ANALYSIS mates is known as an uncertainty analysis.

The objectives for an uncertainty analysis methodology are:

1. 9Quantify the uncertainties in the various measures of
risk.

2. Delineate sensitivities of the uncertainty estimates to
subjective and objective information and key assumptions
about such information.

3. Identify the relative contribution (importance) of
uncertainties regarding individual parameters to the
overall uncertainty.



This report details a methodology for conducting an uncer-
tainty analysis that is an alternative to the Maximus/bounding

nethodology. In this study, uncertainties about model specifi-
cation and uncertainty about omitted factors that are perhaps
unrecognized are not considered. Instead, only uncertainties

about the failure rates of components are considered. The
alternative methodology employs Bayesian and Monte Carlo methods
to obtain probability distributions for possible risks.

A review of the Maximus/bounding methodology will be given
before the presentation of the Bayes/Monte Carlo methodology.
However, a review of confidence intervals for a single component
and for a system will precede the review of the Maximus/bounding
methodology to aid the reader in interpreting the results of the
methodology. Likewise, reviews of Bayes' theorem, noninformative
priors for a single component, Bayesian analysis of parallel
systems, and subjective distributions precede the discussion of
the Bayes/Monte Carlo methodology to aid the reader with the
terminology and interpretation of the results. Martz and Duran
(1985) have compared the maximus, Bayes/Monte Carlo and bootstrap
methods of obtaining lower uncertainty limits on system relia-
bility. Their study centers on simulation results obtained from
the analysis of 20 simple systems. In contrast, this study
concentrates on a single system from Arkansas Number One Unit 1.
The emphasis in this study is placed on interpreting the output
from each of the techniques.

2. CONFIDENCE INTERVALS FOR A SINGLE COMPONENT

A confidence interval is a statistical statement about a
parameter that provides an interval of values that 1is apt to
include the value of the parameter. A level of confidence is
associated with the interval. The 1level of confidence is the
minimum expected relative frequency of the interval containing
the true parameter's value if new random samples were repeatedly
taken from the same population and a confidence interval were to
be calculated from each sample.

CONF IDENCE A confidence interval is constructed from a ran-
INTERVAL dom sample and provides an interval of possible
AND LEVEL OF values of a parameter. Associated with the
CONF IDENCE interval is a level of confidence that 1is the

minimum expected relative frequency with which
similarly constructed intervals will contain the
parameters that they estimate.

When constructing a confidence interval from binomial data,
the upper (1l-a)¢l00% limit when t failures are observed, 1is
6, defined through the equation

P(number of failures < t|6y) = a.

-2-



For example, suppose that a random sample of n = 50 trials
is taken 1in order to determine the failure rate € of a
component. If the 50 trials result in two failures, the 95%
upper confidence 1interval for 6 includes all values of O between
0 and 6, where 8, the upper 95% confidence limit, is the solu-
tion to the equation

i

n MmN

50,1 50~
(74)6,(1-8 )

P(number of failures < 2|9u) =
0

i

= (1-.95)

More generally, 1if an experiment with n trials results in r
failures, the upper (l-a)el00% confidence 1limit, 6, is the
solution to the equation

n,,i n-i
(5)6,(1-8) = a . (L)

[ N al

i=0

In order to understand how this formula works, assume again
that n = 50, a = .05 and, in addition, 6 = .10. Notice that the
true value of 6 has been specified but not the outcome of the
experiment, r. Now, when 6 = .10 and n = 50, the probabilities
of the various values of r are easily calculated using the
binomial probability model. These probabilities are shown below
along with the value of 6, calculated from equation (1) using the
appropriate r. Since 6 = .10 by assumption in this example, the
upper confidence interval will contain © only when 8, > .1l0.
Note that this occurs only if r > 1. But r > 1 with probability
1-(.005+.029) = .966, so that the probability of a correct

interval (0 < © < Oy) 1is .966 when 6 = .10.
r Binomial Probability Oy
0 . 005 .058
1 .029 .091
2 .078 .121
3 .139 .148
4 .181 .174
5 .185 .199
6 .154 .223
7 .108 . 246
8 .064 .270



The actual probability of a correct interval is known as the
coverage. The coverage varies as the assumed value of © varies,
but is never less than the level of confidence. The reader may
verify that the coverage equals the level of confidence whenever
@ = 8,. Otherwise, the coverage exceeds the level of confidence.

COVERAGE Coverage 1is the expected relative frequency with
which confidence intervals for a parameter,
computed from independent random samples, will
contain the value of the parameter. The coverage
depends upon the particular value of the parameter.

In practice, the value of B is unknown, and the observed
value of r is used to construct the interval. Once r 1is
observed, the interval either contains the true value of 6 or
it does not contain the true value. That is, the probability
that the confidence interval is correct is either 1 or O. This
i why the term level of confidence is used rather than proba-
bility. The notion of probability cannot be applied once the

experiment is conducted. This 1idea is illustrated in Figure 1
where confidence intervals are shown for a number of different .
sanples of size n = 50, with 6 = .10. Each interval is either
correct or not correct. 1In this illustration, all intervals are
correct except the interval obtained from samnple number 3.
SAMPLE 6=.10
NUMBER
1T o : —e r = 4,6, = .174
2 . : - r =6, 6, = .223
3 e eir =120, = .091
4 ® —or =5, 6, = .199
5 . or =3, 06, = .148
* r=8
6 8, = .270
7 .- or =3, 0, = .148

Figure 1. Confidence Intervals for a Binomial Parameter

3. CONFIDENCE INTERVALS FOR A SYSTEM

Confidence interval estimation for a system is more difficult
than confidence interval estimation for a single parameter. The
difficulty is due to the fact that the failure rate for a system



C

Figure 2. Simple Parallel System

is a composite of failure rates of many components, and a single
failure rate of a system may be the result of many different
combinations of component failure rates. For example, in the
simple parallel system given in Figure 2, the system failure
rate 1is £(6,.82) = 6,6, where 8; and 6, are the failure rates of

the components Cj; and Cp. If £(8.82) = .25, then any combina-
tion of ©; and 6, such that .25 < 8; <1 and 6,=.25/8;, is possi-
ble. More generally, if the component failure rates are 8 = (94,

...,8g) in a k component system, there are many possible combina-
tions of failure rates that are consistent with the system:
failure rate 65 = £(6).

Construction of a confidence interval for a system Will be
jllustrated using the parallel system with two components. So
that the example remains manageable, the sample sizes will be
kept small. Suppose that ny trials are performed with component
Cy and np trials with component Cp,. If ny = 16 and np = 8, then
there are (16 + 1)(8 + 1) = 159 possible outcomes to the experi-
ments corresponding to the possible combinations of £y = 0,....,16
failures of Cy with rz = 0,....8 failures of Cj.

When a confidence interval for a single component failure
rate, O, is constructed, there ig a natural ordering of the
values of r from 0 to n. In the case of a system, some ordering
of pairs of wvalues (r1,r) must be used. One method of
ordering the points is according to

68 = [(c1+l)/(n1+2)][(r2+1)/(n2+2)] .

Another method of ordering the points is fo use 63 = (rp/nq)
(rp/ny). This second method will result in 8g=0 whenever r;}=0
regardless of the values of n;. Ny and the other rj. There is no
universal agreement on a best method to use (see Chapter 10 of
Mann, Schafer and Singpurwalla, 1974 for a more detailed discus-
sion of this point).

We are now prepared to determine whether or not a particular
outcome of (r;.,rp) should result in a particular system failure



rate, Og, being 1included in the confidence interval. Suppose
that t = [(c1+1)(r2+1)]/[(n1+2)(n2+2)]. The upper (l-a)el00%
confidence 1limit, denoted by 6,, is the 1largest value of the
system failure rate such that there are 8, and 6, which satisfy

both
A

and

D
=]
I

£(01, 63)

91.92

Continuing the example, if r; = 10 and rj 1, then t = (11)(2)/

o

[(18)(10)}] = 11/90. When 91 = 1.0 and 82 .25,
P(@s < 11/90591 = 1.0, 6 = .25) = .10
and
98 = (1.0)(.25)
= .25.

By computation with binomial probabilities, one may verify that
8g = .25 is the largest value so that 6g < 11/90 has no more than
a .10 chance for all values of ©; and 6, satisfying 6760, = .25.
The idea behind this procedure is that for any value of 84
greater than .25, the data are inconsistent (too unlikely to have
occurred) given the possible values of ©; and 6,. Thus, 8, = .25
is taken as the upper 90% confidence limit.

Now consider a particular value of Og such as 8g = .25. The
coverage of this value is the frequency with which the upper con-
fidence 1limit exceeds .25, where the frequency is calculated

using some assumed values 6; and 83 such that ©76; = .25. How-
ever, the coverage will depend upon the particular choice of 65
and 6, = .25/6;. When 65 = 1 and 6, = .25, the coverage for a
90% confidence interval is .9, while at 8y = .25 and 63 = 1, the
coverage 1is close to .94. Figure 3 shows the coverage of 85 =
.25 for all possible values of 6y and 8, = .25/68). Figures 4 and
5 show similar graphs of the coverage of 65 = .10 and 65 = .40.

It is important to note that the coverage is always equal to
or greater than the level of confidence; and therefore, the level
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of confidence is correctly interpreted as the minimunm level of
coverage.

4. REVIEW OF THE MAXIMUS/BOUNDING ANALYSIS

The Spencer and Easterling (1984b) methodology has two com-
ponents: confidence interval estimation and a bounding analysis.
Confidence interval estimation is implemented using the Maximus
methodology. This procedure is only used in conjunction with
data derived from designed experiments, quasi-designed experi-
ments, or simple observation without a designed experiment. Such

data are termed objective 1in this comparison. The bounding
analysis is used with any data that do not fall in one of the
specified categories. Such data are termed subjective in this
analysis. In Easterling, Spencer and Diegert (1985), the terms
data and data-free are used for these two types of information,
respectively. The central difference between the data types,

objective and subjective, is the extent tco which the process
that produces the data satisfies the assumptions associated with
a probability model. For example, when a component is observed
to have two failures in 200 years of operation, one may assune
temporal independence and therefore that the process satisfies
the assumptions of a Poisson probability model 1in order to

relate the data to the model's parameters. Oon the other hand,



when an expert estimates that a component will fail an average
of once every 100 years, or perhaps, that the component's
failure rate is between .005/year and 0.2/year, the association
of a probability model with the expert's estimate is far less
justified. The position taken in the Maximus/bounding method-
ology is that any such an association is unjustified.

The second component of the Spencer and Easterling analysis
is bounding for subjectively-estimated, system-model parameters,
i.e., those parameters that do not have an associated probability
model and data. Each of these subjectively estimated parameters,
wj for i = 1,...,m is given a range of values, say Lj to Uj, that
represent a plausible "ballpark" 1interval arrived at from a
consensus of informed opinion. There is no attempt to associate
@i with probabilities of obtaining Lj and Uj.

The bounding analysis is performed by holding the objectively
estimated parameters fixed at some value denoted by ©6* and
allowing @' = (@y,...,@p) to vary so that the wmodeled systen
reliability is minimized and maximized with respect to «, condi-
tional on fixed 6*. The nominal point ©O* must be derived apart
from the confidence interval analysis, since the confidence
interval does not imply that any point inside the interval is
more or less likely than any other point. Nor does the confi-
dence interval imply that points inside the interval are equally
likely. It just does not address this idea.

The combined confidence interval and bounding analyses gener-
ate three intervals. The first of these displays the role of
subjective information in the uncertainty estimate conditional
on the objectively estimated quantities being held constant. The
second interval displays the role of the objective information
with the subjectively estimated quantities being held constant,
while the third interval combines both types of information to
present the overall uncertainty.

4.1 Bounds Using Subjective Information (Subjective Uncertainty)

The system model expresses the system failure rate as a func-
tion of both objectively and subjectively estimated parameters

f = f(g' 3)
Fixing 6 at a nominal point ©* and calculating bounds on f

implied by bounds on & gives

[min £(8*, @), max £(8*, @)1 ., (2)
[ @

~ —



]
where the min and max are taken over [|J [Li’ Ui]‘ These bounds

i=1
express the conditional uncertainty because of ambiguity about
the subjectively estimated parameters. The interval is
conditional because B = 8* 1is assumed. There 1is no level of

coverage associated with these bounds.

4.2 Intervals Using Objective Information (Statistical
Uncertainty)

A second interval displays the system failure uncertainty
attributable to ambiguity about the objectively estimated
parameters given that the subjective estimates are held

constant. The calculation of this 1interval requires that a
single nominal point @* for the subjectively estimated
parameters be specified. The system confidence 1interval is

constructed using Maximus with the conditional system model
£x(8) = £(8. w*).

The calculation of the interval depends in a complex manner on
the chosen @*. That 1is, there 1is no simple relationship
between Maximus solutions at different values @*. The Maxinus
confidence 1interval methodology 1is wused with £*(0) and the
data about 6, x, to obtain the conditional interval

[Cl(x. 9_*)0 c2(xt Q*)] . (3)

4.3 Overall Uncertainty Bounds

The third 1interval 1is used to characterize the overall
uncertainty about £ and is given as

[min cy(x, @), max cp(x, w)]. (4)
@ @

—~ —~

This interval is conceptually constructed by calculating confi-

dence intervals for all possible values of wj within the

bounds Lj and Uj. The smallest lower bound, and the largest

upper bound among all these conditional confidence 1intervals

produce the lower and upper overall uncertainty bounds. When £

is monotone in @, min c3(x, @) is calculated by applying Maximus
[A]

~10-



with @' = (Ly....,Lp). Likewise, max cp(x, @) is calculated by

[A)
applying Maximus with o' = (U1.,.--.,Up). Thus, under the assump-
tion of monotonicity, only two applications of Maximus are
required. 1f monotonicity is not satisfied, the calculation of

the interval may be formidable and involve significant iteration
between Maximus and a search algorithm for extrema.

The overall uncertainty bounds are the smallest (l-a) 100%
lower confidence bound and largest (l1-a) 100% upper confidence
bound, obtainable over the entire range of the bounded quanti-
ties. However, there is no measure of coverage available for
the interval formed by these bounds.

To these three intervals is added a point estimate f(O0*, w*)
that is determined apart from the confidence interval and bound-
ing methodologies. 1In the problems addressed in PRA uncertainty
analyses, this estimate will almost always be within all three
intervals. We next provide a demonstration of the three intervals
in a simplified context.

4.4 Exanmple of Maximus/Bounding Intervals

The three types of intervals associated with the
Maximus/bounding methodology can be demonstrated using a simple
model with two identical components in series, one of which is
recoverable by operator action. The block diagram of this simple
system is given in Figure 6 where A; and Ap; are the identical
components and Ry is the event that A; is recovered. Denoting
the failure probability of A} and Az by © and the probability of
nonrecovery by o, gives a system failure probability of

£(9, w) 1 - (1-8)(1-8w).

Az

Rz

Figure 6. Block Diagram of a Simple System

~11-



The data available for estimating © are 2 failures in 100 trials
while w is subjectively estimated as .3 with bounds of .1 and .5.
The nominal point estimate using the maximum likelihood estimate
(mle) for ©, is then

£(6*, w*) = 1 - [1 - (2/100)])[1 - (2/100)(.3)] = .0259,

and the subjective uncertainty interval with 6 = 6*, the nominal
estimate, has lower and upper limits of

min £(6*%, @) = 1 ~ [1-(2/100)][1 - (2/100)(.1)) = .0220,
A
max £(6*, @) = 1 - [1 - (2/100)])(1 - (2/100)(.5)] = .0298

@

These bounds are shown in Figure 7.

STATISTICAL UNCERTAINTY  #mmereerr—n’

OVERALL UNCERTANTY o

Figure 7. Maximus/Bounding Intervals

Next, the limits for the statistical uncertainty are found
using the Maximus approximation. The intervals that are formed
by allowing & to vary from 6* are more difficult to calcu-
late. This is because the data are split or unpooled between
A; and Az in a manner that depends upon the assumed value of .
When o = o*, the unpooling suggested in Spencer and Easterling
(1984a) gives effective data of 77 trials for A; and 23 trials
for A,, and the system equivalent data would be 2 failures in
77 trials. The system equivalent binomial data of 2 failures in
77 trials yields a lower 95% limit of

=12~



c1(x, w*) .0046

and an upper 95% limit of

co(X, w*) = .0794.

These limits, as shown in Figure 7, are calculated from the
gystem equivalent data using standard procedures for confidence
intervals for a proportion (failure rate) estimated from success-
failure data.

The reason for unpooling is that Maximus cannot directly
solve for a system's reliability confidence interval when redun-
dancies of components occur across subsystems. Unpooling is a
conservative procedure and therefore unpooling is done in a
manner that minimizes the conservatism. This is why unpooling
is accomplished in a manner that maximizes the effective sample
size for the system.

Maximue is an approximate procedure that can be used in com-
plex systems where exact confidence intervals cannot be found.
This case is simple enough for exact confidence intervals to be
found. Without going into details, a variation of the procedure
illustrated earlier is used to find exact confidence limits. 1In
this case, they are .0046 and .0790 for e©=.3.

The interval that combines both data and subjective uncer-
tainty is also computed by unpooling data. Using the lower bound
for ©, a lower 95% confidence interval limit is found, while
the upper 95% confidence interval limit is evaluated with o
fixed at 1its upper bound. 1f £(O, w) were not monotone with
respect to © for all values of O, the calculation of this
third interval could become very involved.

The unpooling with @ = .1 gives effective data of 91 trials
for A, and 9 for Ap. The system equivalent data is 2.00 failures
in 91 trials giving a lower bound of

min cl(x. W) = .0039
@

using Maximus. The exact lower bound is also .0039. Similarly.
the upper bound is found by using @ = .5, unpooling to obtain
66.6 and 33.3 equivalent trials for A; and Ap;. The system equiv-
alent data of 1.98 failures among 66.6 trials give a bound of

max co(x, w) = .0912
@

~13-



using Maximus. This is slightly larger than the exact bound,
which is .0905. These bounds are also shown in Figure 7. The
nominal point £(8*, «*) has been added to Figure 7. Thus,
Figure 7 is the seven-point representation used by Spencer and
Easterling.

5. THE CONSTRUCTION OF PROBABILITY DISTRIBUTIONS FOR SYSTEM
PARAMETERS FROM DATA--BAYES'THEOREM

The Bayes/Monte Carlo methodology assesses the reliability
of a system by associating probability distributions with the
parameters (failure rates) of the system's components. These
probability distributions fall wunder two headings: prior
distributions and posterior distributions.

PRIOR The prior distribution for a system parameter

DISTRIBUTION 6 is denoted by p(®) and represents the best in-
formation about the parameter without taking
into account the available data on the current
system.

The prior distribution depends upon the information that 1is
available about the parameter of interest. If data are available
from other plants, they may provide a basis for forming the prior
distribution. When data from other plants are not available, it
may be necessary to use expert opinion to construct the prior
distribution.

POSTERIOR The posterior distribution for a system

DISTRIBUTION parameter e is denoted by p(Blx) and
represents a revision of the prior distribution
based on available data, x.

The posterior distribution is used to represent the distri-
bution of the system parameter 6 for the current plant based
on reweighting or revising the prior distribution on the basis
of data from the current plant.

The prior and posterior distributions for the system param-
eter B are related to each other through a third distribution
that serves as a conditional probability model for the available
data, X. The binomial distribution is an important example of
such a model.
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CONDITIONAL The available data on a system with a given fail-

PROBABILITY ure rate 6 is described by a c¢onditional proba-
MODEL FOR bility model denoted by £(x|9). A frequently
THE DATA assumed conditional ©probability model 1is the

binomial distribution.

The prior distribution and the conditional probability model
are used to calculate the posterior distribution through Bayes'
Theorem.

BAYES'
THEOREM p(elx) = p(G)f(xlO%/,j. p(6)Yf(x|6) 46
all ©

Of these three probability distributions, p(6) or the prior
distribution is frequently subjectively based. The conditional
probability model £(x|9) 1is wusually evaluated using objective
data. Thus, the posterior distribution p(8|x) is frequently a
combination of subjective and objective information. That is,
it represents a reweighting of the prior distribution (or subjec-
tive information) by the objective information. The following
example illustrates the above definitions.

5.1 Example of Baves' Theorem

To 1illustrate the mechanics of Bayes' theorem, we will
perform a short analysis. Suppose that the task is to develop a
posterior probability distribution €for a parameter © that 1is
defined to be the relative frequency of a tack landing point up
when randomly tossed.

Suppose at the outset we consider every value of € between
0 to 1 to be equally probable. The prior distribution for the
parameter 6 would then be a uniform probability distribution
on the interval [0,1}. Thus

p(6) 1 0<HB6 <1

0 elsewhere,

Next, suppose an experiment is conducted to obtain information
about ©. The experiment consists of randomly tossing the tack
S0 times and observing the number of times the tack lands with
its point up. Denote by r the observed number of times the point
is up. The conditional probability mwmodel for the data \is
binomial,
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b(50,r) = f(r}{06,50) = (52) of (1~9)50'r-

Combining p(®) and £(r}|6,50) by Bayes' Theorem gives the
posterior distribution for 6 as,

1
p(olr) = (°)) oF (1_9)50“/_[ (3%) 6% (1-0)%% a0
0

- (50+1)(Sg) ef (1-6)°0-TF,

Now, p(©[(r) can be used to make probability statements about
6. For example, 1if r=20 one can compute the probability that
® is equal to or less than 1/2 by

/2
jl p(B|r = 20)dO = .9196.
0

Likewise, one can say that the expected value of €& (or the
mean of the distribution of 8) is

1
j' 6 p(6|r = 20)d8
0

21/52
.4038 ,

which conpares with an expected value of .5 for 6 from the prior
distcibution. Thus, the impact of the data has been to weight
the mean downward toward the point estimate r/n = 20/50 = .4000.
This ends the example.

The role of the prior distribution in the preceding example
is to serve as a vehicle for developing a density for 8 condi-
tional on the data, that is p(6|lr). The selected prior dis-
tribution on 6 1is wuniform and has a density whose graph
appears in Figure 8. After weighting the prior distribution
with the data, the posterior distribution for 6 has a density
whose graph appears in Figure 9. Figures 8 and 9 make it clear
that the posterior distribution for © does not closely
resemble the prior distribution for 6. Thus, the data have
played a major role in shaping the posterior distribution. In
fact, the posterior distribution is exactly proportional to the
conditional binomial probability model with r fixed at 20.
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Figure 8. Beta Prior with a = 1 and b = 1.

DENSITY

-

o 02 014 016 0:!
FAILURE RATE 6

Figure 9. Beta Posterior with a = 21 and b = 31

The role of the prior distribution in forming the revised
distribution can be minimized by selecting a distribution that
permits the conditional probability model of the data, and the
data, to play the dominant role in determining the shape of the
posterior distribution. While there exist various criteria for
selecting a prior with minimum influence (see Good, 1965), there
is no single prior for a failure rate that satisfies all
criteria. One must then choose from several candidate priors.
The members of the set of candidate priors will be called nonin-
formative priors recognizing that no member is noninformative
according to all criteria. The impact of the selection of the
prior distribution for © on the posterior distribution for
0 is examined in detail next.

NONINFORMATIVE A noninformative prior distribution allows the
PRIOR data to take a dominant role in shaping the pos-
DISTRIBUTION terior distribution. Thus, its role is not to
introduce subjective information but to serve
as a vehicle to allow the parameter © to be
treated as a random variable via Bayes' Theorem.
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6. NONINFORMATIVE DISTRIBUTIONS AND BINOMIAL DATA

Data in the form of r failures observed in n trials or
demands is normally employed for estimating a system's
reliability. The conditional probability model for the data is
the binomial model,

£(rle.n) = (e (1-e)" 0<Oc<c1
c=0,1,...,n.

The data and the model will be denoted by b(n,r).
Among the possible noninformative prior distributions for ©

are several mewmbers of the beta family of distributions. The
generic form of a beta distribution is

b - b-1
p(0ja,b) = f,—&%}l 02 1(1-0) , 0<©8 <1
a,b > 0,

where [(x) is the gamma function. The beta distribution with
parameters a and b will be denoted by B8(a,b).

The beta distribution is used in this study to represent the
prior distribution on © for several reasons.

1. The range of support is the interval ([0,1], which is
consistent with failure rates.

2. The beta distribution 1is very flexible and, with the
proper choice of a and b, can be used to represent most
shapes of distributions from symmetric to highly skewed
to U-shaped or J-shaped.

3. The beta distribution is very tractable from a mathemat-
ical standpoint; and when combined with b(n,r), the
resulting posterior distribution for 6 is B(a+r,b+n-r).
This result can be verified by a simple application of
Bayes' Theorem.

Among the choices of B(a,b) that are noninformative, there
are four densities that will be given particular attention. A
more complete discussion of noninformative prior densities 1is
provided in Good (1965). The first of these is RB(l,1), which is
uniform on the interval ([0,1]. Figure 10 shows the prior and
posterior densities for © when RB(1l,l) is combined with b(50,2).
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Figure 10. Prior and Posterior Densities for 8 when 8(l,1) is
combined with b(50,2).

The next three noninformative densities are termed improper
distributions because they each violate the restriction a,b>0
needed with the beta density. Thus, these distributions are
improper because they cannot be integrated to obtain wunity.
However, as long as at least one success and one failure are
observed, the resulting posterior distribution for 6 will be a
proper probability distribution. The first improper noninforma-
tive distribution is B8(0,1). As long as r>0, the posterior will
be a proper probability distribution. Figure 11 shows the prior
and posterior densities for 6 when A(0,1) is combined with
b(50,2).
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T B
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Figure 11. Prior and Posterior Densitites for © when B(0,1l) is
combined with b{(50,2)

The next improper noninformative prior distribution to be
considered is B8(1,0). As long as n-r>0, the posterior will be a
proper probability distribution. Figure 12 shows the prior and
posterior densities for 6 when B(1,0) is combined with b(50,2).
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Fiqure 12. Prior and Posterior Densities for © when 8(1,0)
is combined with b{(50,2)

The last noninformative prior distribution to be considered
is 8(0,0). As long as r>0 and n-r>0, the posterior will be a
proper probability distribution. Figure 13 shows the prior and
posterior densities for © when B8(0,0) is combined with b(50,2).
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Figure 13. Prior and Posterior Densities for r when R(0,0) is
combined with b(%50,2)

The posterior distributions in Figures 10 to 13 show a great
deal of similarity in their shape and thus a great deal of resil-
ience against widely differing priors. Part of this resilience
is due to the value of n. If n were smaller, the posteriors
would appear less similar in shape, while increasing n would
increase the similarity.
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Each of the above posterior distributions will now be
compared on the basis of sampling theory estimates of © that
are derived from b{(n,r). The maximum likelihood and centroid
likelihood estimates are sampling theory estimates of 6 that
will be used for comparison. The maximum likelihood estimate
(mle) is the value of 6 that maximizes £f(r|6,n) evaluated at
the observed data r. The mle 1is just r/n. The centroid
likelihood estimate (cle) is

cle

1 1
f 0f(c)0,n)ad/ [ £(rl6,n)ae .
0 0

(r+l)/(n+2).

The mle is a "modal” value while the cle is an "average" value.
The posterior distributions of 6 have the following means and
mnodes:

Prior Posterior Posterior Mean ogsterior Mode
B(1l,1) B(r+l,n-r+l) (c+l)/(n+2)** r/n*

3(0,1) B(r,n-r+1) r/(n+l) {(r-1)/{(n-1)
R(1,0) B(r+l,n-r) (r+l)/(n+l) r/(n-1)

8(0,0) A(r,n-c) r/nx {(r-1)/(n-2)

*Same as wmaximum likelihood estimate from b(n.r).
**Game as centroid likelihood estimate from b(n,r).

Thus, R(0,0) yields a mean equal to the mle, while B(l,1) has a
mean equal to the cle and a mode equal to the mle. The prior
8(1,0) 1is of 1interest because the value of © having the
cunulative posterior probability of 1-a is the same value as
the (1-a)el00% upper confidence 1limit. Likewise, the prior
B8(0.1) 1is of 1interest because the value of 6 having the
cumulative posterior probability of a is the same value as the
(1-a)*100% lower confidence 1limit. Another useful choice
for a prior is B8(.5, .%), but the reasons for choosing this
prior are based on complex theoretical arguments that are beyond
the scope of this discussion.

There is no clear-cut choice which of the above prior
distributions is best. We will now use each of the four prior
distributions to obtain an interval for the uncertain parameter
6 using the confidence interval approach of Section 2. Again,
consider the sample information (n = %50, r = 2). The four 5%
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and four 95% probability 1limits and the lower

confidence limits are as follows:

Prior Posterior
B(1,1) B(3,49)
B8(0,1) B(2,49)
B(l,0) B(3,48)
8(0,0) B(2,48)

Lower 5% Limit

.016
.007*
.017
. 007

*This lower limit is identical to the lower 95%
**xThis upper limit is identical to the upper 95% confidence limit.

and upper 95%

Upper 95% Limit
.118
.091
J121%x*
.093

confidence limit.

The reader will find that the resulting intervals are similar

to each other
earlier. There

and similar
is, however,
interpretation of the intervals.

to

the

confidence
a very substantial difference in the
The quantitative measure of the

interval found

reliability of the interval is a probability when the interval
In contrast, the gquantita-
tive measure of the reliability of a confidence interval is a

is estimated using Bayesian methods.

level of confidence explained earlier.

6.1 Bayesian Analysis of a System's Failure Rate

The Bayesian methodology for estimating the failure rate of

a system has three stages:

1. Prior distributions for the component failure rates are
constructed.

2. The data and probability models for the data are used to

revise the prior information.
are thus obtained for each
Theoren.

3. The probability distribution of the
rate is obtained from the component posterior failure

rate distributions.
accomplished
procedure such as Monte Carlo simulation.

may be

analytically or

Posterior distributions
component using Bayes'

system's failure

The calculation of the distribution

by a numerical

An illustration of these steps will be given using the two
component parallel system shown in Figure 2 in the illustration
of a confidence 1interval for a system's failure rate. Recall
that ny=16 and n,=8 observations are to be made on the reliabili-
ties of each of the two components.
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The first step is the construction of prior distributions
for 87 and O,, the failure rates of the two components. Assuming
that either no prior information is available or that prior sub-
jective information is to be excluded from the analysis, we use
noninformative prior distributions for 8; and 8;. The choice of
the B(l,1) distribution will ensure that the posterior distribu-
tion is proper even if ry=0, r3=n;, r2=0, or rp=nz. The B8(0,0),
B(L1L,0), and B(0,1) distributions will fail to produce a proper
posterior distribution under some of these circumstances.

The application of Bayes' theorem to the 8(1,1) priors
yields posterior distributions of B8(rj;+l, nj-rj+1) and f(rz+1,
n,-rp,+1), respectively. Since the system failure rate 65 is just
the product of 63 and 63, the complementary cumulative probabil-
ity of 65 can be found analytically by

1 1
P(eszylel,:z) = j. p(ellr1+l,n1—rl+1)p(92lr2+1,n2-r2+1)d62d91
Yy ¥/8,
where p(6la,b) is the beta density. The region of integration

Y < ©) <1, y/67 < 63 < 1 includes all values of 6;8,; such that
6g > Y. Note that P(8g > ylry.r3) is conditional on the particu-
lar experimental outcome of r; and rj;.

For given ry and rp, the lower and upper (l-a) 100% probabil-

jty limits are the values yg and y, that satisfy the equations

l-a
[+ 8

P(Bg > vglry.£2)
P(8g > YylL1.22)

Note that a and l-a are probabilities even when the values of rj
and r, are specified. Thus, it is not necessary to use a term
such as level of confidence to distinguish a from a probability.

Next, we will investigate the properties of the intervals
formed by 0 and y,;. We say that ([O0,yy] covers 8g if 0 < 85 <
Yy.- Now, suppose that the values of 6 and 63 are t; and tp,
respectively. What is the probability that the actual system
failure rate 6g=tjty is covered by [O0,yyl? To answer this ques-
tion, we must first determine all those experimental outcomes
that result in 1intervals [0,y,). Wwhich cover 84, and then £find
the total probability of obtaining one of these outcomes given
that 91=t1 and 92=t2.

Now, consider the case when n3=16 and ny=8. In order to ex-

amine the coverage of 8g5=.25, when a=.10, we must first determine
the values of rp and rp, that lead to intervals [0,yy] that cover
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8g. Evaluating P(6g > .25|rj.rp) at all values of rj, rp reveals
that P(8g > .25|ry,r3) > .10 and thus yy > .25 except when ry < 1
regardless of r,; [I2=0 regardless of ry; r1=2 and r3 < 7; r1=3
and ry < 5; ryj=4 and rp < 4; r1=5 and ry; < 3; 6 < ry <7 and rp <
2; or 8 < ry <11 and ry; < 1. Denote by Rg the set of values of
ry. rp that result in yy < .25, that is, no coverage of 8g5=.25.
The probability of obtaining one of the outcomes in Rgp can then
be computed for various values of tj and tp; such that tjty=.25.
The complement of this probability, 1-P(Rglty.tz) is then the
coverage of ©g = .25 conditional on t; and tp. The coverage for
various .25 < t; < 1.0 and ty=.25/t; is shown in Figure 14.
Similar graphs of the coverage are given in this figure for
0g=.10 and 64=-.40. Clearly, coverage varies with the particular
value of t; and t; that is selected. For ©Og = .25, the coverage
ranges from .88 to .92, while for 6g=.10 and 8g4-.40, the coverage
ranges from .88 to 1.0 and from .82 to .92, respectively.

For given values of .25 < t] < 1.0 and ¢ty = .25/t;, the
coverage may be computed from

n r n_-r n r n_-r
1 - Z rltl(lat)llrztz(l-t)zz
r I . R 1 1 1 2 2 2
1°72°"70

This is simply the complement of the sum of the binomial proba-
bilities of the outcomes that are in Rg.

For the Bayesian intervals, the 1level a 1is a weighted
average level of coverage where the parameter values are weighted
by the prior distributions on 6 and ©;. When uniform priors are
used, as in this example, the simple average coverage across all
combinations of ©; and 6, is precisely .90. When nonuniform
priors are used, the weighted average coverage is also precisely
equal to .90. It is an analytic property of Bayesian intervals
that the weighted average coverage is equal to l-a.

In contrast, the confidence interval approach provides a
minimum level of coverage rather than an average level of
coverage. A comparison of the graphs in Figures 3 to 5 to those
in Figure 14 1illustrates the difference 1in coverage. because
the typical 1levels of coverage for confidence intervals are
usually larger and cannot be smaller than the nominal level of
coverage, confidence intervals are most often wider than their
Bayesian counterparts.
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7. SUBJECTIVE DISTRIBUTIONS

Whenever sufficient data are available, the construction of
a probability distribution for a parameter can proceed using the
noninformative distributions described in the preceding section.
When data are available, one need not bother with using subjec-
tive information. However, alternative procedures are needed
when no data are available, an appropriate probability model 1is
unavailable, or the data are too sparse to provide a useful
level of information about the parameter.

Under these circumstances, a subjective probability distri-
bution may usually be constructed using data sources that do not
have an associated objective probability model. The subjective
distribution can serve by itself or be revised by the model of
the sparse data 1if appropriate. The primary sources of these
subjective data 1include similar components at other installa-
tions, engineering and manufacturing specifications and test
results, and informed expert opinion. The tools available for
the actual construction of subjective probability distributions
include empirical Bayes' procedures, elicitation techniques,
calibration procedures, and theories of ©pooling subjective
information.

Empirical Bayes' procedures employ data from a number of
similar, but not identical, situations such as similar components
or plants. The similar values are treated as realizations from
the same prior distribution. These realizations are then used
to estimate the prior distribution. Traditionally, the
population variability curve 1is adopted as the prior for the
similar component. A discussion of empirical Bayes' procedures
applicable in reliability is provided by Martz and Waller (1982).

Subjective elicitation, calibration, and pooling procedures
are used to form a subjective distribution when the data arise
from expert judgments. Under some circumstances, the subjective
information may not be sufficient for estimating a probability
distribution. For example, if only a point estimate and a range
are available, there are numerous probability distributions that
will satisfy the available information. A usable probability
distribution can be c¢reated by choosing a distribution that
maximizes some criteria such as the variance, subject to a data
derived set of constraints. Constrained maximum entropy distri-
butions (Unwin, 1985) are examples of distributions derived from
such arguments. The basis for wusing this type of procedure 1is
that by choosing a distribution that maximizes the criteria
subject to the constraints, one uses the available knowledge
without understating the uncertainty about the parameter.

Thus far, we have discussed situations where sufficient
objective data are available and situations where no objective
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data are available. Intermediate situations occur where some,
but insufficient, objective data are available. When this
situation arises, the distribution based on subjective data may
be used as a prior distribution that 1is then revised in the
light of the sparse objective data and the related probability
model. The purpose of combining the sources of information 1is
to obtain a distribution that contains enough information for a
reasonable analysis to proceed.

There are alternatives to employing the subjective distribu-
tions described here. One alternative is the bounding analysis
that is used in conjunction with Maximus. Another is to perform
many conditional analyses, each analysis being performed at some
important set of parameter values. Neither of these alternatives
makes full use of the available information. We feel that it is
better to proceed, cautiously, using the subjective data to
develop probability distributions for parameters and following
up with sensitivity analyses of the influence of subjective
information on the risk uncertainty.

Possible sensitivity analyses include:

1. Replacing informative subjective distributions with
noninformative distributions and then measuring the
resulting change in uncertainty about risk.

2. Replacing all informative subjective distributions with
subjective distributions that have maximum variance or
entropy (Unwin (1985)), subject to a set of constraints
and then measuring the resulting change in uncertainty
about risk.

3. Measuring the expected reduction 1in uncertainty that
would be obtained if the true value of a subjectively
estimated parameter could be determined.

Analyses 1 and 2 are designed to measure the total impact of
introducing subjective information into the analysis. Analysis
3 has the objective of pinpointing subjective distributions that
are important determinants of the overall risk estimates. If a
subjective distribution 1is wunimportant, then the method of
estimation and the source of the data are 1inconsequential.
Conversely, 1f a subjective distribution is found to be an
important determinant of uncertainty, effort should be directed
towards obtaining suitable sources of objective information, or
subjective 1information of highest quality, if objective data
cannot be acquired. In the event that no data of high quality
can be obtained, conditional analyses can be performed across a
suitable range of the important parameter.
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8. THE BAYES/MONTE CARLO ANALYSIS

An alternative approach to the Maximus/bounding methodology
for assessing the uncertainty about risk estimates 1is to
consider the various system parameter vectors, 6, to have
different relative likelihoods. These likelihoods are
determined by the data concerning those parameters. Probabilis-
tic models identical to those used in the confidence interval
analysis are employed with the objectively determined data.
Similarly, probabilistic models of the subjective data are
employed in place of the bounding analysis to represent
information about w. This requires the analyst to specify
various parameter values to be more 1likely, less likely, or
equally likely relative to other values.

The objectives of the Bayes/Monte Carlo methodology are
threefold:

Objective 1L - to provide a reasonable, coherent and
implementable method for quantifying the
uncertainty in the various measures of
risk.

Objective 2 - to permit the separation of the influence
of subjective and objective information.

Objective 3 - to provide for identification of the
relative contribution (importance) of
uncertainties 1in 1individual parameters
to the overall uncertainty.

Consider again the parameters 6 and ¢. In the trial problem
of Spencer and Easterling (1984b), the parameter space for @ and
@ is such that 0 < 83 <1, 0 < w3 < 1 for i=1,....%2 and j=1,...,m
where % and m are the number o elements in 6 and , respec-
tively. The Bayes/Monte Carlo analysis proceeds in the follow-
ing manner:

1. The quantities €@ for which objective data exist are
initially assigned a noninformative prior distribution
over the % dimensional space of 6. This distribution is
revised according to the data and the assumed probability
models for the data. The noninformative prior distribu-
tion is selected so that the data will have a dominant
effect on the revised distribution and the effect of the
prior distribution is minimized.

2. The quantities @, for which only subjective estimates are
available, are assigned a subjective probability distri-
bution. This distribution may be formed directly from
expert judgments, or it wmay be formed by assuming an

_28-



appropriate probability model for the experts' judg-
ments and then used to revise a noninformative prior
distribution yielding the subjective distribution. To
assess the influence of subjective information on the
risk estimate and the sensitivity of uncertainty to the
subjective information, the derived subjective distribu-
tions can be replaced with noninformative counterparts.

3. The distribution of £(6, @) 1induced by the distribution
of © and @ is calculated. Because the system model is
apt to be complex, Monte Carlo simulation provides an
economical and reasonable approach to calculating the
distribution of f.

4. The distribution of £(9, w) is calculated under
alternative assumptions about the subjective knowledge

for . Comparison of the distributions permits
analysis of the influence and sensitivity associated
with the subjective information. Partial analyses may

also be conducted for subsets of the subjectively
estimated parameters.

5. The importance of the uncertainty about each individual
parameter is measured by considering the expected
reduction in uncertainty that would be obtained if the
actual value of the parameter could be determined.

Objective 1 of the uncertainty analysis is satisfied through
steps 1 through 3 of the Bayes/Monte Carlo methodology. Step 4

provides the information to satisfy Objective 2. Such informa-
tion is useful at the policy level and is primarily interpretive
in nature. In contrast, step 5 1is designed to provide the

analyst with insights about specific uncertain parameters and
thus is related to Objective 3.

The output of the analysis is in the form of probability
distributions and quantities derived from probability distribu-
tions. This output provides:

1. Quantitative measures of the likelihood of intervals.
2. A relative weighting of possible risks.
3. Measures of influence and sensitivity.

There are fundamental differences between confidence inter-
vals derived from the sampling distribution of a statistic given
a parameter and intervals derived from a probability distribution
of a parameter. The latter type of interval, known as a credible
interval, has an associated quantitative measure which 1is a
probability. The confidence interval has an associated measure
known as a level of confidence which is the minimum coverage.
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CREDIBLE A credible interval for a parameter 6 is derived

INTERVAL from the posterior distribution for © and has an
associated 1level which is a probability. In
contrast, a confidence interval is derived from the
sampling distribution of a statistic when the
parameter © 1is fixed and has an associated minimum
level of coverage.

The confidence interval provides a minimum 1level of coverage,
while the credible interval provides an average level of cover-
age. The needs of the end user must be given due consideration
in the choice of a method of analysis and presentation.

9. TRIAL PROBLEM

The analysis of the trial problem can be broken into several
stages. These are:

1. Analysis of component level reliabilities.
2. Synthesis of subsystem and system reliabilities.

3. Analysis of recovery probabilities and probabilities of
the initiating event.

4. Interpretation of the output.

The Spencer and Easterling (1984b) analysis treats three versions
of the trial problem. The first version is a demonstration of
Maximus without the bounding for subjective information. The
second version injects recovery probabilities as known constants,
and the third version treats the recovery probabilities and some
of the objective 1information as subjective. The analysis
presented here will closely parallel these three cases so that
direct comparisons can be made.

9.1 Component Level Reliabilities

The trial problem analyzed in Spencer and Easterling (1984b)
is the sequence B(1.2)DyC of the Arkansas Nuclear One Unit 1
Nuclear Power Plant. At the component level there exist 15
population types that appear in the minimal cut sets for the
B(1.2)D;C system. A population type is a grouping of similar
components for which a single set of data is available, or for
which several sets of data are applicable for all members of the
population. Members of a population type have similar failure
rates except that, under some circumstances, the failure rate in
one application may be a known multiple of the failure rate in
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another application. This occurs when a similar component must
operate over different periods of time, or when different
numbers of demands are made on the components.

Table 1 is taken from Table A3 of Spencer and Easterling
(1984b) and shows the data for each of the fifteen component
types, the number of occurrences of that component type in the
system, and the subsystems in which the components occur. The
point estimates and error factors are used to derive the binomial
equivalent data by equating the point estimate to r/n where r is
the equivalent number of failures and n is the equivalent number
of trials, and equating the upper bound of a 95% confidence
interval to the product of the error factor and the point
estimate. The conversion of data is necessary in the trial
problem since Maximus deals exclusively with binomial data.

ERROR An error factor is the ratio of two points, one

FACTOR a central point and the other a 1limit. The
ratio is stated in a form so that the error
factor is always greater than one. The limits
are often 95% credible limits or 95% confidence
limits.

A similar conversion must be made for the Bayes/Monte Carlo
analysis in order to obtain a probability distribution for the
component failure rates. This is accomplished by using a nonin-
formative prior for the parameter, the information contained 1in

the data, and the corresponding probability model. Bayes'
theorem is used to combine the noninformative prior and the data
into the desired probability distribution. To ensure

comparability between the Maximus/bounding results and the
Bayes/Monte Carlo results, the same r, n binomial data have been
used. For the trial problem, it is assumed that

1. The component failure rates are a priori independent.

2. Prior information about an individual failure rate may
be expressed through a noninformative prior distribution.

Assumption 1 1is equivalent to the requirement that information
about one failure rate provides no information about any other
failure rate. Assumption 2 is met in the trial problem by
employing the B(0,0) "improper" prior density function discussed
earlier.

The choice of this density ensures that

E(X|r,n) = r/n ,
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so that the point estimate will be identical to that employed in
Maximus. 1f the centroid likelihood estimate had been used as
the nominal point in the Maximus/bounding analysis (i.e., mnle),
the B8(l,1) prior would have produced comparable nominal values
for components.

The choice of the prior distribution is usually inconsequen-
tial. In those cases where the system reliability is strongly
influenced by a component for which little data is available, the
choice of the prior distribution may have a strong impact on the
analysis.

9.2 Calculations of Subsystem and System Reliabilities

Figure 15 is taken from Spencer and Eagterling's (1984b)
Figure 2 and is a series-parallel representation of D;C. Each
of the blocks labeled by a capital 1letter is a subsystem

comprised of a series of components. The failure rate of a
subsystem can then be written as a function of the component
failure rates. For example, the failure rate of subsystem A as

found in Table A2 of Spencer and Easterling is

1
£,(8) = 1 - (1-3 8)(L - 8)(L - 8,)(L - 0 (L - 8)(1 - 8,)

W =

0 + 0 + 20 + 6_ + 0,
a b c g J

2
+ OI(max‘[ea. eb' eco egv ej}) }

where 0(x) means order not greater than x. For small values of
the 65, the last term is negligible.

The coefficient of 6, is 1/3 in subsystem A because of the
associated time factor. The term 26, appears in fp because two
components of type ¢ appear in subsystem A. The recomnended
procedures for Maximus do not treat this term's contribution to
£5(0) as 208,, but instead as O.: + Oon where 8o+ and Oy« are
ceparately estimated failure rates, each having one-half of the
effective data available for 6. This is an unpooling schene
that is used for similar components within and across systems.
The essence of unpooling is that similar components are treated
as dissimilar and the data are divided among the components &0
that the point estimate of the system's failure rate remains
unchanged, and the length of the confidence interval for the
system's failure rate is minimized. The details of the unpooling
algorithm are complex and the reader is referred to Spencer and
Fasterling (1984a) and (1984b). It is unclear whether unpooling
will be attempted across dominant accident sequences in large-
scale applications of the Maximus/bounding methodology.
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or

Figure 15. Series-parallel arrangement for B(l.2)D1C. Each
block is one or more basic events in series. Those
blocks labeled the same represent the same event.

The Bayes/Monte Carlo alternative to the Maximus approach is
to use the distribution of © to obtainm the joint distribution
of the subsystems' failure rates. Since the subsystems' failure
rates are approximately linear functions of the component failure
rates, the vector of subsystem failure rates fg is approximately

fs(g) = se 4

where in the trial problem, § is 13x15 with the elements shown
in Table 2. The use of linear functions is not required but is
convenient for the trial problem and introduced no significant
error. The denominators of fractional terms in Table 2 represent
time adjustments, while numerators greater than 1 represent
nultiple components.

9.3 Version 1 - No Recovery

Version 1 of Spencer and Easterling (1984b) 1is the D;C
system (Figure 15) analyzed without recovery probabilities and
with an initiating event that has a constant (known) probability
of either 1.0 or .2. The representation of D;C in Figure 15 has
a third parallel subsystem added, which is not present in the
physical system. This subsystem's displayed connection to the
remainder of the system is by a dotted line. A reguirement of
Maximus is that subsystems appear in a series-parallel structure.
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Table 2
Subsystem Matrix

£ g 3 k
1 1
1 2 1
11
1 2 1
11
11
1

11
1

1 1
2 1 2
11

~35_

1/2.2

172.2

1/3.7

1/3.7

o P t u

1 1/9
1 1
1/1.95

1/1.95

1/1.95 1 1 1/9
1/2.15



since the system for the trial analysis could not be put in a
series parallel representation, the additional subsystem was
added to account for a dominant cut set that would otherwise not
have been 1included. (See Spencer and Easterling (1984b) for
details.)

The calculation of the approximate system confidence
interval, as described in Spencer and Easterling (1984b)
appendix, is accomplished by iterative application of the Maximus
method and the unpooling algorithm. The result is equivalent
data for the system of roughly 1.3 failures in 1430 tests. The
point estimate, upper 95% confidence 1limit, and 1lower 95%
confidence limit are given by 9.2(-4). 3.7(-3), and 8.3(-5). 1In
contrast, the Bayes/Monte Carlo method using 100 simulations
gives a point estimate (mean) of 1.0(-3) and upper and lower 95%
points of 2.3(-3) and 3.2(-4). These results are repeated 1in
Table 3 and displayed as the upper two intervals in Figure 16.
The resulting density function and cumulative distribution
function (CDF) are shown in Figures 17 and 18 for the Bayes/Monte
Carlo method.

While the nominal (point) estimates of risk are nearly iden-
tical, the width of the Bayes/Monte Carlo interval is shorter
than the Maximus confidence interval. If the output density in
Figure 17 were plotted on a linear scale, substantial skewness
in the positive direction would become apparent. Such skewness
indicates that the actual system failure probability could be
substantially above the upper 95% limit, although the probability
of this occurring is small.

Version 1 of the trial problem has also been analyzed with
the assumption of an initiating event probability being a known
constant of .02. For the Maximus analysis, the equivalent data
can be found by using the same number of failures as before, and
dividing the number of trials by .0Z2. This gives binomial equi-
valent data of 1.3 failures in 71,400 trials (or reactor years
where each year is a trial). The resulting interval is 1.7(-6)
to 7.3(-5) and the nominal estimate is 1.8(-5). The Bayesian
interval and nominal estimates are just .02 times their counter-
parts when the initiating event is not included. Thig occurs
only because the rate of the initiating event is being treated
as a constant. These intervals are displayed as the third and
fourth intervals in Figure 16.

A third analysis of Version 1 involves treating the initiat-
ing event as uncertain. The equivalent data is taken to be two
occurrences in 100 years. The initiating event is "in parallel"
with the system so that both must occur for a failure to occur.
The Maximus procedure for parallel systems yields equivalent data
of .61 failures in 33,200 years and resulting confidence limits
of 1L.9(-7) and L.2(-04).
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Table 3
COMPARATIVE INTERVALS

Maximus/bounding Bayes/Monte Carlo

5% Nominal 95% 5% Mean 95%
Version
1 Without B(1.2) 8.3(-5), 9.2(-4), 3.71(-3), .2(-4), 1.0(-3), 2.3(-3)

P{B(1.2))=.02 .7(-6), 1.8(-5), 7.3(-5), 6.4(-6), 2.0(-5), 4.6(-5)
B(1.2)~(2,100) 1.9¢(-7), 1.8(-5), 1.2(-4), 2.5(-6), 2.0(-5), 4.9(-5)

[
w

2 Without B(1.2) 2.6(-5), 1.1(-4), 2.2(-4)
P[B(1.2)])=0.2 3.7(-7), 4.0(-6), 1.6(-5), 5.1(-7), 2.2(-6), 4.5(-6)

B(1.2)~(2,100) 4.1(-8), 4.0(-6), 2.7(-5), 1.9(-7), 2.5(-6), 6.6(-6)
3 Wwithout B(1.2) 4.8(-6), 2.0(-4), 1.5(-3) 3.7(-5), 1.2(-4), 2.6(-4)
P[B(1.2))=.02 9.6(-8), 4.1(-6), 3.0(-5), 7.5(-7), 2.4(-6), 5.2(-6)
B(1.2)~(2,100) 7.5(-9), 4.1(-6), 5.4(-5), 2.7(-7), 2.7(-6), 7.2(-6)
Correlated Recovery Probs. 2.2(-7), 3.0(-6), 7.3(-6)
Noninformative Uniform Distributions 6.7(-7) 7.0(-6) 1.9(-5)
Relatively Noninformative Pistributions 1.9(-7), 2.7(-6), 7.6(-6)
MAXIMUS L ’ -
BAYES >t
-— " -8 MAXIMUS
*——r— BAYES
*-— * a MAXIMUS
- —a BAYES
r_14% T VT T T TTUVITH LELLBRAALL ISR ARL] T 1 1T 1§00
_7 - -
10 0° 10° 10" 0° 0’

Figure 16. Comparative Intervals Version 1
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The Bayes/Monte Carlo procedure requires that the initiating
event rate be treated as a random variable. As was shown
earlier, combining a B(0,0) prior with a binomial probability
model and data with r=2 and n=100 results in a B(2,98) posterior
distribution for the initiating event. The density and CDF in
Figures 19 and 20 are produced by using the B(2,98) distribution
for the initiating event as input to the system model. The
resulting point estimate is 2.0(-5), and the 95% lower and upper
limits are 2.5(-6) and 4.9(-5), respectively. These 1intervals
are the fifth and sixth intervals in Figure 16.

The Maximus intervals and the Bayes/Monte Carlo intervals for
Version 1 of the trial problem are centered on approximately the
same value. While the width of the Maximus intervals are some-
what larger than the corresponding Bayes/Monte Carlo intervals,
the upper limits differ by less than a factor of 2.5. It should
be remembered that although both intervals employ 95% limits, the
interpretation of the 1intervals 1is different. The Maximus
intervals provide a minimum coverage with typical coverage larger
than the stated coverage. The Bayes/Monte Carlo 1intervals
provide an average coverage. Thus, it is not surprising that
the Maximus intervals are wider.

Next, we consider the importance of the wuncertainty about
each component in shaping the overall uncertainty for the systen.
The procedure used to assess the uncertainty importance (UI) of
each variable 1is to calculate the expected reduction 1in the
variance of the system's failure rate that would be obtained
through definitive information about a component's failure rate.
The UI is the square root of this quantity. If the system's
failure rate is Y and the failure rate of the ith component is
Xi, then

UI? = var(Y) - E, var(Y|X.) .,
1 X.1 1

where var(Y|X;j) is the variance of Y with Xj held constant. The
UI% is then the average of all possible reductions in variance
that could be obtained by determining that X3 has a specific
value. The average is computed using the probability distribu-
tion of Xj. A more detailed discussion of Uls, and how they
may be calculated, is given in the Appendix.

The Uls for D;C without considering the initiating event
are given 1in Figure 21. Note that the greatest expected
reduction in uncertainty would be obtained if the true value of
the "g" component's failure probability were determined.

The Uls in Figure 21 are conditional on the probability of
recovery being zero in all cases. As will be shown later, the
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relative magnitude of the Uls will be dramatically altered when
recovery probabilities are added. This is reasonable because,
if a component has a large recovery probability, the impact of
the uncertainty about the component will be diminished.

The calculation of Uls provide a method of meeting Objective

3 of the uncertainty analysis. Spencer and Easterling (1984b)
provided no comparable output from the Maximus methodology.

9.4 Version 2 - Recovery Probabilities Certain

The second version of the trial problem analyzed in Spencer
and Easterling treats the DjC system as recoverable and the
recovery probabilities as known constants. The trial problem
analysis of Spencer and Easterling is implemented by calculating
a universal recovery rate for DyC, which is applicable regard-
less of the source of failure. As explained in Spencer and
Easterling, this constant is found by calculating the probability
of nonrecovery for each subtree in a cut set and then taking the
probability of nonrecovery for a cut set to be the minimum proba-
bility of nonrecovery among the subtrees. It is recommended in
Spencer and Easterling that this procedure be followed except
that the original fault trees would be employed rather than the
cut sets. The recovery value used by Spencer and Easterling is
.22 so that the effective data in Version 2 of the trial problem
is 1/.22 times the effective number of tests in Version 1.

The Bayes/Monte Carlo analysis presented here 1incorporates
recovery probabilities at the subsystem level rather than at the
top level as done in the Spencer and Easterling analysis. This
is appropriate where recovery rates differ from subsystem to
subsystem, and it is necessary in order to assess accurately the
uncertainty importance of the components. The drawback to
introducing recovery probabilities at a lower level is that the
information about one recovery probability may provide informa-
tion about another recovery probability: that 1is, recovery
probabilities may be dependent subjective random variables.
Introduction of independent recovery rates at too low a level
will wunderstate uncertainty by precluding these dependencies.
In the trial problem, the subsystems are cut sets and thus the
recovery probabilities are introduced at the cut set level in
the Bayes/Monte Carlo analysis and at the top 1level in the
Maximus/bounding analysis.

Correlations can be induced among the input values in order
to ascertain the effect of dependence on the uncertainty
estimates. This is demonstrated in the third version of the
trial problem where the recovery probabilities are treated as
uncertain gquantities. It is found that presence or absence of
correlation is inconsequential for this example.
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Figure 21. Uncertainty Importances Without Recovery

Version 2 of the trial problem has been analyzed (a) with the
probability of the initiating event held constant at .02, and
(b) with information about the probability of the uncertain
initiating event as 2 failures in 100 trials. The resulting
intervals are given in Table 3 and Figure 22. The means in the
Bayes/Monte Carlo analysis presented here are shifted to the
left relative to the nominal point in the intervals given by
Spencer and Easterling (1984b) because of the difference in the
method of incorporating recovery probabilities. In the Spencer
and Easterling analysis minima of recovery probabilities are
used as noted earlier. The Bayes/Monte Carlo intervals are also
substantially shorter.

Although Version 2 of the trial problem is not a case of
practical interest, it is convenient for examining the impact of
the recovery probabilities on the uncertainty importances. The
recalculated Uls are shown in Figure 23. It is now the case that
component e is the dominant contributor to the uncertainty of the
system assuming, of course, that the recovery probabilities are
fixed. This is reasonable since subsystem E in Figure 15 is in
series with the remainder of the system, subsystem E consists of
a single component e, and that component is not recoverable.

Treating the recovery probabilities at the system level,

rather than the subsystem level, eliminates the interdependencies
between failure rates and recovery probabilities and precludes
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the accurate assessment of the importances of the elements. When
a single recovery rate is applied uniformly to all elements
(subsystems or components) of a system, the relative importances
of the elements are unchanged. On the other hand, differential
recovery rates change these importances. For example, an element
with a large recovery rate will become relatively less important
than one with a small recovery rate. Information relevant to
the diagnosis and possible reduction of uncertainty should be
part of the findings of a well-considered uncertainty analysis.

9.5 Version 3 - Subjective Recovery Probabilities

In the last version of the trial problem considered by
Spencer and Easterling (1984b), the recovery probabilities and
the failure rates for components a, £, j, 1 and o are treated as
subjective, contrary to what was done in Versions 1 and 2.
Thus, Version 3 provides the most realistic situation for
accident sequences.

Implementation of the Bayes/Monte Carlo procedure requires
that the subjective information about recovery rates be repre-
sented in probability distributions. Since there are no experi-
mental data from which to construct a probability distribution,
the distributions are constructed using expert opinion. The
Spencer and Easterling report does not contain sufficient infor-
mation to specify a family of distributions or the parameters of
any distribution. As a convenience, the subjective marginal
distributions for the recovery rates were assumed to be members
of the beta family with means equal to the subjective point
estimates and coefficients of variation (ratio of the standard
deviation to the mean) equal to unity.* Thus the standard
deviation is equal to the mean. There is no justification for
this procedure and it is not recommended as a useful method of
forming subjective probability distributions. Its use here is
tolerated as a vehicle to allow the analysis to proceed with the
information at hand. Normally, one would have at 1least an
interval and point estimate from which a subJectlve probablllty
distribution can be constructed using the maximum variance or
maximum entropy approach discussed earlier in the section on
subjective probability.

Thus, all of the input variables are assumed to have beta
distributions. These distributions are given in Table 4.

* The estimated recovery rate for subsystem K is .44. Since
the procedure used for the other variables would give rise to
a bimodal dlstrlbutlon. the distribution with mean .44 and
maximum variance subject to being unimodal was used instead.
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In the primary analysis of Version 3 of the trial problem,
the subjective recovery rates were treated as independent. The
implication of this assumption will be examined later.

The results obtained from applying the Maximus/bounding
methodology to B(1.2)D;C are displayed in Figure 24 and Table 3.
Figure 24 shows the seven-point analysis (three intervals and a
point estimate) for the cases where the initiating event proba-
bility is treated as a constant .02 and where it is uncertain and
evidence of 2 occurrences in 100 years is available. The box
gives the bounds using subjective uncertainty only, the points
next to the extreme points give the bounds with statistical
uncertainty only, and the extreme points give the total range of
uncertainty.

The comparable results from the Bayes/Monte Carlo analysis
are presented in Fiqures 26 and 27 for the case with
P[{B(1.2)] = .02 fixed, and in Figure 28 and 29 with P[B(l1.2)]
treated as a random variable. The derived intervals are given
in Table 3 and Figure 25 along with the comparable Maximus/bound-
ing overall uncertainty intervals. The pairs of 1intervals 1in
Figure 25 are the Maximus/bounding interval and the Bayes/Monte
Carlo interval without B(l1.2), with B(l.2) having a known proba-
bility of .02, and with binomial equivalent data of 2 failures
in 100 trials for B(l.2). The point estimates obtained from the
Maximus/bounding analysis are slightly higher than those obtained
from the Bayes/Monte Carlo analysis because of the procedure used
to calculate the universal system recovery probability. More
important, however, are the differences in widths of the inter-

vals. The Bayes/Monte Carlo intervals cover between one and two
orders of magnitude while the Maximus/bounding intervals cover
between two and three orders of magnitude. The error factors

(the ratio of the upper 95% point to the point estimate) for the
second and third intervals are 7.3 and 13.2 for the
Maxinmus/bounding procedure 1intervals and 2.2 and 2.7 for the
Bayes/Monte Carlo procedure.

Figure 30 displays the uncertainty importances for the
recovery probabilities. The Uls for the component failure rates,
Figure 23, remain nearly the same as in Version 2 of the trial
problem. The uncertainty about component e is dominant.

9.6 Sensitivity to Correlation

In order to assess the impact of introducing correlation
among the subjectively estimated guantities, a secondary analy-
sis was made using a rank correlation of .9 between all pairs of
recovery probabilities. Version 3 with the probability of B(1.2)

uncertain was examined. The resulting interval is 2.2(-7) ¢to
7.3(-6) compared to an interval of 2.7(-7) to 7.2(-6) obtained
with uncorrelated inputs. These values appear in Table 3 and

Figure 31. The change in the width of the interval is relatively
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Table 4
Parameters p and q of the Beta Probability Distributions

Failure Rates

Component o q
2.20 664.8

b 2.20 1097.8
c 2.20 21997.2
d .37 68.63
e 2.20 21997.8
f 2.20 21997.8
g 2.20 534.8
j 2.20 2197.8
1 2.20 592.8
o 2.20 2197.8
p 2.20 2197.8
t .37 45,63
u .37 205.63
v 2.20 730.8

Nonrecovery Probabilities

Subsystemn p q

A .54 1.808
B .98 97.02
C .54 1.808
D .98 97.02
E Not applicable

F .82 8.29
G .82 8.29
I .82 8.29
J .98 97.02
K .78571 1.0

L .98 97.02
M+N .76 5.873
O .53 1.808
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Table 5
subjective Distributions for Recovery Probabilities

Recovery Probabilities

Subsystemn Mean P q
A .23 .2987 1
B .01 .0101 1
C .23 .2987 1
D .01 .0101 1
E not recoverable
F .09 .0989 1
G .09 .0989 1
I .09 .0989 1
J .01 .0101 1
K .44 .78571 1
L .01 .0101 1

M+N .12 .1354 1
0 .23 .2987 1
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There also exist differences between the two methodologies
with respect to dependencies among the parameters. Because
subsystems share components from common population types, there
exXxist dependencies among estimators of the subsystems' reliabil-
ities. The Bayes/Monte Carlo methodology models these dependen-
cies directly. The Maximus/bounding methodology recognizes
common components as dependent, but allocates the data to the
individual components by unpooling in order that they can be
considered independent. The Maximus/bounding methodology maxi-
mizes the system's failure rate simultaneously with respect to
all the subjective parameters. This is, in a sense, a worst case

analysis. The Bayes/Monte Carlo methodology allows for the
introduction of arbitrary levels of dependence among the subjec-
tively estimated quantities. However, in the absence of data

related to the appropriate level of these dependencies, all that
can be done is a sensitivity analysis to examine the impact of
various levels of dependence.

The question of implementation in a large-scale analysis has
not been addressed in the trial analysis. However, Maximus is a
block-diagram oriented procedure and has not been shown to be
extendable to other types of analyses such as those dealing with
the magnitudes of releases or consequences. The equivalent data
form of the output from Maximus is easily adapted as input to
another form of analysis, but it is not clear how the bounding
information would be adapted. There are still open questions
about the ease of 1implementing Maximus/bounding in the fault
tree portion of the analysis. These questions relate to:

1. The need to express systems in a series-parallel form.
2. Unpooling across systems.

3. Bounding with nonmonotonic subjectively estimated
parameters.

4. The ability to automate the calculations.

Implementation of the Bayes/Monte Carlo methodology appears
to be straightforward. However, in order for either form of
analysis to be worthwhile, additional work must be done in order
to ensure that the subjective information, whether bounds or
probability distributions, is obtained using procedures that are
suited to both the problem at hand and the experts whose

knowledge is used.
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APPENDIX
THE UNCERTAINTY IMPORTANCE OF INDIVIDUAL VARIABLES

The diagnosis of uncertainty and the eventual reduction or
resolution of uncertainty require that the analyst be able to
ascertain the 1importance of various factors contributing to
uncertainty. In this appendix, technical details of the compu-
tation of uncertainty importance are discussed. The subjective
probability approach to uncertainty analysis facilitates the
separation of uncertainties so that the effect of resolving the
uncertainty about any 1input variable can be measured. These
neasurements provide direction for further efforts in reducing
uncertainty.

The Method

Suppose that the input to a model is a k-dimensional vector
X, having the joint probability density p(x). Denote the model

by

Y = g(X)
where Y is a p-dimensional vector of output variables. Consider
a single element of Y, say Y; = gji(X). One measure of the

uncertainty about Y; is its variance defined as

2

var(Y.) = f[g.l(x) - 9;17 p(x)ax
Rk

where §i = J.gi(x)p(x)dx and Rk is a k-dimensional space.
Ry

The variance of Y; could be reduced if the value of a
variable, say Xj, was known with certainty. The conditional
variance of Y; given X;, denoted by var(Y;|X;), is this reduced
variance and thus var(%i) - va:(Yiin) is the conditional reduc-
tion in variability attributable to ascertaining the true value
of the input Xj. The troublesome feature of the conditional
reduction of vacriance is that it usually depends upon the value
of X3;. A solution to determining the reduction in variance is
to calculate the expected reduction given by

UI(i,j) = var(Yj) - Ex [var(YilXj)].
i
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The right side of the preceding equation may also be written as
varxj[E(Yilxj)] which is normally a simpler quantity to calculate

The quantity UI(i,j) is termed the wuncertainty importance of
input wvariable j for output variable 1i. In the following
analyses we will invariably use the simpler computational
version of UI(i,j) given by

UI(i.§) = varg [E(YilXj)].

An Example

Consider the simple system

where A, B, By, and C are distinct components, but B; and

B, are 1identical. ©Let X; and X3 be the uncertain failure
rates of components A and C, and let X, be the common
uncertain failure rate of By and B;. The system failure

rate is then the uncertain quantity

2 2 2 2
Y = X3 + xlxz + X2 - xlxz - X1X2X3 - X2X3 + X1X2X3.
The conditional expectation of Y given X; is
E(Y]X,) = E(X, + Xz - XZX |1X,) + X, E(X, - Xz - XX, + Xz X, 1X.)
1 3 2 27371 1 2 2 273 2 "3'"71°°

When the input variables X, Xz, and X3 are independent, the con-
ditional expectations in the above expression become equal to
their unconditional counterparts. The uncertainty importance of
X, can then be calculated as
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var[E(Y|X;)] = a2var(Xjy)

where a = E(X,) - E(X%) - E(X JE(Xy) + E(X°)E(X.). The uncer-
tainty 1importances 3% the “remaining t&o vgriables may be
calculated in a similar fashion. Similar expressions for Xj

and X3 are

2
var[E(YIXZ)] var(blx2 + bzxz) .

and

H

var[E(Y|X3)] = c2var(X3) .

where by E(Xq1) - E(Xy1)E(X3)

o
N
[}

1 - E(X7) - E(X3) + E(Xy)E(X3)

and

(9]
I

2 2
1 - E(xl)E(XZ) - E(XZ) + E(Xl)E(Xz).

Continuing with the example, suppose that the input distri-
butions are members of the beta family as shown in the following
table.

INPUT DISTRIBUTIONS

VARIABLE DISTRIBUTION E(X) VAR(X)
Xl 8(10,90) .1 .00089
X2 B(5,95) .05 .00047
X3 B(1,99) .01 .00010

Additionally, from the assumed distribution for xg, E(x2)=.000204

and E(X4)=.0000158. From the table and the <conditional expecta-
tions wé obtain a =.0466, b;=.099, b>=.8910, and ¢ =.992327. The
resulting Uls are

UI(Y,1l) = 1.92 x 10-6.
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UI(Y.2) 1.99 x 10-°.

UI(Y,3) 9.85 x 10-2.

1

The expected reduction in variance 1is greatest for X3 and
least for X,.

Computation of the Conditional Expectations

The computation of the variance of the conditional mean
requires that the analyst be able to compute the conditional
mean for numerous values of Xj. For models of modest size and
complexity, this task is straightforward. For larger and more
complex models, however, the cost may be prohibitive. We are
aware of two methods of simplifying the calculation of the
conditional mean.

First, E{gi(X)Ixj] may be approximated using
statistical estimation procedures such as regression, monotone
and rank regression, and response surface methods. If g(x) is

approximated using an estimate, say h(x), then h(x) may be used
to obtain estimates of the Uls by substitution of h for g. When
the function h(x) 1is 1linear and the input variables are
uncorrelated, the Uls will have the same ordering as the simple
correlations of the Y with the Xs.

A second kind of simplification can be evoked when the input
variables are independent and small in magnitude as in the case
of fault trees. In this situation the response function
evaluated at the marginal expectations will behave very much
like the conditional expectation of the function. Using this
simplification in the example given in the preceding section
gives

g(Wy) = .002475 + .047025 X;
where W, = (X3, E(Xp), E(X3))
2
g(W,) = .0l + .099 X, + .891 Xj
where Wz = (E(Xy), X3, E(X3))
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g(W3) = .00725 + .99275 Xj

where W3 (E(Xy), E(X3)., Xj3)

L]

which yield the approximate Uls

UI(Y.1l) = 1.97 x 10-6,
UI(Y.2) = 1.99 x 10-5.
UI(Y.3) = 9.86 x 10-5.

This simplification is not applicable when the 1input
variables are dependent. However, under dependence, a
linearization of the dependencies may be useful. For example,
the analyst may approximate Xg, j # &, by

E(XQIXj) = tgy + sg3 X5 .
and then wuse these representations in g(x) or h(x). This

procedure is untried as of this date.

The uncertainty importances also may be calculated in a black

box mode. Controlling one variable at a time, the other vari-
ables can be generated according an appropriate conditional
distribution. The conditional mean can then be estimated at

several points; and in combination with the marginal density of
the controlled variable, an estimate of the wvariance of the
conditional mean can be made. This procedure will likely require
greater resources than the previously given simplifications. The
advantage of this method is in its generality.
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