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Abstract

Real time monitoring of toxic metallic effluents in
confined gas streams can be accomplished through use of
Microwave Induced Plasmas to perform atomic emission
spectroscopy.

For this diagnostic to be viable it is necessary that
it sample from the flowstream of interest in an isokinetic
manner. A method of isokinetic sampling was established for
this device for use in the exhaust system of a plasma hearth
vitrification furnace.

The flow and entrained particulate environment were
simulated in the laboratory setting using a variable flow
duct of the same dimensions (8-inch diameter, schedule 40)
as that in the field and was loaded with similar particulate

(less than 10 um in diameter) of lake bed soil typically
used in the vitrification process. The flow from the
furnace was assumed to be straight flow. To reproduce this
effect a flow straightener was installed in the device.

An isokinetic sampling train was designed to include
the plasma torch, with microwave power input operating at
2.45 GHz, to match local freestream velocities between 800
and 2400 ft/sec.

The isokinetic sampling system worked as planned and
the plasma torch had no difficulty operating at the required
flowrates. Simulation of the particulate suspension was
also successful. Steady particle feeds were maintained over
long periods of time and the plasma diagnostic responded as
expected.

Thesis Supervisor: Dr. Paul P. Woskov

Title: Senior Research Scientist, Plasma Systems &
Technology Division, MIT Plasma Fusion Center




Nomenclature

uu

Energy associated with spectrgifopic transition; [Enerqgy]
Planck's Constant; [6.6261 10 Js]

Emitted photon frequency; [1/t]

s Spectroscopic wavelength; [L]
V = Fluid velocity; [L/t]

< o

Qn = Volume flowrate through duct sub-region; [L3/t]
Vh = Air velocity at geometric center of su?-region; [L/t]
A, = Cross-sectional area of sub-region; (L]

Qtot = Approximated duct volumezflowrate; [L7/t]

ap = Area of sampling probe; [L°]

E, = Approximate total duct emissions; 5M/t]

A = Total duct cross-sectional area; [L°]

mass flow rate through sub-region per unit area;[M/th]

m, =
tn = Sample collection time; (t]

Zo = Total head of fluid; (L] 5
ps = local flow static pressure; [F/L"]

g = local acceleration due to gravity; [L/t2]
H, = velocity head; [L]

= Density of fluid; [M/L3]

Density of particle; [M/L3]

Stokes velocity of particle; [L/t]

= Particle entrainment distance; [L]

Absolute viscosity of fluid; [M/Lt]

Stokes diameter of particle; [L]

a = Mean free path of air molecule; [L]

Kinematic viscosity of fluid; [Lié;]

Boltzmann's Constant; [1.3807 10 J/K]

Absolute temperature; [T]

Molecular mass; [M]

= Energy of plasma ion/e}ectron; [Energy]

= Plasma pressure; {F/L") 3

= Plasma number density; [#atoms/L7]

a = Particle transporE velocity; (L/t]

P = gas pressure; [F/L%]

gas thermal conductivity; [energy/LTt]

Slip velocity; [L/t]

6~ = Slip velocity coefficient; [dimensionless]

Rep = Reynold's number of flow; [dimensionlfss]
= Sample probe cross-sectional area; [L™]

= Applied suction force;z[F] (=[ML/t"])

Pg = Suction pressure; [F/L"]

o = Accomodation coefficient; [dimensionless]

= Friction factor; [dimensionless]

Le = Equivalent pipe length; [L]

Sample tube diameter; [L]
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1.0 Introduction

The plasma torch continuous metal emissions monitor was
invented by Dr. Paul Woskov, a research scientist at the MIT
Plasma Fusion Center. It can detect metallic effluent in
gas streams with sensitivities as low as several parts per
billion for most elements.

1.1 Thesis Motivation:

The purpose of this thesis is to create a sealed
version of this device to continuously monitor effluents in
the exhaust duct of the SAIC Plasma Hearth Furnace at Idaho
Falls National Laboratory. This will involve the
construction of a test-bed to carry out the necessary
studies to answer the fundamental questions of plasma torch
behavior and effluent sampling. The specific issues are

addressed at a later point.

Test-bed design will entail detailed analysis of the
field conditions to be simulated in the lab. These factors
will be incorporated into an operable scheme. This
mechanism will then be constructed and operated. The plasma
torch has certain operational characteristics that make a
workable and reliable design challenging to create.

1.2 Information to Follow:

Chapter 2 deals with the basic motivation for the
development of this device, and the competing technologies
also currently under development.

The third chapter deals with the relevant theoretical
aspects of plasma torch operation, particulate collection
concerns, and isokinetic sampling theory including concerns
of temperature effects. Several systems for isokinetic
sampling are considered.

The fourth chapter discusses the experimental approach.

The equipment used in the experiments is explained in

10




detail, relating the various design concerns to the relevant
theory discussed in the third chapter.

The fifth chapter deals with analysis of the data that
was taken in the various experiments. Conclusions of device
effectiveness and operability are covered in detail.

The sixth and final chapter summarizes the important
results and discusses relevant future work that may be
undertaken in the area.




2.0 Background

2.1 Use of Low Temperature Plasmas:
In both research and industry, low temperature plasmas

are used for a wide variety of applications. Perhaps the
most familiar use of cold plasmas is in fluorescent bulbs or
in the etching of microchips in the semiconductor industry.
Other uses include applications of thin films of metal for
corrosion protection, and in waste treatment.

Plasmas can also be used as a high temperature heat
source for vitrification furnaces used to process soils
contaminated with radionuclides.

In the fabrication of weapons grade plutonium, the
separation processes involved the use of toxic chemicals.
After the separation processes were complete, these
chemicals were placed in storage facilities combined with
whatever radionuclides were separated from the plutonium.
This is sometimes called mixed waste.

A plasma hearth can serve two purposes in processing
this type of waste. 1In addition to vitrifying the
radionuclides, the toxic molecules that become airborne in
the hearth are broken apart in the high temperature plasma

environment.

2.2 Motivation For Plasma Diagnostic Development:
The EPA is in the process of implementing strict new

laws pertaining to the emissions of toxic metallic effluents
in exhaust streams. Twelve metals are targeted in this
legislation (Ag, As, Ba, Be, Cd, Cr, Hg, Ni, Pb, Sb, Se,




Tl). This legislation, (40 CFR Part 60) also requires that
these metals be monitored continuously [1].

Equipment capable of this type of monitoring is not
available commercially. Currently, samples must be drawn
from the flowstream through a cyclone probe/impinger train.
The collected sample is sent for laboratory analysis. This
hardly constitutes real-time monitoring.

Plasma based atomic emission spectroscopy measurements
provide a promising basis for real time monitoring. The
basic concept is to ionize a portion of the gas passing
through the flowstream of interest, and observing the

spectroscopic transitions that result. This can be

accomplished in several ways.

Much work has been pursued in the study of Inductively
Coupled Plasmas (ICPs) and Laser Spark Discharges.

ICPs have long been used in a laboratory setting to
conduct sensitive measurements [1]. They are very sensitive
to flow transients and the composition of the purge gas that
flows through it. ICP plasma stability is a major issue.
ICP plasmas can generally only operate over a narrow range
of flowrates.

Units have been adapted recently for use in real-time
monitoring purposes in the field [1], but their sensitivity
for stable plasma operation greatly limits the environment
that they can be placed in. The units are large and bulky
making in-situ placement (i.e. placement directly in a
flowstream) impossible.

As a result of this, when using an ICP, one must use a
complicated isokinetic sampling system. The sample must
follow a long sampling train including bends, restrictions,
and flow separators to treat the flow and alter its
composition to make it more digestible for the plasma. This
dilution of the sample and complex flow geometry can lead to
errors in measured quantities.

Laser-Spark Discharges can be used for in-situ

measurement, but the area of the flow that is monitored is




very small due to the narrow cross-section of the beam [1].
This can lead to results that may not be meaningful. These
systems also have trouble detecting vapors.

Microwave Induced Plasmas (MIPs) don't suffer from
these shortcomings. With thoughtful design of the unit it
is possible to place it directly inside the duct in a
straight-through orientation that minimizes loss of the
sample due to deposition. MIPs are less sensitive to flow
transients and can operate over a wider range of flowrates.
Most important of all, MIP units are much less expensive
than ICPs.

2.3 Basic MIP Setup:
The present setup of the in-lab MIP diagnostic (See

Fig.1,p.71) consists of a waveguide attached to a magnetron
microwave source. Microwave power is transmitted by the
rectangular waveguide to its shorted end in a transverse
electric field (TE) mode.

A hole is drilled through the end of the waveguide
along the direction of the electric field 1/4 wavelength
from the end of the waveguide where the E field is at a
maximum. An axial flow is established by purging a carrier
gas through this hole. Below the waveguide is a swirl-jet
assembly that injects additional gas into the flowpath with
tangentially mounted jets. This adds vorticity to the flow,
effectively causing the streamlines to twist into a helical
pattern.

With the flow established, 2.45 GHz microwaves are
launched down the waveguide into a standing wave pattern.

To start the plasma, free electrons are released into the
flow near the waveguide with an antenna or spark discharge.

These electrons interact with the electric field
causing an electron cascade resulting in breakdown of the
carrier gas. This causes the formation of a plasma.

Fused quartz fiber optic lines view the atomic emission
that occurs in the plasma and transmit this light to a high-




resolution grating spectrometer with a maximum resolution
of 1071?
detector array transmits this data to a computer.

meters where the spectrum is dispersed, and a

The end result is the capability to monitor the atomic
emission from the plasma in real time. If metallic
particles become entrained in the carrier gas, they are
similarly excited in the plasma and their transitions may
also be monitored. This is the basis of monitoring metallic
effluents in real time.

2.4 Plasma Torch Detection Limits:
Most of the research to date has been in determining

the absolute detection limits of the torch. The detection
limits for some of the metals targeted by EPA legislation
are less than one part per billion (See Table 1, p.62). It
varies from element to element due to the fact that the
atomic transitions of some elements are stronger than those
of other elements.

In the establishment of these absolute limits, direct
insertion of sample powders on probes were used in addition
to the introduction of aqueous solutions with a nebulizer (a
small atomizer for liquids), and direct vapor introduction.

2.5 Current Challenge:
One thing that this device has not yet done is sample

from a flowstream in an isokinetic manner. Isokinetic
sampling, simply stated, is matching the suction velocity of
a sampling probe to the local freestream velocity where the
sampling is taking place. It is required by the EPA that
any diagnostic of this nature to be able to sample in this
fashion [1]. This is the principal issue that this thesis
shall deal with. Once this requirement has been satisfied,
the diagnostic will be considered valid for EPA compliance

monitoring.




3.0 Theory:

3.0.1 Relevant Plasma Physics:

The plasma physics involved in an MIP can be very
complicated. Such a plasma is not in local thermal
equilibrium. There are different temperatures for electrons
(excitation and rotational), and the neutral gas
temperature. However, for the purposes of this work, only
the neutral gas properties (temperature, pressure) will be
discussed.

Concept of Temperature:

The neutral gas temperature in an MIP is defined in the
following manner:

T = Eq/k (1)

Eq is the average energy of the gas molecules. k is
the Boltzmann Constant (1.3807 10723 J/K) and T is the
absolute temperature of the gas. The temperature of the
plasma is some 5800 K [1]. This means that on the average,
each molecule in the plasma has an energy of 8 10_20 J or

about .5 eV.

Concept of Pressure:

The pressure in the plasma Pp;, is the number density,
n, of atoms in the plasma multiplied by the average energy,
or:

Pp1 = nkT (2)

It is clear that as the temperature of the plasma increases,
so does the kinetic energy of its molecules. As their speed
increases, so do the number of collisions in the plasma.
This collisional phenomenon is how pressure arises in a

plasma, or any other gas.




3.1 Plasma Diagnostic Operational Issues
Even though this MIP diagnostic is very robust, there

are certain operational parameters and device
characteristics that must be observed in order to ensure
reliable operation.

3.1.1 Addition of Helical Flow:

In the early stages of research with the microwave

torch, only axial flow was sent through the torch to create
the plasma. Helical flow injectors have been added only
recently to the design. The idea of adding helical flow to
the plasma is an idea that came out of ICP research.

The symmetric flow vorticity added by the injectors
gives the plasma enhanced stability and better protects the

side walls of the flow tube through the waveguide. Also,
the plasma can sustain itself on the flow provided by the
tangential injectors alone. This is of added benefit during
operation in the case where the axial flow alone could not
be enough to sustain the plasma. One would encounter this

situation in a very low-speed flowstream.

3.1.2 Relationship Between Flow and Power Consumption:

The plasma torch has an axial flow operating range of
approximately 0-1.5 cfm for nitrogen at standard conditions
with the helical injectors operating. As mass flow rate is
increased through the torch, it is necessary to increase
power input to maintain plasma integrity. This is due to
the fact that as the number of atoms of gas per unit time
increases, there are less ionizations per unit volume of
gas, and the plasma self-extinguishes. One simply must
increase the average ionization by increasing the microwave

power input.




3.1.3 Volatilization of Entrained Particulate:

The amount of time that a particle resides in the
plasma needs to be maximized because some effluents
(particularly refractory materials such as U-238) are very
hard to volatilize and cause to undergo transitions in the
plasma. The residence time of an effluent particle in the
plasma is between 15 and 30 milliseconds (approximately).
Since the temperature of the neutral gas is some 5800 K, a
substantial amount of energy may be transferred to the
particle. However, if the melting temperature of the
material is too high, it will not volatilize while in the
plasma.

Unfortunately, the plasma temperature is not greatly
affected by changes in power input or purge flowrate.
However, by increasing the microwave power input to the
torch, more of the passing atoms in the flowstream per unit
volume of gas may be ionized. This results in an increase
in the population of high energy free electrons that can
collide with the particle. If there are more collisions
with the particle, clearly more energy is transferred and
the particle may be excited.

Another possibility is to reduce the purge flowrate so
that the available microwave power is being absorbed by less
atoms per unit time. This will also increase the residence
time of the particle in the plasma giving it that much more
of a chance to interact and absorb energy.

3.1.4 Spectroscopy Theory:

When an electron loses its energy and jumps back to its
ground state, it emits a photon with an energy unique to
that quantum transition for that element. This energy can

be expressed as [2]:

E = hv (3)




Where v is the frequency of the photon and h is
Planck's Constant (6.6261 10 2% Js). Then, the transmitted

wavelength, Ag, can be determined by:

Ag = c/v @
A given element may have many different wavelengths at which
it may emit light throughout the entire spectrum.

Virtually all of the emission lines that have been
observed have been from excited neutrals, where no electrons
have been stripped from the metal atom. Ionization of atoms
would require a great deal of energy and in any event, all
that is necessary to identify the presence of an element
uniquely is to just excite it. An exception was observation
of the singly ionized nitrogen molecules in the background
gas.

3.1.5 Torch Calibration Theory:

Device calibration has been quite challenging. Most of
the earlier research raised more challenging questions
rather than good answers. The calibration of this device is
not exact. The light intensity from spectroscopic
transitions for a particular element do not necessarily
increase linearly for an increase in mass in ionized
particulate.

As the particles get larger, atoms at the center of the
particle will most likely not become excited for a given
microwave power input. At higher microwave power levels,
more energy is available which results in an increase of the
population of free high-energy electrons. With more of these
electrons available to collide with the metal particles two
things may occur.

Primarily, the atoms on the exterior of the particle
will have more collisions per unit time. The corresponding
light signature that the spectrometer intercepts will
therefore increase.




Second, this higher effective energy flux bombarding
the surface of the particle will cause increased conduction
of heat toward its center. This can result in vaporization
of the exterior atoms which will expose the inner atoms to
the plasma as well. When these inner atoms then become
excited by the free electrons in the plasma, they too will
radiate. This cumulative effect will serve to increase the
signal to the spectrometer.

If one considers variation of flow, residence time is
affected which will have similar unpredictable effects on
the recorded spectroscopic transitions at a given
wavelength.

It has become clear that the issue of calibration is
unique to each application and should be handled on a case
by case basis. This is due to the wide variation of
parameters that can exist between applications. It involves
a great deal of work, but it also has the largest chance for
success.

The calibration of light level to known mass of
effluent should ideally be performed for several flowrates
through the torch, each corresponding to expected flowrates
necessary to create an isokinetic sampling condition at
different flowstream conditions. At these flowrates, it
must be determined how variations of input power affect the
light signature detected for a given size range of
particles. In this manner, regardless of particle size
distribution, it should be possible to predict particle
emissions for certain operational conditions.

For the purposes of the present experiments however, it
will merely be attempted to obtain a steady spectrometer
signal over time for particular conditions. The
determination of the quantity of trace metal constituents in

a flowstream remains a task for the future.




3.2 Isokinetic Flow Sampling:

3.2.1 Basic Concepts:
Isokinetic sampling is a fairly straight-forward

condition that has to be satisfied. The local unperturbed
flow velocity at the point of sampling must be matched
exactly by the suction inflow of the torch. This is
important from the standpoint of extracting a
"representative" sample from the flowstream [3].

In a situation where there are entrained particles in
the flowstream, upsetting the flow by either super or sub-
isokinetic sampling [4] can cause the local solids
distribution to change, causing either too much or too
little of the particulate to be drawn in (See Fig. 2, p.72).

As can be seen in this diagram, Isokinetic sampling can
only be achieved when the critical streamline (i.e. the
streamline that defines the edge of the sample stream) is

perpendicular to the plane of the sampling nozzle.

3.2.1.1 Determination of Duct Volume Flowrate:

It is important to determine the duct volume flowrate
at a given operating condition. This may be closely
approximated by direct measurement with a technique provided
in [3]. In this technique, the duct is broken up into a
number of imaginary sub-areas, A,. Different schemes are
displayed in Fig.3, p.73.

The volume flow throughout the region can then be found
in the following manner:

Qn = Vp@Ap (5)
and the total duct flowrate can be found from:
Qtot = (Q1 + Q2 + Q3 +...+Qy) (6)

This technique, and the one in the next section will be
important in the field measurements that are performed by
SAIC out in Idaho.



3.2.1.2 Determination of Particulate Mass Flowrate:

One can closely approximate the particulate mass
flowrate in the duct by techniques related to those
discussed in the previous section.

Using the same area scheme as above, a close
approximation to the emissions, E; [mass/time], can be found
from:

Ep = A(mA;/A + myAy/A +...+ mpA,/A) (7)
where A is the total cross-sectional area of the duct and mj
is the local mass flowrate per unit area given by:

my, = Wn/antp (8)
Here, a, is the area of the sampling probe, and w, is the
sample mass collected in time t,.

Referring back to Figure 3, one can obtain
progressively better and better accuracy by sampling from
more and more points. This can be important if the solids
distribution is unusual in character.

In these different schemes, the magnitudes of the areas
with respect to one another 1is essentially arbitrary. The
determining factor is the selection of the sampling point
location with respect to that area. The sampling point in
the sub-area should correspond to a location that
experiences the average mass flowrate of entrained
particulate.

Clearly, this cannot be known beforehand. One has to
make a careful study of the profile. If the profile is
sharply peaked toward the center or to one side, it may be
wisest to choose many sampling points to obtain an accurate
picture of the profile during operation. However, if the
mass flux profile is fairly steady, fewer sections will do.

In either of these cases, for a round duct, the areas
may be selected to be equal in magnitude for convenience.
The sampling point is typically selected to lie half-way
between the inner and outer radii of the sub-area. The key




is to match the appropriate scheme to the nature of the

profile.

That is a brief look at how the data obtained from
isokinetic sampling can be used to construct useful
estimates of duct flow and solids transport when taking data
in the field. Now is an appropriate time to consider
different ways of satisfying the requirements to establish
isokinetic sampling.

3.3 Different Sampling Schemes:
In selecting a sampling setup, several options were

considered. They are discussed in the following sections.

3.3.1 Method 1:

This method was originally drawn from ([3]. This
reference dealt with the measurement of solids in high-
temperature flue gases from coal combustion using isokinetic
means. The approach used was one of direct measurement of
the velocity profile in the region of interest.

Although the magnitude of the velocity profile changes
with a change in volumetric flow rate, the characteristic
shape of the profile usually does not [3]. The flowrates at
all points in the duct's cross-section should all increase
or decrease in the same relative ratio [3]. No mention was
made by [3] as to how this was known. It is therefore to be
taken as fact.

Therefore, a detailed study can be made of the velocity
profile and a relationship can be established between the
specific sampling point and a "control" point near the wall
of the duct (See Fig.4, p.74). A pitot tube and a
thermocouple can be inserted into the flow to continuously
monitor flow speed and temperature at the control point.

One can take this continuously measured velocity value at
the side of the duct and multiply it by an appropriate ratio

that gives the corresponding velocity at the sampling point.
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Advantages:
This method is fundamental. It is clean and the

sampling probe can have an extremely low profile minimizing
condensation on it.
Disadvantages:

The method of obtaining the profile is very time
consuming. In the event that one wanted to sample in a
different portion of the duct, or wanted to sample in
another device altogether (i.e. to have a "portable" unit),
the profile would have to be re-established, which would not
be practical.

With this method, one has to be very concerned with
temperature changes in the flow. If there is an appreciable
change in density in the gas, then the suction rate must be
modified to pull in the correct mass flow rate. This
concern is addressed in Section 3.5.

3.3.2 Method 2 (EPA Method 29):

This method is one outlined by the EPA [5] as a viable
method to perform isokinetic sampling(See Fig.5 ,p.75). 1In
this method, a probe is designed that has a pitot tube and
thermocouple to measure flow and temperature right next to
the inlet nozzle.

The flow velocity measured by the pitot tube is assumed
to be the same as that near the inlet nozzle. The
temperature read by the thermocouple is assumed to be equal
to the local gas temperature at the sampling location. With
this information, and the suction inlet area, one can
calculate the mass flow rate necessary to pull through the
sample line in order to perform isokinetic sampling. The

mass flow rate for suction is then adjusted to this value.




Advantages:
The major advantage that this system has over the one

previously mentioned is that one does not have to determine
the velocity profile. This method is therefore versatile
enough to use at different points of the same duct or in an
entirely different environment.

Disadvantages:
If the stream happens to be heavily ash laden, one has

to filter out the particulate before it goes through the
mass flow-meter. This technique works well when particulate
are collected (i.e. with a cyclone probe), but the plasma
torch is a passive diagnostic and adds a great deal of heat
energy to the sampled gas. This would therefore require the
installation of a heat exchanger to avoid damaging the mass

flowmeter.

3.3.3 Method 3, Static Pressure Taps:
This method was found in [6] for isokinetic sampling in

a dense gas-solids stream. In this method, a thermocouple
is not utilized (see Fig.6, p.76). Instead, static pressure
taps are located at the inside and the outside of a low-
profile stainless steel nozzle. Both taps are connected to
a differential manometer. The difference in manometer head
is the difference in dynamic pressure head in inches of
fluid. In theory, if the manometer reading is "zero", then
the pressure head at the inside and outside must be equal,

hence the velocities must be the same.
This pressure difference, AP, is given by:
2 2
AP = pv;i©/2 - pVsT/2 (9)

Here, p is the fluid density, and V; and V, are the flow
velocities at the inner and outer pressure taps.

The sampling nozzle has a very sharp tip to minimize
particulate collection (See Fig.7, p.77). The pressure taps
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are hooked up to a high pressure purging system where the
leads to the manometers can be shut off via valves, and a
path can be opened between the taps and a high-pressure
nitrogen source. This is of great benefit in case the
pressure taps become clogged by particulate deposition.

Advantages:
This device measures the local velocity closer than any

of the other methods described. It is simple, and
temperature effects do not have to be considered. It is
especially appropriate for use with the plasma torch,
because a mass flowmeter is not required. This is due to the
fact that the whole "business-end" of the device is located
in the flowstream. This consequently eliminates the need
for a heat exchanger (as long as the suction pump can handle
the heat).

Disadvantages:
Although this device looks great on paper, the

manometer reading at flow balance may not be zero for all
encountered flowrates. So it is necessary to calibrate this
device by establishing "true" isokinetic sampling via
exterior means. This is discussed in the next chapter.

Other Comments:

To properly size the differential manometer for this
application, one must calculate the maximum velocity head
that can be encountered, and double it. That is the
approximate manometer range that can be expected in
operation.

This extreme condition can arise in the case that there
is no suction with full duct flow or full suction with no
duct flow. In either of these cases, the manometer head
difference will be due to the maximum expected velocity.
The velocity head, H,, can be calculated from:
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H, = V?/2g (10)
This will provide the velocity head in length dimensions of
air. The manometer has water in it so this head value must
be converted to length dimensions of water:

(PpgH) air = (P9H)yater (11)
This will provide the necessary head value for sizing the

manometer.

3.4 Entrained Particulate Behavior:

There are several issues concerning particulate
behavior for the use of the plasma torch diagnostic. These
areas are in the feed introduction system, the sampling
train, and the effect of the plasma on the particulate.

The prevailing loss of particles from the flowstream
will be due to turbulent transport and Brownian motion.

3.4.1 Dust Introduction System:

A way must be devised to entrain particulate in the
flow in order to perform measurements. This system should
be capable of introducing feed at a steady mass flow rate.

A critical figure of merit that must be calculated is
the minimum distance required, Agne, for particulate to
become entrained in the flowstream [3]. This can be
calculated with the following relation:

Aent = VV/g (12)
Here, V is the velocity of the flowstream that is

accelerating the particle, g is the local acceleration due
to gravity, and v is the Stokes velocity that can be found
from [3]:

v = (o-p)gd’/1sp (13)
Here, 6 is the particle density, d is the Stokes diameter of

the particle, and p and pu are the carrier gas density and

viscosity respectively.



The Stokes velocity is sometimes called the "settling
velocity" of the particle in a gravitational field. It is
important because if it is too large, the particle may
settle out of the flow before it becomes entrained. This
therefore sets a lower limit on the velocity of the
airstream if one wishes the particulate to become airborne.

The Stokes diameter is the diameter of a sphere having
the same Stokes velocity as the particle. However, for the
sake of convenience, let us consider the particles to be
spherical. An exact value is not necessary for the purposes
at hand, an approximate one will be sufficient.

This entrainment length is important because the

particulate must be fully entrained in the flow by the time
the sampling plane is reached, otherwise the experimental
results will be invalid.

3.4.2 Particulate Carrying Characteristics of Duct Flow:

Typically, the shape of the solids profile mimics that
of the velocity profile across the duct to a certain degree.
This depends on the size of the particles and the speed of
the airstream [3]. It is tied to the concept of entrainment
as discussed above. If there is a change in flow direction
and the momentum of the particulate keeps them from reacting
quickly enough, the carrier gas velocity and solids velocity

profiles will diverge. This will be more significant for
larger particulate due to their higher momentum.
Another important concept is the Reynold's number, Rep.
It is the ratio of inertial to viscous forces in the fluid:

Rep = pVD/i (14)
Here, p is the fluid density and p is its absolute
viscosity. V is the freestream velocity and D is the duct

or tube diameter. If the Reynolds number ventures far above

2300, the flow will become turbulent. This is important
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because it may change the dominant mechanisms of particulate
transport that results in deposition. For the main duct,
the Reynold's number is in the neighborhood of 120,000.

This is clearly turbulent. The flow will also be turbulent
going through the plasma torch.

In the process of simulating an environment, geometric
factors have a tremendous effect on the distribution of
entrained particulate across a duct ([3].

An example of this effect is that of a particulate
laden airflow through an elbow in a duct. In the fluid
itself, the elbow will cause a secondary flow rotation,
resulting in the addition of a helical component to the
flow. Viscous interactions will eventually even the profile
out as the gas travels down the duct in 5-8 duct diameters
[31.

The particulate are also affected by the elbow. Their
tendency will be to migrate toward the outer side of the
elbow, primarily as a result of "centrifugal force" [3].
After passing through the elbow, the mass profile will
return to its original shape approximately 5-8 duct

diameters downstream(3].

3.4.3 Sampling Train:
3.4.3.1 Inertial Deposition:

The design of the isokinetic sampling head and the rest
of the sampling train, particularly the portions leading up
to the plasma, must be performed very carefully.

A major concern is the deposition of particulate on the
insides of the sampling train before the plasma, called
inertial deposition [7]. Particulate tends to collect in
areas where a rapid change in momentum occurs (i.e. an
elbow). Elbows and bends must therefore be kept to a
minimum.

Inertial deposition is adequately described by

mechanics. For high speed flows, such as encountered in
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this situation, when a particle strikes a surface, it will
rebound with a certain force. If that force is sufficient
to overcome the attractive forces that tend to make the
particle stick to the surface(commonly referred to as Van
Der Wall forces), the particle will not deposit [7).
However if the particle is flowing at a lower speed, its
rebounding force may not be enough to overcome the
attractive force, causing the particle to deposit.

3.4.3.2 Turbulent Deposition:
Deposition on the walls of the main duct is a result of

turbulent deposition [{7]. 1In turbulent deposition, the
entrained particulate flowing parallel to the surface is
deposited as a result of the fluctuating flow velocity
component normal to the wall. This is significant for

particles larger than 1lum in diameter [7].

3.4.4 Plasma-Dust Interactions:

The temperature at the centerline of the plasma is
approximately 5800 K [1]. If the particulate resides long
enough in this region for significant heat transfer to occur
from the plasma to the particulate, there will be a certain
degree of vaporization of the particulate. The degree of
vaporization will depend on the size of the particulate and
its composition. These heating interactions result in
thermophoresis [7], where small particles in the presence of
a temperature gradient will diffuse from hot to cooler

regions.

3.4.4.1 Thermophoresis:

In the case at hand, the temperature at the center of
the plasma and exhaust stream is the highest. The cool
region is the wall of the tube. The particles will tend to
diffuse toward the wall of the tube, and condense. The
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_.—=he higher temperature direction will lose
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==ature molecules will lose more momentum in
z=T=ar the particle's surface than the colder
-3 result of this local momentum imbalance at
— == colder molecules flow over the surface
——=3r side. Hence creeping flow.
——:ow of these creeping molecules are affected
- == surrounding gas. Due to viscous
=== side of the particle. As a result of the
~=—:ing up on the high temperature side, the
—nelled in the low-temperature direction [7].

——zey will slow down a short distance after

——=locity is given by:
2ko' k
vy Koy (17)
2k, +K p
= the pressure of the gas, k¢ is the thermal

—= the gas and K is the thermal conductivity of

= <~ is a coefficient that relates the slip
—=zed at the surface due to the viscous
——=he temperature gradient:
_ o'k VT
p

z:i:ly taken to be 1/5 (no dimensions)[7].

(18)

s

—==sis is important because it will eventually
== transfer the heat energy of the plasma to a
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low-temperature sink via a heat exchanger. If the
thermophoresis is significant in the heat exchanger, it will
result in fouling of the tubes thereby reducing heat
transfer. This phenomena was also noted when a version of
the torch was placed in-situ in MARK-II. There was a
uniform buildup of material on all surfaces after the
plasma, particularly in the suction pump demonstrating that

thermophoresis can indeed occur as a result of the plasma.

3.5 Temperature Effects on Isokinetic Sampling:
Elevated temperatures have an effect on isokinetic

sampling, depending on the situation. If one looks at a
simple situation such as that outlined in 3.2.1, if the duct
temperature increases significantly above room temperature,
the gas that is being drawn into the sample tube will be of
a lower density than air at room temperature. What this
means is that if the isokinetic system is calibrated to pull
air at room temperature, it will be pulling harder on the
higher temperature gas than it should be. This can be seen
if one looks at the conservation of linear momentum:

2
PV Agt = Fg = PgAst (19)

Here, p is the density of the fluid, V is the suction
velocity, Agt is the cross sectional area of the sample tube
and Pg; is the suction pressure supplied by the pump. This
is the simplest representation regarding pulling a sample
through a line (neglecting viscous effects).

If the system is calibrated at room temperature, a
relationship will be established relating suction pressure,
Pg, to flowrate, V. As the sampled gas temperature
increases, its density must decrease. This reduces the

magnitude of the inertial ternm, pvast at a given velocity,
V. The suction pressure is applied externally. If that

remains constant, in order for momentum balance to exist

more gas will be pulled in until the magnitude of pV2Ast
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equals that of PgAg.. For this compensation to occur, the
only thing that can increase is the velocity.

To summarize, the increase in temperature caused a
decrease in fluid density resulting in a decrease in the
momentum of the flow passing through the tube. To
conmpensate for the momentum imbalance, more gas was drawn in
which resulted in a higher gas flow velocity than before.
This velocity is higher than the local freestream velocity
of the flow, hence the isokinetic sampling criterion is
violated. The amount by which the velocity will be off can
be estimated by [9]:

2 2
(PV ) hot = (PV7)cola (20)
Since the area, Agy, does not change. This becomes:
1/2
Vhot = (Pcold/Phot) /Vcold (21)

So the suction velocity will scale like the square root of
the density difference. The viscosity will result in a head
loss term due to friction with the walls of the tube. An
expression in terms of pressure including this term is:

Py = pV° + (£/2) ( PV°) (Le/D) (22)
Here, f is the friction factor, Lg is the equivalent length
of the tube between the sampling point and the pump
(including entrance losses, bends, etc.), and D is the
diameter of the tube. Re-arranging by equating the right
hand side to itself for two different temperatures:

Vhot=Veo1a{ [ 1+ (£cora=Fhot/2) (Le/D) 1 (Pcora/Phot) } 72 (23)
The friction factor depends on the Reynold's number which
depends on density and viscosity.

For a temperature change from room temperature (25 C)
to 200 C, using (21), Vpot = 1.27 Vgoig. This is not
acceptable. However, if one accounts for viscous effects
using (23), Vpor = 1.09 Vgoigq for Lg/D = 75 and D = 1.0 cm.
This is a practical high-temperature limit below which
temperature effects may be neglected.

34




4.0 Experimental Approach
To ensure the success of the plasma torch diagnostic

out at SAIC, it is clear that the most conservative design
and testing approach should include simulating the expected
operating conditions in the laboratory. The following
section summarizes characteristics that will be important in
this simulation.

It is required to sample isokinetically from the
flowstream and characterize the torch performance to attempt
to obtain a steady spectrometer signature over time. This
spectrometer signature must be repeatable.

4.1 conditions at SAIC:
4.1.1 Exhaust Gas:

At SAIC, the furnace is purged with pure nitrogen as an
operating medium for the plasma, but the hot exiting exhaust
gas is cooled by mixing it with compressed air. The point
of sampling in the exhaust stream for the plasma torch
occurs far downstream after this mixture has had a chance to
equilibrate and go through the primary components of a
filtration system [8].

The exhaust gas temperature is between 200 and 300
degrees Fahrenheit at the point of interest. Flowrates vary
between 400 and 900 cfm in an 8 inch diameter schedule 40
exhaust duct [8].

4.1.2 Particle Characteristics:

The filtration system upstream of the sampling point
consists of bag filters that remove particle sizes above 10
um in diameter [8].

The material being vitrified in the furnace is clean
soil from a lake bed that was used as a dump for hazardous
waste and radioactive materials. Earlier tests with the
furnace will use this clean feed while later tests will

involve hot (radioactive) material.
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The off gas will contain entrained effluents consisting
mostly of metal/soil particulate. A sample of the clean
lake bed soil was analyzed (See Table 2, p.63). The exhaust
gas will contain trace amounts of these elements.

Due to the great amount of cooling air added to the
furnace, the gas-particulate suspension in the region of
interest is extremely dilute, that is, the volume occupied
by the particulate compared to that of the gas is
negligible. What this means in turn, is that the flow
behavior of the exhaust gas should not be significantly
influenced by the presence of the suspended particulate
[10]. The solids profiles, however, will indeed be
influenced by the gas behavior, as discussed in the previous
chapter.

4.2 erimental Apparatus:

The experimental setup was designed and constructed
mostly by the author. The only fabricated component not
designed by the author is the plasma torch setup itself
(waveguide, starter, jets). The microwave equipment,
spectrometer array, pump, manometer, and center steel pipe
section are all off-the-shelf hardware. The remainder of
the mechanism (sampling head, piping layouts, heat
exchanger, main duct w/associated components, dust feed

mechanism, etc.) were all designed and built by the author.

4.2.1 Main Duct:

A "replica" of the exhaust duct at SAIC was constructed
in the laboratory (see Fig.8, p.78). This system consists
of an 8-inch diameter schedule 40 PVC pipe approximately 20
feet in length. There is a center section made of steel
with a 4" diameter 90-degree flange welded to it. This
flange is the same as the one that is anticipated to be used
out at SAIC during field tests.
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The precise location in the SAIC exhaust duct in which
the sampling will be performed has not been determined
exactly. A straight run of pipe at least 8 pipe diameters
in length has been requested so that the effects due to
upstream geometric factors (bends, etc.) that upset the
solids profile will be minimized. The basic piping layout
of the setup in the lab therefore assumes a straight run of
pipe leading up to the sampling point.

A squirrel cage blower provides between 250 and 750 cfm
of flow through the sample duct, approximately in the lower
2/3 of the range of expected flowrates to be encountered at
SAIC. The volume flowrate is controlled with a diverter
valve that has seven different graduations, hence seven

different volume flowrates can be achieved.

4.2.2 Flow Straightener:
Due to size constraints in the lab, the ducted flow

must pass through two 90-degree elbows before it reaches the
main duct. During earlier work, it was noticed that there
was a helical component to the flow in the earlier stages of
the duct. This was measured with a hot wire anemometer by
holding it perpendicular to the axis of the duct. The
profile in the axial flow direction was also a bit of a
mess. This is not good because the particulate were going
to be introduced shortly after the elbow. A significant
helical component in the flow could upset the solids
distribution and possibly result in abnormal deposition.
Needless to say, this is not adequate for the simulation of
a straight flow.

For this reason, a flow straightener was constructed
(see Fig.9 ,p.79) by packing a three-foot section of 8-in.
PVC pipe with 2-foot long tubes of different diameters.
Tubes of larger diameter (72 in.) were located on the
outside while tubes of smaller diameter (~1 in.) were

located toward the center. This was performed to try to
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force a more fully developed flow profile in addition to
straightening the flow. The larger pipes provide less flow
resistance than the ones in the center, encouraging a
flatter profile.

4.2.3 Isokinetic Method:

As mentioned in Section 3.2.3, one typically has a
number of options in designing an isokinetic sampling
system. In selecting a particular scheme, the primary
factor is system simplicity allowing easy and reliable
operation. It is for this reason the method described in
3.3.3 has been chosen. Its major advantage is that one does
not have to account for temperature changes of the duct gas
with time (as long as those changes are not too rapid). If
the nozzle has to be calibrated for different velocities, a
pitot tube can be mounted next to the nozzle to measure the

local velocity (See Fig.10, p.80).

4.2.4 sampling Train:
The isokinetic sampling train consists of the sampling

nozzle, the plasma torch unit consisting of starter, swirl
jets and waveguide, the primary exhaust section with a
window, a heat exchanger, a suction pump, and a suction
adjusting system (See Fig.8, p.78).

4.2.4.1 8izing of Sampling Head and Choice of Manometer:

The size of the inlet to the nozzle has to be chosen
such that the amount of flow that it has to intercept during
isokinetic matching conditions will not exceed operational
parameters of the torch. The maximum value for the torch
was chosen to be 1.5 cfm of straight flow. The maximum flow
velocity expected out at SAIC for 900 cfm of volume flow is
approximately 45 ft/s. Based on these parameters, a nozzle
with a frontal opening of 5/16-in. diameter was appropriate.

The manometer size was selected on the basis of the
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maximum velocity head that could be encountered at SAIC.
Based on a value of 45 ft/s for maximum local airflow, the
maximum head was found to be ~0.4 in. H;0 (using Eq.10).

This maximum differential would occur in the case that
there were no flow through the nozzle with the duct
operating at maximum flowrate.

A differential manometer was chosen (i.e. taken out of
the junk pile in the NW-16 basement) that operated on that

scale.

4.2.4.2 Plasma Torch:

The plasma (See Fig.1l1l, p.81) resides in a reduced
width waveguide to increase microwave power density. This
increases the number of ionizations per unit volume and
robustness of the plasma. Immediately upstream of the
waveguide is a tangential flow injection collar (to add
vorticity to the flow), and a spark plug starting mechanism.

4,2.4.3 Starting Mechanism:

Starting the plasma entails striking an arc between the
two electrodes (in this case, spark plugs serve the purpose
nicely). The electrical potential difference is provided by
a Tesla coil. The arc is essentially a small plasma. The
longitudinal flow from the gas flowing through the sampling
nozzle transports these ionized particles to the waveguide
where they act as a source for the electron cascade that
causes the main plasma to fornm.

This starting mechanism, designed by Paul Thomas, a
research engineer in the group, is essential to the
operation of the device in a sealed environment. Without
this advancement, use of this device in a non accessible
area (i.e. sealed flowpath or in-situ placement) would have
been very difficult. With this mechanism, starting the
plasma is simply the act of pressing a button.
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4.2.4.4 Primary Exhaust:
Immediately after the plasma torch there is a series of

KF-40 kwik-connect fittings that make up the first part of
the exhaust system (primary exhaust). All of the components
are stainless steel, and terminate at a 3/8-inch O0.D. copper
tube that leads to a heat exchanger. The exhaust from the
plasma torch is very hot (several hundred degrees
centigrade).

This initial run of fairly large diameter piping is
very important for plasma operation. If the open region
immediately after the plasma is not of sufficient volume one
can obtain audible harmonics that cause the plasma to
undergo cyclic perturbations that may cause it to
extinguish.

Having a "reservoir" for the hot gases to travel
through for a short time before they are drawn into a small
orifice definitely helps keep the plasma in a stable
operating mode. A window was installed at the end of the
straight run to observe starting and operational behavior.

4.2.4.5 Heat Exchanger:
As mentioned in the last section, the purge gas exiting

the plasma is very hot, so it must be cooled before it is
run through any flowmeters or suction pumps because of
possible damage. A heat exchanger capable of removing at
least one kilowatt of heat was required due to the fact that
although some of the microwave energy is given off as light,
the vast majority of that energy remains in the gas. One
was designed and constructed from existing components.

The heat exchanger is a simple once-through cross flow
design (See Fig.12, p.82) where hot gas flowing through a
copper coil is cooled by water flowing across it. It was
intended to over-~design the unit from the beginning (since
the materials were available) and also due to the fact that
the research group has a 2.5 kKW microwave power supply.
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Should that unit ever be used in the lab in a similar
application at high power, it would be a good idea to have
this unit handy.

It was mentioned in Chapter 3 that the sampling scheme
chosen would not need a heat exchanger or a flowmeter. This
statement was based on the fact that the suction pump would
likely be a large venturi pump that has no moving parts and
is not heat-sensitive. To use a unit such as this in the
lab setup would require a compressed air source capable of
delivering at least 12 cfm. The system in the lab in Nw-21
can only deliver 5 cfm. So a conventional pump had to be
used in the lab which does have moving parts and can
therefore be damaged by the hot gases. That is the reason
the heat exchanger was needed. In the field, sufficient
compressed air will be available to power a jet pump.

4.2.4.6 Suction Pump and Adjustment:
Suction is applied to the system via a 3/4 HP double-

diaphragm pump capable of pulling up to 5 cfm. In order to
vary the amount of total suction through the torch exhaust
there is a needle valve in the inlet to the pump that
permits suction at the pump directly from atmosphere if less
than total suction is needed. Using this alone it was only
possible to reduce the suction from 5 to 2.5 cfm. To get
the suction flowrate lower an additional valve was added in
the flowpath. Considerable head loss was also added via the
small diameter tube running through the heat exchanger. The
end result was a capability to pull as little as 0.5 cfm and
as much as 4 cfm through the exhaust system. The plasma can
therefore operate with almost no flow at all through the
sampling nozzle if necessary due to the air input in the
swirl jets, which is typically 0.5 cfm.
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4.3 Particulate Introduction system:
A system was devised to feed dust into the duct at a

constant feed rate in order to help simulate conditions at
SAIC for calibrating the plasma torch.

As was mentioned previously, it is known that the
conditions at SAIC include particle diameters equal to or

less than 10 um in diameter [8). The material being

vitrified is soil from a particular lake bed in Idaho.

The Mark II plasma Arc Furnace in NW-21 uses clean soil
from the same lake bed in Idaho for vitrification purposes.
To simulate a likely ash at SAIC, a 50 kg sample of this
soil was sent out to the Jet Pulverizer Company in Palmyra,

NJ.

At Jet Pulverizer, the soil was run through an air-
attrition mill which breaks up the soil through abrasive
action with itself in a high speed air stream [11]). The
walls of the mill chamber and the pump injector nozzle are
hardened stainless steel, so contamination of the sample is
claimed not to occur by the company.

Jet Pulverizer can produce a mix with a mean particle

size of less than 10 um, with a narrow size distribution
[11].

A mechanism was designed to introduce this dust into
the duct flow at a steady rate. 1In this mechanism, dust is
stored in a hopper (see Fig.13,p.83) that has a cavity and
matching rotor that are conical in shape (See Fig.14, p.84).

The rotor is connected to a 3-phase motor running on a 115
V feed @ 60 Hz with an RC circuit to create the phase delay
for the third phase. The motor rotates at a constant 72
RPM. The motor height may be raised or lowered by rotating
the upper part of the PVC housing against the lower section
(See Fig.15, p.85). This change in height changes the cross
sectional area of the annulus for the dust to fall through

thereby increasing or decreasing the feed-rate.

42




The rotor has agitator paddles that keep the dust from
sticking together. The blades are in an arrangement that
allows the entire chamber to be "swept out" in a single
rotation of the rotor.

After falling through the hopper annulus, the dust

travels through a vertical 2 in. I.D. pipe to a reducing
section connected to the inlet port of a jet pump (See
Fig.16, p.86). The jet pump mixes the suspended dust feed
with a high velocity air stream (which also provides the
suction) and atomizes the particles as it sprays them into
the center of the duct. There is another height adjustment
mechanism that enables one to translate the vertical
position of the entire mechanism should it be desired to
deposit particles in the top or bottom sections of the duct.

The entrainment length, Aqne, was discussed in section

3.4.1. Based on properties of air at room temperature, it
was found to be on the order of millimeters. This is the

distance it takes for a 5 um particle to become entrained in
the duct flow at velocities in the operating range of
interest. There should be no problem with particulate being
fully entrained in the flow by the time it reaches the
sampling nozzle (or at any point).

4.4 Plasma Torch Operation:
The objective of the torch operation is to achieve a

steady time-averaged spectrometer signal for a particular
transition of a certain element. The purpose of the dust
feed mechanism is to entrain the particles in the duct flow.

Spectroscopic data will be obtained in the following
manner.

With the entire system (main duct flow, dust feed, and
sample train) operating isokinetically at a particular
point, two tests will be performed. The first will entail

normal operation of the plasma torch for a specified amount
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of time. Spectroscopic transitions for a particular element
will be monitored and accumulated for that time in the form
of an intensity vs. time trace as a result of the dust being
excited in the plasma. This will be repeated many times to
ensure data correlation.

After this, the plasma will be shut off and removed
from the sampling train. A housing containing a HEPA filter
will be inserted in its place (See Fig.17, p.87). The setup
will be run again, isokinetic flow will have to be re-
established (due to the fact that the filter mechanism will
contribute significant head loss) and the run times will be
equal to those of the first tests. After the runs, the
differences in weights of accumulated dust will be noted via
use of an analytical balance. This second test will be
performed to ensure that the solids flux at the point is
steady over time. If this solids flux is constant over
time, then hopefully the accumulated light signal will also
be constant over time. The goal of this experiment is to
verify that a steady particle flux will produce a steady
signal over time.

This procedure will be performed at one point in the
main duct many times to ensure data correlation. The
objective is to obtain consistent results of accumulated
light levels during different 5-minute runs. Duct sampling
times less than five minutes may lead to spurious results
(i.e. feed mechanism feedrate may fluctuate slightly in
time, particles may become re-entrained causing solids flux

spikes, etc.).
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5.0 Results
5.1 Accuracy of sampling Scheme:

In principle, isokinetic sampling should occur when the
pressure difference between the inner and outer pressure
taps is zero. However, to just assume that this is the case
would be naive. As was previously mentioned, the EPA
requires that when isokinetic sampling conditions are said
to be met with whatever method has been chosen, that value
must be within ten percent of true isokinetic sampling.

To characterize system performance then, it is
necessary to establish true isokinetic sampling, where the
gas velocity through the probe and the local velocity where
the probe is located are measured and matched directly. This
can be done over a wide range of duct flowrates. The
manometer behavior can then be observed.

If the manometer behavior is consistent, one can then
accurately predict when isokinetic sampling conditions exist
well within the margin of error of ten percent.

So, following the above prescription, a direct
measurement of the undisturbed velocity profile at the
discrete sampling points was performed. The direct
freestream flow measurements were made with a hot wire
anemometer that uses a heated probe to calculate the passing
air stream's local velocity. It is accurate to within 1
percent of the total flow [12].

The velocity profile across the center of the duct is
given in Figure 23, p.93 for a series of volume flowrates.
Figures 18-22 are discussed at a later point. The same data
is tabulated in Table 4, p.65. The volume flowrate through
the main duct was varied via use of an adjustable valve that
has seven graduated positions between 0 and 90 degrees
(fully closed to fully open). The velocity profile is
skewed to one side, with the higher velocities flowing
closer to the flange.
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In order to match these local velocities to establish
true isokinetic sampling, calculations were performed to
find out what volume flow rate needed to be pulled through
the sampling nozzle. Results are summarized in column 2 of
Table 3, p. 64.

It is assumed that there is no variation in local flow
velocity across the face of the probe. The volume flow is
therefore just considered as the probe area multiplied by
the local duct velocity. It is for this reason that one
should not sample too close to the wall (i.e. in the viscous
sublayer), because of the sharp velocity gradient with
changing radius in addition to eddy flows that could
invalidate any measurements [3].

In order to determine the flowrate going through the
sample nozzle only, a flowmeter was installed between the
pick-off tube and the primary exhaust before the torch See
Fig 18, p.88). This avoids any errors that may be caused by
suction inflow through the waveguide, starter assembly, or
having to subtract the swirl jet flow.

This flowmeter was installed at this location for this
series of characterization tests only. Clearly, this
flowmeter could not be present during runs with suspended
particulate because it would cause severe deposition. Once
this system has been fully characterized, one can depend on
the pressure taps to monitor the flow non-invasively,
thereby minimizing particulate settling.

System Accuracy:
True isokinetic sampling was established in the

following manner. The local duct velocity at the sampling
point was measured with a hot-wire anemometer without the
sampling head present. The volume flowrate that had to be
pulled through the head to establish isokinetic flow was
calculated by multiplying this value by the cross-sectional
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area of the inlet tube. This volume flow was then
established with the probe in the airstream.

When true isokinetic sampling was established, the
manometer reading was not zero, but instead was consistently
off zero in one direction. This indicates that at true
isokinetic conditions, the pressure reading at the inner
pressure tap was always lower than the outer pressure tap.
This deviation in velocity head was not constant, but
instead increased with the velocity that was being observed.

Measurenments were performed at local duct flowrates
between 825 and 2400 ft/min. Readings on average were taken
in increments of 50 ft/min. A calibration chart was
developed (see Fig.24, p.94) based on this data. The
discrepancy appears to go linearly with increasing velocity.

This discrepancy must arise from a number of competing
factors. Intuitively, one would not expect a linear
dependence due to the fact that head scales as the square of
velocity [9]. So the linear dependence is a unique
characteristic of this particular nozzle where the
coincidental linear behavior results from competing effects
of local flow deceleration, boundary layer development, and
turbulence.

One would expect the flow on the exterior to be lower
at true isokinetic sampling conditions than the inside
because if one has two control volumes, each with a
characteristic thickness, one just inside the tip of the
probe, and one directly outside of it (See Fig.19, p.89), as
these control volumes move over the probe, the one on the
inside remains much the same, while the one on the exterior
increases in area by a factor of ro/rj. From conservation
of mass, one would expect the velocity to decrease on the
exterior by a factor of r;/r,, The corresponding head
difference would then go like the square of this velocity

difference.
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To see if this behavior is a major contributor to the
error, the volume flow required for pressure balance on the
manometer was also recorded at all of these points (See
Table 3, p.64). The manometer was set up to have pressure
equilibrium at +.3 in. of water. The system was run and
manometer pressure balance was achieved. The volume
flowrate going through the sample nozzle at this state was
recorded. This was then subtracted from the volume flow
necessary for isokinetic sampling at each point. This was
converted to a velocity in feet per second and a velocity
head in inches of water was calculated. As can be seen in
the last 2 columns of this table, the head that would result
from this velocity difference is two orders of magnitude
smaller than that which was observed.

Based on this analysis and its failure to describe the
situation, one may conclude that it is best to try to avoid
trying to predict theoretically why the discrepancy arises
and just live with it. The source from which this design
was acquired [6] used a nozzle with a slightly more reduced
profile. Although the reference did not mention it, it is
likely that the ratio of inner to outer probe diameters is a
very significant quantity. Even if the above effect does
not dominate, other geometrically dependent effects most
likely do. This factor is the only one that was not
incorporated into the nozzle design that was used for the
purposes of this thesis.

So where does that leave the issues of isokinetic
sampling with this technique?

The simplest solution is to include a pitot tube in the
design, mounted just next to the nozzle (See Fig.10, p.80).

If the velocity dependence of the error can be quantified,
then one simply needs a local velocity measurement to tell
the operator what discrepancy is necessary to ensure

isokinetic sampling.

48




Operation of This System:

During operation then, one would obtain a local
velocity measurement with the pitot tube, refer to the
calibration chart for the nozzle, and make the necessary
suction adjustment so the head reading was the correct value
for that flowrate. Isokinetic sampling conditions should
then exist. There is nothing wrong with this technique, and
it should provide sampling well within 5% of true
isokinetic, let alone ten.

5.1.1 Temperature Effects:
Unfortunately, this nozzle could only be tested at room

temperature. It would have been ideal if tests could have
been performed at higher temperatures, but the elevated
temperatures at which effects would have been noticeable
(above 200 degrees Centigrade ), could not be reproduced in
the laboratory with the existing equipment. Certainly, one
could have installed a large heat exchanger to heat up the
entire duct flow, but this would have been impractical.

5.1.2 Device Sensitivity:
The manometer is extremely sensitive to changes in

flow. It is possible to observe a manometer difference for
a flowrate change as small as .015 cfm. This amount of
change in flowrate will result in a head change of
approximately .0025 in.H,0, which is the smallest practical
observable change in the manometer. Graduations are placed
every .01 in. on the manometer. Being within .01 cfm is
adequate because that corresponds to less than 3% of the
flow, even at the lowest volume flowrates. So there is no
danger of exceeding the 10% isokinetic sampling limit.

5.1.3 Effect of Plasma Torch Operation on Manometer:

The plasma torch was run on many occasions during

isokinetic sampling. There was no difference in manometer
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setting between the torch being on or off during normal
operation. However, a suction velocity fluctuation did

exist when the plasma was in an unstable operating mode.

5.2 Results of Particulate Studies:
5.2.1 Particle Characteristics:

The particulate that was run through the duct was from
one of ten batches that was processed by the Jet Pulverizer
Co. The particulate from the ninth run was used in the
particulate studies. As can be seen, the size distribution
of this batch is indeed narrow (See Fig.25, p.95). Almost
all of the particles are under ten microns in diameter.
This should therefore be a very close approximation to the
particulate in the SAIC duct.

The soil was also sent to IEA for chemical analysis.
As can be seen from the results (See Table 2, p.63), there
is a significant iron impurity in the soil. This is highly
desirable because it is very easy to monitor iron
spectroscopic transitions with the spectrometer.

Since the particles are so small it is likely that they
will be fully volatilized in the plasma as long as the mass

flow rate of particulate is not too high.

5.2.2 Flow Characteristics:

A detailed flow study was performed of the duct to
ensure that it would be suitable for particle transport.
Flow measurements were taken across the duct along four
separate radial axes such that measurements were no further
than 45 degrees apart from each other at any given radius
(See Fig.20, p.90).

The development of the profiles along these axes along
the duct's length are given in Figures 26-29, p.96-99. The
raw data is tabulated in Table 5, p.66. The velocity
profile across the whole duct appears to be skewed
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preferentially toward the inboard (flange) side. This is a
characteristic of the mechanism itself.

5.2.2.1 Flow Straightener Performance:
As mentioned, the flow straightener was installed to

remove the helical component of the flow that resulted from
the elbows upstream of the main duct. It performed fine,
and there were no signs of helical flow in the device.

This profile is as good as any other because it is
unknown what point at which the diagnostic will be set up in
the furnace exhaust train (i.e. precise upstream conditions
are unknown). However, it is more than likely that it will
be an almost fully developed profile, as in this case.

The flow development is important from the standpoint
of feeding particulate into the duct because if it is not of
the correct nature, the particles may settle out of the flow
or be distributed abnormally across the duct.

The feed nozzle was placed in the geometric center of
the main duct for all data taken in this experiment.

§5.2.3 Entrained Solids Distribution:

The solids flux was measured across the sampling (0-
degree) axis isokinetically by replacing the plasma torch
unit with a HEPA filter element in a housing equipped with
KWIK-Connect flanges for ease of installation (See Fig.17,
p.87). Three five-minute runs were performed at each of the
nine locations across the duct. These results correlated
closely and were subsequently plotted as a function of
radius (see Fig.30, p.100). The related data can be found
in Table 6, p.68. As can be seen, the solids distribution
is also skewed toward the inboard side of the duct, but
sharper in nature. This is typical of higher speed heavily

laden flows as outlined in [3] and as demonstrated in [6].
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5.2.3.1 Sampling Concerns:
The only real concern in particulate sampling is to

keep away from the duct walls. Evidence in [7] demonstrates
that particulate distributions tend to drop off almost to
zero in the viscous sublayer leading to spurious results.

5.2.4 Calibration of Particle Feeder:

In order to determine what fraction of the total
particles flowing through the duct are being sampled, it was
necessary to calibrate the feed mechanism. This was
performed by placing the feeder above an analytical balance
and operating it for 10-minute runs. The feed rate of the
mechanism is adjustable, but the most reliable results it
provided were those that are outlined for this feed setting
in Table 7, p. 69. A best-fit line was fit to this data,
and plotted in Figure 31, p.101. On average then, the
particulate feed-rate was approximately 2.5 g/min delivered
into the main duct.

5.2.5 Plasma Torch Studies:

The plasma torch was run with the sampling nozzle at a
radial location of + .875 inches at a local duct flowrate of
2250 ft/min with 800 Watts of microwave power input. The
corresponding plasma torch axial flowrate to maintain
isokinetic sampling at this location was 1.2 cfm.

The objective for monitoring was to observe a
particular spectroscopic transition for iron, which is a
trace element in the soil. The observed region of the
spectrum is shown in Figure 32, p.102. The iron line that
was observed in the intensity vs. time traces is located at
358.1190 nm. This is the strongest line in this region.

The area under this peak was recorded as a function of
time for a number of five-minute runs. These time spectra
are displayed in Figures 33-37, p.103-107. The accumulated
light signature per unit time is located at the top of each
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chart. The average value for light collection was found to
be 1452 I.U./sec, where I.U. is a generic light intensity
unit. The discrepancy of the data from this average was
quite small for the plasma torch.

This data reflects that the light signal was fairly
steady over time with a constant feedrate. The feed rate to
the torch was shown to be constant over time at the sampling
point. This demonstrates that a steadily metered flux of
material over time will provide a steady signal. This may
sound trivial, but it is very important. The signal level
depends on so many variables that this device might not be
capable of steady performance. This data shows that if
power input, flow and particle input are carefully
monitored, one may obtain good results. Superficially,
error bars of +/- 20% in light level sound bad. However,
this is a significant improvement from earlier results with
direct sample insertion that produced error bars of +/-
250%.

Fluctuations in the signal correspond to fluctuations
in the mass flux. A particularly large spike could
correspond to an amount of deposited material being re-
entrained in the flow, or a transient of the feed mechanism.

It was certainly possible to run this device at
different mass flow rates of particulate and air to chart
plasma performance, but for it to be meaningful a huge
database (of hundreds of data points) must be obtained. If
that were done on this setup it would require running large
amounts of custom ground material. That is clearly not
practical. A system is recommended in section 6.2.1 to
achieve this goal using minuscule amounts of feed material.
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5.3 Summary:

Fortunately, everything worked. The nozzle did not
operate in quite the way that was hoped, but with the
attached pitot tube, it will sample isokinetically well
within the required limits.

The particulate studies yielded encouraging results on
plasma torch operation. This work will provide an i
appropriate basis for further studies. It is likely that
nearly all of the particulate was volatilized due to the low
solids mass flow rate through the torch, and the small
particle diameter.

Ideas for future work are covered in the next Chapter.
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6.0 Conclusions:
6.1 Research to Date:

The development of the microwave plasma torch monitor
for real-time emissions measurements to date has made a
great deal of progress. It is likely that it is not too far
from being commercialized. Most of the challenging
technical problems (starting, continuous operation, and
isokinetic sampling) have been resolved. The major one that
remains is calibration. However, experience in this work
points to the fact that most calibration is application
specific. The work that has been performed for this thesis
seems to have promise as a model for developing calibration
schemes in similar applications.

The development of isokinetic sampling for this system
has been successful. For application at SAIC, it is safe to
say that the device will meet the EPA requirement of
sampling within 10% of true isokinetic sampling.

The challenge of the present work was to create a
reliable self-contained plasma torch system that could
sample isockinetically from a flowstream. Careful design in
the sizing of the sample probe and designing for application
specific worst case scenarios (high-end duct flowrates)was

the crucial factor.

6.2 Future Work:
6.2.1 Future Plasma Torch Studies:

Much would be gained by a great deal more work in
characterizing the effect of particulate sizes on light
signal and how that behavior correlates with changes in
plasma power input, and residence time.

Since the plasma torch diagnostic is so sensitive to
small quantities of material, a small scale experiment may
be appropriate. A sample calibration gun similar to that in
Figure 21, p.91 would be a good start. The basic way that a

device such as this would work is the following.
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Feed would be fed into a cylinder where a piston could
push the material through an orifice in another piston.
Excess material would spill out the other side of the
orifice, preventing excess compaction of material.

Next the shear piston would be pushed up so that small
volume of particulate (which would have the same cross
section as the shear piston orifice), could then be shot
with compressed air into the torch. An intensity vs. time
trace could be obtained for the pulse of effluent. Hence
calibration could be achieved after many trials.

A system such as this would be advantageous because one
could take hundreds of data points per day and use very
small amounts of test material. When the plasma torch is
commercialized, a device of this nature could be built into

the system for periodic device calibration.

6.2.2 Future Applications of the Diagnostic:
This diagnostic will be in use at Pacific Northwest

Laboratory later this year in the exhaust stream of another
vitrification furnace. The design explored for this
application will be modified for use on that system. The
duct size is smaller as well as the gas flowrate. Even so,
the gas velocity is almost the same (730-35 ft/s) so the
same sampling nozzle can be used. This test will involve
radiocactive material though, so whatever equipment goes out
to the test site will become contaminated and remain there.

The exhaust temperatures at the PNL furnace where the
probe will be located are estimated to be about 300 C.
Temperature effects on isokinetic sampling will therefore
not be significant.

In these field applications, the solids and volume flow
profiles will have to be estimated with the techniques
outlined in Section 3.2.1. This will necessitate sampling

with an isokinetic cyclone probe from at least 2 directions
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(e.g. 0 and 90-Degree planes). The mass flowrate could then
be estimated.

These estimations were not necessary for the in-lab
tests because in the characterization of the sampling
nozzle, the important quantity was local duct flowrate, and
the mass flowrate through the duct was already quantified at
2.5 g/min. These estimations could have been made anyway,
but sampling with the isokinetic probe could only be made
along the 0-Degree plane since there was only one flange.

6.2.3 Commercialization of the Diagnostic:

This diagnostic will eventually be used in large scale
commercial applications whether it involves detecting metal
emissions from commercial incinerators or in manufacturing
processes (e.g. alloy production). The exhaust ducts for
these systems will probably be quite large, so in-situ
placement may be a practical possibility (see Fig.22, p.92).

This would be beneficial, particularly in hostile
environments where bringing the contaminated exhaust out of
the duct and piping it back in may be a safety concern in
the event of leakage or rupture.

6.2.4 Future Nozzle Designs:
The work with sampling nozzles is far from over. It

should be possible to get the sampling system to operate
reliably with the manometer alone and no pitot tube. This
will necessitate the construction of more nozzles and the
performance of more testing to ascertain their
characteristics. After a few more iterations, it should be

possible to have desirable operational characteristics.
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6.3 Overall Perspective of Plasma Torch Diagnostic:

The plasma torch diagnostic holds a great deal of
promise for environmental monitoring. Its robustness and
capacity for untreated effluents give it a clear advantage
over competing technologies (ICP, Laser-Spark Detectors).

The device will only turn into something big if proper
care is taken to calibrate it for the respective
applications that it will be used for. The potential is
there waiting to be tapped.
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Table 1
1

Torch Detection Limits

Toxic Transition |Bum Off |Detection Limit

Metal (nm) (sec) (ng) (ppb)

Be 2349 17 0.16 0.1
Cd 2288 6.8 0.17 0.02
Ag 328.1 >11 (<.24 <.02
Ba 553.6 >32 (<.68 <.01
Sb 231.1 >30 [<.89 <.02
Pb 283.3 42 1.1 0.2
Ni 3414 >36 |<1.1 <.05
Cr 357.8 26 1.3 0.8
Hg 253.7 42 29 0.3
As 235 6.4 5.8 1

Limits were obtained by inserting ceramic
probes into edge of plasma with test material
on tip of rod.

1
Bumn off refers to evaporation of material
from inserted probe and subsequent excitation
in the plasma. % | 1




Table 2
L
Soil Composition
Metal wt sample/wt soil
(mg/kg)
Aluminum 19300
Arsenic i 13
Barium ! 257
Boron 7
Cadmium 1.04
Calcium 42,200
Chromium 27.9
Copper ! 244
Iron 20300
Lead i 22
Lithium 20.1
Magnesium 10300
Manganese 344
Nickel : 28.1
Sodium it 310
Silicon : 184
Titanium 5 345




Table 3, Analysis of Manometer Discrepancy
Difference in Actual
Duct Required |Measured Volume Flow at|Volume Flow at _{Volume Flow Corresponding |Comesponding |Head
Flow Volume Head Pressure Pressure Between Pressure |Flow Velocty [Head Discrepancy |
Velocity |Flow Difference Equiibrium [ Equdi Tap Equiibrium and| Difference Difference Manometer
{2t isoidnetic conds.) [sokinetic Conds. imbalance}
(ftmin) __{(cm) (in. Water) (cth) {cfm) (cfm) s) (in.water)
825 0.439421 0.5186 12.5{ 0.208333333 0.231088067| 7.231010863| 0.00974301€ 0.215
875} 0.466053 0.52 145 0.241666667 0.278333333| 8.708369488| 0.014134121 0.22
9001 0.479389 0.525 16| 0.266665667 0.258333333|  8.08354653| 0.012175849 0.225
950 0.506 0.535 17]  0.283333333 0.251666667| 7.874938878| 0.011555527 0.235
1000} 0.532632 0.537 18 0.3 0.237] 7.416002043| 0.010247904 0.237
1050} 0.559264 0.54 18.5] 0.308333333 0.231666667| 7.249115921] 0.008791866 0.24{
1100/ 0.585895 0.545 20}  0.333333333 0.211666667| 6.623292964| 0.008174163 .245
1150{0.612527 0.552 23;  0.383333333 0.168666867| 5.277773606! 0.005190353 0.252
12251 0.652474 0.558 23.5{ 0.3916686667 0.166333333| 5.204760827] 0.00504774 0.258
1250 0.66579 0.57 24 0.4 0.17} 5.319495136| 0.005272738 0.27
1300] 0.€92422 0.573 245] 0.408333333 0.164666667! 5.152609014| 0.004947089 0.273
1350/0.719053 0.585 25| 0.416666667 0.168333333; 5.267343223| 0.005169858 0.285
1400/ 0.745685 0.57 26] 0.433333333 0.136666667| 4.276456874| 0.003407717 0.27
1450|0.772316 0.58 27 0.45 0.13| 4067849222 0.003083366 0.28
1500{0.798948 0.58 27.5f 0.458333333 0.131666667| 4.120001135| 0.003162933 0.29
1550| 0.82558 0.605 27 0.45 0.155] 4.850127918| 0.004383306 0.305
1600/ 0.852211 0.628 28] 0.466666867 0.161333333| 5.048305188| 0.00474883 0.328
1650| 0.878843 0.625 29.75] 0.495833333 0.129166687| 4.041773265| 0.003043962 0.325
1700)0.805474 0.63 29.5| 0.491666667 0.138333333| 4.328608787! 0.003491339 0.33
1750 0.932106 0.638 30.5| 0.508333333 0.129666667| 4.057418839| 0.003067574 0.338]
18001 0.958738 0.64 20.75{ 0.495833333 0.1441666687( 4.511140483] 0.003791998 0.34
1850/ 0.985369 0.665 30.5| 0.508333333 0.156666667 | 4.902279831] 0.004478077 0.365
1800 1.012001 0.663 33 0.55 0.113]| 3.535898708! 0.002329675 0.363
1950 1.038632 0.67 33 0.55 0.12| 3.754937743! 0.002627247 Q.37
2000] 1.065264 0.687 32.5| 0.541666667 0.145333333| 4547646822 0.00385362 0.387
2050| 1.091886 0.705 34| 0.566666667 0.138333333| 4.328608787} 0.003491339 0.405
2100(1.118527 0.72 375 0.625 0.095| 2.972659047{ 0.00164659 0.42
2150) 1.145159 0.73 37]  0.616666667 0.113333333| 3.546330091]| 0.002343439 0.43
2200 117179 074 375 0.625 0.115| 3.598482004] 0.002412871 0.44
2260(1.198422 0.745 38| 0.633333333 0.111666667| 3.494178178] 0.002275021 0.445
2300/ 1.225054 0.748 38| 0.633333333 0.114666667| 3.568051621! 0.002398903 0.448
2350 1.251685 0.7 38.5] 0.641666667 0.108333333| 3.389874351| 0.002141226 0.45
2400]1.278317 0.76 39.5 0.658333333 0.101666667| 3.181266699(  0.0018858 0.46
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? Table 5 ‘
! H
Flow Study Data é
*All velociies i (fymin) ! l
From * Study performed with PVC elbow in place of main duct diverter vaive
Feeder
) Radius: -35] -2625] -1.75| 0.875 0| 0875 1.75] 2.625 35
0| O Degrees 2200) 2300|2300 1900 1850 2000] 2400) 2400 2300}
45 Degrees 2400] 22001 2100 1950 1850 1950 2200 2400 2500
90 Degrees 1800 1800 1900 1900 1850 1900/ 2000 1500 1950
135 Degrees 2200 2050/ 1900 1850 1850 1950] 2200 2400 2550
Radius: -35] -2625] -1.75] -0.875 0| 0.875 1751 2.625 35
05| 0 Degrees 22001 2300/ 2200] 2000 1950 2050] 2250 2350 2250
45 Degrees 2100 2100] 2050 1950 1900 2100 2250 2250 2200
90 Degrees 1850 1875 1900 1975 1975 2050] 2100 2050 1875
135 Degrees 2250 2100 1950 1925 1975 2100 22501 2300 2300
Radius: 35| -26251 -1.75] 08715 o 0875 175/ 2,625 35
1.5 0 Degrees 2350 23501 2250] 2150 2100 21501 22501 2250 2100|
|_45 Degrees 2150 22001 2150 2050 2000 21000 22001 2200 2100}
.90 Degrees 1950) 19501 1975] 2000 2000 21501 21501 2050 2050|
1135 Degrees 22501 21501 2000/ 2000 2100 22001 22001  2150] 2300
h !
Radius: 35| -2625] -1.75{ -0.875 0] 0.875] 1751 2625 35
2] 0 Degrees 2350] 23501 2250/ 2150 2100 21001 21501 2150 2200}
45Degrees| 21501 2200/ 2150 2100 2100 21501 21751 2150 2050}

i 90 Degrees | 19251 19751 20001 2000 2100 2150! 21501 2000 2100}
135 Degrees | 21501 22001 2100! 2100 2125 22501 2200 2200 2050}
| ;
Radius: | -3.51 -2.625) -1.751 -0.875 0 0.875] 1.751 2.625 38
25! 0 Degrees| 23501 23001 22501 2200 2200 21501 2150! 2150 2050
45 Degrees | 2100} 22001 2200 2150 2150 22001 21501 2100 2050
i 90 Degrees 20001 20001 2050 2100 2175 2200! 21501 2050 2050
1135 Degrees 2150| 2150 2050 2100 2200 22504 21501 2150 2100

T ) - .

Radius: 35| -2.625 -1.751  0.875 0 0.875! 1750 2625 35
31 0 Degrees 2300 2300 2250 2200 2200 21501 2100 20501 20504
45 Degrees 2100 2200 2200 2200 2200 22001 2150} 2150] 2100
90 Degrees 2000} 21001 2100 2180 2200 2200! 21001 20501 2050
;135 Degrees 23001 21501 2100 2150 2200 22501 21001 2150 2100

Radius: -3.5{ -2.625 -1.75{ -0.875 0 0.8751 1.75 2.625 35
3.5{ 0O Degrees 2350 2350 2300 2300 2300 22001 2150 2050 2000
45 Degrees 2050 2200 2250 2250 2300 2250 21504 2150 1950
90 Degrees 2000 2100 2150 2200 2250 2250 21501 2050 1900
1135 Degrees 2100 22001 22001 2200 2300 2250 2250i 2250 2100

'
i

Radius: 35| -2.625 -1.75]  -0.875 0 0.8751 1751 2.625 35
4! 0 Degrees 2250 2350 2300 2300 2250 22001 21501 2100 2100
45 Degrees | 22001 22501 2250 2300 2300 23001 2150! 21001 1900
90 Degrees 2050 21001 2150 2200 2300 22501 21501 2050 1950
135 Degrees 2200| 22501 2200 2250 2250 22001 21501 2000 1900

Radius: -3.51 -2.625i -1.751  -0.875 0 0.875! 1.75! 2.625! 35

S! QODegrees 2200t 23001 2350 2350 2250 22001 20501 2000¢ 1900
45 Degrees | 2050! 22001 22501 2250 22501 2200! 2150: 20751 1875

90 Degrees | 1925! 21501 22251 2250( 23501 2250: 2200: 21001 1850
135 Degrees | 20501 22501 2275! 2300 2350 2250 2150; 20501 1850

i

T H 1
i . : i y
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Radius: 35|  -2625]  -1.751 0875 ol 0875 1.75] _ 2.625 35|
6] 0 Degrees 2250 2350] 23501 2400 2350 2250 2150 2150 1950]
45 Degrees 2100 250 2350 2350 2350 2250 2250 2150 1950
S0 Degrees 1950 2250)  2300{ 2350 2400 2350 2250 2150 1950]
135 Degrees 2150 2300] 2300] 2350 2350 2200 2150 2050 1750}
Radius: -35( -26285] 75| 0875 o 0875 1.75| 2.625 35|
6.5] 0 Degrees 2200 2350] 2400|2400 2375 2250 2200 2150 1975
45 Degrees 2200 2350  2350f 2375 2300 2200 2200 2150 17%0}
90 Degrees 1925 2250 2350|2400 2400 2300 2200 2150 1925}
135 Degrees 2150 2350] 2400 2350 2350 2225 2200 2050 1850}
Radius: -35] -2625] -1.75| 0875 0] 0a75 1.75] 2625 35
7.5] 0 Degrees 2150 2650 24001 2400 2350 2400 2200 2100 1950}
45 Degrees 2250 2350]  2400f 2400 2300 2200 2200 2050 1750}
90 Degrees 1900 2300] 2400 2400 2350 2200 2150 2050 1900}
135 Degrees 2100 2350/ 2400 2400 2400 2200 2150 2050 1850]
Radius: 35| 2625  1.75] 0875 o]  0.875 1.75] 2625 35
8.5] 0 Degrees 2100 2250 24501 2450 2400 2300 22501 2200 2050
45 Degrees 2150 2300] 24001 2400 2400 2300 2200 1250 1650
90 Degrees 1650 2200]  2400{ 2400 2400 2350 2250 2150 1950
135 Degrees 2100 2400] 24001 2400 24001 2300 2200 2100 1900}
Radius: -35| -2.625] -1.75] -0.875| o 0875 1.751 26251 35
10| O Degrees 2000 24001 25501 26001 25501 2500 2350 22501  2200|
45 Degrees 2250 2400] 2500 2550 2450] 2400 2350] 2200 1750
90 Degrees 1550 2300/ 24501 2550 25501 2450 2425]  2350i 2000}
135 Degrees 2250 2400] 25001  2550f 25501 2450 23751 2200 1950}
Radius: | -35] -2625] -1.75] 0875 0] 0875 1.75] 2.625 35
11] ODegrees| 2250 2450/ 25501 2550 2550 2450 2350 2250 2100
45 Degrees| 2050 23501 25501 2500/  2450] 2400 23001 21501 1850
90 Degrees( 1900 23001 2500 25001 24501 2400 24001 22001 1950
135 Degrees | 2350 25001 24501 2425 24501 2400 22501 20000 1850
Radius -35]  -2.625] -1.75] 0875 0l 0875 1751 2.625] 35
11.5] O Degreesi 2300 2450] 725501 2550 25001 2400 24001 2250 2250
45 Degrees 2100 24001 25501 2500 2500/ 2400 2350 2050 2200
90 Degrees 2150 2400]  2500] 2450 24501 2400 2350 21500 1950
135 Degrees 2350 2450]  2450] 2450 24501 2400 2200/ 1800 1750
Radius -35]  2625]  -1.75] -0.875] 0l 0.875 175 2.625 35
12| 0 Degrees 2250 2450) 25001 2500 2500 2450 23501  2250] 2100
45 Degrees 2100 2300]  2500] 2450 2450 2400 2300  2000] 2300
90 Degrees 2100 2350] 2400] 2450 2450 2450 2400 2150 1975
135 Degrees 2350 2500] 24501 2400 2400] 2350 2200 1900 1850]
Radius, -35] -2625] -1.75] 0875 0l 0875 1.75] 2625 35
12.5] ODegrees| 2300 2500] 25501 25001 2475! 2400 24001 22501 2100
45 Degrees| 2100 2300]  2450] 24501  2450] 2400 2300] 2000 2000}
90 Degrees| 2250 2400 2500 24501 24501 2400 23001 2100 1900
135 Degrees| 2300 28501 25001 24001  2400; 2350 20501 18501  17%0
Radius 35| -2628] 4.75] -0875! o] 0875 1.75]  2.625] 35
13.5] 0 Degrees 2150 2400] 24501  2500] 24501 2400 24001 22001 1950
45 Degrees 2100 23001 24001 24001 24501 2300 22001 20001 1850
90 Degrees| 2300 2450] 24501 24501 24001 2400 22001 20000 1850
135 Degrees| 2200 25001 25001 24501 2400 2300 20501 18501 1700
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Table 7, Dust Feed Mechanism Performance

Time (minutes)|{Test 1 Test 2 Test 3 Average |Best Fit
0 0 0 0 0 0
0.5 1.3 1.6 1.49| 1.463333| 1.32755
1 2.8 3.15 2.42 279 26121
1.5 4.24 4.5 3.2 3.98| 3.89665
2 5.6 5.96 4.55 §.37| 5.1812
2.5 7 7.47 5.2| 6.556667| ©.46575
3 84 8.8 6.7| 7.966687| 7.7503
3.5 9.7 10 7.7] 9.133333| 9.03485
4 11.1 1 8.4]| 10.16667| 10.3194
4.5 12.6 11.7 9.1} 11.13333| 11.603985
5 13.9 12.6 10.7 12.4| 12.8885
55 16.7 13.9 12.2] 13.93333| 14.17305
6 17 15.2 14 15.4| 15.4576
6.5 18.3 16.2 15.25| 16.58333| 16.74215
7 19.7 17.4 16.7| 17.93333| 18.0267
7.5 21.2 18.6 18.3| 19.36667| 19.31125
8 224 19.75 20| 20.71667| 20.5958
8.5 23.5 21 21.5 22| 21.88035
9| 24.5 22 22.8 23.1] 23.1649
9.5 26 23.7 241 24.6| 24.44945
10! 26.06667| 25.734
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Figure 2

Isokinetic Sampling
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/
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Figure 3 Duct Sampling Points

13 POINT 17 POINT

PG ES Tocanon of sampling pomnts for circular Hues i huding centre
poant o) i<nternat diameter ot 1luey Ref [3]
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Figure 4

Sampling Method No. 1
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Figure ©

EPA Method No. 29
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Figure 6

Method No.3 Static Pressure Taps
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Figure 8

Experimental Apparatus

To Building
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left out for simplicity.
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Figure 10

Sampling Method for SAIC
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Figure 1<

Heat Exchanger
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Figure 13, Cross—Section of Feeder
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Figure 14 Conical Funneling Chamber
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Figure 15, Outside view of Feeder

Removable PVC blank for feed
addition.

ii

’_ - ! Brass inner cylinder

| Exterior PVC housing consists of 2
segments of PVC that are supported by
a thin brass inner cylinder made of

| brass shim.

The motor height may be changed by
| rotating the upper PVC housing with
3 respect to the lower one.
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Figure 16

[Complete Feed Apparatus]
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5Figure 19

Flow Behavior Over Sampling Nozzlei

Quter Pressure Tap
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LFigure 20

Flow Study Sampling Geometry
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Figure <1 }

i Sample Calibration Gun
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Figure 22

Basic In—Situ Arrangement
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@ LS Particle Size Analyzer
-
COULILTER 18 Apr 199
THE JET PULVERIZER CO.
File name: MIT.308 Group (D: MIT
Sampie 10: SO
Operator: GC Run number: 2
Comments: 8" TESTNO.9
HAMMERED
Optical modet: Fraunhofer
LS 230 Fluaid Module
Start ime: 1028 18 Apr 1996 Runjength: 91 Seconds
Pump spest 48
Obscurstion: 8%
PIOS Obscur:  50%
Fluid: Wawer
Software: 208 Femware: 202 2.02
Figure 25
Differentsl Volume
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Particle Diameter (um)
/elume Statistics (Anthmetc) mit.$09
Caiculations from 0.375 um t0 2000 um
Voiume ‘00.0%
Mean: £078 um 95% Conf. Limits:  0-13.1 um
Median: 3.857 um sSD.: 411 um
MearvMecan Ratio: ! 318 Vvanance: 16.9 um<
Mode: 4878 ym cV: 80.9%
Skewness: 1.22 Right skewed
Kurtosis: 1.12 Leptokurtic
5> 0 25 B 75 90
Sizepym 1117 7221 3857 1.8682 0.974
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Figure 31, Feeder Mechanism Performance

vs. Time
30
o]
Best Fit Equation: ] a
25 | y=2.5691t+ .043 |
20 +

st Fit Li ———————
Best Fit Line o Seriesi

o Series2
A Series3
—— Series4

Accumulated Material (grams)
P

10 -

5 1

(=] -— o~ [0 <r n © ™~ @ o]

10

Time (minutes)

101




Figure 32 Spectrum for Iron Calibration Test

1200

L 1000

1T 800

Ausuajuj b

1 600

+ 400

0

358.1190

This peak is monitored in

the Intensity vs. time plots

361.8768

363.1463

360.8859

LyZe ¥9¢E

T4 L A1
6.6.p'€9E
€EL01'E9¢E
88ve.L 29¢E
[AZA AR A]Y
L6686'19¢
ISL19'19¢
pel0e) AN B2 1
92.8°09¢

¥100S5°09¢
69421°09¢
£255.°69¢
LL28E6SE
¢e0l0'66¢
98.£9'8S¢
I¥G9Z'8G¢
G6269°LSE
6¥025'LS¢E

Wavelength (nm)

102




Light intensity (1.U.)

Figure 33, Intensity vs. Time, Run 1
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Figure 34, Intensity vs. Time, Run 2
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Figure 35, Intensity vs. Time, Run 3

Avg. Accumulation Rate:
1651 i.U./sec
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Figure 36, Intensity vs. Time, Run 4

Avg. Accumulation Rate:
1423 1.U./sec
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Figure 37, Intensity vs. Time, Run 5§

Avg. Accumulation Rate:
1514 i.U./sec
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