ion

S

13221
vi

ineering Di

ZI

ORNL/TM-
d En.
on 3)

ics any
impson

Rhoades
S

Tennessee 37831

A
B
managed by
LOCKHEED MARTIN ENERGY RESEARCH CORPORATION

)

October 1997

W

D
Prepared by the

(TORT Versi
OAK RIDGE NATIONAL LABORATORY
Ridge

NEUTRON/PHOTON TRANSPORT CODE
Oak

Computational Phys;

THE TORT THREE-DIMENSIONAL DISCRETE ORDINATES

.
o
. -

=

i
-

-060R22464

for the

DEPARTMENT OF ENERGY

u.s
under contract DE-ACOS5

i
%m it m
e
i m%. e




This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from the Office of Scientific and Techni-
cal Information, P.O. Box 62, Oak Ridge, TN 37831; prices available from (615)
576-8401, FTS 626-8401.

Available to the public from the National Technical Information Service, U.S.
Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161.

This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor any
agency thereof, nor any of their employees, makes any warranty, express or
implied, or assumes any legal Kability or responsibility for the accuracy, com-
pleteness, or usefulness of any information, apparatus, product, or process dis-
closed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise, does not necessarily consti-
tute or imply its endorsement, recommendation, or favoring by the United States
Government or any agency thereof. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
Government or any agency thereof.




DISCLAIMER

Portions of this document may be illegible
electronic image products. Images are
produced from the best available original
document.




ORNL/TM-13221

Computational Physics and Engineering Division

THE TORT THREE-DIMENSIONAL DISCRETE ORDINATES
NEUTRON/PHOTON TRANSPORT CODE
(TORT Version 3)

W. A. Rhoades
D. B. Simpson

October 1997

Prepared by the
OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee 37831
managed by
LOCKHEED MARTIN ENERGY RESEARCH CORPORATION
for the
U.S. DEPARTMENT OF ENERGY
under contract DE-AC05-960R22464

BETRIBUTION OF THIS DOCUMENT IS UNLIV!







REGION 0. ABSTRACT AND ACKNOWLEDGEMENTS ...... .. ... .. ... ... ... ...... 0-1
0.1 ABSTRACT ..o e e e e 0-1
0.2 ACKNOWLEDGEMENTS ... . i et et i, 0-1

REGION 1. PROGRAM ABSTRACT ... ... e i 1-1
1.1 PROGRAMNAME AND TITLE ... .. . i it i e eaans 1-1
1.2 COMPUTER FOR WHICH PROGRAM IS DESIGNED AND OTHER

MACHINE VERSIONS AVAILABLE ... ... . it i iiie e 1-1
1.3 PROBLEM SOLVED ... i i i e e e e et e eeeaeeans 1-1
14 METHOD OF SOLUTION ...ttt et et e et i i ieaaeeens 1-1
1.5 RESTRICTIONS ON THE COMPLEXITY OF THEPROBLEM ................ 1-2
1.6 TYPICAL RUNNING TIME . . ... ittt eee s 1-2
1.7 UNUSUAL FEATURES OF THE PROGRAM ................ e 1-3
1.8 RELATED AND AUXILIARY PROGRAMS .. ... ... . i 1-3
1.9 ST AT U S Lttt i it e e e 1-4
1.10  REFERENCES ... i e e e e et e 1-4
1.11" HARDWARE REQUIREMENTS .. ... A P 1-4
1.12  PROGRAMMING LANGUAGES ... .. .t e e 1-4
1.13  OPERATING SYSTEM ... i i et e e e et eaaeaens 1-4
1.14 OTHER PROGRAMMING OR OPERATING INFORMATION OR '

REST RICTION S . . e e e e et et et et 1-4
1.15 NAME AND ESTABLISHMENT OF AUTHOR OR CONTRIBUTOR ........... 1-5
1.16 MATERIAL AVAILABLE ... ... . i e e et 1-5
117 KEYWORDS L.t e e e e e e 1-5
1.18  SPONSOR .. e e e ... 15

REGION 2. INTRODUCTION ... .. i e et e et e e 2-1
21 BACKGROUND ... i i e i e e e e e e e e 2-1
2.2 FEATURES AND PROBLEM CAPABILITY . ......ciiiiiiiiiniininenenn. 2-1
2.3 PROGRAM STRUCTURE . . ... i e e e et eeaee e 2-2
2.4 THIS DOCUMENT . ... e it e e e et ee e 2-2
2.5 ADDITIONAL INFORMATION AVAILABLE . . . ... ... i i i et 2-3
2.6 FUTURE DIRECTIONS . . e e et et et ee e 2-3
2.7 LIMITATIONS AND CORRECTIONS ... ... e e 2-4

REGION 3. THEORE TICAL BASIS ... . et e e et eaeae 3-1
3.1 THE BOLTZMANN TRANSPORT EQUATION ... ... i, 3-1
3.2 NUMERICAL SOLUTION OF THE TRANSPORT EQUATION . ............... 3-2

3.2.1 The Discrete Ordinates Formulation ............ ... ... ... 3-2
3.2.2 Geometric Coefficients . ... ... ... i i 3-6
3.2.3  Basic Flux Evaluation Strategy: The "Linear" or "Diamond" Difference
Model .. e e e e 3-7
3.2.4 An Inherently Positive Method: The StepModel ........... ... .. .. ... 3-10
3.2.5 Fixup Methods: Linear Zero and Weighted Difference ... ... ............ 3-11
3.2.6 Semi-Analytical Methods: Nodal and Characteristic . . .................. 3-18
3.2.7 ChoosingtheProperMethod ............ ... ittt 3-25
328 TheSource Term ... ...ttt it ittt e et ea e 3-27
3.3 PROBLEM SPECIFICATION ................... e 3-31

TABLE OF CONTENTS




3.33.1 Directional Quadrature Sets ..........otitiiiiii . 3-31

3.3.2 External Boundary Conditionsand Sources .......................... 3-33

333 Internal Boundary SOUICES ... .....ccuiniintnineiniiiiinnnn., 3-35

334  UnlS ..ot e e 3-35

34 SOLUTION PROCEDURES . . ... i i e i e 3-36
341 Jteration SHrategy ... ..o ittt e e e, 3-36

342 NegativeSource Repair . ..........coiiiiiiin i, 3-37

343  FissionProblems ....... ... .. 3-3%

3.5 FLUX ITERATION ACCELERATION ... ... it iie 3-39
3.5.1 GroupwiseRebalance ........ ... ... ... i e 3-39

35.2 SpaceRebalance ......... ... i e 3-41

3.5.3 Damped Partial Current Rebalance . ............. ... ..o ot 3-45

3.5.4 Diffusion Acceleration .......... ... . il 3-47

3.6 SOURCE ITERATION ACCELERATION . ... ... ottt 3-48
3.6.1 Sourcelteration Synthesis ....... ...ttt it i 3-48

36.2 UpscatterRebalance ........ ... .. .. . . . 3-49

3.6.3 Emor-Mode Extrapolation .......... ... . i 3-49

3.6.4 Subcritical Multiplication Rebalance ............. ... ... ... ... . ..., 3-50
REGION 4. PROGRAMMER'S INFORMATION ...... ... ittt 4-1
4.1 CODE STRUCTURE ... .. ittt et e e e et 4-1
42 SPECIAL DIMENSIONING PRACTICES ... ... . e 4-2
43 OTHER SPECIAL PRACTICES .. . ... i i 4-3
4.4 MACHINE-SPECIFIC CODING ... ... i it 4-3
4.5 PORTABILITY CONSIDERATIONS . ... i i 4-3
4.6 LANGUAGE STANDARDS . ... e e e 4-3
4.7 MEMORY AND EXTERNAL FILE ADAPTATION ......... ... .. ... ..., .. 4-5
47.1 Flux/Source Storage Adaptation ............c.c.uiiuiniirinneanann. 4-5

472 Memory Requirements . ...........ciuuintnmrerneneniannnnnnnn. 4-6
REGIONS. USER'SINFORMATION .. ... i i e e 5-1
5.1 INPUT DATA SPECIFICATIONS . ... i i e 5-1
5.1.1 DataRecordInputFormat .. ....... .. ... ... . . . i 5-1

5.1.2 Input Array Specification ........... ... .. i 5-2

5.1.2.1 Overview of Arrtay Requirements . . .......... ... ..o iiiion.,. 5-2

5.1.2.2 Detailed Array Specifications . . ......... ... .. i oL 5-2

5.1.3 Input/Output File Logical Unit Numbers .............. .. ... ......... 5-2

5.1.4 Procedure ControlIntegers . ........ ...ttt 5-3

5.1.5 Geometry ControlIntegers . ......... ... . .. i 5-5

5.1.6 Cross-Section Control Integers ............ .ot iiiiiennannn.. 5-5

5.1.7 ProcedureControlReals . ... ... . i e 5-5

51.8 ProblemConfrolReals ....... ... ... .. i 5-5

5.1.9 Primary Dimension-Setting Arrays ...............0oiiiiiiiiii... 5-6

5.1.10 Secondary Dimension-Setting Arrays .. ..........uirintinnanan.. 5-6

5.1.11 Problem Specification Arrays . .........c..uiiitniiin i, 5-6

5.1.12 Source Specification AITAYS . ... ....cvuniuneriunnernennenieinannns 5-6

52 INPUT DATA DISCUSSION . ... e e e e 5-6
521 SpaceMeshes .. ... .. 5-7

5.22 CrossSectionInput ... .. ... . i e 5-7

523 Flux Moment EXpansion ... ......cuieininuninini ey 5-8

524 NegativeSourceRemoval .......... ... ... ... i 5-8

v




2.5  Zone And Material Specification by Body Overlay ..................... 5-9

5.2.6  Flux Sweep Formulations ............ ... iiuiniiinennnenennnann 5-10

5.2.7 Directional Quadrature Set .. ........ ... i e e 5-10

528 Boundary Conditions.............iuiiiiin i 5-11

5.2.9 FixedSourceInput .................. e e 5-11

5210 Adjoint Ordering ... ....cooui ittt e e e 5-12

5.2.11 Flux Iteration Convergence ...........ovuiirnin it iieinnnnnn. 5-12

5.2.12 Flux Iteration Acceleration ............ ...t iiiiirnunennann.. 5-13

5.2.13 Flux Acceleration Stabilization ....... ... ... .. i i i, 5-13

5.2.14 Problem Type and Source Iterations ............. .. ..., 5-13

5.2.15 Source Iteration CONVEIZence .. ......vvieenrieneeeenenaennnnnns 5-15

5.2.16 IndirectSearches .. ..... ... ittt e 5-16

5.2.17 Source Iteration Acceleration ..............ccciriiiiriiinnnaan, 5-16

5218 UPSCatlEr ..ottt e e e e e 5-17

5.2.19 Subcritical Multiplication .......... .. ... ... e 5-18

5.2.20 Source Normalizalion ............ ...ttt ininiirinanrnnnnnns 5-18

5221 KeyFlux Positions ........ ...t iniinieineannnnnn. 5-19

5.2.22 Response SUMMAETIIES . . . . ..ottt ittt ittt a e e eaeeane e 5-19

5223 TimeLimit . ... ... . e e 5-19

5224 UserEmorCode . ... ...ttt ittt e 5-19

5.2.25 Directional Flux Output ......... ... ittt 5-20

5.2.26 Discontinuous Mesh ... ... ... i e e e 5-20

5.2.27 Variable Quadratire ........... ... ... e e 5-20

5.2.28 Variable Cross Section Expansion .............. ..o viiiiivean.n.. 5-20

5.2.29 AccurateRestartProcedure ...... ... ... ... . 5-21

5.2.30 Direct Access Scratch FileRetention .................civiiieenn. .. 5-21

5.3 PROBLEM PRINTED OUTPUT ... .. i e i 5-22

5.4 INPUT AND OUTPUT DATA FILES .. ... ittt ieieaae e 5-26

5.5 SCRATCH DATA FILES ... e e et 5-26
REGION 6. ENVIRONMENTAL INFORMATION ....... ... .. . ... .. 6-1
6.1 UNLOADING AND INSTALLATION OF THE DISTRIBUTIONFILES ......... 6-1

6.2 THEJDOS DRIVER . ... o e e et e e 6-1

6.3 INTERNAL MEMORY . ... i i i i i i it i e e e e 6-2

6.4 EXTERNAL FILES ..o it e et e et e e et 6-2

6.5 SPECIAL FEATURES ... . i e i et ee e 6-3

6.6 COMMENT FILES AND DEMONSTRATIONPROBLEMS ................... 6-4

7. REFERENCES . ... e e e e e e 7-1
8. BIBLIOGRAPHY OF RELATED CAK RIDGE PUBLICATIONS . ... ... ... .. ... ...... g-1
APPENDIX A. FIDOINPUT ... ... ... ... . ... O A-1
APPENDIX B. INTERFACE FILE SPECIFICATIONS ........ ... ... .. . i B-1
APPENDIX C. DETAILED INSTALLATION INSTRUCTIONS .. ...... ... ... ... ..., C-1
APPENDIX D. DISCONTINUOUS SPACEMESH ....... ... .. .. ... ... ... D-1
APPENDIX E. ACCURACY OF LOW-ORDER APPROXIMATIONS ......... . E-1

v




APPENDIX F. THE C, FUNCTIONS AND THEIR APPLICATIONS

APPENDIX G. DISPERSION

APPENDIX H. SUBROUTINE LIST AND DESCRIPTION

APPENDIX I. DEMONSTRATION PROBLEM SET




LIST OF TABLES

Table 3.1. Geometric Coefficients .. ...... ...ttt ittt et iiaeeiaeanananns 3-6
Table 3.2. Comparison of Linearand StepResults ............. ... o i iiiiieinnnn.. 3-12
Table 3.3. Accuracy of the Padé(2,3) Approximation to the Exponential ....................... 321
Table 3.4, Unit SystemIS . ...ttt it ittt et iteeiaanteneneensanaanaanenn 3-36
Table 4.1. Principal Data Arrays in MEMOIY . . .. ..ottt it it i ii e inareeenanann 4-8
Table 5.1. Detailed Array Input Requirements . ..... ... .. .. ittt iiiiiiiinnenennn, 5-28
Table B.1. Format Descriptions For Sequential Interface Files ............................... B-2
Table B.2. Format Descriptions For Direct-Access Scratch Files ................ .. ... ..... B-22
Table G1. Error (%) vs. Method and Correct Zone Flux, Incident Angle=45° ................... G-3
Table G2. Error (%) vs. Method and Correct Zone Flux, Incident Angle=63° ................... G4
Table G3. Error (%) vs. Method and Correct Zone Flux, Incident Angle=27° ................... G4
Table G4. Worst Error (%) vs. Method and Correct Zone Flux, Incident Angles=45°,63°,27° .... G-5
Table G5. Error vs. Method, Correct Zone Flux, and Mesh Refinement, Incident Angle=27° ....... G-5

vii







Fig. 3.1.
Fig. 3.2.
Fig. 4.1.
Fig. D.1.

Fig. G.1.
Fig. G.2.
Fig. G.3.

LIST OF FIGURES

3D Umit Cells. ..ottt i e i et e 3-51
Dispersion Problem. ... ...ttt e et 3-52
Memory Block Arrangement . . ... .ot i e e e e e 4-10
The Discontinuous Mesh Feature, Showing Locally Dense Mesh Detailing Problem

Featires ... i e e D-6
Geometry and Correct Result forProblem 1 . ........ ... .. . i ... G-6
Geometry and Correct Result forProblem 2 ... ... ... .. .. . . il G-6
Geometry and Correct Result forProblem 3 . ...... ... ... ... . i iiiioa.. G-7

X




REGION 0. ABSTRACT AND ACKNOWLEDGEMENTS

0.1 ABSTRACT

TORT calculates the flux or fluence of neutrons and/or photons throughout three-dimensional
systems due to particles incident upon the system's external boundaries, due to fixed internal sources,
or due to sources generated by interaction with the system materials. The transport process is
represented by the Boltzmann transport equation. The method of discrete ordinates is used to treat
the directional variable, and a multigroup formulation treats the energy dependence. Anisotropic
scattering is treated using a Legendre expansion. Various methods are used to treat spatial
dependence, including nodal and characteristic procedures that have been especially adapted to resist
numerical distortion. A method of body overlay assists in material zone specification, or the
specification can be generated by an external code supplied by the user.

Several special features are designed to concentrate machine resources where they are most needed.
The directional quadrature and Legendre expansion can vary with energy group. A discontinuous
mesh capability has been shown to reduce the size of large problems by a factor of roughly three in
some cases.

The emphasis in this code is a robust, adaptable application of time-tested methods, together with
a few well-tested extensions.

0.2 ACKNOWLEDGEMENTS

W. A. Rhoades, who retired from the Oak Ridge National Laboratory at the end of 1994, was the
primary author and developer of TORT. Before retiring, he provided version 2.12.14 of TORT to
the Radiation Shielding Information Center for distribution along with an initial draft of this
document.

R. L. Childs was one of the originators of TORT, and the nodal and characteristic solutions are
largely his. He also contributed the optional Cray Assembly Language routines that boost speed on
the large mainframes, and numerous other things. Other contributors to Oak Ridge methodology and
codes should be noted, especially W. W. Engle, F. R. Mynatt, E. T. Tomlinson, and D. R. Vondy.
Advice and counsel many years ago from K. D. Lathrop and B. G. Carlson of Los Alamos National
Laboratory is still remembered and appreciated. More recently, W. W. Walters, also of Los Alamos,
contributed important assistance to our early work with the nodal methods.

Valuable help with the manuscript preparation was provided by Ruth Lawson and Angie Alford of
Oak Ridge.
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REGION 1. PROGRAM ABSTRACT
1.1 PROGRAM NAME AND TITLE
TORT -~ Three Dimensional Oak Ridge Discrete Ordinates Neutron/Photon Transport Code

1.2 COMPUTER FOR WHICH PROGRAM IS DESIGNED AND OTHER MACHINE
VERSIONS AVAILABLE

The standard Oak Ridge releases of TORT are designed to operate efficiently on Cray mainframes
and on IBM, DEC, HP, and SUN workstations. Installation instructions for these applications are
provided with the code. Adaptations to Silicon Graphics workstations and to PC's by users have
~ been reported.

1.3 PROBLEM SOLVED

TORT calculates the flux or fluence throughout a two- or three-dimensional geometric system due
to particles incident upon the system from extraneous sources or generated internally as a result of
particle interaction with the system materials. The principal application is to the deep penetration
of neutrons and photons. Reactor eigenvalue problems can also be solved. Numerous printed edits
of the results are available, and many results can be transferred to output files for subsequent
analysis.

14 METHOD OF SOLUTION

The Boltzmann transport equation is solved using the method of discrete ordinates to treat the
directional variable and the weighted difference, nodal, or characteristic method to treat spatial
variables. Energy dependence is treated using a multigroup formulation. Time dependence is not
allowed. Starting in one corner of a mesh, at the highest energy, and with starting guesses for
implicit sources, boundary conditions and recursion relationships are used to sweep into the mesh
for each discrete direction. Integral quantities such as scalar flux are obtained from weighted sums
over the directional results. The calculation then proceeds to lower energy groups.

Tterations are used to resolve implicitness caused by scattering between directions within a single
energy group, by scattering from one energy group to another group previously calculated, by fission,
and by certain boundary conditions. Methods are available to accelerate convergence.

Fixed sources can be specified at either external or internal mesh boundaries, or distributed within
mesh cells. Either cylindrical (ROZ) or Cartesian (XYZ) geometry is supported, as well as several
two-dimensional subsets.




1.5 RESTRICTIONS ON THE COMPLEXITY OF THE PROBLEM

Since dynamic dimensioning is used throughout, there are no artificial limits on individual variables,
although the machine size obviously provides an overall limit. The code document gives a lengthy
method of estimating memory and disk requirements, but an example may be better suited to this
abstract. One of the demonstration problems, a large concrete building model having 104,247 mesh
cells, 140 directions, P-1 scattering expansion, and 69 energy groups was solved in less than 1
Megaword of memory. The largest file, the flux moment storage, was about 29 Megawords.
Boundary fluxes used about 1.1 Megawords. A similar problem with about 193,200 mesh cells was
solved in about 1.2 Megawords of memory. Problems with 3 million mesh cells are now solved on
Cray mainframes, and larger problems are being planned.

1.6 TYPICAL RUNNING TIME
The running time varies from a few seconds to many hours, depending upon the complexity of the
problem. For large problems, the time for flux solution dominates the overall cpu usage, and the rate

18:

mesh cells * directions * energy groups * iterations per group

flux calculation time (fct)

The test problem #6 distributed with the code uses 104,247 mesh cells with 60 discrete directions.
It is able to provide an iteration over all mesh cells and all directions for one energy group, including
all overhead activities, in the following times, expressed in minutes:

Cray Y-MP IBM RS/6000 Model 320
Flux Solution Method CPU Real CPU Real
Weighted Difference 0.19 0.21 22 6.0
Nodal 0.44 0.57 7.2 13.7
Characteristic 1.79 1.82 6.2 12.8

It should be noted that these data represent typical user experience, and not necessarily the maximurm
capability of a given machine. In particular, the poor performance of the characteristic method on
the Cray is due to the lack of funds with which to vectorize it. The IBM RS/6000 Model 320
workstation is now obsolete, and new workstations are many times faster. Additional performance
data on newer machines are distributed with the source material.




1.7 UNUSUAL FEATURES OF THE PROGRAM

TORT is a three-dimensional successor to the two-dimensional DORT and DOT codes. Its basic
methods have been field-tested in vigorous application dating back to about 1965. In the field of
deep penetration problems, this family of codes is considered robust and dependable by many users
worldwide. The new nodal and characteristic procedures have been especially adapted to minimize
flux distortions that may occur in problems having irregular mesh shapes or wide variation in
density.

Anisotropic scattering is represented by Legendre expansions of arbitrary order, and methods are
available to repair erroneous scattering estimates caused by finite truncation of the expansion.
Direction sets can be biased, concentrating work into directions of particular interest. Different
direction sets can be used in various energy groups, allowing a finer directional definition where
needed. Similarly, the order of Legendre expansion can vary with energy group.

A discontinuous space mesh capability allows the specification of mesh boundaries on adjacent rows
of the mesh that do not match, and of planes whose cell boundaries do not match. This can be used,
again, to concentrate the work in an area of specific need.

The coding is arranged such that special software such as high-performance disk file routines or run-
time memory allocation can be implemented readily on computers that support them. Internal
language flags allow the procedures in compute-intensive loops to be tailored to specific needs. In
some cases, alternate subroutines are employed to improve efficiency. These features are selected
and controlled by the install-time procedures. With these provisions, a single "version” serves all
machine types.

1.8 RELATED AND AUXILIARY PROGRAMS

GIP Prepares cross section input

DORT Calculates two-dimensional boundary fluences for TORSED

TORSED  Couples DORT fluences to external TORT boundaries

VISA Reformats and sorts DORT data for TORSED

TORSET  Couples TORT fluences to a second TORT problem

DRV Coordinates various worker codes in a single job stream




1.9 STATUS

TORT is used on a routine basis by numerous installations worldwide. Updated versions are
released from Oak Ridge roughly once a year.

1.10 REFERENCES

W. A. Rhoades and R. L. Childs, "The DORT Two-Dimensional Discrete Ordinates Transport
Code," Nucl. Sci. & Engr. 99, 1, pp. 88-89 (May 1988). '

W. A. Rhoades and R. L. Childs, "TORT: A Three-Dimensional Discrete Ordinates Neutron/Photon
Transport Code," Nucl. Sci. & Engr. 107, 4, pp. 397-398 (April 1991).

W. A. Rhoades and R. L. Childs, "An Updated Version of the DOT 4 One- and Two-Dimensional
Neutron/Photon Transport Code,” ORNL-5851 (July 1982).

1.11 HARDWARE REQUIREMENTS

The code, itself, requires about 0.1 Megawords of memory. No overlay is used. An additional 0.1
Megawords of data storage is sufficient for modest problems. Problems such as the 104,247 mesh
cells case cited above require roughly 1 Megaword of memory and 30 Megawords of disk space.

1.12 PROGRAMMING LANGUAGES

TORT is operable with 100% Fortran 77. On Cray, two optional assembler routines (3%) provide
added speed. On UNIX workstations, optional C routines (roughly 0.3%) provide time, date, and
location information, as well as run-time memory allocation.

1.13 OPERATING SYSTEM
The standard UNIX operating systems and compilers are used on the various machines.

1.14 OTHER PROGRAMMING OR OPERATING INFORMATION OR
RESTRICTIONS

C Shell procedures are provided for unloading and installing the codes under UNICOS or AIX.
Assembler and C routines are optional, as noted above. No proprietary or sensitive software is used.
No restriction as to use, modification, or exchange of the material is made, except that programmers
making modifications are requested to note that fact prominently in the version identification that
is printed at the top of each job.
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1.15 NAME AND ESTABLISHMENT OF AUTHOR OR CONTRIBUTOR

TORT was originated by W. A. Rhoades and R. L. Childs of Oak Ridge National Laboratory.
Additions to and maintenance of TORT since the beginning of 1995 have been provided by Y. Y.
Azmy, T. J. Bums, and D. B. Simpson. Other major contributors to Oak Ridge transport
methodology and codes include W. W. Engle, Jr., F. R. Mynatt, E. T. Tomlinson, and D. R. Vondy.

Distribution is provided by:

Radiation Shielding Information Center (RSIC)
Oak Ridge National Laboratory

P.O. Box 2008, Building 6025

Oak Ridge, TN 37831-6362

(615) 574-6176 (Voice)

(615) 574-6182 (Fax)
http://epicws.epm.oml.gov

RSIC charges a fee for handling, and they can often provide help with installation difficulties. Since
no general support funds are available, telephone consultation with the originators is not provided.
E-mail or letter reports of errors or difficulties will be considered as time permits.

1.16 MATERIAL AVAILABLE

The distribution includes files containing source coding, installation instructions, comments,
document updates, a tutorial guide to the demonstration problems, problem input, and problem
output, in addition to printed documentation.

1.17 KEYWORDS

TRANSPORT, NEUTRONICS, SHIELDING, DISCRETE ORDINATES, SN

1.18 SPONSOR

The original development of TORT was sponsored by the Defense Nuclear Agency, U. S.

Department of Defense. Since that time, other sponsors have contributed to the installation of
special features to fit their needs.




REGION 2. INTRODUCTION
2.1 BACKGROUND

Active interest in a three-dimensional (3-D) deterministic transport code at Oak Ridge dates as far
back as 1971, but the computers, mathematical methods, and programming techniques of that day
were not ready to provide a practical working tool at that time. A 1977 study group considered
several alternative development paths, but it concluded that straightforward extension of the
traditional methods used in DOT 4' would be the most attractive near-term approach. Preparations
began in 1981 with studies of vector coding techniques and nodal solution methods of particular
value to 3-D applications. Continued mathematical and program structure developments in 2-D
brought the goal closer.

When direct work on TORT began in 1983, the Los Alamos THREETRAN? code had provided an
initial proof-of-principle for 3-D discrete ordinates, and Japan's ENSEMBLE® code had shown
success in radiation transport areas. The initial version of TORT was developed exclusively to
calculate the penetration of radiation into large concrete buildings for the Defense Nuclear Agency
(DNA). It was always intended, of course, that the code should be adaptable to other applications
in the future. A review of recent conference papers will indicate that this has happened.

2.2 FEATURES AND PROBLEM CAPABILITY

TORT can accept either ROZ or XYZ geometry, as well as several 2-D geometries. A new means
of entering material zone descriptions helps with the task of specifying very large problems. A
coarse mesh can be used to reduce the time and memory required for flux acceleration. Material
zones and coarse meshes are specified without reference to the fine solution mesh, so that the fine
mesh can be changed without disrupting these features.

Cross section input files are supplied in formats familiar to ANISN* and DOT users. Awkwardness
in handling P, cross section sets in the previous codes has been eliminated. The order, of P
expansion can be varied without changing the cross-section information.

Directional quadrature requirements are similar to DOT requirements, except that twice as many
directions are needed because of the third dimension. Quadratures can be biased in order to
emphasize directions of particular interest.

Traditional problem types are available: fixed-source, subcritical multiplication searches, direct kg
searches, and indirect criticality searches. Fixed sources can occur at boundaries or internal to mesh
cells. The searches employ an acceleration technique borrowed from VENTURE.® Searches can
start with either a distributed source guess or a flux guess from a previous problem. Convergence
importance can be specified by zone, and convergence can be monitored as the problem progresses.

2-1




Key flux locations can be selected for special monitoring during iteration. Numerous controls over
the iteration and acceleration processes allow the experienced user to solve very difficult problems.

The flux sweep can be conducted with either weighted-difference, nodal, or characteristic
formulations. Safeguards are provided to limit the effects of overextrapolation and flux distortion
in difficult problems. A means of mitigating the negative sources produced by the finite cross-
section expansion is provided. Flux acceleration is accomplished by the partial-current rebalance
(PCR) method. Although this is less sophisticated than some later procedures, it is robust and
compatible with TORT's various numerical procedures.

Traditional flux printout maps can be obtained, and flux can be printed at key positions. Group-
integral responses can be obtained at key positions, by mesh cell, or by zone integral. A flux output
file can be obtained for restarting and for use in preparing data summaries. The response
information can be obtained as a file for use in peripheral codes.

2.3 PROGRAM STRUCTURE

TORT operates on many types of UNIX computers, from large parallel-vector Cray mainframes to
sequential-scalar workstations such as the IBM RISC or DEC Alpha machines. Run-time memory
allocation is used where available. Direct-access files are used extensively for scratch storage, and
some of these can be saved for later use.

TORT is designed to operate in stand-alone mode, given enough input files, or as a subordinate
module under the Discrete Ordinates System (DOS) driver.® (Unfortunately, the acronym "DOS"
was subsequently used in another context by another supplier of software.) The code is structured
in four major sections coupled only by data in the common blocks and scratch files. These sections
could become individual overlays if necessary. The main body of the program has been kept as free
of machine-dependent practices as practical. Exceptions to this policy are localized and identified
by language flags. These flags are used to select the appropriate procedures when the code is
installed. Other machine-dependent procedures and coupling to system library routines are localized
in a drop-in adaptation package.

Only one source file is kept for the code, so that all users have equal access to corrections and
improvements as they are made, regardless of the computing system they are using. Each printout
is labelled with a version identifier unique to that specific release. The developers never authorize
a change without a new identifier, assuring traceability of results.

2.4 THIS DOCUMENT

The remainder of this document is divided into theoretical, programmer's, user's, and environmental
information regions. The theoretical information presents concepts and techniques used by TORT,
relying upon numerous references for completeness. The programmer's region concentrates on
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information helpful in understanding the code structure. The user's information provides specific
instructions for preparing problem input data. It is intended to be thorough enough to guide a novice
user with some experience in transport applications. The environmental region describes the
adaptation to specific systems.

2.5 ADDITIONAL INFORMATION AVAILABLE

In addition to the information presented here, a bibliography of related Oak Ridge publicétions and
papers is included at the end of this report. Last-minute information is distributed in files supplied
with the source program. In this form, it can be kept timely and informal, and then changed or
replaced when the situation demands. This information typically includes applications notes giving
specific advice about installing the code on a given system, a list of applicable documentation,
updates and corrections to the documentation, a discussion of additional code features or limitations,
and supplemental information useful in applying the code.

2.6 FUTURE DIRECTIONS

While it is not unusual for a code to be funded as an objective in itself, e.g. DOT 4, TORT has arisen
from the demands of specific applications projects. Consequently, there remain many areas where
additional effort would produce important improvements in performance and generality. Many of
the requirements will emerge as the code is applied to new areas - the DOT series of codes emerged
from about 15 years of interaction between users and program developers.

Assistance could be provided to users in selecting an appropriate space mesh and in displaying the
adequacy of a chosen mesh. Improvements in controlling the effects of finite Legendre expansions
would be welcome. The acceleration of flux and source iterations would benefit from improvement.
A coordinated package for graphical flux and response display would be valuable.

Cray users would benefit from a vectorized characteristic flux routine. Parallel operation on a Cray
system was programmed in 1995. Operation on other types of parallel computers, especially those
that do not require radical revision of the algorithms, could be fruitful.




2.7 LIMITATIONS AND CORRECTIONS

Certain items described in the manual are not available and ready for use in Version 3.1, the
reference version at the time of this writing. These include:

. linear-zero flux calculations,
cylindrical, white, and albedo boundary conditions,
upscatter rebalance,
indirect searches and super-meshes, and

boundary sources on internal i- and j-boundaries.




REGION 3. THEORETICAL BASIS
3.1 THE BOLTZMANN TRANSPORT EQUATION

Deterministic radiation transport codes such as TORT depend upon the Boltzmann transport
equation as the basic mathematical model. The equation is, in principle, just a statement of local
balance between currents, disappearance due to collision, and sources produced from material
interaction or from an external process. It is attributed to L. Boltzmann, who used it in connection
with the kinetic theory of gases.” Weinberg and Wignér relate the basic equation to a 1910
publication by Boltzmann,” and discuss its application to the physical processes involved in the
transport of neutrons. Given proper cross section data, photon transport can be described as well.
With time-dependence suppressed, the form pertinent to neutron/photon transport in a fissile system
can be expressed as:

V-QU(r,E,Q) + o' (r,E.Q)¥(r,EQ) =

ff (B E,QQ )y (r B, Q )dQdE’ G.0)

* = UpE) [ [ v(6B)o(r. B Jole, B, Q') dQ'dE’ + 0(r E.Q)

In this, d€2is a differential solid angle about the direction vector £, dE is a differential energy about
E, and r is a position vector with reference to an arbitrary origin. The directional flux, {, is defined
such that the number of particles within a small spherical volume dr about r at time z, with energies

falling within dE and directions of motion within d£2, will be 1 YdQdEdr. Also, o' and o are
v

macroscopic cross sections for total interaction and fission, respectively, and ¢ is the cross section

for scattering from energy E’ and direction £ to energy E and direction £ The functions vand

represent the total fission yield of secondary particles and the corresponding energy distribution. Q .
represents an extraneous source, if any.

Although the general Boltzmann equation includes time dependence, removal of that dependence
in the static form presented here is an important simplification. Certain other simplifications will
also be made. As a practical matter, scattering is generally independent of initial direction, so that
it can be expressed in terms of the single scattering angle,

po=Q-Q (32)

rather than as a function of two direction vectors. Although some applications exist for the
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dependence of ¢’ on £, they are unusual, and this dependence is not allowed in the present work.
A somewhat weaker justification exists for the removal of the dependence of y on position in space.
In fact, if several fissile species exist in the system, and if the species do not always fission in the
same proportion, ¥ will depend upon position. Nonetheless, the present work does not allow such
dependence.

3.2 NUMERICAL SOLUTION OF THE TRANSPORT EQUATION
321 The Discrete Ordinates Formulation

Without the integral over direction space on the right-hand side, the solution of 3.1 would be fairly
straightforward. Integrating over energy produces a set of multigroup equations with group-integral
fluxes interacting according to mean cross section values. The spatial dependence can be represented
with a set of ordinary algebraic equations relating cell-average flux values and boundary currents.
It is the directional coupling through the source integral that brings most of the solution difficulty.

In the method of discrete ordinates, the equation is evaluated over a specific set of discrete
directions, and the integral is approximated by a weighted sum over the directional results. Once
again, a set of algebraic equations is obtained, and these can be solved by a combination of recursion
and iteration procedures. A 1957 book by Davison' gave a review of the method and an appendix
citing important developmental work by Carlson at Los Alamos. Davison cites a 1953 book by
Chandrasekhar! as the basis of the method as he presents it, and a 1943 article by Wick? as the
origin of the basic approach.

The discrete ordinates method as we know it is based upon the "discrete S, method" reported by
Carlson and Bell in 1958." This was the second of two S, methods described in the paper, but it had
so many advantages over the first, and was so well adapted to computing machinery, that the first
method was soon abandoned. In addition to conserving particles without special fixups, the discrete
method was readily extendable to multiple space dimensions and anisotropic scattering treatments.
Its accuracy could, in general, be improved by adding more directions, and the solution work
increased no faster than linearly with the number of discrete directions.

A 1965 report by Carlson and Lathrop' gave a review of the method with emphasis on physical
principles and evaluation techniques as well as an annotated bibliography of earlier work in the field.
Mynatt et al.' provided a formal mathematical development of RZ geometry in 1969, while Lathrop
and Brinkley'® gave both RZ and R® formulations in 1973. In this report, we follow the notation
of Lathrop and Brinkley, although Mynatt's results are equivalent. In three dimensions, either ROZ
or XYZ geometry, the form we use is:
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N,

112,k Vi 002, komg Ai-JIZ,j,kN

Wm pm [A i-1/2,j,k,m,g]

N,

+ W, &, [Bi,j+1/2,k1vi,j+112,k,m,g =B ik i,j-IIZ,k,m,g]

* W, n, [Ci,j,k+1/2Ni,j,k+1/2,m,g - Ci,j,k—l/ZNi, j,k-1/2,m,g] (3.3)

N,

Lj km+112,g N,

- A Xprir2 = Qi Yy, j,k;m-IIZ,g]

+ [Ai+1/2, ok

i—]lZ,j,k] [

+ ol WmV N.

ik g ik Nijomeg = WaVijeS;

L kYL, km,g

In this notation, subscripts i, j, and k represent mesh intervals in the three space dimensions. The
subscript m refers to one of an ordered set of directions along which flux is to be evaluated.
Subscripts such as i+1/2 refer to the interval boundaries, e.g., boundary i+1/2 is the boundary
separating interval i from interval i+I. In the case of m, this is somewhat artificial, since each m
represents a discrete direction with no defined sector of solid angle associated. In fact, directions
represented by successive m's may not even be "adjacent” in direction space. Even so, the equation
requires coupling between certain fluxes having consecutive m values, and terms with subscripts
such as m+1/2 merely denote artificial intermediate values. The subscript g refers to energy group.

It may be noted at this point that obvious subscripts are frequently omitted in discrete ordinates
writings, e.g., the first term of Eq. (3.3) might later be written:

Wu [Ai+1/2 Nip = A Ni-uz]

In practice, this approach is probably less confusing than the inclusion of long lists of redundant
subscripts.

In certain discussions, /, J, and K are understood to be the upper limits of i, j, and k. It may also be
noted that space mesh positions are discussed such that boundaries having i=1/2, i=I+1/2, j=1/2,
j=J+1/2, k=1/2, and k=K+1/2 are spoken of as "left," "right," "inside," "outside," "bottom," and
"top," boundaries, regardless of geometry.

The ordered set of directions of particle travel are characterized by their direction cosines (U, &,

7). In all geometries, p is the cosine of the angle that the direction of travel makes with first-
dimension axis, i.e., X or R, while 1 is the cosine of the angle with the Z axis, and £ is the cosine
with the remaining direction vector, either the Y axis or the azimuthal axis in the case of ROZ

geometry.
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The coefficients A, B, and C are cell face areas perpendicular to the axes from which p, &, and 1 are
measured. The « coefficients will be defined later.

In the geometries of interest, B and C have no variation across a cell, leading to some simplification.
We have reversed the roles of £ and 7 from Carlson's original usage so that n could continue being
associated with the Z direction, as it was in RZ geometry. Our direction-cosine ordering and naming
of boundaries are consistent with the ENSEMBLE code.?

Each direction has an associated weight, W, . Quantities involving integrals over all directions are

to be evaluated by sums with W _ as the weighting function. N represents the directional flux, ¢, in
direction, m, although it will be seen that N has different units. V and S are the volume and source
in a given mesh cell, and ¢’ is the macroscopic total cross section. It is assumed that S includes
extraneous sources, scattering from other energy groups, scattering at the given energy from other
directions, fission, and any other particle sources, €.g., (1,2n).

It can be observed that, except for the terms with o, Eq. (3.3) is simply a statement of particle
balance for a given cell, and could have been written down directly. From this, it is evident that the
discrete ordinates equation conserves particles inherently if the « terms are defined appropriately.

The terms with « are effective only in curved geometry, ROZ. Their physical meaning can be made
apparent by considering a particle moving inward along a path that will take it closer to the axis of
acylinder. While 7 is a constant for such a path, p constantly increases from negative, through zero,
and ultimately toward u=+1 as the particle moves away from the centerline. Thus, the discrete
ordinates equation must show a comparable flow toward directions of larger u for these paths.

In order to allow manageable evaluation of the terms with ¢, an ordering discipline is imposed upon
the directions represented by m. Since the « terms must couple directions of like 7, directions of like
7 are grouped contiguously. All negative £'s precede all positive 's for a given n, and p's for given
1 and § are arranged in ascending order. The groups of directions with like 'r] ("n levels") are
ordered such that all directions with 11<0 precede all directions with 1>0. The «-flow, following an
actual path inward and then outward, is always toward directions of increasing m within an 1 level.
It can also be seen that there must be no flow between 1 levels in order to be consistent with the
physical model.

The recursion relationship for the a's can be obtained at this point by observing that Eq. (3.3) must
be valid in a source-free region where N is uniform. Since no constraint may be placed upon &, A,
B, C, or V, then it must follow that, for a given 7 level,

Wb, S0, O, (3.4)




Since it is required that o coupling be only between directions within an 7 level, then «,,_; ,=0 for
the first direction of the level. It is essential that, for each level,

> W =0, (3.5)

so that ¢, ;» will be O for the last m of that level, and there will be no net flow into or out of the 1)
level. This ensures that particle conservation is rigorously met. Symmetrical quadrature sets
inherently obey this condition, and it is important that unsymmetrical sets obey this condition as
well.

It is advantageous to substitute a new variable, [3, for o:

B = _‘-)-VL [O‘mu/z M “m-uz] . (3.6)

m

The recursion relationship for the ﬁm can be obtained by combining its definition and the recursion
relationship for &, each evaluated at both m and m+1:

Wm Bm = ocm+1/2 * ocm—1/2 k4 (37)
Wit Buat = @z * Ot (3.8)
Catrz = %z = Wbty (3.9)
and
am+3l2 = 0‘mi-llz - Wm+1 p‘m+1 (3-10)
Therefore,
Wm+1 mel Wmﬁm - [Wm+1 Momas * mem] : (311}

Recalling that «,, ; ,=0 for the first direction of each 1 level, then it follows that ,Bm =-u,, for such
levels, at least if W= 0. This relationship is also assumed when W, =0.

It is important; both in applying boundary conditions and in obtaining proper stability, to "follow the

flow" in writing the recursion formulas; i.e., all directions with #<0 must be evaluated from large
i values toward small, and likewise with the other dimensions. Similarly, positive pu values require
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evaluation from small i to large, etc. These procedures can be written in a single formula by use of
subscript increments defined in terms of the signum function (sg), which has value +1 according to
the sign of its argument:

c = (12)sg(n,)s d=(12)sglE,); e=(12)seMh,) - (3.12)

Written in terms of B, ¢, d, and e, Eq. (3.3) can be simplified to:

IJI [Ai+c]vi+c - Ai—cNi-c] + IE! B [Ivj'rd - ]\G—d] + |T|l c [Nk+e - Nk—e]
(3.13)
* (]/2) AA [(ﬁm - pm)Nm+1l2 - (Bm * um)jvm—llz] * VOTNz Vs
where
AA = A, ~ Ay - (3.14)

where unessential subscripts have been dropped, and where it is recognized that B and C
are independent of j and k, respectively.

3.2.2  Geometric Coefficients
The geometric unit cells used in the code are illustrated in Fig. 3.1 (pg. 3-53). The faces
corresponding to the geometric parameters A, B, and C are shown. Table 3.1 gives the values of the

coefficients in terms of cell dimensions. It should be noted that the theta dimension is measured in
units of rotations, not radians, thus, theta varies from O to 1 during a full rotation.

Table 3.1. Geometric Coefficients

XYZ ROZ
A AY-AZ 2nR-AO-AZ
B AX-AZ AR-AZ
C AX-AY 2nR-AR-AG®
v AX-AY-AZ 2TR-AR-A®-AZ
NOTES:

1. © is measured in rotations.

2. R is the value of R midway between faces.




3.2.3 Basic Flux Evaluation Strategy: The "Linear" or "Diamond" Difference Model

Evaluation "following the flow," as discussed above, is also evaluation "sweeping away from
boundary conditions into the mesh". Since evaluation always begins with m=1, the first sweep must
be toward smaller values of i, j, and k. Where , J, and K represent the largest values of i, j, and k,
then the boundary values N, ,,, N,,,,, and N, are decided a priori based on physical
considerations at the outer boundaries of the system. No such physical considerations govern the
boundary flux at m=1/2, however, as will be seen.

Before dealing with m=1/2, let us observe that, even with N; , N; ;, and Ny, known from boundary
considerations and N, ;, to be defined by a yet-unspecified process, Eq. (3.13) would still involve
five unknowns. The four advance boundary values, Ny, ., N;, 4, and N, N, . ,~have been treated
as completely independent, and are, therefore, not completely defined by Eq. (3.13). In fact, all of
these represent values of a single continuous function, ¥, at adjacent locations, and they cannot vary
more freely than § varies. If we assume that { can be approximated adequately by straight-line
segments between adjacent boundaries, and if the average value N is simply the linear average of the
boundary values, then the following "linear” or "diamond" difference model results:

N = (12) [N, + N_.] . (3.152)
N = (1/2) [Njﬂ, + Nj_d] , | (3.v15b)
N = (1/2) [N,m + Nk_e] , (3.15¢)
and
N =(12) [Nporp * Npin] - (3.15d)

As previously discussed, f;=-u;. Accordingly, Egs. (3.13) and (3.15) cannot yield direct
information as to an appropriate value for m=1/2, and the other results are independent of this value.
Accordingly, N, is arbitrary and unknown. If N, is to be a value interpolated between N,;, and
N3, , the only available assumption is:

N,, =N, . (3.16)




Since each 1 level begins with a f,,=-u,,, each must start with an "initiating direction" having:
Npiz =Ny 3 B=-n . | (3.17)

Where an initiating direction occurs for m>1, and where m’ denotes the predecessor to m, then
Eq. (3.15) defines values for m +1/2 and m-1/2 that do not agree. In fact, such directions are on
different 1 levels, and they do not, in general, describe adjacent directions. Thus, there is neither a
physical nor a mathematical requirement for continuity of flux between them.

It has been traditional, in the early DOT codes, to allow these initiating directions to have W, =0, i.e.,
"zero-weight directions," and to adjust their directions such that £=0. Carlson and Lathrop describe
this procedure.'* On the other hand, the TWOTRAN II code'® uses directions having non-zero but
small, finite weights. Tomlinson et al.'” showed that, other factors being equal, this choice does not
significantly affect the results of problems they studied.

Having decided on boundary values for initiating the sweeps, Eqgs. (3.15) and (3.17) define the
remaining unknowns in terms of the single unknown, N, for the initial direction of each 1 level:

N, =2N-N,__ , (3.18a)
N,,=2N - N, - (3.18b)
Nk+e = 2N - Nk—e ? (3180)
and N _.,=N . . (3.184d)

Defining, as a matter of convenience:

A

]

112) [Ap + A (3.19)

observing that:

+

2|ul A, + AA[B-u] = 2|u|A + A4 , (3.20)
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and recalling that f=-u for the initial direction of each n-level, the value of N can be written -
explicitly:

v Ys 2|u| AN, + 2|E| BN, , + 2|n| CN,.,

— B=-u . (3.21)
Vo' +2|ufA + 2|E|B + 2|n|C

This equation applies to all initiating directions, whether W=0 for such directions or not. For all
other directions, Eq. (3.17) does not apply, and N,,, ; » is obtained by applying Eq. (3.15d) to the
preceding directions:

Npp =2N - N, p3:B=-p . (3.22)

Since B#-u for such directions, terms in S appear in the formulation for N:

. VS +2|u| AN, +2|| BN, ,+2|n| CN,_, + AABN, .
Vo' +2|u| A +2)E| B+2|n| C+AAB

Bron . (323)

At this point, an explicit sweep pattern has been found. Determining Ny, ;», Ny, ;p, Ngyjp, and
N,..1. as described, Eq. (3.21) gives N, , explicitly. Equation (3.18a) gives N,_,, explicitly,
recalling that p<0 for the first direction, and thus ¢=-1/2. This evaluation can proceed for all i's
down to the boundary value at i=1/2. With this done, values for N, ;,, for each initiating direction
can be found using Eq. (3.17). Similarly, additional directions with u<0 in the given 1 level are
evaluated from Eq. (3.23) and extrapolated with Eq. (3.22). This process continues for all m's for
which 1n<0, £<0, and p<0. Having these values, the values for directions having 1n<0, <0, and u>0
at i=1/2 can be determined from physical boundary conditions. The sweep proceeds as before,
except, of course, that evaluation is from i=1/2 to i=I+1/2. From these values, Eq. (3.18b)
determines N, ;,, and the process proceeds as before, inward to j=1/2. Boundary values at j=1/2
for directions having 11<0 and £>0 are determined from physical boundary conditions, and the sweep
resumes, this time outward from j=1/2 to j=J+1/2. The sweep in K proceeds analogously;
downward and then upward.

It is clear from physical considerations that, given positive sources, boundary values, and cross
sections, we expect N to be everywhere positive. Certainly Eqgs. (3.21) and (3.23) will produce
positive N's under such conditions. Unfortunately the "extrapolation equations,” (3.18), will not
always do so. If:

N<(12)max [N_. N, ;N N, 1] (3.24)

then at least one value produced by the extrapolations will be negative. This may result in negative
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values of N in subsequent applications of Eq. (3.21) or Eq. (3.23). These false values result from the
assumption, made in writing Eq. (3.15), that flux could be adequately represented by a straight-line
segment between boundaries. If the total cross section becomes sufficiently large, for example, that
assumption is no longer valid. In Eq. (3.21), the value of N can be made arbitrarily close to 0 by a
large value of d, as is well known. Also, if S, Nj_d, and N,_, are 0, but either B or C is not 0, negative
values of N, . will result for all directions having:

M|A<]|E|B + [n|C (3.25)

for any value of o', even 0'=0! If false negatives are so easily generated, it is apparent that inaccurate
positive numbers can also be generated, and these errors are not so easily detected. We call this
difficulty "mesh distortion," since it results from interaction of the mesh shape with the numerical
method, whether material is present or not. These problems render Egs. (3.21) and (3.23) unsuitable
for use as given. More complexity is the only remedy, as will be seen.

3.24 An Inherently Positive Method: The Step Model

The "step” model is much simpler. If the approach of Eq. (3.17) is arbitrarily extended to all
extrapolations, the result is:

N.. =N, (3.262)
N.,,=N, (3.26b)
N.. =N, (3.26¢)
and
Ny =N . (3.264d)

Then, Eq. (3.13) can be solved for N directly. With a bit of simplification, if f=-u:

N = VS + |u|A_ N_ +[E] BN, ,+ In| CN,_, +(1/2)AA(B+|~1)N,,,-1/2
Vo' +|ul A, +|E| B+|n| C+(1/2) AA(B+p)

’ (3.27a)

and if f=-u:
VS + lul Ai—cNi—c + |E| BAIj—d + Inl CNk—e
Vol +|ulA,  +|E[B+|n|C

N =

(3.27b)

[
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Given values of the incoming boundary fluxes, Eq. (3.27) provides the average flux, Eq. (3.26) gives
the outgoing boundary fluxes, and the calculation proceeds. The step model can be seen to yield
positive results, given positive sources and boundary fluxes. It will be seen later that it approaches
the correct limit for thick intervals. Unfortunately, its accuracy is deficient for small and
intermediate cells.

3.2.5 Fixup Methods: Linear Zero and Weighted Difference

The strengths and weaknesses of the linear and step models can be seen by examining the limiting
case of 1-D, source-free plane geometry, in which 44=0 and $=0. Letting:

Egs. (3.182) and (3.23) can be solved for emerging flux, yielding:

/N, - U2 (3.28)

rlt =N
1+(12)s

i+c

where:

The exact solution in such a case is shown in Appendix E to be:
ri=e =1 -5+ (112)s? - (16)s? + . . (3.29)
Expaﬂding r in a Maclaurin series yields:
rl=1-5+(12)s? - (l14)s® + .. , (3.30)

which can be seen to be correct through the term in §%, i.e., “second-order correct,” in this idealized
case. Appendix E also examines the case of a source varying in space.

The step model for the case examined above yields:

s 1

r =

=1 -s5s+s%+ ., (3.31)

I+s




which is accurate only to terms in s, i.e., "first-order correct." Table 3.2 shows selected values of
these functions. As one would expect, Eq. (3.28) is very accurate with s small, with just 1% error
at s=1/2. Unfortunately, high-order accuracy with s small is accompanied by high-order error with
s large. The errors are both about 12% of the original flux at s=1, but the linear method dips to
comparatively large negative values after s=2, while the step method continues smoothly, although
slowly, to 0. The large, non-physical negatives can cause wrong overall results and can thwart
convergence.

An average of the two methods produces accurate results between s=0 and s=2. Unfortunately, large
negative values are produced at large s. Such difficulties plague any attempt at a fixed formula
blending the two methods. From this, however, one can see the requirements of a good intermediate
method. First, it should possess the accuracy of the linear method for small intervals, so that the
dominant portions of the calculation can be accurate. Second, it should go to the correct limits for
thick intervals. Finally, it should yield acceptably small, non-negative results for cells where mesh
distortion and shadowing tend to produce errors. With such a compromise, fluxes crossing a wide
interval at an oblique angle, for example, would typically be overwhelmed by correctly calculated
fluxes arriving from an easier path, and they would do no harm.

Table 3.2. Comparison of Linear and Step Results

Linear Exact Step Average

5 r* r r (12)(r"+7)

0 1 1 1 1

172 0.60 0.61 0.67 0.64
1 0.25 0.37 0.50 0.38
11/2 0.14 0.22 0.40 0.27
2 0 0.14 0.33 0.16
3 -0.20 0.050 0.25 0.02
4 -0.33 . 0.018 0.20 -0.06
8 -0.60 0 0.11 -0.24
oo -1 0 0 -0.50

Early codes such as DTK" attempted to achieve such behavior by checking the calculation at each
interval and substituting a step calculation if a negative extrapolated flux was detected. This
procedure worked fairly well in one dimension. In 2-D, however, problems would frequently
experience "switching oscillation," in which cells not too far from each other would "resonate,"
alternately switching between models, and thus thwarting convergence. Further, the calculation of
flux across the width of a long, narrow interval would be inaccurate due to the use of the step model
to prevent negative fluxes along the length.

3-12




Lathrop and Brinkley' had a better idea for TWOTRAN II. They simply set the negative flux to zero
and re-solved for the other fluxes with that assumption. This procedure, sometimes called "zero
fixup" or "linear-zero," brought acceptable stability and convergence to the solution of difficult
problems, and it was included in later versions of DOT.! An important advantage over the linear-step
method was that the result was continuous at s=2, whereas the linear step suffered a discontinuity
there. A disadvantage was that zero was always an underestimate of the true result — undesirable in
many applications. While linear-zero was a simple procedure in 1-D, it required a great deal of
additional coding in 2-D. In fact, bugs were found in the procedure years after its introduction.”
Extending the 2-D method to 3-D is even more complicated, and the coding does not vectorize
readily.

The weighted-difference model® uses a different approach. Rather than looking for negative results
experimentally, the formulation seeks to blend linear and step models in such proportions as to
provide linear-model accuracy with s small and to make a smooth transition to zero where over-
extrapolation or mesh distortion is possible. Further, when the realities of sources and incoming
boundary fluxes are added, one can adjust certain parameters in an attempt to improve accuracy.
Although the initial acceptance of weighted difference was slow, the method has dominated
deep-penetration calculations since the mid-1970's, and has yet to be displaced in curved geometry.
It is easily adapted to 3-D and largely vectorizable. Although it requires more computational work
per iteration than linear-zero, it is often more economical due to faster convergence.”*

To derive the weighted-difference models, define, where S#u:

i N - Ni-c
Ve —, (3.322)
‘Ni+c - Ni-c
~ N-N_,
Y = - . (3.32b)
Nj+d - N]—d
N-N,_
vis — (3.320)
k+e -e
and
N-N__
Y s (3.32d)
m+1{2 m-~1/2
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from which it follows that:

I 1-v
Nyo.=—=N- ——Y—}N , (3.332)
Y Y
I 1-vyi
ea = — N - |1 ]N,._d : (3:33b)
I Y’
N, -Ln-[1=y
k+e ~ _—k - k k-e ? (3330)
14 Y
and
I I1-y™|
Nm+1/2 R N - [ Z }Nm-m . . (3.33d)
14 Y
With these substitutions into Eq. (3.13):
VS+F!N._ +F/N_,+F*¥N,__ +F™N _
- i-c ']d : k-e m-1/2 , (3.34)
Vol + Fi+Fi+FrksFm
where ‘
Fi=u| [0/ - DAL+ AL] . (3.35a)
Fi= g 1/¥)B , (3.35b)
and
F*=|nlli/y*) C , (3.35¢)
Fr=(12)0Al{1/ym-1) B-n) + B+n)] (3.35d)
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The values of v, y/, y*, and y™ are determined by substituting Eq. (3.33) into Eq. (3.34), and
then, by examination, choosing each weighting coefficient to ensure non-negativity of the boundary
flux for any value of the other coefficients between 1/2 and 1. (The reason for the 1/2 and 1 limits
will be seen soon.) Sufficient conditions are:

;_SV8, +[|€] BN, ,*In|CN,_, ] 0, +[(1/2)AA(B+1)N, _,,]8,+Iul AN,

i-C ~-c

) 2[(172)VoT + |E| B + |n| C+(112) AA(B-p) ] N, $ G
i - sve, +[|n| A,._CN,--C+TInICNk-e]en+[(1/2)AA(B*u)Nm-uz]em‘“'gl /T (3.36b)
2[(12)V 0" + u| A+ In| € + (12) A4 (B-p) |V, ,
e = SVO (Il Ay Nt [EIBN, 16, [URAA (B i) N,y Bt I CNe,
2[(112)V o™+ || A, + [E| B+(12) AA(B-p)| N,_, $ (33
and
m o SVO | AN EIBN,, < Il CN, |0, ~U2)AAGB WMy

2[(1/2)VGT+ [ul A, + €] B +n| C]Nm-m

where 0,,, 0,, and 8, are arbitrary parametérs between O and 1. It can be shown that the linear model

m Y
corresponds to:

’Yi = 'YJ = 'Yk = ‘Ym = ]/2 N (3'37)
while the step model corresponds to:
-Yi = YJ = 'Yk = 'Ym =] . (3.38)

When f=-u, the equation for N is simplified as usual. Substituting Egs. (3.33a), (3.33b), and
(3.33c¢), together with Eq. (3.17) into Eq. (3.13):

L VSTPIN FIN PN .
Vol +Fi+Fi+ F* . .
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The weighting coefficients are derived in the previous manner, giving:

SVGS +[ IEI BN]—d + lnl CNk~e -l en * Ip’| A[—CN;'—(;

2[(112) Vo + |E| B+ |n| C - (12) AAp N, (3.402)
[y = Sve, +[|u|A, N, +|n|CN,_ |8, +[E|BN,_, ’ 5400
2|(12) Vo + |p| A, + |E| B - (112) AAp | N,_, '
and
I - k _ SVBA‘ +[ |p|Ai—c1Vi—c + !El B]vj—d] en + ln' CNk—e
(3.40c)

2[(2)VoT + lul A+ |€] B - (12) AA N,

The y™ coefficient is not defined in this case, and is not used.

With non-negative sources and incoming fluxes at the lateral boundaries, e.g., N;. 4, Ny, and N, ;
when v’ is being calculated, it can be shown that the y's are never greater than 1. With lateral fluxes
and sources zero, the positive step result will be calculated for large V&' By limiting v to no less
than 1/2, the results will be identical to the linear model for small V¢'. In this case, the value of the
O's is irrelevant. It is in the treatment of sources and incoming fluxes at the lateral boundaries that
the choice of 8 becomes important.

The O's are arbitrary, although it is intended that they lie between 0 and 1. The formulation discussed
in the 1969 version of TWOTRAN (X,Y)* is equivalent to:

0.=0 =6 =0 . (3.41)

This method never generates negative results, but it will use the less-accurate step model for intervals
large in one or more directions, even though flow across the cell faces and internal sources would
allow use of the linear model.

A 1969 Lathrop paper* had:

0 =0 =06 =1 . (3.42)
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This method maximizes use of the linear model, but it tends, in certain cases, to break down for
exceedingly small fluxes, thwarting convergence. In the 1973 version of DOT III,'* a compromise
was used:

8 =1;06 =6 =0 . (3.43)

This worked well in source-dominated regions, but gave inaccurate results for source-free intervals
of long, narrow shape. The original weighted-difference model available in the earliest DOT IV,
now called "ordinary-" or "zero-weighted" difference, used:

8 =6 =1,6 =0 . (3.44)

This mitigated certain distortions along the axes of cylinders, but the trouble with long, narrow
intervals remained. '

In a later development, the "theta-weighted"'” model set:

6,=6,=6,=96, (3.45)

where 0 is empirically chosen such as to avoid degeneracy, and yet, to result in the usually-more-
accurate linear model when the source or flow from adjacent boundaries allow it. Values of 6 of 0.5
or greater, but not near enough to 1.0 to produce numerical degeneracy, give essentially equivalent
results. It is not intended that this parameter should be "fine-tuned"”, and values of 0.5 or 0.9 are
typical. If greater accuracy is required, another method should probably be used.

The TORT and DORT codes have a slightly modified version called "consistent weighted":

6.=0 =1;6 =60 . . (3.46)

When 0=0, ihis is identical to the "zero-weighted" model. When 6>0, results are virtually identical
to the "theta-weighted" model of DOT IV. Only one set of coding is needed to produce both results.

This version of weighted difference has been in use since the early 1980's. It does, however, have
a potentially important weakness. Let us examine Eq. (3.34) in the case of a thick interval in slab
geometry, where terms involving B, C, and 4A disappear. Then:

~ sve,
I-y'=s ————
Vol N,




This is indeterminate, of course, when N, =0, but yi is held at the lower limit of its range, 0.5,as N ;.
becomes large, and it appears important to use that value at the limit, also.

As S becomes very large and N, remains finite, y* is also held at the limit 0.5. It is seen in
Appendix E that this generally leads to poor results, and y’ should be held at its upper limit, 1.0, for
thick intervals. This can be brought about by setting:

Experiments with this modified form show an important reduction in the number of cases that refuse
to converge. The effect on the accuracy of the results is not known, however. Since the modified
form would usually be correct for large intervals, the only concern would be for small intervals,
where the new formulation might or might not be acceptable.

3.2.6 Semi-Analytical Methods: Nodal and Characteristic

All of the approximations discussed in the previous sections defined the average flux, N, as an
arbitrary function of the boundary fluxes, and this brought certain persistent trouble areas. First, the
linear or diamond-difference approximation that is sufficiently accurate for small mesh cells tends
to behave badly when the flux changes rapidly across a mesh cell. Also, Appendix E shows that this
approximation can give unacceptable results for thick mesh cells, even when boundary flow and
source are nearly in equilibrium. Weighted difference can give acceptable boundary fluxes for both
thick and thin intervals, but it is limited in its ability to represent flux within the cell, and thus, to
calculate reaction rates correctly.

The semi-analytical methods to be presented here will use flat or linear representations of the spatial
distribution of sources within the cell and fluxes at the boundary of the cell. (This was not a
consideration in the previous work at all, since it dealt only with the overall cell balance.) Then, they
will use analytical solutions of the discrete ordinates equation within the cell. The results will be
more complex, but an improved ability to provide correct results for large mesh cells will be
obtained. Given positive, constant sources and boundary fluxes, the results will be inherently
positive. Additional constraints will force positive results with linear representation of the sources
and boundary fluxes. The idea of using analytical formulations within a cell is not new. A 1969
paper by Lathrop dwelt at length on early applications of the concept to discrete ordinates.”” The
methods used in TORT are discussed in detail in a 1993 report.®

The general procedure used here is an application of "quasi-linearization," a process used as long ago
as 1958 by Cohen,” and it is a natural extension of the Runge-Kutta method for solving initial value
problems. In this procedure, terms in an equation like Eq. (3.13) that depend explicitly upon the
independent variable, N in this case, are separated from the "source" terms that drive it. The latter
terms are approximated by low-order polynomials, and the resulting equation can be integrated
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analytically. The source terms can have weak dependence on W, if their predominant behavior is
independent. Cohen and Flatt reported considerable success in solving reactor kinetics problems
with this method, using time steps much larger than the natural time constant of the neutronics.?®

The application of similar methods to transport theory received attention in the 1960's, but not much
practical application. Given the computer speeds of the day, simple linear-difference techniques
using more space intervals were generally better. Since problems tended to be small, sufficient
memory to store the additional variables was generally available. The economic difficulties lay in
the cost of evaluating the various exponential functions required for the analytical solutions. Where
a reactor kinetics problem required hundreds of these evaluations, even a small transport problem
required millions.

Attempts to use library exponential subroutines were not practical. The library routines were too
expensive, and they gave numerical trouble in small intervals, where roundoff became significant.
Polynomial approximations were too expensive and/or not sufficiently accurate. Better computers
and better mathematics changed all that, however, and analytical solutions across an interval are now
very practical.

In search of some insight into this approach, let us first consider a purely numerical method, a fine-
grid-coarse-grid formulation. We use Eq. (3.3) in the case of XYZ geometry, where:

A = A = A (3.47)

while B and C are similarly simplified:

BA(N,,1 = Nijp) + EB(N,ip = Np_pp)
(3.48)
+ ﬂC(Nkﬂ/z "Nk-llz) * O'VN = V§

Although this equation is written for a mesh cell as a whole, it would apply equally well to a finer
grid along the i direction placed inside the cell. Denoting this grid as i ;, one has:

AN i = Nivie) * EB(Npr o = Nivjoaso)
' (3.49)
* nC(Ni’,k-rI/Z 'Ni',k-yz) + GTVNi/ = VSi,




Suppose suitable guesses for N at the j and & faces can be found from previous iterations of some
process. Since their variation in this context is only with i ;, we have:

MAN,p - Nyiyp) + 6T VN, = VS, - | ] = VG, (3.50)

This can be solved for N, ;, and then Eq. (3.48) yields the average flux, N, for the coarse mesh.

With a properly chosen grid, the result would be free of the over-extrapolation problems that plagued
previous methods. Yet, the work required for the flux solution, where each coarse mesh interval is
divided into M fine meshes, expands only as M, rather than M. The impact on memory requirement
would be similarly modest. The spatial variation of flux across the cell volume could be
approximated as a linear expansion in the spatial variables and stored for use in calculating
subsequent energy groups. Computer codes have actually been constructed to perform such
calculations in 2-D. In principle, the implicitness involved in the coupling terms, e.g., VG;.in Eq.
(3.50), could be removed by iteration. ’

This method is not without problems, however. The coding necessary to manipulate the two grids
. is not simple. If the cells were sufficiently large, the fine-grid calculation would be subject to the
same extrapolation difficulties as the coarse-grid method. Although the method allows a spatial
distribution of flux inside the cell, its ability to resolve the effects of source and boundary-flux
shapes is limited. Accordingly, it would be most useful when most of the flux variation occurs in
one dimension.

The semi-analytical methods accomplish a similar solution somewhat more analytically. In the limit
of very small i “intervals, Eq. (3.50) approaches a form of the transport equation given by Davison:*

" -ch‘— NG + TN = g®) . (3.51)

This is a first-order, linear equation, solvable by integrating factor:
X

N(x) = e | N_ e mmeh 1 f e M g(x")dx' | . (3.52)

*i-12

Substituting:

s =o' (x-x_,) /0 (3.53)
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this becomes:

N(s) = N_jpe™ +

If g(s) can be expressed as a finite power series:

methods to follow in this section.

specific application.

N =N, ;, e” + gysCy(s) + gISZCI(s) +

g(s) =g, + g 5+ ... +g,s")
then the solution can be written explicitly in terms of the C, functions:

.o+ g s"IC (s),

Table 3.3. Accuracy of the Padé(2,3) Approximation to the Exponential

s Exact e* Padé(2,3) Approximation*®
(U 1 1
12 61 .61
1 37 37
112 22 22
2 14 .14
3 .050 .054
4 018 .029
o 0 0

_ 60 -24x +3x?
60 +36x +9x2 +x3

*e

(3.54)

(3.55)

(3.56)

as explained in Appendix F. The C,'s are exponential expressions for which the appendix derives
a recursion. Our C,'s differ slightly from Cohen's; Cohen's C,, (-x) is identical to our C (x).”
Solutions of this type are positive, given positive inputs, and their accuracy holds for very large
meshes, subject to the limitations of the expansion of g(x). Equation (3.54) will be the basis of the

The first semi-analytical method discussed here, called the "linear nodal” method, follows an
approach pioneered by Walters and O'Dell of Los Alamos.***! To cope with the expense and
roundoff problems incurred in using library exponential routines, they found that the Padé(2,3)
approximation could give very satisfactory results. The accuracy of this approximation can be seen
from Table 3.3. Subsequent work at Oak Ridge* led to even better approximations for this




In XYZ geometry, an eqﬁation such as Eq. (3.13), with terms with N, ,, and N, ,, set to O, is applied
to each cell. The source inside the cell is expanded as a linear function of the space variables:

S(X,YZ) =S, + 2 Q(___X') + 28 (_Y_—_l_lzl + 28 (Z-Z") (3.57)
’ ¢ T Ax Y AY Z Az ’
and the flux along the incoming cell faces is expanded in forms such as
Xy = v 20, KX r-7)
WB(X’Y) - lpgo + llIBx ——AT * qugy —A_Y— ’ (3-58)

providing a boundary source for the new cell. The flux solution insidethe cell is assumed to be
expandable in the same spatial functions as were used for the source. Writing integrals of the basic
equation multiplied, in turn, by each of the space moments, results in a set of coupled 1-D equations,
one for each moment.

The resulting equations can be rearranged in the form of Eq. (3.51), and solutions analogous to Eq.
(3.54) follow directly. Since one equation is obtained for each expansion parameter, a total of seven
equations in 2-D and 13 in 3-D, it is important that the equations be coupled such that an explicit
solution is possible. This has been possible in the forms used by TORT. It has also been possible
to arrange the equations such that they are correct in the limit of small or zero cross section — an
important matter for many of the problems for which the code is intended.

This semi-analytical method, given positive, constant boundary fluxes and sources, provides positive
results free of the overextrapolation seen in previous models. The intent of the advanced methods,
however, is to allow much larger cell sizes in exchange for more computational work, and the
constant-constant assumption proves too limiting. Returning to the full expansions of Egs. (3.57)
and (3.58), we see that, unfortunately, the finite expansion can lead to overextrapolation, resulting
in negative or inaccurately positive local sources. Of these, the negatives cause the most harm due
to their interference with the convergence process. It happens that repairing the negatives also tends
to limit the generation of false positives. One obvious repair is to limit the parameters, e.g.:

ISyl <S55 1Syl 8,5 [S,] <8,5 |Wgyl < Wpy» etc,, ) (3.59)

but this was not very satisfactory. Another method used at Oak Ridge limited each source parameter
separately such that its contribution to each average boundary outflow would be non-negative. This
procedure does not quite guarantee non-negativity of the result, however, since two or more
parameters, acting together, could still drive the result negative. A more-rigorous approach ensured
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that all of the parameters, acting together, could not produce a negative. Both of these methods
continue in use and produce equivalent results except in especially difficult circumstances. The first
is known as "aggressive nodal", and the second is "safe nodal". These procedures add significantly
to the computational work, but they vectorize well.

Another, more obscure, procedure was required to prevent anomalous behavior when small regions
adjoin large ones. The result of the nodal procedure is an equation set similar to Eq. (3.34) in form,
and it is possible to identify expressions that play the role of the weighting coefficients. In the nodal
method, however, these tend to vary from the linear limit, in the context of weighted difference, past
the step limit, and onward to a "flat flux" limit. This last regime was found to accompany the
anomalous behavior, and limiting the weighting expression to the step limit repaired the trouble.
This limit also vectorizes, and it is a necessary part of the TORT procedure.

The references demonstrate the superiority of the nodal method in problems such as the penetration
of neutrons through thick regions of shield material. One of these problems shows that the method
also works well through void regions. The additional computation was generally more than offset
by the improved accuracy. '

One of the important applications of a 3-D code such as TORT is to calculate the penetration of
gammas into large open areas, such as building or room interiors. These particles behave less like
gas molecules, bouncing about to fill the space, and more like visible light photons, scattering much
less, and giving areas of high illumination and deep shadow.

In such a problem, it is important that the numerical method not fill the shadow areas with particles
misdirected by the limitations of the method. Such artificial redirection has taken on the name
"lateral dispersion.” Let us examine a simple case shown in Fig. 3.2 (pg. 3-54), in which a
monodirectional source of magnitude 1.0 flows past a sharp-edged, opaque obstruction. It happens
that this is an easy case to solve in 2-D if the mesh cells are equilateral and the S, approximation is
used. The correct result is, of course, a flux of 1.0 along the face CD and 0.0 along face BC. Both
weighted difference and the linear method can solve this problem without difficulty. Both the simple
step method and the sophisticated nodal method force a portion of the particles across the BC
boundary and into'the shadow area, where they should not be. Appendix G discusses dispersion
results and difficulties in more detail.

Considerations such as this led to a study of characteristic methods for TORT. At the expense of
additional complexity, they can combine insensitivity to large mesh widths with a rigorous
calculation of flux distribution along the cell boundaries. Looking at Eq. (3.54), it is evident that
integration in the variable s is equivalent to integration along actual particle paths. In fact, solution
along paths parallel to AC in the area ACD produces the exact solution along the boundary CD.
Spatial integrals yield the average cell flux and average emergent boundary fluxes. Additional
relationships yield higher spatial moments of flux inside the cell and on the faces for use in
performing scattering integrals and coupling to other cells. The characteristic method combines
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positive results, good resistance to dispersion, and excellent bulk-penetration capability. Formal
discussions and studies of characteristic methods have been reported by Lathrop,?* Alcouffe and
Larsen,* Larsen and Alcouffe,* and elsewhere.

In general, one must suspect that there is a strong relationship between nodal and characteristic
methods, since both amount to applications of Eq. (3.54) across the cell volume. Beernink and
Dorning® examined this relationship and found that the difference lies largely in the treatment of
boundary fluxes as adjacent zones are coupled, the very matter that led us to consider the
characteristic method. Since the exact distribution along the boundary is available, the method of
coupling can be devised to suit a given class of applications.

Several options were considered for TORT. One can calculate the higher spatial moments of the flux
quite rigorously from suitable spatial integrals, but this leads to a relatively expensive equation set.
Another method projected the centered slope onto the boundary; in the example of Fig. 3.2, the slope
of flux along CD would be found from the cell-averaged flux, the average flux across BC, and the
distance 1/2 AY. While this method worked well for the calculation of reactor eigenvalues, it was
not satisfactory for deep-penetration work.

Finally, a semi-intuitive method gave broad applicability and robustness. In this, source and flux
inside the cell are expanded in separable functions of the space variables:

1+28, (—XA_—;(—)} {uzsy(_%{i)} [1+2SZ (zz)

S(X,Y,Z) =S, . (3.60)

AZ

where 4X, AY, and AZ are the cell widths, and fluxes at the cell faces are similarly expanded in
functions such as, for the left face:

(v-7))

Z-Z
¥ (X,Y) = LI [1 +2y; —A_YL ( k)

R 3.61
Az (3.61)

+2Y, ,

Referring to Fig. 3.2 once again, the slope coefficients inside the cell are determined from average
boundary values, e.g.:

- Wep ~Wyp

. : 3.62
2, (3.62)

where §,, and Y, are average fluxes along faces AB and CD and V, is the cell-average flux.

‘The fluxes at corners B and D in the 2-D example of Fig. 3.2 are known from the conditions placed
across faces AB and AD by the coupling from adjacent cells. Once the average emergent fluxes



across faces BC and CD are known, the flux, Y, at corner C is estimated, assuming separable

spatial shapes once again:

Ve Vs

Yo=Y, | — —1 > (3.63)
’ [ %) [ %]

where Y, is the average flux along BC. Then, the slope parameters along the boundaries are taken
as, for example, in the case of the right boundary:
- VeV

Ury 20 (3.64)

where y; is the flux at B.

Both internal and face parameters must be limited to prevent Egs. (3.60) and (3.61) from implying
negatives, but this limiting has proven relatively benign. The method has shown good convergence
behavior in mesh-refinement studies, and it gives plausible results in dispersion situations. It is
apparent that the flexibility of the characteristic formulation also allows other coupling procedures
to be tried in the future.

3.2.7 Choosing the Proper Method

After the previous section, the user may feel the need for guidance as to the proper choice of method.
Historically, the development and acceptance of each method for general use has been approximately
in the order of increasing complexity — unfixed linear, linear-step, linear-zero, weighted, nodal, and
characteristic. Both weighted and characteristic methods were known in the 1960's, but widespread
use did not immediately follow their introduction. It will be seen that the proper choice depends
upon cost, numerical performance, and the type of problem being solved.

The use of non-positive methods such as the unfixed linear method is generally unacceptable in work
for which TORT is intended. While such a method may produce good global eigenvalues in a
finely—meshed reactor problem, the inevitable negatives found in general transport calculations cause
unacceptable local errors and thwart convergence. In a 1969 review article, Lathrop® suggested that
the linear-zero method be used for the calculation of global parameters, e.g., reactor eigenvalues, and
that weighted difference be used otherwise. This is still good general advice many years later, at
least with respect to those methods.

Linear-zero calculations are relatively economical, and they are highly trusted in such applications.
Although zero is generally an underestimate of the true flux, this is not a matter of great concern for
reactor calculations. Weighted difference can also be used in reactor problems, but a value of the
theta parameter should be 0.3 or greater. Linear-zero is probably more commonly used and trusted
in this field, however. It is not clear whether this is due to better accuracy or to historical
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happenstance. Satisfactory comparisons, especially in 3-D, are lacking. The use of the zero--
weighted procedure in such cases leads to large errors, however.”

Coding technique and computer architecture may play an important role in the future balance
between linear-zero and theta-weighted efficiency. The zero fixup has been implemented in both
1-D and 2-D by coding tests and separate procedures for each possible combination of negative
results. The increase in complexity from 1-D to 2-D was impressive, however. The extension of
that approach to 3-D would not appear practical, and alternate procedures are needed.

On the other hand, the extension of weighted difference to 3-D is a simple matter. The calculation
of all but one of the weights can be done with vector instructions. The final weight calculation and
recursion sweep involves only a few statements that have been coded in an assembler language.

The linear-zero method can be used in ex-core radiation transport work, although it is not so
advantageous there, and the tendency to underestimate flux can lead to non-conservative results that
are sometimes not acceptable. A 1979 comparison’' demonstrated large differences between linear-
zero and weighted results in deep-penetration problems prepared according to conventional practice.
Although the linear-zero method required less computation, the weighted method was generally more
economical due to faster, smoother convergence. In general, it is the weighted results that are trusted
and compared to experimental results in this field.

If weighted difference is to be chosen, what value of theta should be used? While the cost does not
vary much with theta, the results vary significantly. Thetas of 0.5 and greater generally give much
better performance in mesh-refinement studies and better agreement with the linear-fixup
‘methods."** The dependence on theta in this range is weak, and it is not intended that an optimum
value for general use should be sought.

The zero-weighted method has its advocates, however. The linear-zero method can produce non-
physical ripples in flux shape, and those ripples have been found, to a lesser extent, in theta-weighted
results.”” Zero-weighted results do not have these ripples, and they do have a history of successful
comparison with certain classes of experiment.®® Whether this is fortuitous or not appears
impossible to prove.

In summary, then, one can use linear-zero procedures or theta-weighted procedures with confidence
for reactor core calculations. Theta-weighted procedures are the best available for ex-core radiation
transport in curved geometry. In XYZ geometry, characteristic procedures appear to offer the best
accuracy where positive results are required. The performance of the nodal procedures is generally
well accepted, however.

There has not been a great amount of testing of nodal and characteristic procedures in the area of
reactor eigenvalue calculations. One might suspect that they might do well, but performance over
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a wide range of problems would have to be proven. The lack of cylindrical geometry would be a
limitation in some cases.

The issue of linearity, in the mathematical sense, is of concern to some. All of the procedures are
homogeneous operations of degree 1 with respect to a single positive source; i.e., if F is the solution
corresponding to source S, then bF is the solution corresponding to the source bS if b is non-
negative. Superposition does not necessarily apply, however. If G is a solution corresponding to
source 7, then F+G will not necessarily be the solution for source S+7 if negative prevention is
employed. Nonlinear methods have certain disadvantages. They tend to be more troublesome to
converge. The user cannot solve problems legitimately having negative sources. If a source is
broken into components, the user cannot be confident that the sum of the solutions will add to the
solution for the original source. There is difficulty in obtaining correct forward-adjoint folding
results.

Of the methods discussed here, only the unfixed linear method, the step method, and the zero-
weighted method used in DOT III operate without some kind of test that depends upon the computed
values, however, and these tests thwart superposition. The nodal and characteristic methods are
linear in first principal, but the negative-prevention procedures result in non-linearity. Accordingly,
truly linear procedures do not find much practical use.

3.2.8 The Source Term

The source term in Eq. (3.3) includes, in general, sources from an extraneous (fixed) source
distributed throughout the mesh, fission, scattering from other energy groups, and scattering from
other directions within the same energy group. In principle, this can be expressed as

F
.. = .. + . . .. ..
Sz.J,k,m,g iikmg + Kijkg Z, Vijksg' O’i’j,k‘g, E/ Wm’ Ivz,],k,m’,g’
g m
(3.65)

S
+ E .
Z Wm/ Ci,j,k,m,,f,',m’,g’ Nl,l,k,m',g'
gl m/

The first, and least controversial, simplification is to group space cells having like material
compositions into "material zones,"” and to require that all cells within such zones have the same
cross sections. In principle, it can be argued that the cross sections might vary in a pointwise manner
due to local temperature or density effects or to local differences in the spectral weighting used in
obtaining group cross sections. In practice, however, such detail is rarely required; the detailed
pointwise description is typically not available, and the mass of data would be difficult to generate
and store. Local temperature and weighting effects can be represented by defining enough zones so
that only cells of acceptably similar properties are grouped together. In the discussion to follow, the
subscript z will be used to denote material zone, with the understanding that the zone number is a
function of (i,j,k).
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A less satisfactory approximation is made in the fission term. In order to facilitate the source
iterations that resolve implicitness represented by the fission source,  is assumed to depend only
upon g. As a matter of convenience, v and of are written and treated as a single unit, since they

depend upon the same variables. Thus, the fission term can be expressed as Xq D, k> Where:
zjk E VO' —l]kg ’ (366)
and
ks ZI Wot N jiomt g - (3.67)

F . . . v . . . .
D, ; , is termed "fission density,” while N is "scalar flux." If several fissile species are present in the

system, the use of a single , for all space cells is not rigorously correct. Its use is justified largely
by tradition and by experience, which has shown that most problems are not adversely affected by
this treatment. It could be changed readily if future needs demand it.

_In principle, Eq. (3.65) can be used directly to calculate scattering. If, as discussed, zone cross
sections are used, the scattering term is:

E Z W ! z,mgm e’ Ivi,j,k,m/,g' : (3.68)

g/ m/

In fact, certain transport studies have been performed in this way. In TORT however, as in most

contemporary discrete ordinates codes, 2 moment expansion, as discussed by Mynatt," is used.

The directional dependence of ¢° in Eq. (3.1) is assumed to be represented satisfactorily by a
Legendre polynomial in the single variable p, , where:

w,=Q-9Q (3.69)
so that:

F(LEE.QQ)« — X P/(u,)0(r.EE’) . (3.70)
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In Eq. (3.65), the corresponding representation is:

lmux

s 1 s
Cemgm'g " 4n ; Pl(l‘o)al,z,g,g/ g (3.71)

where L, is now the cosine of the angle between directions m and m *. Since the o,s are independent

of the direction set, a single set of cross-section data can be stored and used with many different
direction sets. It should be noted that cross sections used by LANL codes traditionally have a factor
of 2I+1 included in Eq. (3.71), which results in values of c,s that are a factor of 2/+-1 lower. ORNL

codes do not assume this factor. Thus, LANL-type cross sections must be multiplied by 2/+1 before
use in ORNL codes. ‘

As discussed below, it is fruitful to apply a corresponding expansion to Y. Since Y is inherently a
function of the full direction space, a type of spherical harmonic expansion is employed where  is
approximated as:

e 21

¥(LEQ) - g g (21+1) C WPV (LE) , 3.72)
with:

G o) = [(fo)zgf)' ”2 P ) F¥(9) . (3.73)
and:

cos K ¢; K even or 0
sin K ¢; K odd,

()

]

where K =k/2 if keven,or K = —k;—l if k odd, and where 65 is the "Kronecker delta,” 1 when k=0

and O otherwise, and the P,K are the associated Legendre polynomial basis functions. In XYZ

geometry, if i, j, and k are unit vectors along the X, Y, and Z coordinate axes, ¢ is the angle between
the planes formed by the Qand k vectors and by the k and i vectors. (In ROZ geometry, i and j are
vectors along the radial and azimuthal coordinate axes.)

On the set of discrete directions {m}, the function C,k is represented by an array of discrete values:

Cim = Cllwdn) > (3.74)




and the corresponding flux approximation is:

e 21

k k
Ivi,j,k,m,g/ = Z Z Cl’le,i,j,k,gl . (3.75)

=0 k=0

The advantage of this is twofold: The number of moments is generally much less than the number
of directions. Also, it can be shown that the scattering portion of the source term can be obtained
directly from the moments:

Z E Wt c’ij,m,g,m’,g' Ni,j,k,m/,g’ - Z E ; Oiz,g,g’ Nl.ki,j,k,g’ : (3.76)

g’ m’ g’ I}
As a matter of convenience, the extraneous source is similarly expressed:

pmeE 21

k k
Qi,j,k,m,g = Z E Cl,m Ql,i,j,k,g > 3.77)

=0 k=0

and it is called a "distributed source" in this form. The source in a given direction is easily found
using:
lmax 21

k k S k
.. = P .. +
Sikms = XeDige * 20 20 Cum | Quiiig * 2 Oppgyr Niijagr| - (3.78)
N . 8

As new N, 's are calculated, the moments are calculated by:

k k
Niiike = 2o W CimNyiims (3.79)

and stored. This allows the N,'s to be discarded at once, freeing enormous amounts of data storage
in a large problem. It may also be noted that group g “need not have the same direction set as group
g when the moment representation is used.

The expansion represented by Eq. (3.75) is not without its problems. If ™ is too small, details of
the flux shape are lost. If scattering is highly anisotropic, then, the scattering term in Eq. (3.78) will

not be correct. On the other hand, the theory that allows evaluation of the N, ,k by Eq. (3.79) assumes

that integration over all direction space will be performed, in which case the Clk are orthogonal.

When the discrete quadrature of Eq. (3.79) is used, the corresponding orthogonality condition is
satisfied only when [ ™ is sufficiently small. Finally, the memory required to store the moments

expands roughly as ™ squared, so that higher-order expansions can be quite burdensome.
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In addition, the cross section expansion of Eq. (3.70) can badly misrepresent certain cross sections,
resulting in spurious oscillation between positive and negative scatters. Cross sections representing
high-energy Compton scattering are an example of this.

In spite of these difficulties, the "P, S," method described here has proven generally successful.
Codes are available to test the orthogonality of the basis functions over specific quadrature sets.
Procedures are now available to mitigate the effects of the spurious oscillations. Cross section
representation has been accurate enough to give good comparisons with experiment. The method
is now widely successful.

3.3 PROBLEM SPECIFICATION
3.3.1 Directional Quadrature Sets

As noted earlier, integrals over direction space are approximated by weighted sums over sets of
discrete directions. Although the directional weights may be thought of as representing areas on a
unit sphere adjacent to the discrete directions, no attempt is made to define those areas. Instead, the
directions and weights are chosen in such a way as to provide as much accuracy as possible in the
quadrature.

The directions are represented by their direction cosines (u,£,n) with respect to a set of orthogonal
coordinate axes. With i, j, and k as unit vectors along the axes, the discrete direction set is

poi+&.J+nk . (3.80)

We refer to the sets of cosines, together with the corresponding weights, W, , as "discrete ordinates
directional quadrature sets." Integrals are then represented as, for example:

) .
o [ 1) 4 - ; W (Moo M) - (3.81)

One constraint on the sets is immediately apparent:
W+ B el =1 . (3.82)
It is also required that the zero-th directional moment be 1 and that the first-order moments of a

symmetrical function to be zero. This ensures that isotropic flux will have a magnitude equal to the
scalar flux, but zero current:

Yw, -1, | (3.83)
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> W, =0, , (3.84a)

> W, =0 . (3.84b)
and

> wmn,=0, (3.84c)

These constraints are sufficient to specify the simplest practical direction set, a fully symmetrical S,.
This direction set has one direction in each octant, eight in all. By full symmetry, we mean that, if
(U &> M) is in the set, then (£,,7,,,1,,) and (7,,,.1,,,,£,,) are also in the set. It can be seen that this
symmetry is obtained if:

Wl = 1€, = In,l =8 forallm . (3.85)

From Eq. (3.82), we see that § =1//3 . The eight combinations of +8, taken three at a time, give
the required eight directions. The remaining constraints of Egs. (3.83) and (3.84) are satisfied by:

W =18 . (3.86)

As the number of directions increases, the larger number of unknowns allows additional constraints
to be added in order to provide maximum accuracy. Jenal et al.* discuss this matter in more detail.
Their 2-D discussion is also applicable to 3-D.

Proper ordering of the directions is essential to the iteration process. All directions with common
1 must be placed together in groups called "n-levels." All n-levels with <0 must precede all
directions with n>0. Within an n-level, directions with € <0 are ordered according to increasing p.
This direction sequence is then repeated as the code will supply negative £'s for the first sequence
and positive £'s for the second.

If zero-weight initiating directions are used, each 1-level must have, as its first member, an arbitrary
boundary direction for which £=0. Thus, for a given 1, the boundary direction has:

w=-JI-¢ . (3.87)
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In the S, example given above, 4 new directions would be required:
(8%, 0, =8) , (3.88)

where

50 = 157 . (3.89)

These zero-weight directions are used in curved geometry to start the sweep through adjacent
directions in an 1-level. They are unneeded and unused in XYZ geometry. In fact, Lathrop and
Brinkley'® use initiating directions with non-zero weights in all geometries to good effect.
Tomlinson et al. showed that zero-weight or non-zero weight initiating directions should be treated
with the same fundamental assumptions. With that provision, either gave good results for the
problems studied. One can speculate that sets with non-zero initiating directions could be more
efficient. They use fewer directions for a given "order" of direction set, i.e., for a given number of
n-levels. A definitive proof of this idea is not at hand, however.

Sets can be "biased" or "asymmetric” in 1, e.g., additional directions can be supplied along the -Z
direction in order to give fine detail to polar streaming. Asymmetry in p can also be accommodated,
although such applications have been rare.

3.3.2 External Boundary Conditions and Sources

In a previous section, it was noted that the value of N must be artificially set at each boundary
according to the physical conditions at that boundary. The most common condition is "void," or
"vacuum." It is effected by setting all inward-directed fluxes to zero.

The other common condition is "reflected.” This option describes the condition at a plane of
symmetry, such as the horizontal midplane of a homogeneous cylinder. The reflected condition is
also frequently used at the center of cylinders and at the outer surface of cylinders that represent
extended lattices, such as mockups of fuel rods in a regular array. It is effected by setting the inward
flux equal to the outward flux in the "reflected direction." For example, at a horizontal top boundary,
flux entering in direction (p,£,-1) is set equal to the flux emerging in direction (u,£,1). At a vertical
right-hand boundary, flux entering in direction (-u,§,n) for example, is set to the flux emerging in
direction (u,&,n).

The "albedo" or "grey" boundary condition adjusts incoming flux such that it is isotropic, and such

that the ratio of incoming current to outgoing current is a constant called the albedo, .. For example,
at a top boundary, downward flux is set to: '
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> W,N_;m, >0
N, =o= : (3.90)
Y Wosm,<0

This condition is sometimes used in shielding work and air transport problems to give an
approximate representation of material for which a detailed calculation is not required. Its most
serious limitation is that it can not treat the change in energy that is likely to accompany such a
reflection. If the incident flux is anisotropic, the directional distribution of the emerging flux is also
overlooked. A "white" boundary condition is simply the special case of a=1. It is sometimes used
at the outer boundary of cells, although the cylindrical condition, to be described next, is better.

The cylindrical boundary condition, when applied to a vertical boundary, has the effect of a white
boundary condition applied by n-level, i.e.:

Z Wm/Nm/;pm/,pm<0;1]m/ =1,
m’
N, = . (39D
Z Wm/;“m”um>0;nmlznm
m’

This is much better than any of the preceding conditions at the outer boundary of a 2-D cylinder

representing one cell of a regular lattice.*® It is also more appropriate at the left edge of an RZ mesh,
“since it ensures that outward flux will be truly independent of p. None of the conditions described

here are truly correct at the center of a cylinder that is not azimuthally symmetrical, however.

‘When applied at a horizontal boundary, the cylindrical condition allows a degree of asymmetry in y:

Z/ Wm/ Nm/ 5 T]m/ = —T]m
N, == : (3.92)
Y W.im, =,
ml

In theory, this allows reflection at a horizontal boundary at which the p's for given 1 pairs do not
match. This application has not received much practical use, however.

The "periodic” boundary condition represents a continuing array of asymmetric zones, €.g., an
..ABCCABCC... array. It is applied by setting the ingoing flux at a boundary to the flux in that same
direction at the opposite boundary. As an example, recalling that i=I+1/2 is the right boundary
opposite the left boundary i=1/2:

Ny =Ny - (3.93)




The periodic boundary condition is the correct condition for the inside and outside boundaries in
ROZ geometry, i.e. @boundaries.

The "fixed-source” or "fixed-flux" boundary condition simply sets the flux to a value speciﬁed as
input. It is most often used in problems that are spatial continuations or refinements of previous
problems. Peripheral codes allow flux from a previous 2-D or 3-D problem to be used as fixed-flux
boundary conditions, thus allowing "bootstrapping."”

3.3.3 Internal Boundary Sources

For certain applications, it is desirable to have a source comparable to the external boundary source
described above, but located at an internal boundary. If we represent, for example, a source at the

i+1/2 boundary as S,-f, 1,j,km, g » then the effect of the source is to make the flux leaving the boundary

larger than the flux entering the boundary by the amount S2. For example, if the sweep is from small
i to large, and if the overflow from the cell preceding boundary i+1/2 in the direction of sweep is

N, 5. then the flow into cell i , where i =i+1, is:

B
Niyp = N * Sicie - (3.94)

3.3.4 Units

Either standard SI units or the more traditional barn-centimeter-Angstrom units can be used. Results
can be instantaneous or time-integrated. With sources per unit time, the results are fluxes, absorption
rates, etc. With sources integrated over the desired time span, the results are fluences, total
absorptions, etc. Table 3.4 illustrates both SI and traditional units for the case of sources per unit
time. For time-integral sources, simply ignore the references to seconds.

Since the directional weights sum to 1, they are unitless. Integrals over direction are replaced by
weighted sums. Scalar fluxes, ¢'s, are related to directional fluxes as follows:

b= W, ¥, . (3.95)

From this, it is evident that ¢ and ¥, must, therefore, have the same units. By dividing ¥, as
calculated by TORT, by 4n steradians per unit sphere, units of flux per steradian (sr) can be
obtained. Also, by multiplying 6 by 2, units of radians (rad) can be obtained. These units are not
acceptable for use in the code, however.

In the optional 2-D geometries, the "missing" dimension is entirely ignored. Thus, the results are
normalized as if the system were of unity size in the missing dimension.
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Table 3.4. Unit Systems

SI Units Traditional Units
Space dimensions: R, Z, X, Y Meters (m) Centimeters (cm)
Time Seconds (s) Seconds (s)
Rotation fraction, © Dimensionless Dimensionless
Weight, W Dimensionless Dimensionless
Atomic densities m-3 Angstrom™
Micro cross sections m’ barns
Macro cross sections m* cm
Scalar fluxes m’2s? cm?s?!
Directional fluxes " "
Boundary sources " "
Distributed sources m>s? cm’s’!

34 SOLUTION PROCEDURES
3.4.1 Iteration Strategy

Two of the chief advantages of discrete ordinates theory over diffusion theory are that the calculation
of flux is fully explicit for a given source, thus not requiring spatial iterations, and that the details
of directional flux distribution are treated. Unfortunately, one takes away what the other gives.
Since the source involves an integral over flux moving in other directions within the, same energy
group, iterations over source must be used. The scattering integral is evaluated based upon prior
information or guesses as available, all of the fluxes for an energy group are evaluated, a new
scattering integral is evaluated, and so on. From 4 to 25 of these "flux" or "inner" iterations may
typically be required. The iterations are deemed to have "converged" when the fluxes from two or
more successive iterations are sufficiently close to each other. As discussed later, powerful means
of accelerating these iterations are required with difficult problems.

It may be noted that reflected, albedo, or cylindrical boundary conditions at the top, outer, or right-
hand boundary of a mesh also require iterations, as do periodic boundary conditions at any boundary.

Problems that have no fission and no "upscatter," i.e., no scattering from g ‘to g where g<g’, can be
solved with one pass through the energy groups, and it is inefficient to do more. I either fission or
upscatter is present, however, another level of implicitness in the source term is created. The source
for such a problem depends upon fluxes which have not yet been calculated in the sweep of energy
groups. This is resolved by estimating the fission and upscatter contributions from previous
information or from the input flux guess, and by then evaluating flux, a new source, a new flux, etc.
These "source" or "outer” iterations must also be accelerated in order to solve difficult problems.
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It is possible, and sometimes economical, to perform only a small number of flux evaluations at each
pass through the groups if several source iterations are to be performed. Studies have shown that
2 or 4 flux iterations per source iteration give optimum results for certain problems. An even
number of iterations tends to give quicker convergence than an odd number. The number of source
iterations required may vary from as few as 4 to 100 or more, depending upon the problem, the
- success of the acceleration procedures, and the degree of convergence required.

3.4.2 Negative Source Repair

Even though non-negative flux models are used in serious problem solutions, false negative results
may occur due to the finite expansion of the cross section data. For example, representation of
photon scattering data in a P, expansion with /=3 often produces troublesome negative and false
positive scattering, which thwarts convergence and renders the results useless. High-energy neutron
scattering through roughly 90° or 180° is also likely to produce incorrect results. Analysis of the
fits to the intended cross sections in such cases has shown that the fitting procedure often results in
good fits where the cross section is large, with meaningless oscillation between small positive and
negative errors elsewhere. General repairs for this difficulty have been developed,* but none are in
widespread use, due to cost, complexity, or other limitations.

This code allows, as an option, a choice of non-rigorous repairs that require no special data, and that
have generally controlled the undesirable expansion effects. The first method preserves the total
source magnitude at each point. As the source in each mesh interval is generated, all directions at
that interval are examined for negative values. If negatives are found, the source in those directions
is arbitrarily set to 0. In order to maintain balance and to delete incorrect small positive values, the
source in some of the remaining directions is set to 0, starting with the smallest and proceeding in
order of ascending magnitude until balance has been restored. If the negatives overwhelm the posi-
tives, the repair is abandoned.

This simple procedure was successful in solving a difficult skyshine problem,* it usually improves
convergence, and has been used frequently in radiation transport work. If few negatives are found,
the effect on flux solution time can be as little as 15%. Additional economy can be gained by aban-
doning the search for negatives after a group of higher energy has been completed without finding
any. Experience has indicated that no further negatives are found, in typical cases, after such a
group. In two-particle problems, the search must be resumed for the first group of the second
particle type, of course. If many negatives are found, the cost of removing them can be quite high,
and the answers may be changed significantly. Even so, many users will not consider running
problems without this repair.

An "economy"” method simply sets the negatives to zero. This is at least as beneficial to
convergence, and the resulting upper-limit treatment can be preferable in certain applications. The
cost of the economy procedure is negligible. It is unsuitable in cases such as k. calculations, where
particle conservation must be rigorous, however.

3-37




3.4.3 Fission Problems

If a fixed source (distributed, internal boundary, or external boundary) is present, Egs. (3.3) and
(3.65) can be iterated to a stable solution, providing k¢ is not so large as to make the system critical.
As the system nears critical, the number of progeny produced by a single source particle (called
"multiplication,” M) becomes very large. Convergence becomes difficult and dependent upon
computer precision. Convergence for M>100 is difficult, for example, on a2 machine having 4-byte
arithmetic. As k. increases, M approaches «, and no stable solution can be reached.

Without a fixed source, however, meaningful solutions are obtained by searching for the k. by
which x must be divided in order to bring Egs. (3.3) and (3.65) to a stable solution. This code uses
a very simple procedure for the basic evaluation of k.. The initial source is calculated based upon
the flux guess or a distributed source initialization. The fluxes are normalized such that the fission
component of the source is 1. New fluxes and a new fission source are calculated. The ratio of new
fission source to old is taken as the estimate of k.¢. Sources and fluxes are renormalized as before,
and the process repeats until both the fission source and k¢ estimate converge. Thus, a new estimate
of kg is obtained with each source iteration. Techniques are available to accelerate the convergence
by replacing source and flux from an iteration with extrapolated results which are nearer the ultimate
solution.

Problem-modifying search options are available. The absorber search ("A") multiplies an input value
of an absorber distributed in space and energy by an adjustable parameter (the "eigenvalue,” A) until
the resulting value of kg, evaluated as described earlier, is a specified value. The concentration
search ("C") adjusts A such as to modify the cross sections for certain specified constituents in the
proper amount to achieve the specified value of k. The dimension search ("D") modifies A such
as to find new widths for specified mesh intervals which achieve the desired value of k.

The search for A is conducted in the same manner in each type of search. The value of A is set to an
input value, A, and then k|, a partially-converged estimate of kg, is obtained. A new value, A,, is
based upon user-supplied information and k;, after which k, is obtained. At this point, a nonlinear
procedure that tends to prevent overextrapolation is used to estimate A,, from which k; is evaluated.
From this point onward, the newest three values of A and corresponding estimates of & are used to
extrapolate until « is sufficiently near the specified value.

The nonlinear extrapolation uses a fitting function suggested by Vondy.* Where g, b, and c are
arbitrary fitting parameters:

A=c+aklb-k) . (3.96)

If only two points are available for the fit, ¢ is arbitrarily assumed to be 0. If a negative A should
result, or if b should be larger than 10%, the nonlinear fit is considered invalid, and a linear fit is used.
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With either linear or nonlinear extrapolation, an oscillation test is applied. If the trend of A has
reversed signs, i.e., if:

(A‘N - A‘N-]) ()“N-J - A’N—Z) <0 , (3.97)

then oscillation damping is applied. Where 1N* ; 1s the new estimate of A calculated from Eq. (3.97),

a modified Ay, ; is tried:

Aver = Ay + ¥ (A - Ay) (3.98)
The value of vy is presently set at 0.8.

As an additional protection against meaningless extrapolation, A is required to stay within an input
factor of its original value. If k departs from the objective value by more than a specified value, or
if A is "stuck" on the same value for two successive estimates, the search is halted. The relative
change in A per estimate is limited to a specified value.

This is certainly not a foolproof scheme. It will obviously be defeated if the allowable variation in
A is not sufficient to adjust & to the desired value. If an input error causes A to have very little effect
upon k, a perplexing and aimless drift will be observed. The input includes a "convergence ratio",
which allows A to change when £ is only partially converged. An unduly low value of the ratio can
cause premature extrapolation of A, and subsequent poor results. In general, however, the scheme
has worked well for careful users.

3.5 FLUXITERATION ACCELERATION

3.51 Groupwise Rebalance

The flux iterations in a difficult problem must be accelerated in some way in order to bring the cost
within acceptable limits. The oldest and simplest method is "group rebalance.” First, let us split the

source term of Eq. (3.65) into two parts, separating the scattering portion that originates within the
energy group from the remainder of the source, and call these H, and G, respectively:

I—;g = Z E Xk: V",Jlk E W, Z/ oi,g,m’,g Nm'»é’ ’ (3-99)
|1 1 m m

Qll

=X XX Vi

LDy W, [Qm Y Y w0 Nm,’gH . (3.100)

gl;g ml
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Now, let us integrate Eq. (3.3), as it applies to an individual energy group, over direction and space.
The result can be expressed as:

L +T =G +H (3.101)

where we use the double bar to represent space-and-direction integrals. L ¢ Tepresents total

boundary leakage, and 7. total removal due to the ¢’ term. Now, let us consider the actual iteration

cycle. For the p'h flux iteration, H g” must be based upon out-of-date information from iteration p-1.

Then, L. and T. obtained by applying Eq. (3.3)to H ¥™ will not truly satisfy the intended equation.
Let us designate the result of such application with a tilde. Then:

= = = = (3.102)
TP LTl LogP!

When H” is calculated from the p™ iteration fluxes, it will give rise to different fluxes in the (p+1)*
iteration. If H _ is almost as large as L _+T _, then the cycle converges very slowly. The intent of
rebalance is to use an inexpensive process to estimate the end of the iteration cycle, and then to use
that estimated result in the next iteration. Let us assume an arbitrary factor, f, by which all fluxes
are to be multiplied in order to bring fluxes and sources into balance. Terms L, 7, and H will be
proportional to f, but G will not:

f TEP + f '7:*” - 4 Fér” (3.103)
Solving Egs. (3.102) and (3.103) to eliminate L and 7:
f - G . (3.104)
g = =P = p-1 )
G, - (Hg - H,
Then, the (p+1)™ iteration is started with
P Y14 .
NP = fg Ny . (3.105)

This simple procedure was helpful in early codes used on problems in which flux shape is dominated
by leakage, such as small metal assemblies. It is not applicable to large systems, however. Even so,
f is used as one indicator of overall convergence.
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3.5.2 Space Rebalance

By 1968, discrete ordinates codes were being applied to deep-penetration transport problems, and
global rebalance was no longer adequate. From similar considerations applied on a mesh-cell basis,
"space rebalance" was developed.* Integrating Eq. (3.3) over direction, but not over space, we
define "partial currents": '

Firi = An E io1z,m B W pmSO ; (3.1062)
Fioi = A E istiz,m Mm Wo 3 Bp<O0 3 (3.106b)
Firj = By z;‘n: Ntz &n W 3 &u>0 5 (3.106¢)
Fijer = By E jritzm &m W 5 &n<0 5 (3.106d)
Frax = G E wetzom N W 5 Mp>0 5 (3.106¢)
and
Frver = Ceanz ; Nezm M Wo 5 Mp<0 3 (3.106f)

Similarly, the "inscatter source":

agsng+§ w10 ZZW N;xomgmg , (3.107)

grg m'

the "scalar self-scatter":

Zm: s Wt W Ot (3.108)
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and the "removal";

of = o7 -¢° , (3.109)

are defined. The integrated result is a scalar balance equation which would be satisfied at
convergence.

F

i+1,i

- F

i,i+l

+ F,

i-1,i

- F. + F - F +F. ,.-F

i,i-1 j+l.j B+l Jj-1,j Jj-1

+ F “Fer Y Pk T P (3.110)

k+1,k

+v(e® + )N = VG + V3N

In the discussion that follows, we include only the i-flows, giving a 1-D result, for the sake of
simplification. The terms representing the additional dimensions can be deduced by inspection.
Looking more closely at the iteration process, we see that the result of the p™ iteration is, where we
use the tilde to denote an unrebalanced result that does not satisfy Eq. (3.110):

N (ﬁif,iﬂ +I~7i{’i-1) " (ﬁilil,i + ﬁifI,i) + V(C’R + Es)ﬁp (3.111)

v~ . vr=Sarp-l

Now, let us assume that each partial flow is proportional to the flux in the cell from which it is
emerging:

(3.112)

Fr . =FL,  NP'/N? |

i+l i i+1,i

etc. Given this, a set of fluxes that satisfy Eq. (3.110) can be found from:

- (Fp. No, /N, L N2 /N (3.113)
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It is helpful to eliminate terms in G using Eq. (3.111). The result can be expressed:

Y 2, N =Y 7, N+ Ve (N7 - NPY) (3.114)

where

=, (3.1152)

(3.115b)

Z.=0 5 i'#izx]l and i'#i . | (3.115¢)
This can be solved by standard matrix-solution routines, producing new fluxes that are in balance
with the p™ source.

In effect, the residual scattering error in the p™ iteration has been redistributed using a transport
operator, Z, derived from the partial currents. If no further directional redistribution were to take
place, the solution would be complete. If directional redistribution is of secondary importance, the
solution to Eq. (3.114) serves as a good guess for the next iteration. Expressed in this form, the
- method can be seen to be an application of the method of synthesis propounded by Kopp* and
explored by Gelbard and Hageman.*

The directional flux can be "fixed up" such as to correspond to N? either by multiplying all
directional fluxes at position i by a constant, or by adding a constant to the fluxes. This code uses
the multiplicative method, which preserves the original directional distribution. The additive method
can produce negative fluxes where none existed before, and it is not evident how this difficulty could
be overcome.

Proper boundary conditions for N” must be set. Flow from a fixed external boundary source

belongs with the G term, and it does not appear in Eq. (3.114). Thus, F, at such a boundary, is set
to 0. For void, reflected, albedo, and cylindrical boundaries, inward flow at the left boundary is o
times the outward flow, where a=0 for a void, 1 for reflected or cylindrical conditions, and the
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albedo at an albedo boundary. This is implemented 'by setting Z, , to O and subtracting a F.”, / N¥
from Z,,. A similar matrix adjustment describes the periodic condition.

An analogous treatment has often been used at the right boundary, also, but it is not rigorously

correct.”” In the case of a right boundary, inward flow, represented by Fr., ,isnot proportional
to N? at all. In fact, it is ~FEP A treatment exactly analogous to the left-boundary treatment
would set Z;,,, to 0 and would replace F/.,, in Eq. (3.115) with (I-a)F/,,. To be entirely
consistent, however, a new term must also be added to the right-hand side of Eq. (3.114), with the
result:

Z/: Zi,i' N;I', = E, Zz‘,i’ i’,l/, + V5 (]:\;;p - Nip_l) (3.116)

13

+ a{ﬁ.’.’.. - F.’.",I.‘) < i=T

Thus, residual boundary inflow has an effect entirely analogous to residual scattering. The boundary
residual term has a beneficial effect that ranges from small to very large, according to the importance
of the boundary and the speed of its convergence.

An alternate form of Eq. (3.114) is also available. For this, we eliminate terms in d* from
Eqgs. (3.111) and (3.113), rather than terms in G. Defining:

f___ﬁl'/ﬁp ,

we have:

_|rr
(Fi,i+1

ier T ﬁipi—l f,--z) (3.117)
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In principle, the results of Eq. (3.117) must be identical with those of Eq. (3.114). In practice, the
matrix of Eq. (3.117) is easier to solve.

3.5.3 Damped Partial Current Rebalance

It is evident, from Eq. (3.117), that negative or divergent f/'s may result if o° is too large. In fact,

the application of that method was so troubled with instability that it was customary to perform one
or two unrebalanced iterations after each rebalanced iteration.

Based on work by Reed,*”® the problem was cured by use of fictitious boundary currents which tend
to "damp” the rebalance, i.e., to drive the factors toward unity in areas where they are likely to be
erratic. In this procedure, the boundary flows are calculated as usual. Then, each is augmented with
a fictitious flow as follows, where the prime denotes the augmented flow:

Fl = F B (3.118)
i,/i'fl - Fi,i+1 *Fiw
F/'..=F ..+FE, . (3.119)
and where, in our notation:
' + (3.120)

B _Z =5 i =5 % .ot
Fiiin —-4—max V,6; N, , V., 0i+1Ni+1] ;221

In a 1978 paper, it was shown that z =2 gives assurance of non-negative results in 1-D.* The same
considerations indicate values of 1 and 2/3 for non-negativity in 2-D and 3-D. That paper called
Eq. (3.111) the "¢ method," and it also described a "J method," which was a heuristic extension:

FiB;uz = z/ min (IE' a ) ) (3.121)

i+1,i* 7 Qi+l

Tests showed this J method to be slightly more effective. With either of these definitions,
Eq. (3.117) becomes:
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- (~i{i+1 ot ¥ Fl 1-1) (3.122)

AP B vve-5s (N - N\ =vG

It was found that values of z’, as low as 0.5 give fastest convergence for some 2-D problems, but
the optimal value increases with increasing problem difficulty. Better results were obtained in
difficult problems by starting z “at 1 and allowing it to increase with an increment of 1 at each

iteration. A later study showed that the requirement for a good choice of increment could be
mitigated by applying the increment only as needed.”’

Defining, on a pointwise basis:

= - = (3.123a)
e =(N" - N1} /NP, |
— = = (3.123b)
f:(NP_NPI)/Np ,
A o eenlien ~F o Lmen Lol fn cmmerSenans - (31236)
F = value of f where |f| is maximum , (3.1234d)
then the increment, Az’, is applied if and only if
fé <0 (rebalance is opposing iteration) |, (3.124a)
77 f77! < 0 (rebalance is oscillating) |, (3.124b)
or |7l > |f7 ! (rebalance is diverging) . (3.124¢)

In spite of the arbitrary nature of the damping adjustment, this "partial current rebalance™ (PCR)
method remains the workhorse of deep-penetration problems, especially at high energy. It is
sometimes ineffective at highly scattering epithermal and thermal energies. At worst, the progressive
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damping generally converges no worse than the unaccelerated convergence rate, but if z “becomes
too large, acceleration will have no further effect.

3.5.4 Diffusion Acceleration

Alcouffe showed that the difficulties of PCR could be avoided by use of an entirely different form
of synthesis, which he called "diffusion synthetic acceleration" (DSA).*® He showed three different
means of using a modified diffusion equation as the "less expensive" operator in a synthesis process.
His forms were not directly useful in the present application, but they soon led to Aull's “consistent
diffusion acceleration" (CDA), which was useful to us.>! The "mesh-centered" form of CDA can be
obtained by simply replacing the Z coefficients of Eq. (3.114) with analogous coefficients calculated
from diffusion theory. In slab geometry:

C,,,=-DTA/Ax ; i’ =izl , (3.1252)
Cow =Vor - (Cpy+Cyy) s i =i, (3.125b)
C.w=0; i'#ixl and i’ #i , (3.125¢)

where D7 is the diffusion coefficient and A is the area of the face between cells i and j.
Unfortunately, this formulation is unstable without additional help, just as PCR was.

Following Alcouffe, Aull used a "mesh-corner" formulation with good success. Like Alcouffe's
method, Aull's formulation was convergent for all cell sizes and all scattering ratios (ratios of
scattering cross section to total cross section) less than 1, provided that the diamond difference flux
calculation was used and no repair of negatives was employed.”> In addition, Aull's method was
useful in a wide range of practical weighted-difference problems. Although global convergence was
not established, the method did not perturb a converged solution, and it was superior to PCR in many
cases, especially the calculation of low-energy groups in large, highly scattering regions.”® Larsen
showed, however, that certain extreme conditions could thwart Aull's formulation if a difference
method other than diamond is used.>

A later study used the mesh-center formulation of Eq. (3.125) with a nearest-neighbor smoothing
technique. Boundary conditions are particularly easy to apply in this formulation by adjusting matrix
terms, as was done in the PCR formulation. The diffusion coefficient is P,- corrected if P, data are
available, and an upper limit of 3*Ax is arbitrarily imposed to prevent erratic performance in low-
density regions. The correction factors are found for each cell, and then the factors adjacent to each
cell vertex are averaged. Finally, the vertex values for each cell are averaged to provide a smoothed
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result for the cell. This heuristic method has proven successful in some very difficult problems,
occasionally surpassing Aull's formulation.”® The DORT code has either this method or the
comparable mesh-corner formulation available, although only the mesh-corner approach is in
standard use.

Certain relationships between CDA and PCR can be seen by comparing Egs. (3.115) and (3.125).
Both methods are equivalent to an equation of the form:

T(NP - Np) = o5(NP - N7 Y) | (3.126)

where T is a transport operator based upon the partially converged current-to-flux ratio in one case
and upon the cross sections in the other. Now, let us look at the extreme example of the first
iteration in a calculation where the source is entirely at the left boundary. In this case, all of the flow
will be rightward. As the PCR correction is calculated, it must also flow entirely rightward. That
would be a satisfactory prediction of the p‘h iteration if the material is almost forward-scattering, but
it would fail badly if the material scatters isotropically. In fact, some users bypass PCR entirely on
the first iteration for some applications. The CDA method, on the other hand, calculates a P,
scattering residual (the right-hand side of 3.126), and then estimates the transport of this residual
with a calculation that is P;-correct. That can be a much better solution in highly-scattering
problems. Miller came to analogous conclusion in a somewhat different context.5! It may be
interesting to note that additional improvement can be sought by removing the assumption of
isotropic residual source. Morel, in effect, allowed the right-hand side of Eq. (3.126) to have a P,,
shape, giving superior results in very anisotropic situations.52

The damped PCR method was adequate for the problems for which TORT was developed, and it is
the only method available for production use at this time. Newer acceleration methods that are
compatible with the various flux-calculation methods are being studied, however.

3.6 SOURCE ITERATION ACCELERATION
3.6.1 Source Iteration Synthesis

In principle, the problem of accelerating source iterations is comparable to the flux-iteration
problem. The calculation must start with a source, which results in new fluxes, which result, in turn,
in a somewhat different source. The concept of synthesis appears equally applicable here, but the
coding required to achieve it is more complex. The DOT IIIW code produced by Westinghouse
reported a synthesis-style rebalance in the energy variable, but it did not revise the spatial shape. The
TWOTRAN-II code solved the alternate problem — an energy-independent space rebalance. A
space-energy synthesis seems attractive. TORT presently uses several specialized treatments to be
described later, however.



3.6.2 Upscatter Rebalance

Upscatter rebalance is the simplest of the techniques. I we sum the terms of Eq. (3.99) over all
groups into which upscatter is present, we may regard the sum as a "super-group." Scattering
between groups of the super group would be included within the self-scatter term, H, of such a super
group. Suppose all groups g>g" have scattering from lower groups into themselves. . Then, with s
designating the super group, we have:

Qll
i

Y v S T wle,
i1 J k g=g"+1 m
; (3.127)
gl/
S
’ -1 m! Wt Oumgm's’ "‘/3/}}
g'=1 m

H=Y v KZ %j WY W, ojm,g'm,’g, N,, - (3.128)

i j k g'=g"+1 ’

The relationship of flux to source for this super group is entirely analogous to the groupwise
rebalance procedure. A similar derivation leads to a rebalance factor for the upscatter super-group
which is to be applied between source iterations (designated by g here):

fs

= _1) : (3.129)

In practice, this procedure has proven to be often helpful and never harmful. It can not help a
problem where the spectrum changes significantly with space, of course.

3.6.3 Error-Mode Extrapolation

In an unaccelerated problem, it is typical for a solution to change rapidly at first, as high-order
solution modes die away, and then to settle into a pattern of slow convergence, with an almost-
constant relative change in fission density between each iteration. Vondy suggested the
interpretation of this pattern as the decay of a single error mode, which can often be used to
extrapolate toward the correct result.

To accomplish this, the code accumulates the error sum e, the eigenvalue estimate, A, and an
extrapolation parameter, ©:
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ef =Y, .D" - D‘l"l , (3.130)

M o= edfed! (3.131)

0 =19 /(1-2) . (3.132)

When three successive estimates of &7 agree within an input criterion, fission is extrapolated
according to:
D¢ =D?+@(D?-DoY) . (3.133)

The value of @ is adjusted such that no fission density will have a fractional change greater than
an arbitrary limit. Fluxes are also extrapolated in the same way.

Error-mode extrapolation is typically very effective in accelerating k¢ calculations and searches if
a stable value of ®7 can be found. The method is also helpful in resolving upscatter implicitness,
whether the calculation is a fixed-source or k. calculation. It is generally compatible with the
upscatter rebalance discussed earlier, and the two procedures tend to assist each other. In certain
cases, a stable value of ®7 can not be established, however, and the method is not helpful in those
cases.

3.6.4 Subcritical Multiplication Rebalance

The extrapolation may fail in the case of subcritical multiplication problems for which M is very
high. Computer roundoff is often to blame. On a machine with 4-byte arithmetic, a problem with
M>100 may extrapolate at once to a solution estimate very near the correct result, and then not
extrapolate again. If the spatial shape of the flux does not change too severely during iteration, a

global rebalance comparable to the groupwise and upscatter rebalance can be used. Where é and D
represent total fixed and fission sources, the results of a source iteration are multiplied by the factor:

=z - ( q_]) . (3.134)

This is generally effective if the source is distributed throughout the fissile material. Extremely
localized source distributions can defeat this procedure, however. An example is a system with a
thermal neutron source at one edge. The spatial flux shape change can be so severe that global
rebalance fails, and it can also thwart the error-mode extrapolation in such a case. For this reason,
an option to bypass it is provided.
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REGION 4. PROGRAMMER'S INFORMATION
4.1 CODE STRUCTURE |
The code is arranged in four main structural blocks headed by control subroutines:
1.  LOCO - input and edit of parameters controlling problem size and execution path.

2.  INPUT - allocation of memory, input and preprocessing of data arrays, error detection, and
input file processing.

3.  WORK - solution of the transport problem and generation of certain very large output data
files.

4. OUTPUT - final normalizing, results summary preparation, writing of all other output data
files.

The principal subroutines in these blocks can be seen in the subroutine hierarchy diagram,
Appendix H.

The entire list of subroutines used in TORT is given in Appendix H, together with comments as to
the purpose of each. The first group, the main structural routines, perform calculations or direct
other subroutines in that function.

The second group are special-purpose support routines. In general, these routines perform an
extensive, but specialized, job at the direction of only one calling routine. In general, they make full
use of the common blocks as well as information contained in argument lists. A few are shared with
the 2-D code DORT, on which TORT is based, as indicated in the appendix.

Next, general-purpose support routines are listed. They perform very limited tasks based upon data
supplied in the argument list. They tend to be called from many places in the code. All are shared
with DORT.

Following these routines, system-dependent interface packages are listed. These packages contain
calls to library routines specific to a particular computer and special machine-dependent coding
required for acceptable performance on a given machine. The Environmental Information region
discusses these packages further.

Any of the system-dependent packages may need local modification on systems differing from those
on which they have been tested. They contain extensive internal documentation to make this job
feasible. In fact, it has not been difficult for users to modify an existing package for an entirely new
computer type.




Overlay arrangements are not provided with the present code, and they are not necessary or desirable
for the systems on which it is presently used. It would appear straightforward to construct an overlay
structure from the information in Appendix H, however. '

4.2 SPECIAL DIMENSIONING PRACTICES

The code uses "flexible dimensioning", in which all data arrays of non-trivial length are assigned
dimensions at execution time and are kept in a single large "container array". The beginning of each
array is indicated by an "array locator” corresponding to that array. Array locators are kept together
in a special labeled common block. For example, where D is the FORTRAN name of the container
array and LCHI is the array locator corresponding to array CHI, CHI is made available to a
subroutine by, for example:

LCHI=...
CALL SUB(D(LCHD, N, ...)

SUBROUTINE SUB( CHL N, ...)
DIMENSION CHI(*), ...
=CHI(N)

This is in keeping with language standards, and it operates efficiently on every known computer.
Much the same goal can be accomplished with pointers, but pointers have not provided the same
efficiency in tests conducted to date.
Many routines use the "pivot array" method rather than multiple dimensions. While this practice is
also within the limits of the language standards, it deserves clarification. For example, suppose
IM(J) is the limit of I for each J, JM is the limit of J, and:

IBJ(J) = sum of IM(JJ-1) for JJ=1,....J ,

M(©0)=0,
and IMSIM =IBJ(JM+1)) .

Then, the value of an array IIZN corresponding to I and J is found as follows:

IZ = DZN(I+IBI(J)).




This can be extended to more dimensions, of course. It is the basis of the "discontinuous space
mesh" feature described in Appendix D.

4.3 OTHER SPECIAL PRACTICES

A set of "scratch parameters," I1 through 120 and E1 through E9, are located in CMDOT for general
use. These provide some space savings and help to distinguish temporary parameters whose use is
entirely local from parameters of real significance, to which mnemonic names are attached. They
are also used where a few contiguous variables are needed. It is possible that this ancient practice
might inhibit optimization on some modern compiler, but examples of that have not been
demonstrated.

44 MACHINE-SPECIFIC CODING

In some cases, separate statements are required on different computers in order to provide safe and
efficient operation. One of the best examples is the special need of Cray computers for vector
instructions. Other examples include special treatment of roundoff difficulties and adaptation to
different machine word lengths. Where parallel coding is required, the sections are identified and
controlled by conditional compilation directives imbedded in the code. The CMP pre-processor
selects the correct section of coding for the chosen machine, and it does not copy sections of coding
which are inappropriate.

Additional information as to the application of CMP is given in the Environmental Information
region and in the comment files at the beginning of the source material.

4.5 PORTABILITY CONSIDERATIONS

The portability goal is to make the code as portable and as adaptable as possible without important
sacrifices in capability. The spirit of the ANS-STD.3-1971% guidelines have been helpful in this.
These guidelines advise adherence to a language standard except where deviations provide essential
improvement in capability, can be localized, and can be documented. The FORTRAN 66* standard
was in effect at the time of that document, but the concepts apply equally well to newer standards.

Interface files that may transfer data into or from the code are constructed and documented in the
spirit of the CCCC working group recommendations®>®, and the I/O and timing routines follow the
guidelines originally laid out by the group, insofar as practical.

4.6 LANGUAGE STANDARDS

The language objective is to use FORTRAN 77% insofar as practical. Exceptions to that rule are:

*  Afew FORTRAN 90 extensions that do not cause difficulty on existing compilers are used,
and they are discussed in the comments to follow.
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Some portions of the code were created in FORTRAN 1V, Iong before 1990 or even 1977, and
they have not been completely upgraded.

In some cases, the nature of external file formats force non-standard features.

Limited use of C language is made in conjunction with the use of system library subroutines.

Limited use of assembly language is made to speed execution on Cray computers. The code
can operate without these routines, however.

FORTRAN 90 extensions include:

compatibility with lower-case characters (the code may be compiled in either upper-case or
lower-case characters if input data are adjusted accordingly),

variable names longer than 6 characters, although a limit of 8 is generally observed,
the INCLUDE statement, and
the block DO statement using ENDDO.

Certain practices have been carried over from FORTRAN IV. While these do not cause difficulty
on systems on which the code is presently run, it may be important to list and understand them. It
is the intention, of course, to upgrade them as soon as practical. They include:

Modern standards provide that unessential dimensions, i.e., the length of singly dimensioned
arrays and the last dimension of multi-dimensioned arrays, can be set to "*". In older routines,
these may be set to "1" instead.

Frequently, the name of the container array appears in a routine together with another array that
is a subset of the container. Since this is necessarily widespread, no special comment is given
of this fact. A comment is given at the beginning of a routine in which any other dual reference
to the same storage location occurs, however.

Real and integer variables must have the same word length. In a few instances, real statements
such as A(I) = B(I) may be used to move integer data from one location to another without
change, but A(T) = -B(I) or A(I) = 0 would not be allowed. The potential difference between
real and integer O is recognized. /O routines may use a single variable type to move either real
or integer data between memory and external files.

Hollerith constants are used in older sections of the code, and the data statements defining them
may use either the '..." or the nH... type of specification.
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»  The FIDO input routines expect that a character variable with length equal to the number of
bytes in a real or integer variable maps exactly to a real or integer such that a character
argument in a calling routine can appear to be a real or integer variable in the called routine.

4.7 MEMORY AND EXTERNAL FILE ADAPTATION
4.7.1 Flux/Source Storage Adaptation

TORT is intended to operate with good efficiency in several dissimilar environments, and this
requires adaptability in the storage and management of its data. Much of the data storage is devoted
to flux- and source-moment arrays. Accordingly, several modes of storing these arrays are provided.
The simplest is the problem-stored mode (NJBLK = 0). All flux and source moments are stored in
the working memory and are addressed in place. This mode minimizes I/O costs, but the memory
requirement may exceed the maximum specified by the user as LOCOBJ. For example, the space
required for a 100,000 mesh cell problem with 58 energy groups is roughly 26 megawords -- well
beyond the memory of many systems. On the other hand, problems using 3 million mesh cells are
N0t Uncommon nNow.

If the problem can not be stored in LOCOBJ words using the problem-stored mode, the group-stored
mode (NJBLK = 1) is tried. An external file is created for the entire volume of flux moment data,
and a "user buffer" is allocated at the end of the problem memory to contain the data for one energy
group at a time. Two additional buffers of comparable size are required for source data, although
these buffers are not associated with an external file in this mode.

Using this mode, considerable I/O work is required to calculate the source scattering into a group
from other groups, but the flux iterations for that group can proceed uninterrupted by I/O of source
and flux moments. The memory requirement for the 100,000-cell problem mentioned above would
be 1.8 megawords in this mode -- manageable on both mainframes and workstations. This mode
often provides an optimal combination of memory usage and I/O activity, if enough memory is
available.

Should the "group-stored" mode prove to be inadequate based on the storage available, an external
file is allocated to hold the coarse mesh rebalance coefficients and the core memory requirements
reduced correspondingly. The requirements for the "group-stored" mode are then redetermined
based on this reduced memory requirement.

As problem size increases, other measures become necessary, and the plane-stored mode (NJBLK
> 1) is invoked. Two additional external files are allocated to hold the source moments for one
group, and the user buffers are reduced in size by breaking the space mesh into NJBLK blocks of
JBLK1 planes each. The blocks are moved into and out of memory as required to follow the sweep
of the planes from top to bottom and back to top for each flux iteration.
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A table of flux/moment storage requirements will serve to quantify the effect of blocking:

MODE WORKING MEMORY USER BUFFERS EXTERNAL FILES
Problem stored IM*LM*IM*KM*(2+IGM) 0 0

(NJBLK =0)

Group stored IM*LM*3 IM*LM*IM*3*KM IM*LM*IM*KM*IGM
(NJBLK=1)

Block stored IM*LM*3 IM*LM*IM*3*IBLKI IM*LM*IM*KM*(2+IGM)
(NJBLK > 1)

The zone map information is kept in memory for NJBLK =0 or 1, but on an external file otherwise.
The input/output of boundary sources and fluxes, distributed source, and past scalar flux information
is performed between planes in all modes.

The input parameters MINBLK and MAXBLK can be used to modify this blocking. If MINBLK >
0, blocking will continue until NJBLK is at least as large as MINBLK. If MAXBLK is entered, and
if NJBLK exceeds MAXBI K, then the problem will be terminated with the message, "Insufficient
space for this problem."”

If NJBLK reaches KM, the space requirements exceed LOCOBJ, and MAXBLK has not been
exceeded, then a message will be given, "LOCOBJ too small, continuing." At that point, unless the
user has set NCNDIN = 0, the system will attempt to increase the memory partition to the actual
requirement. This seldom succeeds on UNIX-based systems, however, and an error message will
generally be given from DLOCAL or MEMORX that the requested memory is not available.

If LOCOBJ is too small to contain all of the input data arrays, the message, "LOCOBJ too small,
terminating,” will be given, and the problem will stop at once. This rarely happens, however.

If the problem requires less than the full machine memory, some tradeoff is available in the use of
memory vs. VO. Specifying the largest memory size available as LOCOBIJ will result in the
minimum ¥/O and the shortest CPU time. This may reduce the usefulness of the machine to other
users, however. It may also incur larger charges when they are based, in part, on memory. A smaller
memory partition might be preferable in these cases.

If a large value of LOCOB]J is specified, and if less memory is needed, the code will request the
return of the unused memory to the system. On some systems, this request will be ignored, however.

4.7.2 Memory Requirements
The full list of data arrays to be stored in memory is lengthy, but a few larger arrays dominate the

total. The tables below allow a quick estimate of the requirement. Exact information is available
by studying subroutine INPUT.
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The memory is allocated in blocks which may overlay each other during different phases of

execution:
Block Use Phases Needed
L0  Mesh description All
L1  Cross sections, zone map All
L2  Fission, flux and source for a row, All
internal boundary source
L3  Acceleration data Flux sweep, acceleration
L4  Boundary fluxes and shapes, source moments, Flux sweep
scratch for flux sweep
L5  Scratch for acceleration Acceleration
L6  Source input and edit Input
L7 Boundary source input Input
L8 Response summary Output
L9  User buffers After source input and before

output

The important arrays contained in the blocks are listed in Table 4.1. The arrangement of the blocks
is illustrated in Fig. 4.1. LSTRO is the end of space taken by input arrays and certain data derived
from them. LENDR must be positioned to allow space for LEND2, LEND3, and LEND4, all
followed by L9. Some of these key endings can be identified in the printout:

Symbol
LEND1
LEND2
LEND3
LEND4
LENDR

LENDI1
LENDI12
LENDF
LENDB

Printout Identification

END OF GEOM ARRAYS
END OF SWEEP ARRAYS
END OF REBAL ARRAYS
END OF SOURCE ARRAYS
END OF WORK ARRAYS

END OF SOURCE I/O ARRAYS
END OF OUTPUT ARRAYS
END OF USER ARRAYS

END OF OUTPUT ARRAYS
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Lo

L1
L1

ELE

N NN N N N N N N N N N

LS
LS
L5

ISET
IMBIS
IBJK

SIG
ZN

FSNIJ

FSOn
FLUM

SINM
SORKT

CPCX
CPCL
CPCR

CPCO
CPCB
CPCT

CPCOX

CPCOY
CPCOZ

SORM
FHI

FIl
FIP
FMO

FMO

DIRF

CPCF
CFAC
SBAN
EPSCM

Table 4.1. Principal Data Arrays in Memory

IM*KM
IM*KM
JMSKM

IHP*NCRX*(NSCTM-+I)
IMSIM*KM
IMJSIM

IMIMKM*(1+3*NODAL)
IMIMKM

IMA*LM*JM*KM

IMA*LM

same as FLUM
MMDNUP*IMA*IM*NKNTSR

ICM*ICM*KCM
ICM*ICM*KCM
ICM*ICM*KCM
ICM*JCM*KCM
ICM*ICM*KCM
ICM*JCM*KCM
ICM*JICM*KCM

2*JCM*KCM
2*ICM*KCM
2*ICM*ICM

MMA*IM
MMA*IMA
MMDNUP*IMA*IM

MMA*IM*NODAL
MMA*IM*NODAL
MMA*IMA*NODAL
MMA*IMA*NODAL
MMDNUP*IMA*IM*NODAL
MMDNUP*IMA*JM*NODAL

same as FLUM
MMA*JM*[FBC
MMA*IMA*IFBC
IMSIM ’
MMDNUP*IMA*IM
MMA*(5+IMA)
IMA*LVLMX
IMA*(22+70*NODAL)
IMA*MMDNUP/2

ICM*JICM*KCM
ICM*JICM*KCM
ICM*JCM*KCM
ICM*ICM*KCM

i-mesh set # by (j'k)
# of cells in each i-mesh set
pivots for (i’j’k) indexing

cross sections
zone by mesh cell

new fission density
old fission density
flux moments

inscatter source moments
internal k-boundary source

rebalance data

"

boundary ftux

nodal boundary shape

total source moments

scratch for PLANE, SBSFIX
scratch for remeshing, SORX
scratch for remeshing, SORX
scratch for ROW

scratch for ROW

directional flux/source

scratch for CMSCLR

IM.It.0

NJBLK le.1
NIBLK.ge.2

CHI array ne0
CHI array ne.0
NJBLK.eq.0

NJBLK.ge.l
same as FLUM

same as FLUM

IM.1t.0

NEGFIX.gt.0

NEGFIX.gt.0 or
NTDIR.gt.0

IEPSBZ.gt.0 or
JACCl.eq.1




L6a FLIJ
Lé6b FLIJ
Léb FBS

Léb FBI

L7A S1

L7A sil

L7A FIN

L7A FIN

L7B SKI

L8 FRES
L8 CLRES
L8 FKRES
L8 ZNRES
L9 LBUF
Notes:

IACC1 =
ICM*JCM*KCM =
IFBC =
IHP =
IMA =
IMSIM =
IMIMKM =
JMSKM =
LVLMX =
MMA =
MMDNUP =
NREG =
NRES =
NODAL =

IMIMKM
IMIMKM
(NREG+)*(IGM+1)

IMSIM
MMA*IMA*IM
MMA*(IMA+IM)

MM*IM*KM*IFBC
MM*IMA*KM*IFBC
MM*IM

MM*IMA

MMDNUP*IMA*IM*IFBC
IMIMKM

IMIMKM
TABS(NKEYFX)*NRES
NREG*NRES

IMA*LM*IM*IBLK1*3

mod(IACC/10,10)

number of coarse mesh cel.Ls

source input & edit

]

source input

boundary source input

response

flux/source user buffers

1ifIBL, IBR, IBI, 1BO, 1BB, or IBT=4; else 0

IHM+1 if IUPS>0; else IHM

iabs(IM)
IMA*IM
# of cells in the space mesh
# of rows in the space mesh

the number of eta levels
iabs(MM)

the maximum number of directions downward or upward

# of edit regions
iabs(NRESP)

1 if the nodal or characteristic method is used; else 0

Other variables are explained in later sections.

mod(NEDSOR/100,10).gt.0
mod(NEDSOR/10, 10).gt.0

NBCL=4 or NBCR=4
NBCI=4 or NBCO=4

NIBLK.ge.1




Note: Vertical dotted lines indicate no arrays or arrays of trivial length.

Figure 4.1. Memory Block Arrangement.
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REGION 5. USER'S INFORMATION
5.1 INPUT DATA SPECIFICATIONS

5.1.1 Data Record Input Format

The formatted input data for a problem consist of a title record followed by blocks of data separated
by "t" delimiters. Within each block, a variable number of data arrays are specified, keyed according
to an array number and a symbol indicating real (**) or integer type ($3).

A separator record must be placed between successive problems. If the separator contains the word
"dump" as the first four characters, a traceback will be given by subroutine ERRO on machines that
offer that service, followed by a stop with status code 777. If the word "=end", "stop"”, or "end "
appears, execution will stop with a status code of 7. Otherwise, input for the next problem begins
immediately. No data are retained in memory between problems. At the end of the data stream,
execution normally terminates with a stop and a status code of 0. Any system message indicating
that the end-of-file has been reached indicates an abnormal condition.

All of the formatted input except the title and separator records are read by the Floating Index Data
Operation (FIDO) input processor. The format required for FIDO data is described in Appendix A.
The data arrays and blocks to be read are described in following sections of this region. Many arrays
are to be supplied only under special circumstances, such as the use of particular options. Unneeded
arrays may always be omitted, in which case default values, if any are noted, will be used.

As each array of data is read, its length is compared with the required length, and an error message
is given if appropriate. After each block of data, a call to subroutine ERRO is made if any of the
arrays in the block are of improper length or if the data are otherwise unsuitable. ERRO prints an
explanation of the error and sets an error flag. Data are edited as soon as practical after each block
is completed.

Processing of input continues for as long as possible, even after a relatively minor error. In most
cases, this allows the user to test all of the data blocks in spite of early errors. Execution is
terminated at the end of input processing if a sufficiently severe error has been encountered. It is
possible that an early error will cause subsequent data to be erroneously flagged as wrong. An error
can also cause subsequent system-related failures, such as addressing or storage errors. Thus, the
user must consider whether a given error or failure could have been produced by a previous error.




5.1.2 Input Array Specification
5.1.2.1 Overview of Array Requirements
The first four blocks of data contain, in general terms:

1. Control parameter input arrays (61-70) that set array lengths explicitly and control execution
options.

Primary input arrays (71-80) whose lengths depend upon 61-70, and whose contents determine
later array lengths.

Secondary input arrays (81-90), whose lengths depend upon previous arrays and whose
contents determine later array lengths. (These include the directional quadrature set
specification, coarse mesh specification, and assignment of material zones to edit regions.)

General input arrays (1-60), which do not determine the lengths of other input arrays. (These
include space-mesh specifications, zone descriptions, and much more.)

These four blocks are always required, although unneeded arrays may be omitted. In fact, a block
may contain no arrays at all, just its "t" delimiter. Blocks after the first four, containing arrays
numbered 91 and higher, allow simple sources to be described without the need for special input
files. All of these blocks are optional, depending upon input control values.

The following portions of Subsection 5.1.2 detail the specific array requirements and the conditions
under which optional arrays and blocks are to be entered. A brief discussion of certain items is given
in the remaining portions of Section 5.1. Keywords appearing in italics are explained in more detail
in later sections of Region 5.

5.1.2.2 Detailed Array Specifications

The detailed array specifications are given in Table 5.1 (pg. 5-31).
5.1.3 Input/Output File Logical Unit Numbers

The input/output file control array (61$$) controls the designation and use of files on external
devices. The flux moment file contains flux moments for each space cell and discrete directional
flux values at the external boundaries. This file is sufficient for an exact restart of a previous
problem, and it is valuable for use in post-calculation analysis or display codes as well. Specifying
a unit number as NTFOG causes the file to be written. Specifying NTFLX causes a previously-
written file to be used as an input flux guess.




The cross section input unit (NTSIG), with a default value of 8, is always required.

If NTBSI and/or NTDSI are entered as positive numbers, the corresponding files must contain fixed-
source input data supplied by the user. If NTBSI is negative, a source is to be synthesized on the
internal scratch files based on the 90+ arrays. If NTDSI is negative, a temporary scratch unit must
be supplied for a source generated by the code based on the 90+ arrays.

If NTRSO, is entered, pointwise response summaries will be written on that file. A negative number
will cause the output to be written as formatted data on that unit.

If NTNPR is entered, large array edits will be shifted from the standard output to that unit.

If NTSCL is entered, a scalar flux output file will be written on that unit. This file is intended mainly
for post-processing codes, and it contains control and parameters and space-mesh information to
expedite that use. It can also be used as a restart, but, since it does not contain flux moments or
boundary fluxes, most problems will suffer from the absence of that information.

If NTZON is entered, the zone map is to be read from that file, rather than entered from the 8$$ and
14**-19%* arrays.

If NTDIR is entered, directional flux output will be written on that unit for a "patch" of the space
mesh designated by the 34** array.

5.1.4 Procedure Control Integers

The control integer array (62$$) begins with two parameters that control limits in the flux iteration
convergence procedure. NSRMX is the limit on source iterations, normally 1 on fixed-source
problems (KTYPE = 0) unless upscatter or fission are present. NFXMX controls the number of flux
iterations performed on each group at each source iteration. If NFXMX < 0, the flux iteration limit
is taken from the 21$$ array. IEPSBZ specifies the use of the zone importance array (20**) in
convergence tests and edits.

ICSPRT and IFXPRT control large cross section and flux array printouts. If MODERP is set to 1, the
flux iteration monitor line will be omitted. This is useful for K-calculations. NKEYFX specifies
the number of key flux positions used to monitor convergence, while NRESP is the number of
response summaries.

KTYPE, NSCTT, IADJ, and NEGFIX control the flux solution procedure. If KTYPE = 0 and
NSRMX = 1, a basic calculation of flux resulting from fixed-source input is performed. If fission
cross sections are present and a non-zero flux guess is supplied, the fission will be included with the
fixed source in determining the flux. If fission is present and NSRMX > 0, a subcritical
multiplication calculation is done. The code iterates on successive approximations to the
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equilibrium flux resulting from the fixed source. Upscatter also requires NSRMX > 0 for its
convergence. When KTYPE = 1, k¢ is calculated, and NSRMX > O is generally required for that
case, also. An initial flux guess or distributed source results in an initial fission density, and the
density is then iterated to convergence. Values of KTYPE > 1 and NSRMX > 1 indicate indirect
searches, in which the system configuration is altered in order to obtain a value of k ¢ specified by
EVOBI.

If the default value of NSCTT is used, flux moments corresponding to all components of the
anisotropic cross section input expansion are calculated. NSCTT can specify a smaller order of
expansion to be used in the actual calculation, however. This may save CPU time, make the moment
file smaller, and/or allow the user to study expansion effects. IADJ specifies the adjoint calculation
procedure. This requires understanding of the unusual adjoint ordering of the 90+ arrays and of the
output. NEGFIX allows negative source removal to be applied, usually improving convergence, and
often improving accuracy.

NSCLMX and NBFACC are controls used in the flux iteration acceleration procedure. NSCLMX
limits the number of acceleration iterations performed after a flux calculation, while NBFACC
specifies the number of initial flux iterations performed without acceleration. Setting NBFACC =:
1 can avoid certain acceleration problems that may occur due to the poor partial-current information
available in the first flux iteration. This can be especially significant if a problem contains large
internal voids. NBFACC is ignored after the first source iteration.

MODE selects between different flux-sweeping formulations. In general, standard and alternate
procedures should give essentially equivalent results, but standard is expected to execute fastest on
the machine being used.

LOCOBJ, LCMOBIJ, MINBLK, and MAXBLK control storage adaptation for a particular
environment. NCNDIN sets the maximum user error code under which a problem is allowed to
continue execution. INGRPS controls the number of flux guess groups to be read from NTFLX.
This can be used to restart a problem from an incomplete flux file. INMOMS allows the length of
the flux moment expansion to be altered in a restart; e.g., a P-1 problem could be restarted in P-3 by
specifying the proper number of moments here. This feature also allows a weighted-difference
problem to be restarted in nodal mode or vise versa. INDIRS allows the boundary fluxes to be
ignored on restart so that a different direction set can be used.

NKNTSR specifies the number of internal k-boundary sources to be used. IACC selects the mode
of flux iteration acceleration.

JTALLY can produce a helpful summary of CPU and problem charge time usage at the end of each
problem. It may increase the cost of the problem significantly, however. NCPU controls
multitasking on Cray platforms running the UNICOS operating system: NCPU = 0 avoids
parallelization altogether; 1 < NCPU < 16 executes the Direction Paralle] algorithm on the master
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and (NCPU -1) slave tasks. NEDSOR allows fixed source input to be entered as a 3-dimensional
distributed-source array, or as a product of three space vectors, in the 90+ arrays. It also allows two
choices of edits for the distributed source. NIFCNV is used with the accurate restart procedure.
NIFBND allows the boundary source to be supplied in a pre-written file as a part of the direct access
scratch file retention feature.

5.1.5 Geometry Control Integers

M, IM, KM, IZM, and MMESH control the specification of space mesh data. ¥ IM < 0, a
discontinuous mesh is indicated. IBL, IBR, IBI, IBO, IBB, and IBT control the boundary conditions
to be applied at the system boundaries. INGEOM controls the geometry choice. The two-
dimensional geometries are used primarily for comparison with the DORT code. Comparison of XZ
and XY results is also helpful in ensuring symmetry. MM is the length of the directional quadrature
set. If MM < 0, a variable quadrature is to be specified by energy group. In that case, a variable
cross section expansion can also be used.

NISM and NJSM are special options used with the discontinuous mesh capability in order to specify
special mesh sets for the boundary source input and storage.

5.1.6 Cross-Section Control Integers

IGM, NCRX, NSCTM, IHT, IHM, IUPS, and NEUT describe the cross-section input, and are
determined from the nature of the cross-section library supplied as NTSIG.

5.1.7 Procedure Control Reals

EPP, EPF, EPO, and EPK are the flux iteration convergence and source iteration convergence
parameters. CONSCL, CONACC, CSOLCN, CSOLIN, and EPSCL are controls for the flux
iteration acceleration and flux iteration stabilization procedures. SORNEG establishes a lower limit
for the negative source removal. FLXMIN defines a level of triviality below which fluxes are
deemed too small for application of the convergence tests. THETA, WMAX, and WNODAL are
controls for the flux sweep formulations. EVI, EVDELK, DEVDKI, EVCHM, EVMAX, EVKMX,
and EVTH are controls for the indirect searches (KTYPE 2 2). EPXTR is used in the source
iteration acceleration.

5.1.8 Problem Control Reals

XNF is the multiplier used in source normalization. Its use depends upon the value of KTYPE.
TMAX is the job time limit in minutes. EKOBJ is the value of k. sought in indirect searches
(KTYPE = 2). For k. searches (KTYPE = 1), the value affects one of the output edit columns, but
nothing else. It has no meaning when KTYPE = 0. The value of EKI establishes an initial k.
estimate, largely useful when restarting a k. calculation which has been partially converged
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previously. In such a case, EKI is used to normalize the input flux guess, making the first source
iteration more efficient. '

5.1.9 Primary Dimension-Setting Arrays

Arrays in this block are used in the discontinuous mesh, variable quadrature, and variable cross
section expansion features.

5.1.10 Secondary Dimension-Setting Arrays

This is the final block for arrays on which the length of other arrays depend. The 81**-83** arrays
are the directional quadrature set. The 84**-86** arrays determine the coarse space mesh. A good
choice of coarse mesh can reduce memory requirements and costs in certain problems. IZNRG
assigns region designations to material zones.

5.1.11 Problem Specification Arrays

In this block, all remaining arrays except optional source-generation arrays are located. The 1**
array is the fission spectrum, while 6** is the spectrum used in the fixed-source input. The 2**-4**
are space-mesh boundaries, while 5** is the set of energy-group boundaries, presently used only in
certain output edit files. The 7**, 8$$, 9$$. and 14**-19** arrays relate the cross sections to the
space mesh through the zone and material specification by body overlay. The 20*%* array allows the
specification of flux iteration convergence and source iteration convergence importance by zone.
The 21$$ array allows the flux iteration limit to vary by energy group.

The 22$%$-243$$ arrays specify a set of key flux positions for which convergence can be monitored at
each iteration and printed after the last. Response summaries can also be obtained at these locations.
The 26%**-27** arrays define zone- and group-dependent responses at those points, as well as in
other edit options.

The 30$$ array specifies the location of the internal boundary fixed source input. The 34** array
specifies the bounds of a "patch” of the space mesh selected for directional flux output.

5.1.12 Source Specification Arrays
The remaining blocks, those containing the 90+ arrays, are optional, providing a means of generating
source files in certain simple cases. Cases not described by these blocks can be treated by supplying

sources on input files generated by the user.

5.2 INPUT DATA DISCUSSION




5.2.1 Space Meshes

Five different subdivisions of the problem space are determined from the input data. Three sets of
fine-mesh interval boundaries (2**, 3**, and 4** arrays) are input, corresponding to the three spatial
dimensions. The intersections of these boundaries form the fine-mesh cells. (In curved geometry,
the O is entered in units of revolutions, not radians or degrees.)

A coarse mesh, specified by three additional sets of intersecting boundaries (84**, 85%* and 86**
arrays), is used in the flux acceleration routines. A good choice of coarse mesh can save both
memory space and execution time without impairing the convergence of a problem. In some cases,
proper application of the coarse mesh can help the convergence rate as well. A coarse mesh of one
mean free path is ideal for many problems. Default options allow the coarse mesh to be identical
to the fine mesh. Each coarse-mesh boundary must also be a fine-mesh boundary.

Material zones are always specified. A material zone must contain only one cross-section set,
although many zones may share a single cross-section set. In addition to cross-section assignments,
certain input and edit features depend upon material zones. Material zones are specified, and
material numbers are assigned to them, by the use of body overlay, to be described later.

Edit regions (873$$ array) are groupings of material zones used for the purpose of condensing certain
output tables.

5.2.2 Cross Section Input

The cross sections supplied on unit NTSIG are to be supplied according to the GIP format
(Appendix B). This format specifies ordering by table position, then by component, then by material
number, and then by group. MTM specifies the number of materials required. Each material
describes a specific isotope, isotopic mixture, or a mixture of elements. The information must be
in macroscopic, not microscopic, form. Within each material, NSCTM+1 components are required.
The first component describes the total probability for a given process. Subsequent components
describe the angular distribution of the particles emerging from that process, expanded in Legendre
basis functions. In general, more components result in more accuracy, at the cost of more CPU time
and larger moment files. If a lower order of expansion in the calculation is desired, this can be
achieved without changing the cross section input, by entering a non-negative value of NSCTT.
Within each component, IHP table entries are required, each describing a specific process. If
TUPS=0, IHP=IHM. Otherwise, IHP=IHM+1 to allow inclusion of the total upscatter from a group
as entry IHP. Cross section preprocessors such as GIP perform this task, and it requires no special
action on the part of the user. The ordering of the IHP entries for a non-adjoint problem is listed in
the appendix describing file formats, and the modifications necessary for an adjoint problem are
specified there. The documentation for the GIP cross section processor® also illustrates the ordering
of data for an adjoint calculation.




5.2.3 Flux Moment Expansion

The use of cross-section components beyond the first requires the use of a flux moment expansion
describing the directional distribution of the flux in each space cell. The first term of the expansion
is the conventional scalar flux, the next three are directional currents, and subsequent terms allow
more-complicated shapes to be described. When weighted difference is used, the length of the
expansion, LM, is:

IM=L*L,

where L is equal to NSCTT+1 if NSCTT 2 0, and NSCTM+1 otherwise.

If the nodal formulation is used, additional terms are required to describe the spatial variation of flux
within the cell, and LM is increased to:

IM=L1*L43.

If a problem is restarted with a flux guess from a problem for which the value of LM was different,
the old value of LM must be entered as INMOMS. Moments beyond INMOMS on the input file are
ignored. Moments required by the problem but not found on the input file are initialized as 0.

5.2.4 Negative Source Removal

Any problem using L > 1 may incur negative source generation. This problem is simply due to the
failure of a truncated Legendre expansion to describe adequately the angular shape of the cross
sections. If the problem has no areas of severe anisotropic flow, the truncation effect may never be
noticed. In certain difficult problems, however, the negative sources can result in severe errors or
even negative scalar flux. When NEGFIX # 0, however, negative sources are removed immediately
when they are generated.

The "economy fixup" procedure (NEGFIX = -1) sets the negatives to 0 without attempting to
maintain particle conservation. It adds almost nothing to the CPU cost of a problem. It is especially
valid in deep-penetration calculations where an over-estimate of flux is acceptable. It does violate
conservation of particles, however, and it could cause problems in a k¢ search.

An alternative "conservative fixup" is used in the other options, but at potentially significant CPU
cost. The "full fixup" option (NEGFIX = 1) searches for negatives during the first iterations of each
energy group and repairs them by deleting both negatives and small positive sources in such a
manner as to conserve particles. In many cases, the small positives deleted are the result of the same
oscillations that produced the negatives, and their removal does no harm. This conservative method,
although heuristic in nature, has proven accurate in some severe tests. It may add 20% to the CPU
cost of a problem if few negatives are found, however, and much more if the negative contamination
is high.

5-8




To minimize the costs, the search is abandoned for a group after a given iteration has yielded no
negatives. Experience has shown that negatives that disappear during a given iteration do not
generally reappear in subsequent iterations. The "economy fixup" procedures still remain in effect,
in any case, as a final line of protection. ’

The "initial fixup" (NEGFIX = 2) operates like the full fixup, except that, after no negatives are
found in any iteration of a given energy group, the search is abandoned for all subsequent groups of
that particle type. Experience has shown that, after a group has been solved without negative
contamination, lower groups will generally be uncontaminated. It is important, with this option, to
set the value of NEUT properly, so that the search will begin again with the second particle type, if
any.

If NEGFIX = 3, the action is as described above, except that a fractional negative contamination less
than SORNEG is ignored. This would be used to avoid the cost of removing trivial negative
contamination.

5.2.5 Zone And Material Specification by Body Overlay

Three-dimensional problems are likely to involve large meshes and intricate zone shapes, so that
special techniques are required in the input. In TORT, the 9$$ array assigns a specific material to
each zone. Zones are described by the coordinated action of the 8$$ and 14**-19** arrays, the body
descriptors. Each body is specified as a continuous volume bounded on left, right, inside, outside,
bottom, and top by physical coordinates specified in the 14**-19%* arrays. A zone number is
associated with each body. If one envisions an array giving zone number by mesh cell, the effect of
a body is to fill the enclosed portion of the array with the specified zone number. Each body
overlays all previous bodies, so the final zone number for a cell is the last value specified for it.
Body boundaries may extend beyond the system boundaries. If internal boundaries do not
correspond to a mesh boundary, the closest mesh boundary will be selected. A close correspondence
should be maintained in order to prevent surprises, however. It may be noted that additional
intervals can be added within body boundaries without change to the input arrays, since they are in
terms of physical dimensions.

Very complex zones can be specified in this manner, and the results are relatively easy to confirm.
TORT produces an output map of the zone assignments in order to assist checking. This method of
entry was suggested by the combinatorial geometry input used by Monte Carlo codes. In
comparison, it is less powerful, but very simple to learn and apply. In general, TORT descriptions
can be converted to MORSE® Monte Carlo descriptions if they are not too complex.

The 983 array assigns a cross section set to each zone, while the 7** array allows modification of
material density in each zone.




5.2.6 Flux Sweep Formulations

TORT offers a choice of flux formulations: weighted-difference, nodal, or characteristic. All are
designed to produce high accuracy in properly meshed problems free of numerical difficulty, and to
produce plausible, non-negative results in the face of difficulty. The weighted-difference method
is very old, tested and accepted. In comparison, nodal is new, but highly favored by theoreticians.
Nodal costs more to solve a given mesh, but it can produce good results for very coarse meshes for
which weighted-difference fails. The characteristic method is especially well-adapted to problems
in which streaming through voids and dispersion around corners are important. It guarantees
positive results for positive sources, and it is generally more accurate than the other positive
methods. It operates faster than the nodal method on some workstations. Since it has not been
vectorized, it is relatively expensive on a vector computer, however. Nodal and characteristic
procedures are presently available only in XYZ geometry.

If weighted-difference is used, the traditional zero-weighted calculation can be performed by setting
THETA=0. Otherwise, a theta-weighted calculation is done. WMAX can simulate older
formulations. If WMAX = 1, the stable, but generally inaccurate, step calculation is simulated. If
WMAX = 2, the negative-prone linear or diamond calculation is simulated.

If the original nodal formulation is used, WNODAL controls the treatment of the boundary shape
distribution. WNODAL = O insures positive results but may damage accuracy at times.
WNODAL = 1 allows a more aggressive, and presumably more accurate, treatment with some risk
of negative contamination. WNODAL is not needed in the "positive nodal" formulation, and that
formulation may prove to be preferable.

5.2.7 Directional Quadrature Set

Flux solution by the method of discrete ordinates requires a set of discrete directions and weights,
the "directional quadrature set." Flux evaluation is performed only in these directions, and integrals
over directional variables required in the transport formation are estimated by weighted sums. The
direction sets consist of lists of weights and direction cosines input in the 81**-83** arrays. The
directions are ordered according to increasing values of cosine with respect to the X axis (EMU), and
then with respect to the Z axis (ETA). Thus, all downward directions precede all upward directions.
EMU's with equal ETA are grouped together, and such a set is called an "ETA level." A third
cosine, XZI, measured with respect to the Y axis, is required in the calculation, but it is calculated
internally. After the user has supplied a sweep of EMU for each value of ETA in either the positive
or the negative hemisphere, another identical sweep must follow it. The first will be assigned
negative values of XZI, while the second will have positive values.

A weight, W, is given for each direction. Certain curved-geometry calculations require that each

"ETA level" begin with a "boundary direction” for which XZI = 0 and W = 0. These boundary
directions have no direct effect on XYZ calculations, but they must be supplied for compatibility.
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5.2.8 ~ Boundary Conditions

‘Boundary conditions must be supplied on each external surface to start the flux sweep in directions
pointing away from that surface. The void B.C. is used at the edge of a system that is not surrounded
by other material. It simply sets the incoming flux to 0. Reflection describes the action at a plane
of symmetry, and it is often used at the center of a cylinder as well. With the reflective condition,
incoming flux is set equal to the outgoing flux in the reflected direction. The cylindrical condition
is best at the right boundary of a cell calculation, and it is often used at the center of a cylinder. With
the cylindrical condition, each incoming flux is set to the average outgoing flux for that ETA level.
If the problem is truly asymmetric in the theta direction, none of the conditions available are
rigorously correct, however.

The albedo condition returns a fraction of the emerging current as an isotropic reflected flux. With
an albedo of 1.0, the condition is a "white" boundary. The periodic condition at opposite boundaries
describes a repeating pattern, e.g. an ABCABC pattern. It is the condition rigorously applicable to
the theta boundaries when a full 360-degree problem is solved. A fixed value, i.e., a "boundary
source," can also be specified. '

All boundary conditions except void and fixed-source may slow flux convergence when applied to
right, outer, or top boundaries. The partial-current rebalance acceleration does have special
provisions to help with the convergence in such cases, however.

5.2.9 Fixed Source Input

External boundary sources are signaled by boundary conditions of 4. If NTBSI > 0, the sources are
read from unit NTBSI and multiplied by CHS(ig) before use. If NTBSI = 0, a uniform source of
CHS(ig) is supplied as a default. If NTBSI < 0, NTBSI is not used, but the source is constructed
from arrays 91**-95**, which give it a separable variation with direction, space, and energy group.
Each boundary uses only two of the three spatial shape arrays. For example, if IBB =4 and IBT =0,
the k-boundary source array would be: .

FKO(m,i,j) = SHAPM(m)*SHAPI(i)*SHAPJ(j)*SHAPG(ig) .

The upward-directed values would be used at the bottom boundary, as specified by IBB. The
downward-directed values would be ignored in this example.

Internal k-boundary sources are signaled by a non-zero value of NKNTSR. The internal boundary
source arrays are constructed from the 91**-93** arrays, giving them spatial shape, and they take
their energy shape from CHS(ig):

SORK(m,i,j) = SHAPM(m)*SHAPI()*SHAPJ(j)*CHS(ig)

A different set of shape functions is read for each of the NKNTSR source planes.
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If NTDSI > 0, then a complete distributed source description, including moment expansion, is to be
read from NTDSI and multiplied by CHS(ig). If NTDSI < 0, then IABS(NTDSI) must point to a
scratch unit on which the source generated from the 90+ arrays will be written. The spatial shape
will be either the product of the 92**-94** arrays, or else the complete shape read in the 96** array,
according to NEDSOR. In either case, the source is multiplied by a zone-dependent factor from the
91** array and an energy shape from the 95** array. A source generated in this method is always
isotropic, and anisotropic sources require a user-supplied input file.

If XNF # 0. and KTYPE =0, all fixed sources are multiplied by XNF before use. The use of XNF
with KTYPE > 1 is described elsewhere.

1t should be noted that the 90+‘arrays that refer to the space mesh are likely to give unexpected
results with the discontinuous mesh features, and the defaults should generally be used. Similarly,
default values of the arrays referring to quadrature directions should be used with jobs having
multiple quadrature sets.

5.2.10 Adjoint Ordering

If an adjoint problem is to be solved, all data in the first four input blocks are to be entered in the
normal manner. All input files supplied by the user, as well as any arrays numbered 91** and
higher, must be supplied in adjoint form, i.e., reversed with respect to energy. For files and arrays
having directional information, the user should remember that an adjoint problem is solved as a
function of -Q, rather than Q, where Q is a direction specified by the quadrature set. In other words,
ifu>0,€&>0, and n > O for a given direction, the adjoint data calculated for that direction will be
that appropriate to a particle moving in the direction (-, -§, -1). Directional input files must be
constructed accordingly, and directional output files must be so interpreted. Output files also have
the energy groups ordered as calculated, i.e., ordered from lowest photon energy to highest neutron
energy.

5.2.11 Flux Iteration Convergence

If the problem contains scattering from direction to direction within an energy group, the implicitness
must be removed by iterations. Beginning with the best guess available, flux is evaluated repeatedly,
the newest flux being used to update the scattering source between iterations. These flux iterations
are continued until convergence is reached, i.e.:

&P = ‘bz;,k,g ~ ¢Z,~,’k,g W,,, < EPP
¢71 kg

where 7 is the flux iteration index, and W,;, is the value of the importance function (20** array) for
the position ijk if IEPSBZ > 0, and 1 otherwise. The largest €” for any group after the last flux
iteration is called "group convergence", €C.




5.2.12 Flux Iteration Acceleration

If the system is large and the scattering ratio is high, e.g., 0.8 or more scatters within the group for
each particle interaction, flux iterations can be quite slow to converge. Synthetic acceleration is
employed to speed the process. This method uses "acceleration iterations" or "rebalance iterations",
which are, in effect, additional flux iterations conducted using a cheaper procedure. The acceleration
iterations continue until convergence has been reached or until the acceleration limit, NSCLMX, has
been reached. The optimum value of NSCLMX is both problem- and machine-dependent, but the
default value, 50, suffices for many cases. The value of EPSCL allows the level of rebalance
convergence to taper downward as the flux convergence nears its objective, saving CPU costs as
compared to a fixed objective.

If the iteration limit is reached without convergence, and if convergence has reached CONACC, the
improved data are accepted for use, and the number of acceleration iterations is reported as
NSCLMX. If the convergence has not reached CONACC, the acceleration is deemed to have failed,
the number of acceleration iterations is reported as negative, and unaccelerated data are carried
forward to the next flux iteration.

5.2.13 Flux Acceleration Stabilization

The PCR method tends to overcorrect in certain situations, and its practical use requires a "damping
factor." If CSOLIN > 0, the damping factor starts at a value of CSOLCN as each group is iterated,
and it increases by CSOLIN with each successive iteration. CSOLCN should never be less than the
default value, but larger values may be useful in very difficult problems. If CSOLIN < 0, the
increment ABS(CSOLIN) will be applied whenever a set of internal tests determine the need. The
use of CSOLIN < 0 allows less-skillful choices of CSOLIN to give good results. In spite of the
judgemental nature of the damped PCR method, it is so successful in very difficult problems that
many analysts will use nothing else.

5.2.14 Problem Type and Source Iterations
Several major types of calculation are available, chosen by KTYPE:

KTYPE=0: Fixed source ;alculation (in absence of fission), or subcritical
multiplication (M search).

KTYPE=1: K search - determination of k. for a subcritical or supercritical system.

KTYPE=2: A search - modification of a pure absorber concentration to produce a
specified K ¢.
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KTYPE=3: C search - modification of material concentrations to produce a specified k .

KTYPE=4: D search - modification of dimensions to produce specified k .

When KTYPE = 0 and NSRMX = 1, a simple fixed-source problem is solved. Flux from the input
fixed source and fission source from an input flux guess, if any, are used to determine fluxes and a
new fission density. If no fission or upscatter is present, the use of NSRMX > 1 is unnecessary and
wasteful. If a system has fissile material, but the fission calculation is not desired, set the fission
spectrum (CHI) to 0. In fact, CHI should be 0 in any calculation for which no fission is to be
calculated, since that bypasses the allocation of two large arrays.

If upscatter is present, NSRMX > 0 must be used in order to allow source iterations to remove
implicitness in the group-to-group scattering, whether fission is present or not. EPO > O should be -
used in this type of calculation, in order to ensure convergence of the flux between successive source
iterations.

When fission is present and NSRMX > 1, a subcritical multiplication calculation (M search) will be
conducted. After the first iteration, the secondary fission source is added to the fixed source to
perform each successive iteration until all subsequent fission regenerations have been accounted for.
When the process converges, the ratio of fixed+fission source to fixed source is the subcritical
multiplication, M. If the system is very near critical, M may be 100 or more. If the system is
supercritical, the search has no physical meaning, and it will fail.

When KTYPE = 1, a calculation of the fission multiplication factor, k¢, is performed. The
calculation starts with either a distributed source input or a flux guess from a previous problem. The
fission resulting from the flux guess is added to the fixed source, if any, and the total source is
normalized to XNF. Fluxes and the secondary source resulting from the fluxes are calculated. The
k¢ estimate from the iteration is the ratio of secondary source to the total primary source. Iterations
are continued until k ; converges. The distributed source, if any, is ignored after the first iteration.
A boundary source should not be used with this type of problem.

A relatively small number of flux iterations, often 2 or 4, are best with this type of calculation. If
k. is not close to 1, calculations can be improved somewhat be setting EVI equal to the best
available estimate of K. This is especially important in the case of restarts from a well converged
previous problem.

When KTYPE > 2, properties of the system configuration are changed in order to drive k4 to a
specified value, EKOBJ. For each configuration, the value of k. is partially converged, the
configuration is changed, and the process continues until k ¢ has stabilized sufficiently near the
objective value. The user must assure that the configuration can be changed sufficiently to adjust
K¢ as required.




5.2.15 Source Iteration Convergence

In general, source iterations will be performed until the time limit, TMAX, is exceeded (IXX=8), the
iterations limit, ISRMX, is exceeded (IXX = 1), or convergence is reached. The value of IXX is
contained in the output monitor lines. Source iteration convergence has not been reached if:

IXX =3: the indirect search has not converged, i.e. KTYPE > 2, EPK > 0, and:

KN - EKOBJ
KN

€ =

>EPK ,

where: K" is the value of k. for the latest (Nth) source iteration,

IXX = 4: flux iterations for some group have not converged; i.e., EPO > 0 and:
N N-1

(bi,j,k,g _ (bi,j, kg

N
d)i,j, kg

F:

>EPO

IXX = 5: fission density has not converged; i.e., EPF > 0 and:

N N-1
o0 < | B Fije ;F bhk | SEPF |
Fi,j &
IXX = 6: k. has not converged; i.e., EPK > 0 and:
N__gp7N-1
- ’K__Is_ -
KN

IXX = 7: no source iterations have been completed.

The value of IXX is printed after each iteration, together with each of the above measures of
convergence, except that, if EPO = 0, the corresponding convergence is not calculated.

If an additional iteration is required in order to obtain special output such as directional flux output,
this is indicated by IXX = 9.
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5.2.16 Indirect Searches

The indirect searches (KTYPE = 2) proceed by successive adjustment of the eigenvalue, EV. EV
is constrained to be positive, and extensive checks prevent oscillation and overextrapolation. Each
search seeks a value of EV that adjusts k4 to an input value, EKOBJ. EV is used to adjust the
system parameters as follows. -

A search: (A)egr = (A)ppn*EV; A s the concentration of a pure absorber defined in an input array.

C search: (C)gg = (C)input*( 1+f (EV-1)); C is the concentration of one component in its mixture,
defined in the 10$$ and 11$$ arrays, while f is the component fraction in the 12%* array.

D search: (Ad) 4= (Ad)inpm*(l+f (EV-1)); d represents any space dimension and f is the superzone
search fraction input.

The initial estimate of EV is EVI. Defining search convergence as:
CONVSR - (KN - EKOBJYK",

and eigenvalue convergence as:
CVK = (KN - KM)Y/KN.

the initial value of EV is used until:
CVK < EVTH*MAX(EPK ,MIN(O.1,CONVSR)) .

The second value of EV is determined by linear extrapolation if EVDELK = 0, using the input value
of eigenvalue dependence on K, DEVDKI. If EVDELK = 0, the second EV is:

EV =EVI+/- EVDELK,

where the sign of DEVDKI is used to determine the correct step direction. Subsequent values of EV
are obtained by nonlinear interpolation if possible, and linear otherwise.

Each new value of EV is constrained to the range between EVEVCHM and EV/EVCHM. EV is
always limited to the range between EVI*EVMAX and EVVEVMAX. If EV moves to its limit and
stays there, or if K exceeds the range EKOBJ +/- EVKMAX, the search is stopped.

5.2.17 Source Iteration Acceleration

TORT uses an error-mode extrapolation to accelerate source iterations. The code accumulates the
sum FERAH, an error-mode characteristic estimate A:
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]

N N-1
FERAH =Y. ’ Fiv - F,

)' = (F ERAH),;ew/ (F ERAH)previous 2

and an error-mode removal parameter 0:
0=A/(1-2) .

When estimates of 0 in three successive iterations are in fractional agreement within EXTRCYV, the
fission density is extrapolated according to:

N+12 N
Fi,j,k - Fi,j,k

+ 0 [N F

Lk Ljk

where 0’ is 6 adjusted so that no fractional change in fission density will exceed [ SORMIN |, where
|SORMIN]| is an input value. The fluxes are similarly extrapolated by the factor 6', with each flux
limited by the | SORMIN| ratio.

Tests show this procedure to be safe and effective in accelerating k 4 calculations, especially those
dominated by slow decay of a single error mode. It can also have an effect during upscatter
calculations, discussed below. It is important to assure that enough source iterations are performed
to allow calculation of a stable eigenvalue estimate, and that exactly the same number of flux
iterations are performed in each source iteration.

5.2.18 Upscatter

If upscatter is present in a problem, upscatter rebalance is performed after the second source iteration
and subsequent iterations. All fluxes within the upscatter energy range are multiplied by a factor
DVUPS:

DVUPS = UPSS/(UPSS-(UPSP-UPS)) ,
where:

IGUPS = first group into which upscatter is non-zero
UPS = previous upscatter sum
UPSP = new upscatter sum
UPSS = sum of all scatter into IG > IGUPS from IG < IGUPS

This factor is applied to fluxes for all energy groups > IGUPS, bringing the system into global

balance. The value of DVUPS-1 is printed in the output data as upscatter convergence. This
procedure is usually helpful, and has not been observed to cause erratic behavior.
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The procedure would be less effective in very large systems where thermal spectra establish
themselves in various regions relatively independently. It may be noted that, if the problem materials
do not naturally have fission, adding a small amount of fictitious fission to a troublesome region may
allow the source iteration acceleration to operate, speeding the convergence dramatically.

5.2.19 Subcritical Multiplication

Fission rescaling, an approach analogous to upscatter rebalance, is used when a fixed source is used
with a multiplying medium. In these cases, fluxes for all energy groups are multiplied by FSNORM:

FSNORM = FXSUM/(FXSUM-(SRNEW-FSOLD)) ,
where:
FXSUM = total fixed source
SRNEW = new fission source estimate
FSOLD = previous fission source estimate

Since the upscatter rebalance is applied before fission sums are calculated, there is no conflict
between these procedures, and one supplements the other.. In problems where fission rescaling is
effective, it can also be an important supplement to the error-mode extrapolation. For example,
without fission rescaling, 6, may be 100 or larger for a given problem. Single-precision calculations
may not be sufficient to provide a stable value of 0, and so the extrapolation is not effective.
Rescaling may lower 0 in such cases to a manageable value, i.e., to 25 or less.

As a counterexample, if a system is driven by a source at its periphery, the unmultiplied flux due to
the source is so different in shape from the final flux solution that fission rescaling may slow or
thwart convergence. A negative value of SORMIN must be used in such cases, so that fission
rescaling is disabled.

The user is cautioned that EPK is the criterion for the fractional change in one iteration, not an
uncertainty estimate. A better estimate is 6*EPK, which can be much larger.

5.2.20 Source Normalization

In fixed-source problems (KTYPE = 0), XNF is used as a multiplier of all fixed sources. In searches
(KTYPE > 1), normalization is such that the sum of the fixed source guess and the fission source
resulting from the flux guess is equal to XNF. The fixed source guess is ignored after the first source
iteration, of course.

For a given source, fluxes inherently tend to increase with increasing k¢, and some speak of this as
"fluxes normalized to k" A more accurate statement is that the source input to an iteration is
normalized to XNF, and so the fission calculated from the fluxes is larger by K¢




5.2.21 Key Flux Positions

In many cases, it may not be necessary or feasible to obtain flux information for all mesh cells in a
problem. Accordingly, key flux positions can be specified by the 22**-24** arrays. Flux values at
these key flux positions can be printed after each iteration or after all of the iterations for a group.
If the positions do not correspond to the center of a mesh cell, the nearest value will be given.
Response summaries, described below, can be obtained at the key flux positions.

5.2.22 Response Summaries

Arbitrary response functions can be folded with the group flux results and obtained as output at each
key flux point, at each mesh cell, or as region integrals. If NTRSO = 0, cellwise responses will also
be written onto the file indicated. Each response is the product of a zone-dependent function and
a group-dependent function entered as the 26**-27** arrays. If fluxes from a previous calculation
are used without need for additional iterations, NSRMX can be set to 0, bypassing much of the setup
operations, but still yielding the response data. In such a case, fixed-source information is not
required or used.

5.2.23 Time Limit

If TMAX > 0, the problem will be discontinued when the time used exceeds TMAX. The
interpretation of time usage is system-dependent, as discussed in the Environmental Information
section. Time limit termination may occur before any source iteration, including the first, and before
any flux iteration. The flux moment output file from a terminated problem will always contain the
newest information applicable to a restart, but other output files may be incomplete. Problems
terminated by system action can be very troublesome to restart, and the use of TMAX can avoid
those difficulties.

5.2.24 User Error Code

When user errors, e.g., input errors, are discovered, an error level is assigned to each error and
indicated in the corresponding message. A record of the highest error code encountered in the
execution, NCND, is kept, and the execution tries to continue through the processing of all input data
and files. If that processing is completed without some type of system failure due to the error, the
condition is compared with an acceptance limit, NCNDGO, and the problem is stopped if the limit
is exceeded. The user can alter the value of NCNDGO by the input of NCNDIN. A high value, e.g.
16, can allow the user to override unwanted error checks and proceed into calculation. Results of
such a calculation should be regarded with suspicion, however.
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5.2.25 Directional Flux Output

If the boundaries of a patch of the space mesh are entered in the 34** array, and if a unit is input as
NTDIR, directional flux will be written onto the corresponding file for mesh cells within the patch.
This will generally require one additional iteration, since it is not practical to save the directional flux
data internally. It is generally helpful if the boundaries of the patch correspond to boundaries of the
space mesh. This file may be very large, and caution in choosing the boundaries of the output patch
is needed.

5.2.26 Discontinuous Mesh

If IM < 0, the 70+ arrays define a discontinuous space mesh. Programming details of this feature
are discussed in Appendix D. In this case, the 2** and 3** arrays may contain more than one mesh
boundary specification, one after the other. The 728$ (74$$) gives the number of intervals in each
I-set (J-set). The largest I-set should have length equal to the magnitude of IM, and the largest J-set
should have length JM. Then, the 738$$ array assigns one J-set to each plane, while the 71$$ assigns
one I-set to each row of each plane.

The purpose of this feature is to allow fine detailing of a special portion of the problem without
requiring mesh boundaries to extend throughout the problem. When it is used, a coarse mesh must
be defined for acceleration purposes, and each boundary of the coarse mesh must lie in every fine
mesh set. This discipline reduces the cost of the acceleration, and it prevents certain distortions that
can occur without it.

5.2.27 Variable Quadrature

If MM < 0, the directional quadrature is to vary with energy group. In this case, the 81**-83%*
arrays may contain more than one quadrature set specification, one after the other. The 76$$ array
specifies the length of each quadrature set, while the 75$8$ array assigns one set to each energy group.
The largest set should have length equal to the magnitude of MM.

This feature allows a fine direction set to be used in high-energy groups, in which it is often
necessary to calculate the transport of particles away from strong local sources. Lower groups,
where scattering often dominates, may be adequately solved with a coarse quadrature. This feature
can save execution time and can reduce the size of certain files.

5.2.28 Variable Cross Section Expansion
If MM < 0, the 77$$ array may be used to specify the order of Legendre expansion of the flux
moments by energy group. The high-energy groups may benefit from a high-order expansion in

certain problems for reasons analogous to the need for fine quadrature. The use of a lower-order
expansion in lower energy groups can save both time and file space. The usual restrictions on
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expansion order for a particular quadrature set apply here.
5.2.29 Accurate Restart Procedure

When some groups in a previous run have converged satisfactorily, additional flux iterations in those
groups are not needed unless additional source iterations are to be done. These can be bypassed by
adjusting the 21$$ array, but that is not always convenient. Instead, if NIFCNV is set to 1,
information on the flux restart file will cause unnecessary iterations to be bypassed.

The Damped Partial Current Acceleration procedure typically increases the amount of damping as
the problem progresses, in order to achieve best convergence. When a problem is restarted, however,
the damping progression starts again unless it is otherwise regulated, and the total number of
iterations required for convergence may be increased. If 10 is added to the value of NIFCNYV, the
damping will be initialized from information on the flux restart file, rather from the input control
parameters.

5.2.30 Direct Access Scratch File Retention

If NTFOG < 0, the direct-access scratch files containing flux moments (unit 91), as well as boundary
source and flux directional data (unit 94) will be retained at the end of the execution. In this case,
only a small amount of control information will be written on the file pointed to by NTFOG, and the
necessity of duplicating the flux moments in sequential form on NTFOG will be avoided. This can
reduce the total amount of file space required, and it reduces the I/O work. It clearly requires that
the storage mode be such that flux moments are stored on the scratch file, and this should be
enforced by using MINBLK > 1.

To transfer the direct-access files, together with the small sequential file, to a new problem, simply
tag the number of the sequential file with a negative in specifying NTFLX. It is important that the
second problem be identical to the first in details such as the sources, mesh, number of groups,
boundary conditions, and the like. The number of iterations per group and the time limit may be
changed as desired, however.

It may also be desirable to input boundary directional source information on unit 94, avoiding the
requirement for duplicate copies of this potentially large file. For this option, set NTBSI=0, and set
NIFBND = 1. In this case, the distributed source information will be read directly from unit 94,
which must have been written previously by a preprocessor code. This operation carries the
restriction that the file segment size, LCMOBJ, must be identical to that used in the preprocessor
code.




5.3 PROBLEM PRINTED OUTPUT

Each TORT job starts with a notice of the date and time, followed by a record of the particular
version of the code being used and messages from the programmer informing the user of warnings
or special features. The title supplied by the user as input data is next. As each array of input data
is read, the array number and length are noted.

The input parameter arrays (61$$-67**) are edited, together with a brief explanation of each.
Region, material, density, importance, iteration limit, and energy spectral arrays follow (87$$, 933,
7R 20%% 2188, 1** and 6*%*). The directional quadrature edit is next, with W, EMU, and ETA
from input arrays (81**-83**), followed by related data determined internally: the third direction
cosine (XZI), the directional coupling array (BETA), and the direction mates. The EMU, XZI, and
ETA mates indicate the number of the direction corresponding to reflection in the given direction
cosine. A particle moving in direction m, for example, upon reflection at a Z boundary, would move
away in the direction given by ETA MATE(m). The LEVEL MATE has the value of the number
of the first direction of the "eta level" in which direction m lies; i.e., the first of the set of contiguous
directions with common ETA's and with XZI's of the same sign. The first mate of each level is
tagged with a negative.

Space-mesh information follows: the K- and J-boundary arrays (4** and 3**), together with mesh
midpoints, and interval widths. Each of these arrays is accompanied by the number of the
coarse-mesh interval corresponding to each fine-mesh interval. In addition, the K-boundary edit
includes the number of the J-mesh corresponding to each plane and the boundaries of the distributed
flux output patch, if any. The next edit gives the I-boundaries (2**), together with midpoints,
interval widths, coarse-mesh interval numbers, and three arrays, AH, AV, and VR used in the flux
solution. The J and I edits are repeated, once for each mesh set, if the discontinuous mesh feature
is used. ’

. The key flux locations (22**-24** arrays), the mesh intervals corresponding to the key fluxes, and
the coarse mesh boundaries (84**-86**) follow. The next edit gives the body array information (8$$
and 14**-19** arrays), followed by a summary of fine- and coarse-mesh information.

" Azone map gives the zone layout determined from the body description. An edit of storage usage
(generally of value only to the programmer) indicates the end of key storage areas. This edit may
be given as many as four times as the code attempts to adapt to the available memory by using more
external storage. An estimate of disk space required for the scratch files (81-95) follows. An
optional edit of cross sections is valuable in diagnosing trouble. If NEDSOR has called for an edit
of the distributed source, this follows next. An edit of unnormalized total fission source and
groupwise distributed source is given, and then the monitoring of the iteration process begins.

A source iteration monitor line gives initial values before the first iteration, and those values are
updated after each subsequent source iteration. Entries on this monitor line are:



ITN  Source iteration number
FLX Number of flux iterations completed for this source iteration
CUM Cumulative number of flux iterations

CNV  10%*IXX + I[FCONV

IFCONV =0 Source iterations are to continue
=1 One more iteration is required for special output
=2 Iterations are to stop at once

=3,4,5 Asin0,1,2 but configuration recalculation is required
(IXX was explained earlier; configuration recalculation is used in indirect searches.)
ACC 100*ISR + 10*NEWCFG + JACX

IACX =0 Extrapolation of fluxes was bypassed
=1 Extrapolation of fluxes was performed

NEWCFG =0 Old configuration is to be used
=3 New configuration is to be used

ISR =0 No eigenvalue extrapolation was performed
=1 Linear eigenvalue extrapolation was performed
=2 2-point nonlinear eigenvalue extrapolation was performed
=3 3-point nonlinear eigenvalue extrapolation was performed

(IACX applies to k¢ calculations. IACX, NEWCFG, and ISR apply to indirect searches.)

IFX I-position of maximum flux change between source iterations
JEX J-position of maximum flux change between source iterations
GFX Group of maximum flux change between source iterations
EV Eigenvalue edit

K K-effective edit

K-CNV K convergence

FSN-CNV Fission convergence
FLX-CNV Flux convergence
GRP-CNV Group convergence
SRH-CNV Search convergence
UPS-CNV Upscatter convergence
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EXTRAP
TIME

Fission extrapolation factor in error-mode extrapolation process
Time iteration was completed

EV and K are interpreted as follows:

= f _ . .
EV = ? Vv,0,¢, , (non-adjoint)
EV = ; x, Vo, , (adjoint)

K =

3y ngg vaogd)g .

g/

If the ¥'s do not sum to 1, K will differ from EV in a K-calculation by a ratio equal to the sum of
the x's . Even if  is precisely normalized to 1.0, EV and K may be slightly different due to roundoff.

As each flux iteration is performed on each energy group, another monitor line is printed. It

contains:

GRP
ITN
IMFD
JMFD
KMFD

MXFXDV
MXDV FX

REBL

REBL ERR
MAX REBL

RB DV FX
GRP REBL
KEY FLUX

Energy group number

Flux iteration number

I-position of maximum flux change

J-position of maximum flux change

K-position of maximum flux change

Maximum relative flux change in this iteration
Most rapidly changing flux value

Number of rebalance iterations; a negative value means the rebalance results were
not accepted for use; a number larger than NSCLMX means that the acceleration
was not successfully converged to CONSCL, but the results satisfied the CONACC
criterion, and were accepted for use.

Largest relative change in accelerated values in the last rebalance iteration
Maximum relative change due to acceleration

Relative change in MX DV FX due to acceleration

Average relative rebalance change for the entire group
Value of first key flux requested by input data, after acceleration
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NEG FIX Maximum fraction of total source found to be negative in any mesh cell. This
indication will be set to 1.0 if the "economy fixup" is used, since the calculation of
a true value would be too costly.

SOURCE Total of all sources into a group, including external boundary sources. This will be
zero for iterations in which no acceleration is done.

TIME The time at which the group iteration is started is given at the end of the heading
column.

Arbitrary diagnostic information is given below the time indication, and it is to be ignored by the
user.

If IEPSBZ > 0, an edit of pointwise flux convergence by region is given, either after each flux
iteration or after the last. Similarly, key flux values are printed according to NKEYFX. If
. IFXPRT = 1, scalar fluxes will be edited after the last iteration. If IFXPRT = 2, the scalar flux
values are edited for each group after each iteration. This feature may be useful in preliminary
testing of a new problem setup, for example, but it is obviously impractical for large calculations
having many source iterations. It should be used with care.

The key response edit, controlled by NRESP, follows. Pointwise values at the key flux positions and
region integral values are always given. Pointwise values in each mesh cell may be printed,
optionally.

K ITALLY = -1, the problem ends with a summary of time usage by each major code section. The
code sections tabulated include:

MSC All sections not listed elsewhere; mainly editing and file processing.

/O Actual transfer of data to and from external files.

SOURCE Preparation of the "in-source" into a group.

FLUX Calculation of the "total-source" for a group. :

PLANE Application of boundary conditions; coordination of flux solution; testing of flux
_ convergence.

ROW Actual discrete ordinates flux sweep.

CMSCLR Acceleration.

SORX

SNPL

WWESOL

Non-labeled columns, for temporary use of the programmer, follow. The exact interpretation of the
various times is discussed in the Environmental Information section.
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5.4 INPUT AND OUTPUT DATA FILES

All of the user input and output data files are expressed in formats designed according to
recommendations of DOE's Committee on Computer Code Coordination (CCCC).%” The
specifications of these formats are contained in Appendix B. The files are:

FILE NAME FORMAT = USE

NTFLX FLXMOM Flux and moment input

NTFOG FLXMOM Flux and moment output

NTSIG GIP Cross section input

NTBSI VARBND Boundary source input

NTDSI FLXMOM Distributed source moment input
NTRSO FLXMOM Cellwise response output
NTZON VARMAP Zone map input

NTDIR DIRRAW Directional flux output

5.5 SCRATCH DATA FILES

Appendix B also includes definitions for two of the internal scratch formats, since these can be
transferred between problems. Scratch files using these formats are:

UNIT FILE FORMAT USE

91 NDFLX TORSCRF Flux Moments, All Groups

92 NDSOR " Total Source for One Group
93 NDSIN " In-scatter for One Group

94 NDBFX TORSCRS Boundary Sources + Fluxes

The length of each file is specified by the formats, with the understanding that NDSOR and NDSIN
contain data for only one group. It should be noted that the /O routines may increase the disk space
requirement by rounding small records to a full block.

Some files, intended exclusively for internal use, do not use defined formats. These include:

UNIT FILE USE

81 NDKSR K-boundary distributed source
82 NDSIG Cross-section scratch

83 NDBTL Scalar flux for edits

84 NDZON Zone map
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85 NDCPC Damped partial currents rebalance SOR
95 NDFIJ Old scalar flux ’

The record lengths and counts for these files are as follows:

FILE RECORD LENGTH RECORD COUNT
NDKSR MM*IM*IM NKNTSR
NDSIG HP*MTM IGM
NDBTL IM*JM*KM IGM
NDZON IM*IM KM
NDCPC ICM*JCM 8*KM
NDFILJ IM*IM*KM IGM
M*IM KM
NOTES:

IHP =THM + 1 if IUPS > 0; else IHP = IHM

NDFIJ has two types of records, as indicated. Records of the first type are present only if
EPXTR # 0. and NSRMX > 1, or if EPO = 0. Records of the second type are always present.
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Table 5.1. Detailed Array Input Requirements

TORT Parameter Arrays

61%$$ input/output file logical unit numbers - - -

ntflx = flux guess input unit if .gt. O

ntfog = f£flux output unit if .gt. O

ntsig = cross section unit {default=8)

ntbsi = boundary source input unit if .gt. 0 (neg: input from 90+ arrays)

ntdsi = distributed source input unit if .gt. 0 (neg: scratch unit; input from 90+ arrays)
ntrse = response output unit if .gt. 0 (neg: formatted output)

ntnpr = large-scale output unit if .gt. O

ntscl = scalar flux output unit if .gt. 0

ntzon = 2zone map input unit if .gt. O

ntdir = directional flux output unit if .ne. 0 (neg: write reduced-size file)

ntenvg = convergence data output unit if .ne. 0 (neg: convergence edit also provided)

6288 control integers - - -

nsrmx = source iteration maximum (default=1)

nfxmx = flux iteration max. per group per itn. (default=20; neg: limit by group in 21$$)
icsprt = 0= cross sections not printed; 1= printed

ifxprt = 0= scalar flux not printed; 1= printed at end; 2= printed as calculated

modep = 0= no effect; 1= bypass flux iteration print

nkeyfx = length of key flux array (neg: print key fluxes last iteration only)
iepsbz = 0= no effect; l=use zone importance; ll= l+print cnvg. final itn.; 21= 1ll+print cnvg.

every itn.

nresp = no. response functions (neg: cell responses not printed)

ktype = 0= fixed source; 1= k-search .

nsctt = maximum order of flux expansion (default=-1; neg: use nsctm)
_lo___

iadj = 0= forward solution

negfix = 0= no effect; 1= full source fixup; 2= initial fixup; 3= tested fixup; -1= economy

fixup

nsclmx = acceleration iteration limit (default=50)

nbfacc = flx itns. before acceleration (0 ignored)

mode = flux sweep: O=opt wtd; 1= alt wtd; 2= opt xXyz nod; 3=alt nod; 4=opt new nod; S=alt

new nod; 7=characteristic

nbuf = use 0

locobj = initial memory allocation, words*1000 (0 implies use default)

lcmobj = file segment size, words*1000 (0 implies unlimited segment length)

minblk = minimum no. of k blocks per group (0: all groups stored in memory if possible)
maxblk = maximum no. of k blocks per group {0: maximum is km)
_20___.

nendin = maximum user condition code (default=4)

ingrps = no. groups of flux guess avail. (0: all groups available; neg: no groups

available)
inmoms = no. moments of flux guess avail. (default=-1; no effect)
indirs = O=no effect; l=ignore boundary flux guess

nintsr#= no. i-boundary internal sources used
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TORT Parameter Arrays

njntsr#= no. j-boundary internal sources used

nkntsr = no. k-boundary internal sources used

nintfx = no. i-boundary internal fluxes saved

njntfx = no. j-boundary internal fluxes saved

nkntfx = no. k-boundary internal fluxes saved
- 30 - - -

iacc = use 0

itally = 0: no effect; -1: intermal timing analysis

ncpu = 0: no effect; > 0: # DP tasks in Cray macrotasking environment

nedsor = 0: 3-d source description; 1: 1-d&; +10: zone*group edit; +100: cellwise edit
nifenv = 0: no effect; 1: skip cvgd grps on ntflx; +10: use rebal damping from ntflx
nifbnd = 0: default bndy source if ntbsi=0; 1: find bndy source on direct access file if

ntbsi=0

635$ geometry controls - - -

im = maximum number of x (or r) intervals (neg: number varies with row and plane)
jm = maximum number of y (or theta) intervals

km = maximum number of z intervals

ibl = left b.c. (0=void )

ibr = right b.c. (l=reflected )

ibi = inside b.c. (2=periodic )

ibo = outside b.c.

ibb = bottom b.c. {(4=bndy source )

ibt = top b.c.

ingeom = 0= x-y-2z geometry; 1= r-theta-z; 10= x-z; 1ll= r-z; 20=x-y; 21l=r-theta
- 10 - = -

izm = numbexr of material zones

inreg = wuse 0

mm = maximum number of directions in guadrature (number varies with energy group)
mmesh = number of material zone bodies

spare = use 0

nism = standard i-set for boundary flux (if.gt.0)

njsm = standard j-set for boundary flux (if.gt.0)

spare = use 0

645$ cross section controls - - -

igm = number of energy groups

ncrx = number of materials

nsctm = maximum order of scattering expansion

iht = number of principal c.s. per group

ihm = total number of scalar c.s. per group

iups = number of upscatter c.s. per group

neut = last neutron group (0 if all groups are photons)
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TORT Parameter Arrays

66** control reals - - -

- 10 - -

epp
epf
epo
epk
spare

conscl
conacc
csolcn

csolin
csolmn

flxmin
theta
wmax

wnodal
sorneg

evi
evdelk
devdki
evchm
evmax

]

il

i}

nou

- 20 - -

evkmx
evth
epxtr

fisorf
epscl .

pointwise flux convg. crit.
fission convg. crit.

source iteration flux convg. crit.
eigenvalue convg. crit.

use 0

min. acceleration itn. convg. crit.
max. acceleration acceptance crit.
acceleration damping constant
default=1.5)

acceleration damping increment

use 0

minimam £lux for convg. tests

(default=1.0e-3)
(default=1.0e-3)
(default=0.)

(default=1.0e-4)

(default=1.0e-4)
(default=l.0e-1)
(neg: use only on first source iteration;

(neg: use only as required; default=-1.5)

(default=1.0e-30, 1.0e~60 on cray)

source multiplier, weighted difference mode (default=0.9)
O=no effect; l=weighted difference constrained to step; 2=constrained to linear

(diamond)

O=no negative risk, nodal mode; l=higher risk
minimum source neg. content repaired (default=l.e-3)

initial eigenvalue

initial eigenvalue increment
initial eigenvalue slope guess
maximum ev change ratio, each itn.
maximum ev change ratio, overall

maximum valid (keff-ekobj)

keff convergence ratio

keff extrapolation convg. criterion
rebalance)

use 0

ratio accel. convg. to flux convg.

67** problem parameters - - -

#

xnf
tmax
ekobj
eki

= feature not completed

(1}

source multiplier

maximum cpu min. for this problem
keff sought in search

initial keff estimate

(default=1l.)

(default=0.3)
(default=-1.)
(default=1.5)
(default=10.)

(default=1.)
(default=0.2)
(default=0.2; neg. bypasses subcritical

(0 ignored; default=0.1)

(0 ignored)
(0 ignored)
(default=l.)
(0 ignored)




TORT Input Block Descriptions

Parameter Input Arrays
61$ input/output file logical unit numbers
62$ procedure control integers
63$ geometry control integers
64% cross section control integers
66* procedure control reals
67* problem control reals

Primary Dimension Setting Arrays

718 iset i-set by row and plane ’ (jm*km values; default=1l)

72$ imbis # of cells by i-set (jm*km values; default=iabs(im))
73% jset j-set by plane {km values; default=1)

74% jmbis # of rows by j-set (km values; default=3jm)

75$ mset m-set by energy group (igm values; default=1l)

76$ mmbms # of directions by m-set (igm values; default=iabs(mm))

77$ nsctg order of flux expansion by energy group (igm values; default=nsctt)
notes: 71$ - 74% arrays are required only if im<0
718, 72%, and 74$ are usually longer than required; £ill arrays with 0
758 - 77$ arrays are required only if mm<0

Secondary Dimension Setting Arrays

81* w quadrature weights (mms values for each guadrature set)

82* emu first-direction cosines (mms values for each quadrature set)

83* eta last-direction cosines (mms values for each quadrature set)

84* rcmb X/r coarse mesh boundaries {(ima+l values, then fill with large
number) :

85* thcmb y/theta coarse mesh boundaries { jm+l values, then £ill with large
number)

86* zcmb z coarse mesh boundaries ( km+1l values, then fill with large
number)

87$ iznrg region number by zone (izm values; default=1,2,3...)

notes: mms = number of directions in quadrature set; ima = iabs(im)
if 84*, 85*, or 86* is omitted, it defaults to the fine mesh values
if im<0, each coarse mesh boundary must lie in each fine mesh
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General Input Arrays

1* chi fission energy spectrum ’ (igm values)

2* rin x/r fine mesh boundaries (ims values for each i-set)

3* thin y/theta fine mesh boundaries (jms values for each j-set)

4* zin z f£ine mesh boundaries (km values)

5* ener energy group boundaries (ign+2 values:upper bounds for groups

1,..,igm + lower bound for group igm +
lower bound for group neut; 0 if

neut=0)
6* chs fixed source energy spectrum {igm values; default 1.)
7* dnij material density by zone (izm values)
8* inzn zone # by body (mmesh values)
9* izmt material # by zone {izm values)
14* gemxl body left - boundaries (mmesh values)
15* gemx2 body right boundaries (mmesh values)
16* gemyl body inside boundaries (mmesh values)
17* gemy2 body outside boundaries (mmesh values)
18* gemzl body bottom boundaries (mmesh values)
19* gemz2 body top boundaries (mmesh values)
20* epsbz convergence importance by zone (izm values) [if iepsbz>0]
21* itmbg iteration limit by group {igm values) [if nfxmx<0]
22* ceyai i- key flux locations {nkeyfx values)
23* ceyaj j- key flux locations (nkeyfx values)
24* ceyak k- key flux locations {nkeyfx values)

26* dnres zone response by zone, then by response (izm*iabs(nresp) values; default=l.)
27* csres group response by group, then by response({igm*iabs(nresp) values; default=1.)
30* kntsr locations of k-~-boundary internal sources (nkntsr values)
34* pchbn boundaries of the dir. flux output patch (8 values)
notes: ims = number of cells in a row
jms = number of rows in a plane
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External Boundary Source Arrays [if ibl, ibr,ibi, ibo,ibb or ibt=4]

91* shapm source shape by direction (mm values; default=l.)
92* shapi source shape by i {im values; default=1l.)
93* shapj source shape by j (jm values; default=1l.)
94* shapk source shape by k (km wvalues; default=1.)
95* shapg source shape by group (igm values; default=1.)

note: these arrays may give unexpected results if im<0 or mm<0

Internal Boundary Source Arrays [nkntsr blocks if nkntsr>0]

91* shapm source shape by direction (mm wvalues; default=1l.)
92* shapi source shape by i (im wvalues; default=l.)
93* shapj source shape by j (ijm wvalues; default=1l.)

note: these arrays may give unexpected results if im<0 or mm<0

Distributed Source Arrays [ntdsi<0]

91* shapm source shape by region (nreg values; default=1.)
92* shapi source shape by i (im values; default=1.)
93* shapj source shape by 3 (im walues; default=1l.)
94* shapk source shape by k (km values; default=1l.)
95* shapg source shape by group (igm values; default=l.)
96* f£1ij distributed source distribution by i,j,k (im*jm*km values)

note: these arrays may give unexpected results if im<0 or mm<0
nreg = max{iznrg{i),i=1,izm}
if mod(nedsor,10)=0, the source spatial shape is defined by the 96* array.
otherwise, it is defined by the product of 92*, 93*, and 94* arrays.
in either case, the spatial shape is multiplied by the 91* and 95* arrays.
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REGION 6. ENVIRONMENTAL INFORMATION
6.1 UNLOADING AND INSTALLATION OF THE DISTRIBUTION FILES

TORT and DORT are now distributed via a tape archive file. This archive also contains several
utility programs used to maintain the software. CMP is an UPDATE emulator developed at Sandia
National Laboratories. RSCORS is a graphics library also developed at Sandia. Most if not all of
these utilities are installed during the DORT and TORT installation.

To install DORT and TORT, create a new directory (or choose an existing directory), then change
to that directory. Now copy the files from the installation tape, e.g.,

mkdir ~/doors
cd ~/doors
tar xvf /dev/rmt0 (use your correct tape device)

Change to the Install subdirectory and make the bin and current directories part of the search path,
ie.,

cd Install
export PATH=..$HOME/doors/bin:$PATH (if using ksh); or
set path = (. SHOME/doors/bin $PATH)  (if using csh)

Then enter sinstall.unx and respond to the prompts. Detailed installation instructions are provided
in Appendix C.

6.2 THE JDOS DRIVER

The JDOS procedure uses the DRV code, created by the same procedure that installed GIP, etc, to
solve problems that require a sequence of various codes. This driver evolved from the Discrete
Ordinates System (DOS)® that has been in use since the mid 1970's. (Unfortunately, the acronym
for this system was later used for an entirely unrelated product by another provider of software.) A
typical input stream might appear as follows:

=gip

[input data for GIP]
=tfort

[Input data for TORT]
=end

The procedure provides an edit of the entire input stream, and it then invokes each code as required
until the "=end” is reached. Execution is stopped after an abnormal failure of a code application.
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6.3 INTERNAL MEMORY

On each system on which these codes have been demonstrated, it has been possible to install a run-
time memory allocation. This means that allocation of the large "container array” in which most
working data are kept can be delayed until the actual length requirement can be determined. This
requirement is different for each problem, and it is generally not desirable to allocate a container
sufficient for the largest possible problem routinely. The best procedure for each machine is selected
by the mudort and mutort scripts. To replace this machine-dependent package with an ordinary
FORTRAN fixed-dimension routine, the dort/src/mudort.{sys} file must be modified.

The amount of memory required and its arrangement are discussed in the Programmer's Information
region. A special feature that might be noted here is the "direct access user buffer” area. In the
largest problem solutions, the flux and source moment files are the target of much of the I/O activity.
These files are direct access files, written and read in blocks as large as the memory allows. Data
are moved to and from the files through the user buffer area, an area at the end of the user memory.
Information can be requested from the buffers in a method convenient to the using program, and a
special traffic manager routine locates the desired strip of data. The data in the buffer can be
accessed in any order, read or written repeatedly as required, and then moved back to the external
file when another buffer is required.

In addition to simplifying the programming, this arrangement allows the user to take advantage of
any special large memory area such as those used on CDC and IBM machines of a few years ago.
We do not provide procedures for doing this on present-day machines, however.

The DORT and TORT codes have various modes of tradeoff between memory size and amount of
VO activity, as discussed in the Programmer's Information region. If virtual memory were
transparent in cost and speed, as it is in programming style, the best efficiency would be obtained
by making the internal container array as large as required to minimize the IO activity. In practice,
the delays incurred with virtual memory on workstations have made it advisable to ensure that the
memory allocation is of such a size as to remain in memory at all times. Unfortunately, that means
that, if a second large problem is dropped in beside the first, both are likely to experience unsuitable
delays as the paging rate becomes large. It is sometimes possible to monitor the paging rate, but this
requires a high level of system familiarity and user attentiveness.

6.4 EXTERNAL FILES

Standard UNIX naming conventions are followed for files; logical unit number xx is assigned the
name fort.xx, and xx must be 99 or less. Three unit numbers are reserved for special use:

. 5 Standard input,
o 6 Standard output, and

* 7 Simulated "punch” output.




User files supplied to the codes or obtained as output are generally of the sequential type, and they
may have numbers [1-4] and [8-80]. The contents and formats of these files are discussed in the
User's Information section.

Scratch files are assigned numbers 81-99. The contents and formats of these are also discussed in
the User's Information section. Files 81-90 can be processed by either sequential- or random-access
commands. Although the codes are initially set up to use random access, comments in the VARIO
subroutine indicate how to change this to sequential access if it is preferred on a given system.

Files 91-93 store flux and source moment data, communicated through the user buffers described
earlier. Files 94-99 transfer data directly to and from their arrays in memory, interrupted only by
system buffers, if any. These files must use direct access.

In normal operation, restarting an incomplete problem is accomplished by writing a sequential copy
of the flux moment file and, optionally, the boundary flux file. This file can also be used as a guess
for a subsequent problem. It does require that two copies of the information exist at one time,
however, and that can challenge the capacity of even the largest computing systems when the largest
problems are run. Because of this, a special input option allows the user to save files 91 and 94,
which contain the required information. Since these are scratch files, they do not contain traceability
information, and the user must perform the necessary record keeping.

For very large problems, finding disk space for the largest scratch files can be difficult, and storing
them on an off-line medium can be impractical or impossible. The LCMOBJ parameter causes the
files to be created and used in segments of a convenient length.

6.5 SPECIAL FEATURES

As discussed in the Programmer's Information region, communication with special system library
subroutines is done through a machine-dependent interface package. This package handles low-level
I/O operations, communication of time, date, and user information, special services at the beginning
and ending of execution, and the like. A generic substitute package is discussed in the comment.
files, and it can be used if required.

Where possible, each problem provides various types of time summaries. A monitor line appears
after each major section, giving "accumulated charge” and "charge increment”. This charge is the
sum of CPU time and, where available, system time used. It is also printed on the monitor line
before and after the solution of each energy group. At the end of the problem, the charge is broken
down by CPU and system component. The Cray and IBM installations presently provide both CPU
and system time information, while others do not. On mainframe systems, the operating system is
likely to enforce a time limit, and the input allows a maximum charge to be entered. After using this
amount of time, the execution will be terminated as quickly as possible.




Real time is also printed at the end of each problem. If a high-precision real-time clock is available,
it is used. Otherwise, the internal time-of-day indication is decoded to provide data accurate to the
nearest second.

The system library routines are typically written in C language, and another C-language routine is
often required to couple the information into the FORTRAN code. The appropriate routines are
selected by the installation procedure.

On Cray systems, an optional Cray Assembler Language (CAL) package is provided for use with
weighted difference flux calculations. If this is troublesome, it can be removed, and default
FORTRAN routines will take its place. A penalty in execution speed as large as a factor of three
may be observed, however. The input must ask for the alternate (scalar) flux mode in that case. A
warning message has been inserted to prevent the use of the vector mode without the CAL package,
since this is unacceptably inefficient.

6.6 COMMENT FILES AND DEMONSTRATION PROBLEMS

Several comment files in the dort and tort subdirectories are created as the codes are unloaded. It
is important that these be read. One of the files instructs the user as to how to run the DORT and
TORT demonstration problems. Typical running times experienced in routine use, without special
fine tuning, are given. In another file, a discussion of the problems is given. A new installation
should always include solving the problems and comparing the results with those distributed with
the source material.
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R. L. Childs and W. A. Rhoades, "The Extension of the Linear Nodal Method to Large
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J. L. Thompson, M. B. Emmett, W. A. Rhoades, and H. L. Dodds, Jr., "A Method For
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F. J. Muckenthaler, L. B. Holland, J. L. Hull, and J. J. Manning, "Verification Experiment of
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6268 (April 1987).
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Code," Nucl. Sci. & Engr. 99, 1, 88-89 (May 1988).

This abstract described a version of DORT, the successor to DOT, operable on Cray-CTSS,
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R. L. Childs, W. A. Rhoades, and L. R. Williams, "Three-Dimensional Calculations of
Neutron Streaming in the Beam Tubes of the ORNL HFIR Reactor," Proc. 7" Internat. Conf.
on Radiation Shielding, Bournemouth, UK (September 1988).

The TORT three-dimensional discrete ordinates transport code was used to calculate fluence
data in and around beam tubes of the HFIR. It was a significant demonstration of the use of
TORT inside a reactor vessel. After normalizing to available experimental data, the
calculation provided spatial and spectral information not otherwise available. Although ray-
streaming effects are always of concern when using discrete ordinates in a void, the results of
these calculations were satisfactory.

W. A. Rhoades, R. L. Childs, and D. T. Ingersoll, "New Dose-Mortality Data Based on 3-D
Radiation Shielding Calculations for Concrete Buildings at Nagasaki," Proc. 7" Internat. Conf.
on Radiation Shielding, Bournemouth, UK (September 1988).

A summary paper described the methods, verification, and results from a state-of-the-art
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W. A. Rhoades, R. L. Childs, and D. T. Ingersoll, "Radiation Exposure Inside Reinforced
Concrete Buildings at Nagasaki," Oak Ridge National Laboratory, Oak Ridge, TN, ORNL/TM-
10999 (December 1988).

A detailed description of methodology, verification, data, and results of the state-of-the-art
calculation of dose to personnel inside two concrete buildings at Nagasaki was given. Several
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W. A. Rhoades and R. E. Flanery, "3-D Discrete Ordinates Calculatons with Parallel-Vector
Processors," Proc. Am. Nucl. Soc. Topical Meeting on Advances in Nuclear Engineering
Computation and Radiation Shielding, pp. 69:1-69:11 (Santa Fe, April 1989).
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of more than two processors impractical in this study.

W. A. Rhoades and R. L. Childs, "TORT: A Three-Dimensional Discrete Ordinates
Neutron/Photon Transport Code," Nucl. Sci. & Engr. 107, 4, pp. 397-398 (April 1991).

This abstract gave a quick overview of the first version of the code released for general use.
This version was operable only with the Cray UNICOS operating system.

W. A. Rhoades and R. L. Childs, "TORT -- Three-Dimensional Discrete Ordinates
Neutron/Photon Transport Code," Proceedings of the Am. Nucl. Soc. Topical Mtg.: Advances
in Mathematics, Computations, and Reactor Physics (Pittsburgh PA, April 1991).

This abstract gave a quick overview of an updated version operable on Cray -UNICOS, IBM-
AIX, and other UNIX systems.

W. A. Rhoades, R. L. Childs, and D. T. Ingersoll, "Radiation Exposure Inside Reinforced
Concrete Buildings at Nagasaki," Health Physics 63, 5, 510-521 (November 1992).
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R. L. Childs and W. A. Rhoades, "Theoretical Basis of the Linear Nodal and Linear
Characteristic Methods in the TORT Computer Code," ORNL/TM-12246 (January 1993).
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W. A. Rhoades and R. L. Childs, "Applications of TORT Three Dimensional Neutron/Photon
Transport Calculations," Eighth ASTM-EURATOM Symposium on Reactor Dosimetry (Vail,
Colorado, August 1993).
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41. W. A. Rhoades, "The TORSED Method for Construction of TORT Boundary Sources from
External DORT Flux Files," ORNL/TM-12359 (August 1993).

TORSED allowed efficient coupling of a 2-dimensional DORT environment calculation to a
internally-contained section to be calculated by TORT.

42. 'W.A.Rhoades, " The TORSED and TORSET Codes for Coupling Three-Dimensional TORT
Calculations," Proceedings, 8th International Conference on Radiation Shielding, Am. Nucl.
Soc. No. 700201, ISBN 0-89448-191-6 pp. 551-557 (Arlington TX, March 1994).

New procedures had been added to TORSED in this paper, and it was joined by TORSET,
which couples one three-dimensional TORT calculation to another. The second problem is
allowed to lie partly outside the first.
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APPENDIX A. FIDO INPUT

The FIDO input method is designed to facilitate the entering or modifying of large data arrays.
Special advantage is taken of repetition or symmetry wherever possible. The FIDO system was
patterned after the input method used with the FLOCO coding system at Los Alamos. It was
originally developed at Atomics International for the DTF-II*® code. Since that time, numerous
features requested by users have been added, a free-field option has been developed, and the
application of FIDO has spread to innumerable codes.

The data are entered in units called arrays. An array comprises a group of contiguous storage
locations that are to be filled with data at one time. These arrays usually correspond on a one-to-one
basis with FORTRAN arrays used in the program. Arrays are grouped into blocks, each representing
a call to the FIDO package. A block may contain one, many, or no arrays. A special delimiter is
required to signify the end of each block. Arrays within a block may be read in any order with
respect to each other, but an array belonging to one block must not be shifted to another. An array
can be repeated within the same block. For example, an array can be filled with 0 using a special
option, and then a few scattered locations can be changed by reading in a new set of data for that
array. An array can be omitted if no entries are required. If none of the arrays in a block are
required, but the block is required, the block delimiter satisfies the input requirement.

Three major types of input are available: free-field input, fixed-field input, and user-field input.
Each field includes up to three subfields. Each array is identified by an array originator field having
two subfields: :

Subfield 1: An integer array identifier signals the identity of the array to follow.
Subfield 2: An array type indicator, used as follows:

"$$" free-field integer array
"xxt - free-field real array

"$" fixed-field integer array
"*¥"  fixed-field real array

ALIS 1 ]

u user-field, format to be read in

AL 2 )

Y user-field, previous format to be used

These subfields are written together, without blanks. Data are then placed in successive data fields
until the required number of entries has been accounted for. It should be noted that capitals are used
to represent character fields here for the sake of clarity. The actual entries, however, must follow
the requirement of the computer, which may very likely demand lower-case entries.




In entering data, it is convenient to think of a pointer that is under control of the user, and that
specifies the location in the array into which the next data entry is to be placed. The pointer is
always positioned at the first array location by the array originator field. The pointer subsequently
moves according to the data operator chosen.

Free-field input allows an arbitrary number of fields to be entered in columns 1-72, with fields
separated by one or more blanks. A field must begin and end in the same record. In general, a data
field has up to three subfields:

Subfield 1: The data numerator, N,, an integer
Subfield 2: The data operator, N,, a character
Subfield 3: The data entry, N, an integer or real number

If subfields 1 and 2 are both used in a field, they must not be separated by blanks. Blanks may
separate subfield 2 from subfield 3, however. All entries following a "/" in a given record are
ignored. Do not use the TAB character to separate fields!

Single data entries use only N,;, which may be entered with or without a decimal point. The type
(integer/real) will be determined by the previous array identifier:

1$$ 123 /enter integers 1, 2, 3 into data array 1
2%* 1.1.1 2 fenter reals 1.0, 1.1, 2.0 into data array 2

An exponent field may be added, with or without the "e" identifier. No imbedded blanks within the
subfield are allowed. The subfield must have no more than 9 columns, including the decimal, but

not including the exponent field. The pointer is advanced by 1 for each entry:

2** 1.e0.11+1 200-2 /same entries as above

3**  1234.5678e-3 /8 columns + decimal
BUT NOT 3**  1.23456789 /too many columns
AND NOT 3*%*  0.0e6 /produces wrong results

Multiple data entries use N, and (except the "f" operator) N , together with N , to enter several items
with a single field. The type of operation is indicated by N,.

"N,r N," indicates that data entry Nj is to be repeated N,, times. The pointer is advanced by N,.
"N,i N," indicates linear interpolation. The data numerator, N,, indicates the number of interpolated

points to be supplied. The data entry N; is entered, followed by N interpolated entries equally
spaced between that value and the value in the third subfield of the next field. The next field may
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be a single- or multiple-data entry. The pointer is advanced by N,+1. The field following an "i"
entry is then processed normally, according to its own data operator. The "i" entry is especially
valuable for defining a spatial mesh. In integer arrays, interpolated values are rounded to the nearest
integer.

"N;l N;" indicates logarithmic interpolation. The effect is the same as that of "i", except that the
resulting data are evenly separated in log space. This is obviously limited to positive real numbers.

"f N," fills the remainder of the array with ¥ .- N is not used. For example, the following are
equivalent ways of filling an 8-entry array:

2$$ 12346688
2%% 2i1 4 216 f8 /same as above

Sequence data entries allow entries to be patterned after data entered by previous fields or previously
existing in storage. Fields N,, N,,and N, are used, except that, if N, is omitted, it is taken to be 1.

"N,;q N;" is used to repeat sequences of numbers without modification. The length of the sequence
is given by the third subfield, N;. The sequence of N, previous entries is to be repeated N,, times.
The pointer is advanced by N,*N,. This feature is especially valuable in specifying matrices with
repeated or symmetrical columns or rows.

1" 1t

"N,g N;" has the same effect as "q", except that the sign of each entry of the sequence is changed
each time it is entered.

" "

"N,n N," has the same effect as "q", except that the order of the sequence is reversed each time it is
entered.

"N,m N," has the same effect as "q", except that both the sign and the order of the sequence are
reversed each time it is entered.

Options q, g, and m are valuable in entering directional quadréture sets. As examples:
g81** 12 3 1q3 1,2,3,1,2,3
g2** 3-2-1m3  /3,-2,-1,1,2,3
83** 3r-2 g3 1-2,-2,-2,2,2,2

Zero data entries use subfields N,, and N,.

"N,z" sets the next N,, entries to 0. The pointer is advanced by N,. As an example:

1$$3z12 /0,0,0,1,2




Pointer-movement data entries move the pointer without changing the data array. Subfields N, and
N, may or may not may be required.

"N,s" indicates that the pointer is to skip forward over N positions, leaving those array positions
unchanged.

"N,;b" moves the pointer backward N, positions.
"a N," moves the pointer to the position to N,.

"e" skips over the remainder of the array. The array length criterion is satisfied by an "e", unless too
many entries have been specified previously. No more entries to an array may be given following

an "e", except that data entry may be restarted with an "a".

For example, given the following sequence of entries, comments indicate the result of reading an
array of length 8:

1$$123456e¢
/E terminates the array, leaving

fitems 7 and 8 unchanged
1$$21s4a778

/now we have 2,2,4.4,5,6,7.8
1882114 1b 18
/1,2,3,8,8,8,8,8

Edit fields control printing within the FIDO subroutines.

"c" causes the position of the last array item entered to be printed. This is the position of the
pointer, less 1. The pointer is not moved.

"o" causes the print trigger to be turned on. The trigger is originally off. When the trigger is on,
each record is listed as it is read.

. 1

p" causes the print trigger to be turned off.

"/" occurring in column 1 causes the entire record to be ignored as input, but to be printed as a
comment in the output stream. '

A block termination field consists of a field having only "t" in the second subfield. Any entries
following a block termination field in a record are ignored.



The reading of data to an array is terminated when a new array originator field is supplied, or when
a block termination field is encountered. If the final pointer location is not correct, an error edit is
given, and a flag that will later abort execution of the problem is set. FIDO then continues with the
next array if an array originator was read. The new array originator need not begin a new record.
If a block termination field was read, FIDO returns control to the calling program. For example:

18§ 123 2** {0t

"u" as an array type indicator specifies user-field input, allowing the user to specify the input format.
The FORTRAN format to be used must be supplied in columns 1-72 of the next record. The format
must be enclosed by parentheses. The data for the entire array must follow on successive records.
The rules of ordinary FORTRAN input as to exponents, blanks, etc., apply. If the array data do not
fill the last record, the remainder of the record must be left blank. The user must ensure that the
format specifies the correct type of data, i.e., real or integer.

“v" has the same effect as "u" except that the format read in the most recent "u" array is used.

For example, for an array of 4 entries:

10u
(6i2)
1234
11v
4321

would enter integers 1, 2, 3, 4 into the 10th array and 4, 3, 2, 1 into the 11th.

Fixed-field input uses 1 to 6 fields per input record, with fixed, 12-column fields. It is described in
the DOT IV document.”® It has been almost entirely replaced by the free-field format, and so its
description is not repeated here.




APPENDIX B. INTERFACE FILE SPECIFICATIONS
Specifications for the sequential files normally used to carry information into and out of TORT are
given in Table B.1.
In addition, some direct-access files that are normally scratch files can be saved from one problem
and used in another. These formats are given in Table B.2. The user should note that the direct-
access files do not have indentification of the type that heads the sequential files, so that the burden
of assuring that the correct file is in use is left entirely to the user.
Sequential formats include:
dirflx ~ cell-average directional flux
flxmom cell-average flux moments and boundary directional flux
gip Macroscopic cross sections
varbnd  boundary directional source
varmap zone map data
varscl  cell-average scalar flux, zone map data and convergence data
Direct-access formats include:

torscrf  cell-average flux/source moments

torscrs  boundary directional fluxes/sources




Table B.1. Format Descriptions For Sequential Interface Files

- name:, dirflx
- date: 01 jun 95
- purpose: cell-average directional flux and interpretive data

- notes: order of energy groups is by decreasing energy --
- neutrons, then photons.

is the first -dimension index, 1i=1,,,ims(j,k)
is the second-dimension index, j=1,,,jms{(k)

is the third -dimension index, k=1,,.,km

- m is the overall direction index, m=1,,,mset(ig)
- mx is the quadrant direction index, mx=1,,,mdim
- ig is the energy group index, ig=1l,igm

I
& P

- mult=1 if word length is 8 bytes; mult=2 if 4 bytes.

-~ the "output patch®" refers to a compact region of the space mesh in
- which the directional flux is to be output.

- flux records for a group are not present if no iterations are done on
- that group. the user must provide for this possibility.

- file structure:

- record type present if
- file identification always
- file label always
- indexing arrays always

- real arrays always
— e repeat for ig=1,igm

= e e e eaaaen repeat all k=km,1,-1

= e e i eeeean repeat all j=jms(k).,1,-1

- . . . in, downward directional flux always
e e e e end j loop

— e e i eereas repeat all j=1,jms(k),1

- . . . out, downward directional flux always
— e e e e end j loop

" e i e eseeean end k loop

= e it i eeeneon repeat all k=1,km

e e e eeean repeat all j=jms(k),1l,-1

- . . . in, upward directional flux always
e e end j loop

= e i i repeat all j=1, jms (k)

- . . . out, upward directional flux always
et e e end j loop
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= e ee e end k loop

= ettt ieeeaas end ig loop

- file identification:
- hname, (huse(i),i=1,2),ivers

- number of words= 4*mult

- hname file name - (a8)
- huse (1) user file identification - (a8)
- ivers. " file version number - (a8)
~ file label:

- date,user, charge, case, time, (titl(i),i=1,9)

- number of words= l4*mult

- date as provided by timer option 4 - (a8)
- user as provided by timer option 5 - (a8)
- charge as provided by timer option 6 - (a8)
- case as provided by timer option 7 - (a8)
- time as provided by timer option 8 - (a8)
- titl (i) title provided by user - (a8)
- integer parameters:

- igm, im, jm, km, mmdnup, mm,mmsmsm,msm, ipchl, ipch2

- jpchl, jpch2, kpehl, kpch2, (idum(n),n=1,11)

- number of words= 25

- igm number of energy groups

- im maximum number of cells in any row

- ~ Jm maximum number of rows in any plane
- km number of planes

- mmdnup max. no. of down/up directions in any m-set
- mm max. no. of directions in any m-set
- Tmsmsm sum of no. of directions over m-set
- msm number of m-sets

- ipchl first i in output patch, first i-set
- ipch2 last i in output patch, first i-set




first j in output patch, first j-set
last j in output patch, first j-set
first j in output patch, first k-set
last Jj in output patch, first k-set
array set to 0

- indexing arrays:
{(mmbms (ms) ,ms=1,msm), (mset(ig),ig=1,igm)
(mmdn (ms) ,ms=1,msm), (mmdu(ms),ms=1,msm)

2

number of words= 3*msm+igm

mmbms
msets
ramdn
mmdu

no. of directions by m-set

no. of m-set by group

no. of downward directions by m-set

max. no. of down/upward directions by m-set

- real arrays:

’

{ w(m,ms),m=1, mmbms (ms)),ms=1,msm)
(emu (m,ms) ,m=1, mmbms (ms) )} ,ms=1, msm)
{(xzi (m,ms),m=1, mmbms (ms) ) ,ms=1, msm)
(eta{m,ms) ,m=1, mmbms (ms) ) ,ms=1, msm)

{pchbn(1l),1=1,6)
number of words =

w
emu
Xzi
eta
pchbn

4 *mmsmsm+6

direction weight

direction cosine with x axis

direction cosine with y axis

direction cosine with z axis
left/right, inside, outside,bottom, top patch bound

- directional flux:

((dirf(i,mx),i=1,ims(J,k)),mx=1,mdim)

number of words =

dirf

ims*mdim

cell-average directional flux
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- name: f1lxmom
~ date: 9 february 1994

- purpose: cell-average scalar data, cell average moment data,
- and/or boundary directional data

- notes: order of groups is by decreasing energy;
- neutrons, then photons.

- i is the first -dimension index.
- 3j is the second-dimension index.
- k is the third -dimension index.
~ zero is a dummy word.

- mult = single precision word length indicator:

- 1 if word length.ge.6 bytes,

- 2 if word length.lt.6 bytes.

- scalar response output uses ifmom=1, ifbnd=0, 1lm=0.

- distributed source input uses ifmom=1, ifbnd=0, 1m>0.

- flux restart output uses ifmom=1, ifbnd=1, 1lm>0.
- (at this time, dummy records are written for boundary flux.)

- file structure:

- record type preéent if

- file identification always

- file label always

- integer parameters always

- integer arrays always

- real parameters & arrays always

it do ig=1l,igm if igm.gt.o0

- . .......,..do nr=1,nresp if nresp.gt.0

- .. cell scalar data if ifmom.gt.0 .and. lm.eqg.0
= e e et e do k=1,km

= e e e e do j=1,3m

- . . . . cell moment data if ifmom.gt.0 .and. 1lm.gt.0
= e e e e enddo on j

=t 4 eeaeseen enddo on k

- .. i-boundary directional data if ifbnd.gt.0

- .. j-boundary directional data if ifbnd.gt.0
- .. k-boundary directional data if ifbnd.gt.0

e i e e enddo on nr
et enddo on ig
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- file identification:
- hname, (huse{i),i=1,2), ivers

- number of words= 4*mult

- hname file name - (a6)
- huse (i) user identification - (a6)
- ivers file version number - (a6)
- file label:

- date,user, charge, case, time, {(titl(i),i=1,12)

- number of words= 17*mult

- date as provided by timer option 4 - (a6)
- user as provided by timer option 5 - (aé)
- charge as provided by timer option 6 - (aé6)
- case as provided by timer option 7 - (aé)
- time as provided by timer option 8 - (a6)
- titl (1) title provided by user - (ab)

- integer parameters:

- ifmom,ifbnd,idim, igm,neut, im,3jm,km,lm,mm, nresp,nconv
- ., niblk, (idum(n),n=1,12)

- number of words= 25

- ifmom 1 if moment or scalar records are present

- ifbnd 1 if boundary records are present

- idim 1/2/3 for 1-4, 2-d, or 3-4

- igm number of energy groups; 0 for sum over grps
- neut last neutron group :

- (igm if all neutrons, 0 if all photons)

- im number of i intervals

- Jm nunber of j intervals (1 if idim.1t.3)

- km nunmber of k intervals (1 if idim.eq.l)

- lm length of moment expansion; 0 for scalar data
- mm number of quadrature directions

- nresp number of responses

- nconv number of last energy group converged

- njblk number of space mesh blocks per group

- idum(i) array set

- integer arrays:
- (iduma (i) ,i=1,10)

- number of words= 10




- iduma (i) array set to 0

- real parameters & arrays:

- (x(i),i=1,im+1l), (y(3),J=1,dm+l), (z(i),i=1,km+1)

- . (ener(ig),ig=1,igm),emin, eneut, (dampg(ig),ig=1,2*igm)

- number of words = km+jm+im+3+3*igm+2

- x{1) i~interval boundaries

- vi{3) j-interval boundaries (absent if idim.le.2)
- z (k) k-interval boundaries (absent if idim.eg.l)
- ener(ig) top energy boundary of group ig

- emin bottom energy boundary of group igm

- eneut bottom energy boundary of group neut

- (0 if neut=0)

- dampg restart acceleration damping data

- cell scalar data:

- (((flij(iljlk)li=llim)lj=lljm)'k=llm)
- number of words = im*jm*km
- £1ij cell-average scalar data

- cell moment data:

- ((£lum(i,1l),i=1,im),1=1, 1m)

: number of words = im*1lm

- repeat above for jm*km records

: filum cell-average moment data

- i-boundary directional data:
- Zero

- number of words = 1

~ j~boundary directional data:

- Zero




- number of words = 1

- k-boundary directional data:

- zZero
- number of words = 1
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- name: gip
- date: 20 jan 85

- purpose: cross sections group-ordered for transport codes; this
- format is compatible with anisn and dot requirements.

- notes:

- groups are normally ordered from high neutron energy to low,
- then from high photon energy to low, if any. igm is the number of
- groups.

- in a forward (non-adjoint) calculation, scatters appearing
- before ihs are upscatter; scatters appearing after ihs are
- downscatter. position ihp contains total upscatter, if any.

- if upscatter data are not present, ihp position is missing
- and ihs.eq.iht+1l.

- each component of a pl set is treated as a separate material
- in this format.

- transfers from groups .lt.1 or .gt.igm are 0. positions
- L.le.iht are 0 for pl components other than 0‘'th.

- for adjoint calculations, reverse the scattering; i.e. where

- the format asks for scattering from ig-1 to ig, for example,

- supply physical data for scattering from ig to ig-1.

- next, reverse the ordering of the group data so that data for

- the highest neutron energy is last, not first, etc.

- if ihs-1l.gt.iht, the position ihp has its same formal definition,
- but the physical data it describes are different--it now describes
- total upscatter into a group, in physical terms.

- file structure:
- record type present if

e e e e do ig=1,igm
- . cross section data always

- cross section data:
- ((sig{(ih,mt),ih=1,ihp) ,mt=1,mtm)
- number of words = ihp*mtm

- sig(ih,mt) cross section data by table position, then by
- nuclide. table positions contain - -

- 1 to iht-5 arbitrary data, specified by user, or absent

- iht-4 fission yield fraction (recommended)
- iht-3 fission c¢ross section (recommended)
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- iht-2 absorption cross section

- iht-1 neutron production cross section

- iht total cross section

- iht+l scatter from group ig+(ihs-1-iht) to ig

- ihs-1 scatter from group ig+l to ig
- ihs self scatter for group ig
- ihs+1l scatter from group ig-1 to ig

- ihm scatter from group ig-{(ihm-ihs) to ig
- ihp total scatter from group g to groups 1,...,g-1
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- name: varbnd
- date: 03 march 1993
- purpose: boundry source and associated interpretation data

- notes: order of energy groups is by decreasing energy --
- neutrons, then photons.

- 1 is the first -dimension index.

- 3 is the second-dimension index.

- k is the third -dimension index.

- m is the direction index.

- =zero is a word set: to zero used in padding to full length.

- mult=1 if word length is 8 byvtes; mult=2 if 4 bytes.

- when im.gt.0, the mesh is a regular (continuous) mesh with im cells
- in each row and jm rows in each plane. ism=jsm=ksm=1. ims=im.
- dms=jm. ima=im.

- when im.lt.0, the mesh is discontinuous. each plane coritains

- jms rows, where jms=jmbjs{jset(k)). each row contains ims cells,
- where ims=imbis(iset(j'k)). (3j'k) denotes j + sum of jms(kk)

- over kk=1,...,k-1. ima=iabs(im). ism is the number of i-sets.

- Jjms is the number of j-sets.

- when mm.gt.0, mm directions are used in the directional quadrature of
- flux in each energy group. msm=l. mms=mma.

- when rmm.lt.0, the number of directions in the directional quadrature
- varies by group. mms=mmbms(mset(ig)) is the number of directions

- used in group ig. mma=iabs(mm). msm is the number of direction

- sets.

- mmsdu(ig) is the larger of the number of downward or upward

- directions for the m-set used in ig. mmdnup is the largest mmsdu
- for any ig.

- for use by tort, ifbfxi=ifbfxj=ifbfxk=0.

- file structure:

- record type present if
- file identification always
- file label always
- integer parameters always
- direction indexing arrays always
- space indexing arrays always
- real arrays always

e e e do ig=1l,igm

- .. i-boundary directional data if ifbfxi.eq.0
- .. j-boundary directional data if ifbfxj.eq.0
— e e et e enddo on k
e e do j=1,jm
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- . . k-boundary source, top if ifbfxk.eqg.0
= e i enddo on 3

e et e e do j=1,im
- .. k-boundary source, bottom if ifbfxk.eqg.0
= e e enddo on j

e e et enddo on ig

- file identification:

- hname, (huse(i), i=

- “number of words=

- hname
- huse (i)
-~ ivers

- file label:

- date,user, charge,

-~ number of words=

- date
- user
- charge
- case
- time
- titl (i)

-~ integer parameters:

1,2),ivers

4*mult
file name - (a8)
user file identification - (a8)
file version number - (a8)

case,time, (titl(i),i=1,9)

14*mult

as provided by timer option 4 - (a8)
as provided by timer option 5 - (a8)
as provided by timer option 6 - (a8)
as provided by timer option 7 - (a8)
as provided by timer option 8 - (a8)
title provided by user - (a8)

- igm, im, jm, km,mm, mmdnup,ism, jsm, imsism, jmsjsm, Jjmskm,msm,mmsmsm
- , 1fbfxi,ifbfxj, ifbfxk, (idum(n),n=1,9)

- number of words=

- igm
- im
- 3m
~ km
- mm

- mmdnup

- ism

- jsm

- imsism
- jmsjsm
- - jmskm

- mmsmsm
- msm

25

number of energy groups

+/- maximum number of cells in any i-set
maximum number of rows in any j-set

number of planes

+/- maximum number of directions in any m-set

maximum number of directions down or up
in any m-set

number of i-sets

number of j-sets

sum of ims over is

sum of jms over js

sum of jms over km

sum of mmbms over ms
number of m-sets
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- ifbfxi .eqg.0 if i-boundary flux is included, else 1

- 1fbfx] .eq.0 if j-boundary flux is included, else 1
- ifbfxk .eg.0 if k-boundary flux is included, else 1
- idum array set to 0

- direction indexing arrays:

- (mmbms (ms) ,ms=1,msm), (mset (ig),ig=1, igm)

- number of words= msm+igm

- mmbms number ‘of directions in m-set ms
- mset m-set assigned to energy group ig

- space indexing arrays:

- (imbis (is),is=1,ism), (jmbjs(js),jis=1,jsm)

-+ (({iset(j'k),j=1,Jms),k=1,km), (jset(k),k=1,km)

- number of words= ism+jsm+jmskm+km

- imbis number of cells in i-set is

- jmbjs number of cells in j-set js

- iset i-set assigned to row j in plane k
- jset j-set assigned to plane k

- real arrays:

- ({x(i,is),i=1,ims+1),is=1,1ism), ((y{(3j.,js).,j=1,jms+l),is=1,jsm)
- , (z(k),k=1,km+1), (ener(ig),ig=1l,igm),emin,eneut, (dumrl(i),i=1,8)
- number of words = imsism+ism+jmsism+jsm+km+l+igm+2+8

- x i-interval boundaries by i-set

- v j-interval boundaries by j-set

- z k-interval boundaries

- ener top energy boundary of group ig

- emin bottom energy boundary of group igm

- eneut bottom energy boundary of group neut

- (0 if neut=0)

- dumrl array set to 0.

- i-boundary source:

- ((fio(m,j),m=1,mms),j=1,jms), (zero, l=1+mms*jms, mms*jm)
- number of words = mms*jm
- fio i-boundary directional source
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- j-boundary source:

~ ({fjo(m,1),m=1,mms),i=1,ims), (zero,l=l+mms*ims,mms*ima)
- number of words = mms*ima
fio j-boundary directional source

~ k-boundary source (top or bottom):

-~ {(fko(m, i) ,m=1,mmsdu),i=1, ims), {zero,l=l+mmsdu*ims,mmsdu*ima)
- number of words = mmsdu*ima
- fko k-boundary directional source, downward or upward
- (for j.gt.jms, fko is filled with zero.)
end
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- name: varmap

- date: 02 jun 93

- purpose: material zone map
- notes:

- i is the first -dimension index, i=1,,,ims(j,k)
- Jj is the second-dimension index, j=1,,,jms (k)

- k is the third -dimension index, k=1,,.km

- ig is the energy group index, ig=1l,igm

- when im.gt.0, the mesh is a regular (continuous) mesh with im cells
- 1in each row and jm rows in each plane. ism=jsm=ksm=1. ims=im.

~  Jms=jm.

- when im.lt.0, the mesh is discontinuous. each plane contains

- Jjms rows, where jms=jmbjs(jset(k)). each row contains ims cells,

- where ims=imbis(iset(j'k)). (j'k) denotes j + sum of jms(kk)

- over kk=1,...,k-1.

- mult=1l if word length is 8 bytes; mult=2 if 4 bytes.

- file structure:

- record type present if
- file identification always
- file label always
- integer parameters always
e et ie e repeat all k=1,km

- . cell zone identification always
e e e e end k loop

- i-set by j and k always
- length of each i-set always
- j-set by k always
- length of each j-set always

= e it e e repeat all is=1l,ism
- . i-boundaries always
e e i e e e .end ism loop

- j-boundaries by j-set always
- k-boundaries always

- file identification:
- hname, (huse(i),i=1,2),ivers
- number of words= 4*mult

~ hname file name - (a8)
- huse (i) user file identification - (a8)
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- ivers file version number - (a8)

- date,user, charge,case, time, (titl(i),i=1,9)

- number of words= l4*mult

- date as provided by timer option 4 - (a8)
- user as provided by timer option 5 - (a8)
- charge as provided by timer option 6 - (a8)
- case as provided by timer option 7 - {(a8)
- time as provided by timer option 8 - (a8)

- titl (i) title provided by user - (a8)

- integer parameters:

- im, jm, km, imsjm, ism, jsm, (idum(n),n=1,19)

- number of words= 25

- im max. number of mesh cells in any row

- Jm max. number of rows in any plane

- km number of planes

- imsjm number of mesh cells in largest plane

- ism number of i-sets

- jsm number of j-sets

- imsism number of mesh cells in a row, summed over row
- Jjmsjsm number of mesh rows per plane, summed over plane
- idum array set to 0

- cell zone identification:

- ((ijzn(i,3),i=1,ims),j=1,jms), (zero(i),i=1,1£fi11)

- number of words = imsjm

- ijzn material zone by cell

- Zero zero array required to pad length to imsjm
- i€£i1l length of pad regquired (may be 0}

- i-set by j and k:

- ({iset(j,k),3j=1,ims) ,k=1,km), (zeroa(i),i=1,ifilla)
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- number of words= jm*km

- iset number of i-set by j and k
- zeroa zero array required to pad length to jm*km
- ifilla length of pad required (may be 0)

- length of each i-set:

- {(imbis(is),is=1,ism), {(zerob{i),i=1,ifilldb)

- number of words= jm*km

- imbis length of i-set by i-set

- zerob zero array required to pad length to jm*km
- ifillb length of pad required (may be 0)

- j-set by k:

- (ijset(k),j=1,km)
- nunmber of words= km
- jset number of j-set by k

- length of each j-set:

- (jmbis(is),js=1,jsm), (zeroc(i}),i=1,ifillc)

- number of words= km

- jmbis length of j-set by j-set

- zZeroc zero array required to pad length to km
- ifillc length of pad required (may be 0)

- i-boundaries:

- {rin(i,is),i=1,ims+1)
- number of words = ims+l
- rin i-boundaries by i-set

- j-boundaries by j-set
- ((thin(j,js),i=1,jms+1),js=1, jsm)

- number of words = sum of jms+l over js




- thin j-boundaries by j-set

o ——— " S o o . = A A = s A T " T - o o S T T —— = - ———

- k-boundaries:
- (zin(k) , k=1, km+1)
- number of words = km+1l

- zin k-boundaries by k-set
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- name: varscl
- date: 9 february 1994
- purpose: scalar flux and associated interpretation data

- notes: order of energy groups is by decreasing energy --
- neutrons, then photons.

- i is the first -dimension index.
- j is the second-dimension index.
- k is the third ~dimension index.
- ima=iabs{im).

- mult=1 if word length is 8 bytes; mult=2 if 4 bytes.

- when im.gt.0, the mesh is a regular (continuous) mesh with im cells
- in each row and jm rows in each plane. ‘ism=jsm=ksm=1. ims=im.
-  jms=jm.

- when im.1lt.0, the mesh is discontinuous. each plane contains

- Jjms rows, where jms=jmbis(jset(k)). each row contains ims cells,
- where ims=imbis(iset(j'k)). (j'k) denotes j + sum of jms(kk)

- over kk=1,...,k-1.

- file structure:

- record type present if
- file identification always
- file label always
- integer parameters , always
- integer arrays always
- indexing arrays always
- real arrays always
= e repeat all k=1,km

- . cell zone identification always
e e end k loop

e e e e e repeat for ig=1,igm

= et e e repeat all k=1,km

- .. cell scalar flux always
S, end k loop

= it eerenae end ig loop

- file identification:
- hname, (huse(i),i=1,2), ivers

- number of words= 4*mult

- hname file name - {a8)
- huse (i) user file identification - (a8)
- ivers file version number - (a8)




- file label:

date,user,charge, case, time, (titl(i),i=1,9)

- number of words= 14*mult

- date as provided by timer option 4 - (a8)
- user as provided by timer option 5 - (a8)
- charge as provided by timer option 6 - (a8)
- case as provided by timer option 7 - (a8)
- time as provided by timer option 8 - (a8)
- titl (1) title provided by user - (a8)

- integer parameters:

- igm, im, jm, km,izm, neut,ism, jsm,imsism, jmsjsm, Jjmskm,nconv
- , niblk, (idum(n),n=1,12)

- number of words= 25

- igm number of energy groups

- im maximum number of cells in any row

- Jm maximum number of rows in any plane

- km number of planes

- izm ' number of material zones

- neut last neutron group

- (igm if all neutrons, 0 if all photons)
- ism number of isets

- jsm number of jsets

- imsism sum of ims over is

- jmsjsm sum of jms over js

- jmskm sum of jms over km

- nconv number of last group converged

- njblk number of space mesh blocks per group
- idum array set to 0

- integer arrays:
- (izcomp(iz),iz=1,izm), (iznrg(iz),iz=1,izm)

- nunmber of words= izm+izm

- izcomp material component by material zone
- iznrg edit region by material zone

- indexing arrays:
- (imbis (is),is=1,ism), (jmbis{(js).,js=1,Jjsm)
- . ((iset(j'k),j=1,Jjms),k=1,km), (jset(k).,k=1,km)
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- number of words= ism+jsm+jmskm+km

- imbis number of cells in i-set is

- Jjmbis number of cells in j-set js

- iset i-set assigned to row j in plane k
- jset j-set assigned to plane k

- real arrays:

- ((X(i;is),i=l,ims+1)lis=11ism)l ((y(jljs)Ij=lljm5+1)ljs=1ljsm)
- , (z(k),k=1,km+1), (ener(ig),ig=l,igm),emin,eneut

-, (dampg(ig),ig=1,2*igm)

- number of words = imsism+ism+jmsjsm+jsm+km+l+3*igm+2

x i-interval boundaries by i-set
- v ‘j-interval boundaries by j-set
z - k-interval boundaries

- ener top energy boundary of group ig

- emin bottom energy boundary of group igm
- eneut bottom energy boundary of group neut
- (0 if neut=0)

- dampg restart acceleration damping data

- cell zone identification:

- ((ijzn(ilj)Ii=1linls)lj=lljms)
- number of words = sum of ims over j
- ijzn material zone by cell

- cell scalar data:

- ((flij(ilj)li=1lims)lj=1ljms)

- number of words = sum of ims over j

- £fili3 cell-average scalar flux
end
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Table B.2. Format Descriptions For Direct-Access Scratch Files

- name: torscrf (subject to change without notice)

- date: 20 mar 91

- purpose: internal scratch file, cell flux or source moments
- notes:

- this is a scratch file format, not a standard interface file.
- the usual identification records are not present. the user
- must accept responsibility for identifying the source of the
- file.

- tort uses this format to store flux moments on £t91. it

- also uses this to store source moments on ft92 and ft93, except
- that those files contain information for only the energy

- group being calculated.

- ft91 can be saved and used in a restart. if ft94 is created,
- it is also required for a complete restart.

- niblk is adjusted by the code to best fit the problem into

- memory, and its value is given in the output. if njblk.eq.O,
- ft£91, £ft92, and ft93 are not used. if njblk.eq.l, then kl=1,
- ku=km, and jb=1. if njblk.gt.l, then the planes are grouped
- into njblk blocks of jb planes each, where jb=(km-1)/njblk+1.
- in this case, kl and ku become the first and last planes of
- each block in turn, but no larger than km.

- it may be noted that some systems impose physical record size
- limitations, e.g. 131,072 words on unicos, and that may impose
- a hidden level of blocking in subroutine dred.

-~ indices:

is the first -dimension index.

is the second-dimension index.

is the third -dimension (plane) index.

is the moment index.

- ig is the group index, from high energy to low.

!
R e

- file structure:

- record type : present if

e i e eeeean repeat for ig=l,igm

= e i e repeat for kb=1l,njblk

= e e e eeeees repeat for k=kl,ku

- . . . cell flux/source moments nijblk.ge.l
— e e e end k loop

e e e e e end k-block loop

ettt e e end ig loop
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- cell flux/source moments:

((((flum(i,1,3,k),i=1,im),1=1,1m),j=1, jm),k=kl, ku)

- number of words = im*lm*jm* (ku-kl+1)
- flum cell-average moment data
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- name: torscrs (subject to change without notice)

- date: 02 mar 1994
- purpose: internal scratch file, boundary sources and fluxes
- notes:

- this is a scratch file format, not a standard interface file.
- the usual identification records are not present. the user
- must accept responsibility for identifying the source of the
- file.

- tort uses this format to store boundary source and flux
- information on ft94. it can be used with ft91 to give a
- complete restart.

- ifbnds.gt.0 if a fixed external boundary source is used.

- ifbndf.gt.0 if boundary flux is to be saved for a periodic
- boundary or an outer boundary with reflection.

- indices:

is the first -dimension index

is the second-dimension index

is the third -dimension index

is the discrete direction index

- ig is the energy group index, from high energy to low.
- ima = iabs(im), im is input

- jm, km, igm are input

- ims is the length of a given row, <=ima.

- jms is the number of rows in a given plane, <=3jm.

- mms is the number of directions for group ig,

- determined from input arrays.

- mmsdu is the larger of the number of downward or

- the number of upward directions for group ig.

- the sko and fko arrays have either downward or upward
- directions, padded with 0's to the required record
- length.

'
oo, e
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file structure:

- record type present if
e repeat for ig=1,igm

= e e eeeeeean repeat for k=km,1,-1

- .. i,j-external boundary source ifbnds.gt.0
e end k loop

- : . k-external boundary source, dn ifbnds.gt.0
- .. k-external boundary source, up ifbnds.gt.0
= et iee e end ig loop

e e repeat for ig=1l,igm

e e e repeat for k=km,1,-1

- .. i,j-external boundary flux ifbndf.gt.0
e e i eeieaa end k loop

- : . k-external boundary flux, dn ifbndf.gt.0
- .. k-external boundary flux, up ifbndf.gt.0
e end ig loop

- i,j-external boundary source:

- ({sio(m,3j) ,m=1,mms),j=1,jms),

- ({sjo(m,1i) ,m=1,mms),i=1,imx)

- number of words = mms* (jms+imx)

- imx max of ims for inside and outside rows for this k

- sio i-boundary directional source

- sjo j-boundary directional source

- this record has length 1 if nbcl.ne.4 .and. nbcr.ne.4 .and.
- nbci.ne.4 .and. nbco.ne.4 .and. nifbnd.eq.0.

- k-~external boundary source:

- {({(sko(m+ml,i,]),m=1,mmsdu),i=1,ims),j=1, jms)

~ number of words = mmsdu*sum ims over all j for this k

- sko k-boundary directional source

- ml 0 for downward sources, else number of downward

- directions

- sko downward: length 1 if nbect.ne.4 .and. file is written by tort.
- sko upward: length 1 if nbcb.ne.4 .and. file is written by tort.

- i,k-external boundary flux:

{((fio(m,j) ,m=1,mms),j=1, jms),




- ({fjo{m,i),m=1,mms},i=1, imx)

- number of words = mms* (jms+imx)

- imx max of ims for inside and outside rows for this k
- fio i-boundary directional flux
- fjo j-boundary directional flux

- this record has length 1 if
- nbcl.ne.2 .and. nbcr.ne.l .and. nbcr.ne.2 .and.
- nbci.ne.2 .and. nbco.ne.l .and. nbco.ne.2

- k-external boundary flux:

- ({{fko(m+ml,i,3j),m=1,mmsdu),i=1,ims),j=1, jms)

- nunber of words = mmsdu*sum ims over all.j for this k
- fko k-boundary directional flux

- ml 0 for downward fluxes, else number of downward

- directions

- fko downward has length 1 if nbct.ne.2
- fko upward has length 1 if nbcb.ne.2 .and. nbct.ne.l
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INTRODUCTION

This set of installation instructions are for the CMP code maintenance package, the RSCORS
graphics library, the ISOPLOT postprocessor for DORT, and the DORT, TORT, and other Discrete
Ordinate System (DOS) codes on SUN, HP, SGI, IBM-RISC, DEC-ULTRIX, AND UNICOS
computer systems.

The wtility programs support various SNL physics and engineering programs such as CHARTD,
CSQ, CTH and MELCOR. These utilities must be installed before the physics codes and their
graphics support programs, since some of them are used in the installation of the physics and
engineering codes. Detailed descriptions of each of the programs are given in the code reference
manual. All utility programs are written in Fortran 77 with a few C language routines.

There are two forms of the installation package included with the distribution files. The first form,
described in this document, uses a single command for complete installation of all packages. The
second form has separate utilities for each package and allows the user to modify the code.
Instructions for the second form are found in the document INSTUTIL.DOC. In most cases this first
form is adequate for the user with main interest in the physics and engineering codes.

DIRECTORY STRUCTURE

The directory structure used during installation is shown below. The root directory for the working
installation files and source code is named "trans". The directory "prod" is used to store executables
and libraries for production applications. You can name either anything that you like. UNIX style
directory names are used.

With some physics code distributions, these packages are supplied with different directory names
but the same directory structure. The following still applies with modified names.

/you ($HOME)

I/sttutil l/rscors IVisoplot| | fother_codes
{ |
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The CMP related programs are in /sltutil, the RSCORS related codes are in /rscors, and the isoplot
codes are in /isoplot. The installation procedures build the executables and libraries in these
directories. After compiling and linking is complete, the executables and libraries are copied to the
/prod directory. The distribution files and directories can then be deleted to save file space if desired.
A short description of each program is given later in this document. On some UNIX systems, yoti

must run ranlib if you copy a library file (files with .a).

The executables and libraries created are

directory utility

/sltutil CMP cmpcopy
" cmpdif beep
mupack t2p
/rscors. librscors.a poppst

popx11 popx12
poptkd  poptl5
popalp popt05
polp popsun

fisoplot isoplot

/dort dort bndrys  visa
alc grtuncl  torsed
gip rtflum torset

/tort tort

/Doc documentation

/Install shell scripts for installing

/bin directory where executables are stored
Note - extra copy is in "prod" directory

On UNIX system the "prod" directory should be in the path statement.

Note that "CMP" is in upper case while the rest are lower case. UNIX already has a cmp (a difference
utility). :
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FILE SPACE

There are a considerable number of files generated by the procedures. If you have file ‘space
problems, you can delete most of them. In general, the procedures do not delete files that you will
need if there are problems. If everything works, you only need the executables and the RSCORS
library.

DISTRIBUTION TAPE FORMAT
SUN, HP, ULTRIX, and IBM-RISC: The tape was written from the /trans directory with the
command

tar cvf /dev/rmtQ *

To read the tape, get in your "/trans" directory and type
tar xvf /dev/rmtO (use name of your tape drive)

Tar will create the required subdirectories.

INSTALLATION

1. Determine the names that you wish to use for the two installation directories. These have default
names of /trans and /prod.

2. Create the directories and put the files in the directories under /trans. If the files are being read
from tape, the subdirectories will be created by tar (UNIX).
mkdir trans
mkdir prod (unless an existing directory is used)
cd trans
tar xvf ...

If you are ftp-ing the files from another system, create the two subdirectories manually. Tar
could also be used for the transfer. Depending on your requirements, you might set default file
permissions.

3. If you want the Xwindow graphics drivers, you should locate the file 1ibX11.a on your system.
This is the MIT Xwindow driver and is used by the procedures at link time. The location of this
file has been a problem mainly on sun systems. If this file is in a nonstandard location (for the
compiler/linker default path), you can copy the file to /trans/rscors and execute ranlib.
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If the procedures can not find the X11 library, the codes popx11 and popx12 will not link. See
the log file if there is a problem. You can also skip the Xwindow installation during the
execution of sinstall and return to this at a later time. See the file /trans/Install/mupopx11.sys.

4. Go to the /trans/Install directory and execute
set path ( $path ../bin . ) if using csh,
or  PATH=$PATH:../bin:.;export PATH if using bsh or ksh
sinstall.unx '

The procedure will ask several question and then complete the installation of all packages as a
batch job. A log file is generated. If there is an abort, first check the file space then the log file.

The system names used by the procedure are
sun = SUN workstation
ucs = CRAY UNICOS
aix = IBM RISC 6000 workstation
utx = DEC ULTRIX workstation
hpw = Hewlett Packard UNIX workstation
sgi = Silicon Graphics IRIX

This completes the installation except for testing and symbol definitions discussed below.

TESTING

You should now test the execution of each package. If any of these tests fail, you will have to use
the second installation method.

To test the CMP and ISOPLOT codes, go to the appropriate directory and type
CMP
cmpcopy
cmpdif

isoplot

and enter "QUIT" and return for each question. If the program begins execution without a strange
system abort message, the files are usable.

Testing of the RSCORS libraries depends on which display options you are using. This will be
covered at a later point.

C-6




DORT, TORT AND UTILITIES -1- October 13, 1995

DOCUMENT FILES

Available documentation for each code is included in the Doc directory. The CMP manual is file
CMP.DOC in /Doc. The RSCORS manual is file RSCORS.DOC in /Doc. Other graphics related
documents are in this directory. These manuals are formatted with 66 lines per page with only
ASCII text. They can be used as online help or printed using t2p.

The figures for the RSCORS manual are generated by FORTRAN programs supplied with this
package. Generation of the figures will be discussed later.

HOW RSCORS WORKS

The distributed version of RSCORS uses a metafile system. The graphics program (a fortran
program which calls RSCORS) is linked to the RSCORS library. When the graphics program
executes, the plot data is written to a local file called a metafile. The metafile can contain many
graphics images.

This metafile is later read by one (or all) of the "POP" (Post Option Processor) utilities to actually
display the data. The POP program will allow you to skip around in the file, edit the data, and do lots
of wonderful things. The name POPxyz has been connected to an output device with name xyz.
POPxyz has inline help for interactive questions.

The metafiles are computer system independent bit streams that can be transferred between different
computers with binary file transfer. This includes PCs, workstations and main frames.

It is also possible for RSCORS programs to display data directly to the computer terminal as your
code executes. A few additional routines are being constructed to make this easy under PC windows
and workstation Xwindows. These are NOT included in this distribution at this time.

The following POP utilities are supplied:

a. POPX11 and POPX12 are Xwindow drivers for the MIT X11 release 4 systems. See note below.

b. POPPST translates a metafile to PostScript output format. You must send the output file
POPOUT.PST to a PostScript plotter. Both Black & White and Color systems are supported.

c. POPTK4 displays metafile data in Tektronix 4014 format. This is a black & white format used
by many PC modem packages.




d. POPTOS displays metafile data in Tektronix 4105 format. This is a 8 color format used by some
PC modem packages. '

e. POPTIS displays metafile data in Tektronix 4115/4125 format. This is a 256 color format.

f. POPALP generates a printer "plot" for checkout if none of the other display options will work.
This is for location of problems only. The graphics is terrible but it will function on anything.

g. POPSUN is only available for older SUN systems running the SUNVIEW window system and
is not generated by the default installation. (Xwindow systems should use POPX11 and
POPX12.) POPSUN is linked to SUNVIEW using the SUNCORE graphics system supplied
with the SUN OS by the mupopsun.sun procedure. If you have trouble with this, try the simple
example of a FORTRAN code in the SUNCORE reference manual. SUNCORE will not run on
all SUN systems - in particular, those with the expensive graphics frame buffer. I do not have
a simple solution in this case - you could use the T15 driver with a Tektronix package on the
SUN. ISOTEK seems to work well. Another solution, which you will get from the SUN
software support group, might be the Xwindow package, i.e., buy the OpenWindows package,
and use POPX11 and POPX12.

NOTES CONCERNING XWINDOW (MIT X11 RELEASE 4) SYSTEMS

This package is called "DecWindows" on the VMS and ULTRIX systems. On the SUN there is the
SUN "OpenWindows" system. On UNICOS and IBM-RISC, it is called Xwindows. To use this
package your systems must have the Xwindow package installed. If you have not used Xwindows
before you should get help from your system manager. Although a best guess has been included in
mupopx11.sys as where to look for the libraries and "C" include blocks, you might have to make
some changes.

POPX11 and POPX12 both work in a local or remote mode. If you are using Xwindows to display
graphics from a remote system (client/server), you must set the environment variable "DISPLAY"
on the remote system and "xhost" on your workstation as with any Xwindow application. The exact
form varies from system to system. If you see the message "svdi: cannot create window on ...", it
means that the environment variables are not set correctly or your hardware will not support the
function.

POPX11 and POPX12 differ in their treatment of color tables. POPX11 uses the system defanlt
color table. Colors might not be exactly as defined. In some cases, the system might not be able to
get the desired colors and will give a message "svdi: problem getting color”. In this case use
POPX12. POPX12 redefines the system color table. Unfortunately, this will probably change the
colors in other windows on your terminal if you use the full 256 colors allowed with Xwindows.
Color "flashing" will be seen as you move the mouse around the screen. Colors will return to normal
when the graphics window is closed.
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POPX12 also allows optional double buffering of displayed data. The entire display is changed at
the same time. This is ‘required for animation. POPX11 does not include this feature.

TESTING OF THE POP UTILITIES

During the installation a small metafile "test.met" was created in /rscors. You can test the execution
of each of the POP utilities with this metafile. For a Xwindow system, type

popx12 test.met (or try popx11)

For each required input, if you do not understand the options, just enter return and a help display will
appear. Detailed help related to file editing and other features is available.

To print output on a PostScript printer on a UNIX system, type

poppst test.met
Ipr -Pprinter popout.pst

The term "BATCH" means process all pages in the metafile. The term "INTERACTIVE" means that
you can select pages from a larger set.

LINKING WITH RSCORS ON UNIX

On UNIX add the production directory "prod"” to your path statement in .login, .profile, or .cshrc as
appropriate. You must also define one environment variable.

In .cshre
setenv RSCORS ..path../prod/librscors.a
In .profile -

RSCORS=..path../prod/librscors.a
export RSCORS

You should logout and then login to get the symbols and paths defined.
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To link your code to RSCORS, just add $RSCORS to your compiler command. For example, on
a sun

77 -o urcode urcode.f SRSCORS
or on IBM/RISC

xIf -0 urcode urcode.f $RSCORS

Execution of urcode will create a metafile which is read by the "pop" utilities and displayed as
appropriate.

ILLUSTRATIONS FOR THE RSCORS REFERENCE MANUAL

The figures for the RSCORS reference manual are created by THREE fortran programs. These are
FIGREPT1.FOR, FIGREPT2.FOR and FIGREPT3.FOR. They are normal fortran codes which are
executed as any other program that uses the RSCORS library. The color and black/white display of
these figures are quite different.

NOTES ON OTHER UTILITIES
Four of the utilities supplied in the distribution package are not documented.

MUPACK concatenates files for shipment between computer systems and unpacks them on the
second system. It works from a list of file names to pack. All packed files must be text files. Each
directory contains a file named pack.Ist used to move the entire directory to other computer systems.
Mupack itself must be moved separately. Mupacked files can be moved over phone lines and
between difference types of systems. Use tar for UNIX to UNIX transfers.

BEEP is a simple utility that speaks its name.

POLP is a 1024x1024 rasterizer for graphics metafiles. You will not need this until you generate
plots that take an excessive amount of time to display (color shaded plots from csqplt or cthplt).
POLP uses metafiles for both input and output. Use the workstation option to be started. POLP has
inline help for interactive questions.

T2P is an ascii text to PostScript translator. It is useful for printing the code manuals (with 66 lines
per page) and 80/132 column fortran code output in a compressed format. Type t2p without
parameters for a complete list of options. T2P is only available on UNIX and PC-DOS systems.
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DORT, TORT AND UTILITIES -11- October 13, 1995

INSTALLATION CHECK LIST

This is a summary of the installation steps.

1.  Determine "sys" symbol for your system.

2.  Goto, or create and go to, /trans and /prod.

3. Read distribution tape with UNIX tar or ftp files from another machine.

4. If Xwindows system, check X11 library locations.

5.  Go to /trans/Install and type sinstall.unx (UNIX). Answer questions as approriate.

6.  Wait until batch job completes. Read rest of instructions while waiting. Look for aboris in log
file after completion of background job.

7. Go to the individual directories and test code.
8.  Modify .login, .cshrc, .profile, or login.com as appropriate for your system.
9.  Logout and login.

10. If you are going to use a remote Xwindow system (client/server), you must go through the
same procedure on the other system and set the environment variables.
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APPENDIX D. DISCONTINUOUS SPACE MESH
BASIC CONCEPT

In a conventional continuous-mesh problem, a computational mesh is defined by mesh-interval
boundaries along each of the coordinate axes. Planes passing through these interval boundaries,
perpendicular to the respective coordinate axes, define the surfaces of each cell. Opposite cell
surfaces are always parallel, and they always meet adjacent surfaces at right angles. The cell surfaces
run continuously through the mesh.

In such a mesh, let us call the first, second, and third coordinate axes the i, j, and k axes. The mesh
cells lie in ordered rows parallel to the i axis, and the rows lie in planes perpendicular to the k axis.
The vertical boundaries of each cell match the boundaries of adjacent cells.

In a discontinuous mesh, as the term is used here, the requirements are relaxed slightly. Mesh cells
. are still bounded by parallel planes, each perpendicular to one of the coordinate axes, and the planes
meet at right angles. The new flexibility is that only the k boundaries, i.e. the boundary planes
perpendicular to the k axis, are required to run continuously through the mesh. Thus, the other
boundary planes may be discontinuous at intersections. The mesh cells lie in rows having common
j boundaries, but their i boundaries need not match. Rows lie in planes sharing common k
boundaries, but neither i nor j boundaries of adjacent planes need match (except as required to allow
acceleration and at the outer boundaries of the problem space).

The set of boundaries perpendicular to the i axis for a given row is called an "i-set". Similarly, the
set of boundaries perpendicular to the j axis for a given plane is called a “j-set”". A problem has only
one "k-set", of course, since the plane boundaries run continuously through the mesh.

The advantage is that the mesh can be locally dense in areas where detail is needed most, thus using
computational work more efficiently. An illustration is provided in Fig. D.1 (pg. D-6). Since the
transport within each cell is unperturbed by the irregularities, conventional evaluation procedures
such as weighted difference, nodal, or characteristic methods can be used. Many years of research
have gone into these methods, and they would not be relinquished easily.

The partial current acceleration already in widespread use in DORT and TORT is applicable to this
type of mesh. The present implementation carries the restriction that a coarse mesh be supplied, and
that the coarse-mesh boundaries lie in each of the fine-mesh sets. This restriction speeds evaluation
of the acceleration matrix, and it also inhibits a type of mesh dispersion that might otherwise arise.

The programming is significantly more complicated with the discontinuous mesh, but a system of
pre-calculated "pivot arrays" allows data items to be located and used without measurable loss of
efficiency. The pivot arrays will be discussed later. Since all of the mesh cells lie in rows, the
computational sweeps performed by the conventional TORT/DORT subroutines can be used without
modification, and they will run at the traditional speeds. Some computational work is required, of
course, to perform the "remeshing”, i.e. the remapping of boundary flows where adjacent rows and
planes do not match. TORT can produce the standard results to a conventional problem without cost
penalty due to the discontinuous feature, however.
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Probably the most important disadvantage of the discontinuous-mesh concept in two dimensions is
that, although it can help in describing curved surfaces, it is not as powerful as general triangles or
general quadrilaterals in this respect. Codes using the latter two concepts in discrete ordinates
calculations exist, although none appear to have reached widespread use. It is not presently clear
when these concepts will reach routine production use in three dimensions, or what the accuracy and
efficiency would be.

MACHINE IMPLEMENTATION

We must necessarily ask the reader to pardon a mix of FORTRAN and algebra in that which follows.
We will try to be clear. First, we define:

IS = index of an i-set, i.e. a set of X or R boundaries defining mesh-cell surfaces; 1S=1,...,ISM;
and

JS = index of a j-set, i.e. a set of Y or @ boundaries defining mesh-cell surfaces; IS=1,...,ISM.
For j-sets, input arrays consist of:

JMBIS(JS) = # of mesh cells in j-set JS , and

JSET(K) = j-set number for rows in plane K; K=1,...KM
From these, we can always obtain:

JS = JSET(K), index of the j-set for plane K , and

IMS = IMBIJS(JS), number of intervals for j-set JS

With regular indexing, where all JMBJS(JS) = JM, we (or the compiler) can locate a function of J
and JS by a simple integer computation:

F(@J,JS) = FJ+IM*(IS-1))

Since JMBIJS is not necessarily constant in a discontinuous mesh, we now define a "pivot array": |
JBIJS(1)=0 , and
JBJS(JS+1) = JBJS(JS) + IMBIS(JS); JS=1,...,JSM

We denote the "irregular indexing" by (J'JS), rather than (J,JS). The item corresponding to J and JS
can be found by: :

F('IS) = FJ+IBIS(IS))




In general, this is as computationally efficient as the conventional method of indexing. It requires
additional storage, but generally not enough to present difficulty.

In the case of arrays such as Y or ©, JMS rows are bounded by JMS+1 interval boundaries, and the
use of the pivot array is slightly different. For example, the larger of the two Y's bounding interval
Jin j-set JS is located by:

Y(J'IS) = Y(J+IBIS(JS)+IS)

Now, we define a new pivot array that will be a bit more indirect in definition, but much more
useful:

JBK(1)=0 ,and

JBK(K+1) = JBK(K) + IMBIS(JSET(K)); K=1,...KM
From this a function of J and K can be obtained immediately:

G(J'K) = GJ+JBK(K))

It is convenient to note that JMS can be obtained in several ways, depending upon which data happen
to be at hand:

IMS =JMBIJISJSET(K)) ,or
= JBJS(JSET(K)+1) - IBISJSET(K)) ,or
= JBK(K+1) - JBK(K) |
The overall number of rows is given by:

KM

JMKM = Y IMBISUSET(K)) ,or
K=1

= JBK(KM-I—I)
This indexing scheme is the same method used in DOT 4 and DORT up to this point. The treatment
of the i-mesh sets follows the same plan, but it is a bit messier, since it is nested one layer deeper.
We use input arrays:
IMBIS(IS) = # of mesh cells in the IS™i-set , and
ISET(J'’K) = # of the mesh set in the J* row of the K™ plane

Once again, we can obtain:




IS = ISET(J'’K), the i-set used in row J of plane K , and

IMS = IMBIS(IS), the length of i-set IS
Now, we define:

IBIS(1)=0 ,and

IBIS(IS+1) = IBIS(IS) + IMBIS(IS); IS=1,...,ISM ,
so that a function of I and IS can be located:

H(I'1IS) = HI+IBIS(IS))

For arrays such as R or X, IMS cells are bounded by IMS+1 interval boundaries. For example, the
larger of the two R's bounding interval Lin i- set IS is located by:

R(I'IS) = R(I+IBIS(IS)+IS)

Now, we define a new pivot array in terms of a scalar variable, JK, that runs through each value of
J for a plane, then through each plane in turn, plus a final terminating value; i.e.

JK=1,.. ., JMBJS(JSET(1)),JMBJS(JSET(1))+1,...,JMKM,JMKM+1
In terms of this variable, we now define:
IBJK(1)=0 ,and
IBJK(JK+1) = IBJK(JK) + IMBIS(ISET(JK))
From this, a function of I, J, and K that would be, with regular mesh:
P(LIK) = P+IM*((J-1)}+IM*(K-1))) ,
becomes, with irregular indexing:
PITK) = PA+IBJKJ+IBK(K)))
We also define:

IUBK(1)=0 ,and

JMBIS (JSET (K ))
IUBK(XK+1) = UBK(XK) + z IMBIS(ISET(J+IBK(K))); K=1....KM
=1
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This is needed for indexing things that vary by I and J, but not K:
QINn= Q(I+IBJ K(J+IBK(K))-IIBK(K)); K=constant
We also note that IMS can be obtained variously by:
IMS =IMBIS(SET(K)) ,or
= IBISISET(J+JBK(K))+1) - IBISISET(J+JBK(K))) ,or
= IBIK(J+JBK(K)+1) - IBK(J+JBK(K)) ,
and the overall number of mesh cells is:

KM JMBIS (JSET (X))

IMIMKM = Y ¥y IMBIS(ISET(J+JBK(K))) ,or
K=1 J-1

= IBJKJMKM+1) ,or

= IJBK(K+1)




Fig. D.1. The Discontinuous Mesh Feature, Showing Locally Dense Mesh
Detailing Problem Features




APPENDIX E. ACCURACY OF LOW-ORDER APPROXIMATIONS

In certain simple situations, analytical solutions to Eq. (3.13) can be obtained readity, and it may be
instructive to compare those with the results of the linear and step formulations. In 1-D slab
geometry, Eq. (3.13) reduces to Eq. (3.50), which has the analytical solution Eq. (3.54). When the
source is 0, the result has the form:

N(@s) =N,e”;N,=N,__ , (ED)
which, with the exponential expanded, is equivalent to:
N(s) = Ny(1-5+(1/2)s? - (1I6)s® + (1124)s* + ----) , (E2a)

where:

s =07 (x-x,_p . | (E2b)

Since N(s) is the flux emerging from an interval of width s, we can compare this result with the
estimates of N,,, made by our difference models. The linear difference model for this restricted case
can be found by setting terms in B, C, AA, and S in Eq. (3.23) to 0. With this and Eq. (3.18a), for
p>0:

2uAN, N,
N = - = - (E3a)
Vo' +2uA  (I2)Vo'lpn A+l

N, =2N-N, . (1§3b)

Observing that, at x=x,, ; ,, V=A4x:

Mo (Bda)
1+(112)s
and
Nie =N, ( %] (EAb)
Eipanding this in a Maclaurin series:
F(x) =£(0) + f'(0)x + (112)f(0)x? + (16)f"(0)x* + --- (ES)




we have;

N, = NI -s+(12)s? - (1M4)s% + ---) . (E6)

i+c
Comparing this with Eq. (E2), we see that it is correct through the term in 5.

For the step model, we use Eq. (3.27a) and Eq. (3.26a), giving:

N, =N = 7
i+c ] +S (E )
The Maclaurin series expansion of this is:

Nie =Ny (I =s+57+ -=-) , (E8)

which is correct only through the term in s. For small s, then, the step method is inherently inferior
to the linear method, as was found in an earlier section. For large s, however, the linear-method
result approaches -N,, while the step result approaches 0, as it should.

~ Another case of importance is that with an internal source, but no boundary flow. Assuming a
uniform source, @, and no boundary flow in Eq. (3.54):

NGs) = % (1-e) , (E9)

for which the series expansion is:

NGs) = % (s-2)s? + (W6)s* + —--) . (E10)
(8

For these assumptions, the linear model used in Eq. (3.23) becomes:

W (1/2)V QluA
N=——— - el E1D)
Vo +2uA  1+(1/2)VaTluA
In terms of s,
o Ums
N=2|_U2s }
of [ 7 +(1/2)s) (E122)




and, using Eq. (E3b):

Q s
N, = ,

This expansion can be written by comparison with Egs. (E7) and (E8):

_ 9
N, = pr: (s -12)s% + (1/4)s3 + ———) ) (E13)

The linear model is correct through the term in s° in this source-driven case, as it was in the
boundary-driven case.

Examining the step result, Eq. (3.27a) becomes:

VO VO/pA
N‘+c = N = =
‘ Vo' +pA  1+Vd'/pA (E1D)
This is equivalent to:
0 s
N, == ,
i+c O'T [ 1 + S] (Els)
which has the expansion:
N,-+C=EQ;(S-S2+S3+—-—) , E16)

and is correct only through the term in s. For large s, however, the step model approaches the correct
value, while the linear model goes to the twice the correct value.

- Now, let us look at a linearly varying source in the form:

Q=0;5 . (E17)

Referring, again, to Eq. (3.54), we have the analytical solution:

-5

- fos e Q, s'ds’ . (E18)

e

N(s) =
g
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From this:

0
N(s) = —o—; [s —(1 —e‘s)] , (E19a)
which has the expansion:
N(s) = % 112) (sz - (113)s? + (1112)s% + ———) . (E19b)

g

Since the low-order approximations do not provide for a varying source over an interval, we must
use the average source in the formulations:

Q, =U2) Qs , (E20)

which, with Eq. (E13), gives a linear-model result for this source of:

N, = —Q-;- 112y (s2-(2)s?+ ---) . (E21)
o

This is, once again, correct through the term in s%, at least insofar as the use of the average source
is valid.

The step model, Eq. (E16), gives, for this source:

_ g
N.o = = 12) (s2-s%+ ---) , (E22)

which is also correct through the term in s%.

The use of the average source is of questionable value in this comparison, but it is not valid at all to
determine behavior for large s. The simple difference models used here can not treat such a case.
The nodal and characteristic models, discussed elsewhere, can treat this case accurately, however.

In each of the cases studied above, the linear model provides the best accuracy as s approaches 0.
In each case for which results for large s have validity, however, that model produces large errors
for large s, while the step model approaches the correct result. Since practical problems frequently
have s unity or larger, especially along oblique paths, behavior in the large is of considerable
practical concern. If scalar flux is negative and not trivially small, the result is obviously wrong, and
it is likely to be harmful. If the scalar flux is not negative, it may, nonetheless, be badly in error due
to the inclusion of negative values. Non-physical behavior in the large can also thwart stability by
producing arbitrary results that change with each iteration.

E-4




The cases cited above are more extreme than the usual thick-interval problem. More often, neither
the boundary flux nor the source is zero. Accordingly, let us examine the case where boundary flux
and internal source are more nearly in balance:

;Q; =0N, , | (E23)

where 6~1. Equations (E1) and (E9) indicate a slowly-varying solution for such a case, even for
large s:

N(s) =N,[e=+0(1-¢7)] . (E24)

Such problems are common when mutual scattering between directions or groups is large compared
with the external source and destruction terms. Such situations occur in charged-particle transport
and in thermal neutron propagation. It is simply not practical to limit the mesh size to a fraction of
a mean free path in such cases. A practical rule based upon flux change from interval to interval is
necessary.

The data in Table E1 give the emerging flux due to a uniform unit source, from Eq. (E9), together
with the linear- and step-approximation results from Eqgs. (E12b) and (E15). Both approximations
are positive this time, but the linear model goes to twice the proper value for large s.

Since Table 3.2 gives the comparable data for unit boundary source, these can be combined to give
the total solution for various values of 0. One sees immediately that the solution for =1 is exact
for either model. Table E2 gives the result for 6=0.8 and 1.2. Here, it is seen that the flux varies
across the interval by no more than 20%, but the linear model gives errors as large as 20%. Worse
yet,the zero fixup would be of no help to the linear model. Solving the flux and source parts
separately with the zero fixup, and then combining them, would also fail. The step model gives an
error no larger, at worst, than 4%, however.

Table E1. Emerging Flux vs Interval Width, s,
for Uniform Source

s Linear Exact Step
1 0.67 0.63 0.50
2 1.00 0.86 0.67
4 1.33 0.98 0.80
8 1.60 1.00 0.89
0 2.0 - 1.0 1.0




Table E2. Emerging Flux vs. Interval Width, s, for
Uniform Source Plus Boundary Flow

0 s Linear Exact Step

8 1 87 87 90

2 .80 .83 87

4 73 .80 84

8 .68 .80 .82

© .60 .80 .80

1.2 1 1.13 1.13 1.10
2 1.20 1.17 1.13

4 1.26 1.20 1.16

8 1.32 1.20 1.18

oo 1.40 1.20 1.20

Note: 0 is the ratio of source to the source required for a flat flux solution.




APPENDIX F. THE C, FUNCTIONS AND THEIR APPLICATIONS

In the solution of first-order differential equations, one starts with an equation of the form:

d
= N =f(N,x1,x2,———) , - (F1)

where f is, in general, a complicated function of N and various "state variables," x,, x,, etc. If N is
a major contributor to f, the equation can be very difficult to solve in this form by direct numerical
evaluation. Small numerical errors in the estimate of N can mask the effects of the state variables.
This can require the use of very small increments in t.

It often happens, however, that f is almost linear in N, and so the equation can be "quasi-linearized":

d
= N + AN = g(xl,xz,—-—) , (F2)

where g varies, at most, slowly with N. If g can not be written explicitly, Cohen's extension of the
Runge-Kutta procedure can be used for a step-by-step evaluation.” If g can be written as an explicit
function of z, however, a complete solution can be written at once. Approximating g as:

g =8 * gt +gtt-——- (F3)

Equation (F2) can be solved by use of an integrating factor:

d
= (Ne)“’) = eM (go+g1t +g,t7+ ———) ,

and

N(t) = Noe-t + goIo(t) + gJII(t)+ R (F4a)

where:

I(t) e"fo's"esds . (F4b)




Integrating by parts, we can develop a recursion rule:

I(t)=¢"" [s”e‘]z -ne’’ f’ s"lesds
0
=" -pe’t f’ s"lesds |, ES)
0
=" -n I (1)

Now, for convenience, we define the C,, functions in terms of this integral:
c() = L1
o(2) = pr] () (F6)
and the recursion becomes:
1
C(») = = (1-nC,,(®) . (F7)

Given starting values, this recursion completely defines the C,'s. 'We observe from Egs. (F4) and
(F6) that:

tCy(t) =I(t) =1-¢™" ,

and
1 -
Cot) = = (1-¢7) . (F8)
From this, we find:
Co0) = 1 (F9a) -
and
Cy(=) =0 . (F9b)

From Egs. (F6) and (F7), we find the limits for C,:

C,(0) = H(n+lI) (F10a)




C(=) = 0 | (F10b)

Looking at the first few n's, we have:

C,® ={1-¢™) /x = —% (e=-1) , (F11a)

C, ) = i[”l(e"‘"’)] = —J; (e*-1+x) , (F11b)
X X X

c,m =1 [1-_2;(e-x_1+x) = - Z (e -1+x-U2)x?) (Flic)
X X x3

¢, =2
X /

_ 6 _12\ _ 61 5 1 5, 1 3
1 —3((3 I+x —z—x ]—;—Z(e 1+x Ex +gx » (Fl1d)
but, from the expansion for ¢*, we observe that:

e = 1-x+(112)x*-(1/6)x> +(1/124)x* - --- (F12)

Thus, it is evident that the function C,(x) is simply the exponential function with its n+1 leading
terms deleted and the remaining terms renormalized. For this reason, the C,'s are sometimes spoken
of as "incomplete exponentials."

In principle, expansions of the sort shown in Eqs. (Flla-d) can be used for numerical evaluation, and
this is generally satisfactory for t not too close to Q. Strong cancellation of terms is evident near =0,
however. In transport work, this includes the cases of very small intervals and rarefied material such
as air. In time-dependent work, the problem has been dealt with by using the library evaluation of
the exponential term above a certain small value of 7 and a series expansion below. The exponential
term is expanded according to Eq. (F12), and then, terms of like power in ¢ are collected. Other
treatments are also possible.”®

The library exponential functions are generally too expensive for transport work, however, and the
use of a test on ¢ is impractical. Fortunately, high accuracy is needed over only a limited range for
this application. Walters® has used the Padé(2,3) approximation to the exponential with
considerable success. It has the form:

2
a, * ax + a,x

bo + be b2x2 + b3x3




This form can be substituted for the exponential in the expansions of Eq. (F11a-d), or new
expansions of this general type can be fit. In either case, the result goes smoothly to the correct
limit at #=0, it is quite sufficiently accurate for ¢ on the order of 1, and it goes smoothly to 0 for very
large ¢.

The C, functions have some special properties that can be helpful. First, let us look at the ¢
moments:

m _ t p+l+m
M= [" T Cls)ds (F13)

The first two moments are readily evaluated:

Moo(t) fot sCy(9)ds = fot (] —e's)ds
e? - 14t (F14)

P2C ()

1

and

I _ [ - ! _ S
My = ["s?Cys)ds = [ s(I-e~)ds 15
= (I+t)e™ - 1 + (12)¢?

Other moments can be found through a "Reduction Rule":

M, (1) = fot st C (s)ds = fot s""ds - n fat st G, (9)ds
(F16)
N VAN
n+l+m
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Applying this:

M) (1) = f’ s2C(s)ds = (112)1? - MJ(2)

0

=-(e? -1 +1-(12)1?)
3

=%Qm,

and
M = f’ s3C(s)ds = (113)1? - M ()
. 0

- [a+pe - 1+ e - (Wine]

i

One can also write a "Derivative Rule" and an "Integral Rule" by starting with I:

d d ot o ort
I (1) = 1 noSd - _ t neSds — tt
= () = (e fo s"e s) e fo s"e‘ds

EIGESACI

and, from this:

fot I(s)ds = f; t"ds - [In(s)];
= ni] [t"” - (n+]) In(t)] )

Using Eq. (F5):

. _ 1
fa L(s)ds = ——1,.,(1)

(F17)

(F18)

(F19)

(F20)

(F21)




4

- "I C (1) = - t"[] +tCn(t)]

1 n+2
—— 1”7 C,,(1)

f’ s™1C (s)ds
0

One can see that Eqs. (F14) and (F17) are special cases of the Integral Rule.




APPENDIX G. DISPERSION

The treatment of problems dominated by large regions of low-density material appears to have
received less attention than that of penetration through thick scattering regions, and yet this is a very
important class of problems for discrete ordinates codes. It is well known that certain incidental
internal voids, especially void cavities around reactor vessels, can be treated successfully, given
enough directions in the quadraturé, but new problems arise when the region is as extensive as a
room or building interior. In such problems, mesh sizes must typically be large, and much of the
interior is filled with air. Particles typically scatter from surface to surface without penetrating
deeply. Ray effects and artificial dispersion are potential difficulties.

While ray effects are well known, if not well controlled, artificial dispersion is not. The discussion
relating to Fig. 3.2 posed the physical problem: radiation streaming past an opaque region can be
artificially diverted into the shade volume by the numerical formulation alone. This effect is
independent of mesh size, and it takes place whether scattering material is present or not. It can
cause particularly severe errors when dealing with gammas, since their low albedos lead to volumes
of deep shade. Flux can be much too high, too low, or even negative in the shade, and this can lead
to serious errors in the direct beam as well.

The simple geometry of Fig. G.1 suffices to demonstrate and test for artificial dispersion. A square
mesh in XY geometry has a monodirectional boundary source in one interval along the X axis. The
radiation should flow between well-defined diagonal boundaries as shown in the figure. The
analytical solution can be written by inspection. The mesh size is arbitrary, because the interior of
the mesh is void. In this case, a mesh spacing of 1 and an incident flux of 100 are used.

In addition to the incident angle of 45° shown in Fig. G.1, 63° and 27° incidences will be
considered, as shown in Figs. G.2 and G.3. In all of these problems, the average zone flux should
be 0, 25, 50, or 75. As each numerical formulation is compared, we tabulate the largest error in any
zone for which the correct result is 0, then 25, etc. Tables G1-G3 show the results of that
comparison.

It happens that the incident direction of 45 degrees is a special case, in that the linear (diamond)
method can solve this problem exactly without fixups, and the weighted difference result is also
exact. One notes that the flux is constant along each boundary, either O or 100, and these methods
have no problem with it. The simple step model, however, disperses so much of its flux into the 0-
flux regions that the in-beam flux is very deficient.

Several nodal results are shown: safe nodal (WNODAL=0) has enough constraint on boundary flux
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shapes to produce positive results in 3D problems; aggressive nodal (WNODAL=1) guarantees
positive boundary flux shapes in 2-D problems, but it could, theoretically, give local negatives in
3-D; unconstrained nodal uses a special code modification to apply the linear boundary expansion

without restraint; and constant nodal forces a constant boundary flux. Unconstrained nodal solves
the problem exactly. All of the other nodal methods show errors of 12% or larger in the O-flux zone,
and this means that a factor-of-ten shading would be impossible with these methods.

The standard characteristic method produces a perfect result in the O-flux zones and a better result
than any of the constrained nodal methods elsewhere. Forcing the boundary flux shape to be a
constant produces the exact result in all zones.

Turning to the more nearly straight-ahead case of Table G2 and Fig. G2, we see large errors for the
previously-accurate linear and weighted methods, with so much dispersion into the shade areas that
the in-beam flux is deficient by about 30%, just as was found with the step method at 45 degrees.
In this problem, the flux along four of the vertical boundaries is O over half of the interval and 100
over the other half. The diamond-related methods can not represent this situation well at all. The
constant nodal and constant characteristic methods fail similarly.

The constrained nodal methods, safe and aggressive, are approximately as accurate here as they were
for the 45° case. The linear characteristic produces factor-of-ten shading in the 0-flux zone, but it
has a higher error than the best nodal method elsewhere. The unconstrained nodal method produces
a significant negative flux.

The oblique incidence of Fig. G3 and Table G3 has 3 horizontal surfaces with half-0 and half-100
flux. Once again, the diamond-related methods can not negotiate this problem at all. The
unconstrained nodal method produces a negative result again. The aggressive nodal and linear
characteristic methods both give fine accuracy on this problem.

Table G4 summarizes the worst error for any of the three previous cases. Of the positive methods,
linear characteristic offers the least overall error. Aggressive nodal is more accurate in the direct-
beam zones, and less accurate elsewhere. Either would give much better overall performance than
the step, linear, or weighted methods on a dispersion-type problem.

It may be noted that a special version of the characteristic method was constructed in which the flux
along each boundary was represented as two constant segments. This method solved all of these
problems perfectly. While this particular formulation may not prove to be a practical general
method, it indicates the flexibility that the characteristic approach offers for future experimentation.



Since no scattering or removal takes place in this problem, the mesh size is not relevant in the usual
sense; there is no mean free path with which to compare the mesh size. Yet, one can seek to improve
the boundary representation within the framework of the existing coding by subdividing each mesh
cell, thus representing each boundary flux by several segments. This was done in the data presented
in Table G5 for several of the numerical methods. The "3 X 3" mesh is identical to the geometry of
Table G3. The other meshes represent successive halving of the spacing in each direction. All
results are improved by the mesh refinement. The linear characteristic method has the best accuracy
for the coarser meshes, although the aggressive nodal method is better for very fine meshes.

Since these original tests, a new nodal method has been added to the code. It does not require a
choice between safe and aggressive restraints, and it seems to combine some of the best
characteristics of both.

Of the methods tested here, linear characteristic gives the best overall performance if a positive
method is required. Aggressive nodal performs slightly better if some risk of negatives can be
accepted. Curiously, unconstrained nodal has the same maximum error as aggressive nodal, and it
would not appear to offer benefits to compensate for its larger risk of negatives.

Table G1. Error (%) vs. Method and Correct Zone Flux, Incident Angle=45°

Correct Zone Flux
Method 0 25 50 75
Step 25 -- -31 --
Linear 0 - 0 -
Weighted 0 - 0 -
Safe Nodal 16 - -16 -
Aggressive Nodal 12 - -13 -
Unconstrained Nodal 0 - 0 -
Constant Nodal 16 - -20 -
Linear Characteristic 0 - 8 -
Constant Characteristic 0 - 0 -




Table G2. Error (%) vs. Method and Correct Zone Flux, Incident Angle=63°

/ Correct Zone Flux
Method 0 25 50 15
Step 30 19 -- 45
Linear -15 39 - -31
Weighted 17 14 - -30
Safe Nodal 13 7 - -18
Aggressive Nodal 11 5 - -9
Unconstrained Nodal -6 13 - -35
Constant Nodal 23 16 - -35
Linear Characteristic 10 7 - -15
Constant Characteristic 19 12 - =31
Table G3. Error (%) vs. Method and Correct Zone Flux, Incident Angle=27°
Correct Zone Flux
Method 0 25 50 75
Step 15 -10 -28 -
Linear -15 19 -6 -
Weighted 17 -14 -17 -
Safe Nodal 11 -5 -11 -
Aggressive Nodal 6 -4 -6 -
Unconstrained Nodal -6 3 -2 -
Constant Nodal 14 -7 -17 -
Linear Characteristic 5 ) -4 —
Constant Characteristic 12 -6 -13 -
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Table G4. Worst Error (%) vs. Method and Correct Zone Flux, Incident Angles=45°, 63°,

27°
Correct Zone Flux
Method 0 25 50 75 Overall
Step 30 19 =31 -45 -45
Linear -15 39 -6 -31 39
Weighted 17 -14 -17 -30 -30
Safe Nodal 16 7 -16 -18 -18
Aggressive Nodal 12 5 -13 9 -13
Unconstrained Nodal -6 13 2 -6 13
Constant Nodal 23 16 =20 -35 -35
Linear Characteristic 10 7 8 -15 -15
Constant Characteristic 19 12 -13 -31 -31

Table G5. Error vs. Method, Correct Zone Flux, and Mesh Refinement, Incident Angle=27°

Correct Zone Flux
Mesh Method 0 25 50 Maximum, All Zones
3X3 WD 17 -14 -17 -17
SN 11 -5.0 -11 ’ -11
AN 5.6 -3.6 -5.6 -5.6
LC 54 2.0 4.2 54
6X6 WD 79 -10 -7.9 -10
SN 6.1 -1.3 4.5 6.1
AN - 44 23 23 44
LC 2.7 1.4 -2.0 2.7
12X12 WD 3.1 -6.4 -3.0 -6.4
SN 1.7 0.8 -14 1.7
AN 1.1 ‘ 0.7 -0.8 1.1
1LC 1.0 14 0.6 1.4
24X24 WD 1.4 2.8 -1.4 2.8
SN 0.6 0.3 -0.4 0.6
AN 0.4 0.3 0.2 04

LC 0.3 0.8 -0.1 0.8

Notes:
1. The 3 X 3 mesh corresponds to Fig. G3. The 6 X 6 mesh is twice as fine, etc.
2. WD = weighted difference;

SN = safe nodal;

AN = aggressive nodal;

LC = linear characteristic.




Fig. G.1. Geometry and Correct Result for Problem 1.
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Fig. G.2. Geometry and Correct Result for Problem 2.
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APPENDIX H. SUBROUTINE LIST AND DESCRIPTION

Note: structure of routine listings is as follows:

1. routine name/entries
2. calling routines
3. description of function

H.1 Main Structural Routines

tort

mesage

loco

dotx

input (dotx)
inpa (input)
work (dotx)
sorsum (work)
fscon {work)
source (work)
flux (source)
group (flux)
plane (group)
output (dotx)

H.2 Special-Purpose Support Routines

H.2.1 Routines Specific to TORT

cmsclr (flux)
csol (cmsclr)
csoler {csol)
csolswp {csol)
cmsumr (group)
cyyaa (cyyac)
cyyac (flux)
Cyyaw (cyyax)
cyyax (row)
cyyaz (cyyac)
geom (inpa)
inchk (input)
iocyl (inpa)
macmx (sorsum)
map2 (mapx)
mapr (inpa)

(only important entries shown)
(unless called from many places)

container array sizing; calls to mesage, loco, dotx
message printing at beginning of job

parameter input and edit

execution coordination; final wrapup

pointer setup, array input, checking, editing
assistance to input in array setup

coordination of flux calculation; calls sorsum, fscon,
source

source summing and normalization

controls source iteration and acceleration

sweep of all groups for a given source

flux iteration and acceleration control

control of flux sweep over space mesh for one group
control of flux sweep over one plane

output summaries and file writing; calls respns, refog

partial-current acceleration of fluxes
control of acceleration matrix solution
acceleration matrix convergence calculation
acceleration matrix iteration sweep

boundary flow calculation

calculates AP flux correction
calculates AP acceleration factors
calculates weights for AP acceleration
interface for cyyaw

calculates AP corrected flux

space mesh setup and checking

input data checking
disk file requirement calculation
cross section file preparation and editing

zone map editing
zone map editing
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mapx

meshi

meshj

meshk
ndx

peon
quad
rebal
refog
respns

TOW
rowlc
rown
rownv
rowy
TOwWYyns
rowyu
rowys
TOWYSV
rowmp
rowdp
rownvp
sbsfix
sbsrin
sdisin
sflxin
snplx
sorsor
sorx
wdflx
wrdir
wrflx
wrscl
Xmix

rowb
rowc
rowd
vario

blkio
bufio

cinc
clearx
cmpri
cmultx

(inpa)

(group)
(plane)
(group)
(cyyaa)

(quad)
(inpa)
(flux)
(output)
(output)

(plane)
(row)
(row)
(row)
(row)
(rowy)
(rowy)
(rowy)
(rowy)
(row)
(row)
(rowmp, rowdp)
(group)
(inpa)
(inpa)
(inpa)
(sorx)
(fscon)
(plane)
(sflxin)
(plane)
(work,respns)
(refog)
(cyyaa)

H.2.2 Routines Shared with DORT

(row)
(row)
(rowc)

H.3 General-Purpose Support Routines (Shared With DORT)

(vario)
(wrflx)

ZONE map array preparation

i-boundary spatial flux remapping
j-boundary spatial flux remapping
k-boundary spatial flux remapping
cell indexing

discrete direction/spherical harmonics moment coupler
directional quadrature set processing

acceleration factor application

scalar flux output and edit

response summary preparation and edit

controls flux calculation for one row of the space mesh
flux sweep of a row; scalar characteristic
" ; standard scalar nodal
" ; standard vector nodal
source & moment calculations for y-series routines
standard scalar nodal with AP capability
unsafe (but fast) nodal
safe alternate scalar nodal
safe alternate vector nodal
flux sweep of a row; Octant Parallel multitasking on UNICOS
flux sweep of a row; Direction Parallel multitasking on UNICOS
flux sweep of a row for one discrete ordinate
boundary source implementation
boundary source file preparation
distributed source file preparation
flux moment file preparation
construction of directional source from moments
source acceleration factor application
negative source removal
input of flxmom- or varsci-formatted flux file
output of dirraw-formatted directional flux file
output of fixmom-formatted flux moment file
output of varscl-formatted scalar flux file
preconditioner mixing

row flux calculation; scalar weighted difference
row flux calculation; vector weighted difference
dummy for cal-language theta-weighted routine
scratch file coordinator

controls random file access
moves arrays to/from a single i/o record

sets integer array to even-spaced values
sets real data array to 0.

compares integer arrays

multiplies real array by a constant



csetx/cseti
csuma
csumr
cvrs

edit
eI7o
ffread
fidas
fidos

maxi
minsa
msum
msumd

ndxr
nNzZro
pack

seqio
skpedi

timex/timset

timsum/timon/timoff

wandr
wotlQ
wotd
wotv

(geom,geos)
(input)
(input)

(fidas)
(fidos)
(loco,input)

(input,inp)
(inchk)
(input)
(input)

(inpa)
(input)

H.4 Basic Unix Interface Packages

H.4.1 Memory Allocation (CUNALOC)

dlocal

(dot,input)

H.4.2 Support Library (CUNIO)

dopc

dred/drit
fread/frit
cred/crit

CIMOVX
cmvbt
cmpbt
cright
reed/rite

timez

header ,
tailer/tailex/tailem
tailpr

exitx
minaf/maxaf

(vario,blkio,seqio)
(blkio)

(dred/drit)

(vario)

(sorsum)
(not used)

(seqio)

E;r-xain)
(exitx)
(erro)
(sorx)

sets real/integer array to a constant
sums absolute value of real array
sums real array

reverses columns or rows of real array

prints irregular 1-, 2-d real/integer array
prints error message; records error severity
parses input stream record format for fidas
interprets input stream format

controls fidas

finds maximum of integer array if length.gt.0
finds max/min of integer array if length.gt.0
finds sum of integer array if length.gt.0

finds indirect-address sum of integer array

calculates pivot arrays
finds number of non-zero items in integer array
packs/unpacks strings of real data

controls sequential file access

gives quick diagnostic edit in several formats

prints accumulated time usage

collects cpu time use by major category

i/o of formatted/unformatted data file

prints 10-column edit of realfinteger array

1- to 4-d irregular real/integer array edit with header
1- to 4-d irregular real/integer array edit with header

keeps memory records, calls memorx

opens, closes, destroys files

i/0’s random-access files

short-list fortran direct-access i/o

moves data from/to user direct-access buffer

up-or-down word move with overlap protection
byte move

byte comparison

right adjustment of byte string

short-list fortran sequential i/o

date/time/user services

performs program initialization
timing and job wrapup

prints summary of cpu & system time
traceback and/or problem termination
min/max of an integer array
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inmx " min and max of an integer array
aminaf/amaxaf v min/max of a real array

aminmx " min and max of a real array

seek (not used) bold venture interface unit allocation

H.5 Cray Interface Package
H.5.1 Memory Allocation (CRAALOC; Overrides CUNALOC)
memorx (dlocal) calls system hpalloc, etc.

H.5.2 Support Library (CRAIO; Overrides CUNIQ)

dumcos/flush - dummy entries
timget (timez) calls clock, date; returns formatted time/date
destry " destroys an external disk file

H5.3 CLanguage (CRACCC)

csecond (timez) cpu+system time, seconds
userdata " returns userid, group, process number

H.5.4 Cray CAL Language (CRAOPAL overrides routines of the same name)

locf (not used) word address locator
rowd {rowc) short-vector theta-weighted difference
rowi ~ (notused) 2-d zero-weighted flux calculation for a row

H.5.5 Cray CAL2 Language (CRACAL?2 overrides routines of the same name)

locf (not used) word address locator
rowd (rowc) short-vector theta-weighted difference
rowi (not used) 2-d zero-weighted flux calculation for a row

H.6 IBM Interface Package
H.6.1 Memory Allocation (CIBALOC, overrides CUNALOC)
memorx (dlocal) calls system routines malloc, free

H.6.2 Support Library (CIBIO overrides CUNIO)

dumibm/flush - dummy entries

timef (timez) calls e_clock, returns time-of-day, msec

second " calls mclock, returns cpu time, seconds

csecond " calls etime, returns cpu+system time, seconds
timget " calls fdate; returns formatted time/date

userdata " calls getlog, getpid; returns userid, group, process
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H.6.3 CLanguage (CIBCCC)

tdate _ (not used) " time/date character string

e_clock (timef) time-of-day, hundredths of seconds
H.7 Sun Interface Package

H.7.1 Memory Allocation (CSNALOC overrides CUNALOC)

memorx (dlocal) calls system malloc, free

“H.7.2 Support Library (CSNIO overrides CUNIO)

dumibm/flush -— dummy entries

timef (timez) calls time, returns time-of-day, msec
second " calls etime, returns cpu time, seconds
csecond " _ returns cpu+system time, seconds, as 0.
timget " calls tdate; returns formatted time/date
userdata " returns userid, group, process as blank

H.7.3 CLanguage (CSNCCC)

tdate (timeget) gets time/date string

H.8 DEC Interface Package

H.8.1 Memory Allocation (CDCALOC overrides CUNALOC) |

memorx (dlocal) calls malloc, free

H.8.2 Support Library (CSNIO overrides CUNIO)

Note: The SUN support library is used here. Language flags change a call to tdate into a call to fdate.
H.8.3 CLanguage (CSNCCC)

Note: The SUN C-language package is used here without change.

H.9 HP Interface Package

H.9.1 Memory Allocation (CSNALOC overrides CUNALOC)
memorx (dlocal) calls malloc, free
H.9.2 Support Library (CSNIO overrides CUNIO)

Note: The SUN support package is used here without change.

H.9.3 CLanguage (CHPCCC)

etime {second) gets cpu time, seconds




H.10 Generic Interface Package (* Not Presently Used *)

H.10.1 Memory Allocation (CXXALOC overrides CUNALOC)

EemOrx (dlocal)

establishes large fixed-dimension container space

H.10.2 Support Library (CXXIO overrides CUNIO)

dumibm/flush/trbk -

timef (timez)
second N
csecond
timget "
userdata

H.10.3 C Language (CXXCCC)

malloc {not used)

dummy entries

returns time-of-day, msec, as 0

returns cpu time, seconds, as 0

returns cpu-+system time, seconds, as 0.
returns formatted time/date as null
returns userid, group, process as blank

"system-independent” space allocation
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Appendix H. Main subroutine calling sequence

tort------ -message
-loco
-JOtX-~-m

L-input---- |-inpa-—---- }-geom
-inchk --iocyl
--mapr
--mapXx-—---
-quad-----
--sbsrin
--sdisin
--sflxin--—-
L-work----- |-SOrsum---- --macmx
--fscon----- --sorsor
--source---- --flux------
--wrflx(1)
--output-—- t--refog------ --wrscl

-respns----- --wrflx(2)

Note: wrflx and rownvp are used in two places.

--map2

--pcon

--wdflx

--group------|--plane------
--cmsumr
--meshi
--meshk
--sbsfix

--cmsclr----- --csol------ -

—-rebal

--cyyac-——---Cyyaz

cyyaa
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--meshj
--SOrx

--wrdir

--csoler

--csolswp

- =CYYaXnrmmnm ~=CYYAW

--rowb

L-FOWC------ ~-TOWd

--rowlc

--rOWn

L-TOWnv

- -[OWY-mmnmmmr -rowWyu
-roWys
-TOWYSV
-FOWYns

--rowdp----- -- TOWnVp

--fOWmp---- --FOWRVp




APPENDIX 1. DEMONSTRATION PROBLEM SET

In some cases, problems are inadequately converged or use inadequate mesh or quadrature in order
to illustrate a particular feature or to make a particular point without unnecessary expense. In a few
cases, undocumented options are used, and the user should not attempt to make general use of such
features.

1. The first set of problems uses 2 related cross section libraries. The first, a 1-group pl set, features
a pure scatterer, a pure absorber, a "half-scatterer” with half scattering and half absorption, and
a near-void. All except the near-void have an average scattering cosine of 1/3. Since Oak Ridge
cross sections have sigma-1 equal to (20+1) times the average scattering cosine, sigma-1 and
sigma-0 are equal for the selfscatter positions in those sets. The near-void has an average cosine
near unity.

The second library, a 2-group p1 set, is placed onto unit 4 rather than the default unit, 8. With
the exception of the half-scatterer, pO data for the two groups are identical to the 1-group library.
The second group has symmetrical scattering; i.e., sigma-1 of 0. The half-scatterer has
sigma-total for its first group split evenly between absorption and scattering to the second group.
The second group sigma-total is split evenly between absorption and fission. Two product
particles are produced per fissile capture.

The first tort problem is a small, 1-cell core of the half-scattering material in one corner of a
3x3x3 XYZ cube of full-scattering material. Reflection is used at the explicit boundaries, i.e.,
the left, inside, and bottom. S2 directional quadrature is used with the 2-group p1 cross section
library. The problem is started with an arbitrary fixed source guess. The effect of the source
guess disappears as the iteration proceeds. The flux output is written on unit 1. The problem is
forced to hold only 1 group of data in memory at a time.

The problem is then restarted from the flux guess. It is necessary to supply an estimate of
k-effective in order to normalize the flux guess accurately for a smooth restart. The problem is
forced to split the data storage for a group into 2 blocks.

The next problem begins the use of the 1-group library with a homogeneous 3x3 XZ mesh of
scattering material. The source is in the first mesh cell. This problem will be compared with a
DORT problem later. Following this, a 4x4 scattering source region is placed at the corner of an
absorbing 8x8 xy grid. This problem is also for comparison with DORT. In the last TORT
problem, the 8x8 xy problem is extended to XYZ geometry.

If the dos driver is used to control the solution, execution will continue with 2 DORT problems.
- The first compares accurately with the 3x3 XZ TORT problem, while the second compares with
the 8x8 xy problem.

2. This problem set uses 3-group p3 cross sections borrowed from the ANISN sample problem 1.
They were originally taken from a small space reactor problem. The 4 zones of the original
reactor design are detailed: core, interface zone, radial reflector, and axial reflector. The
dimensions of the problem have been reduced, however.
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The first TORT problem is an S2P1 search for k-effective. In the second problem, chi is set to
0.99/k, thus making the system near-critical. Then, a uniform fixed source in the core is added,
and the converged multiplication of that source is sought. Since the problem is small, the global
extrapolation procedure is satisfactory in this case.

Finally, the same problems are solved with DORT. Both problems reproduce the corresponding
TORT results well. Since multiplication problems are very sensitive to small procedural
differences, the agreement in M is not as precise as the agreement in k, however. For example,
the smallest relative difference in k that can be printed in this problem is Se-6. Such a systematic
difference would result in a Se-4 difference in M values, and this of the same order of magnitude
as the difference in M actually observed.

. This problem set uses a 14-group library taken from a problem used to demonstrate the
irregular-mesh features of DOT 4 at the 1977 Fifth International Shielding Conference in
Knoxville. A concrete cylinder encased in a steel shell is driven by a source at the top in RZ
geometry or at the outside surface in r-theta geometry. Only the first 3 energy groups are solved.
The cross sections are P3, but the solution is conducted in P1, since the P3 basis functions are not
orthogonal over the discrete S4 direction set. Serious production problems should use at least S6
with P3 cross sections.

Problem 3.1 uses RZ geometry to demonstrate the most efficient weighted difference flux routines
on the computer being used, and then 3.2 uses the alternate routines. The two procedures give
the same result. Problem 3.3 solves the same problem with r-theta-z geometry, reflected at both
theta boundaries. The results match very closely.

In problem 3.4, the geometry is changed to r-theta, and the source is at the outer boundary, i.e.,
at the maximumn theta position. In problem 3.5, the same problem is solved in r-theta-z geometry,
with reflection at both top and bottom. The flux is uniform in z and in agreement with the r-theta
problem. It may be noted that a large z mesh was used. If a small mesh is used, the agreement
is not so favorable. This may be due to limitatns of the weighted difference procedure, although
that has not been proven satisfactorily.

In problem 3.6, the r-z problem of 3.1 is solved with DORT, proving the correctness of the TORT
result. Similarly, problem 3.7 solves the r-theta problem of 3.4, confirming the TORT result.

. The library for this problem is a 13-neutron, 7-gamma collection that has seen considerable use
in analyzing transport into large buildings at the preliminary level. The building, itself, is a
"metric doghouse" built of simple concrete slabs. The problem set is intended to provide a
low-cost test of several of the numerical formulations and restart provisions. Only the first 3
energy groups are solved. S2P1 is used in all solutions.

Case 4.1 uses the standard linear nodal routine and saves the random access files on units 91 and
94 for reuse. the first group is converged completely, but only 3 iterations each are allowed for
groups 2 and 3.




Case 4.2 reuses the files on units 91 and 94 as input guesses. INGRPS specifies that only 2
groups of the input are to be used, the rest set to 0.0 by default. The value of NIFCNV causes
iterations in the first group, which had previously converged, to be skipped entirely. It also causes
the acceleration damping of the second group to continue from the previous level, promoting a
smooth convergence process. The output indicates that the flux for the third group was ignored.

The remaining cases test the remaining higher values of the mode parameter.

. Using the same cross section set, the "buzz house" is solved next. This building has two rooms
divided by a concrete center partition, an internal pillar, two windows on each side, and a single
window on the end facing the source. It represents a building actually constructed in 1984 and
used in experiments designed to test the accuracy of TORT. Details of the experiment can be
found in ORNL/TM-9528.

This problem is more complex than many production TORT problems in that it uses multiple
sources and has provisions to rearrange the geometry to several configurations. As the problem
is set up, it will run only the first energy group as a test. By disabling the line containing the last
643%$ array and all lines between the first "stop” line and the "t" preceding it, inclusive, the
problem will run the full set of energy groups.

The geometric mesh is arranged with the z axis toward the front of the building and the y axis
upward. By manipulating the 8$$ arrays, the pillar can be relocated, the partition can be included
or removed, and the end window can be opened or closed to reflect configuration changes. As
a matter of economy, the 6" internal wall is smeared into a 12" space and assigned a density factor
of 0.5. The air inside the building is assigned full convergence importance, while everything else
is assigned 0.1. A total of 34 key locations are selected for special monitoring. The iteration
limits allow extra iterations for the thermal neutron group, since it tends to be difficult to
converge.

It happens that the acceleration formulation used here is not entirely effective if the internal
boundary sources are used. Accordingly, the acceleration is disabled in several groups for which
this defect has been found to cause trouble. This weakness in the formulation is not complicated,
and a repair will be made eventually.

A choice of several source spectra is provided, and responses corresponding to the installed
instrumentation follow. Finally, the directionality, spatial shape, and spectrum of the external
boundary source is described, followed by 3 internal boundary sources corresponding to the front
wall, pillar plane, and back wall surfaces.

Although this problem does not represent the final analysis of the subject experiment, it is
illustrative of the general approach and the capabilities of the code.

. Still with the same cross section set, a very large building solution is demonstrated. This
geometry represents one of the reinforced concrete buildings subjected to nuclear weapon attack
during World War II. The geometry details walls, windows, and support members individually.
The source is taken to be uniform over the right, inside, and top surfaces. Only 1 group of the
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20-group problem is normally solved as a test problem, although it is easy to activate the full
calculation. The total flux at 10 key locations is monitored to indicate the results of the
calculation.

In the actual production study, it was necessary to add a basement, internal walls, and more
structural accuracy, making the geometric description much longer. The boundary source was
obtained by interpolation of the flux from a 2-d air/ground calculation. Several source
components were treated separately, requiring a number of individual runs. A 69-group cross
section library was used. Some of the calculations were done with s10 directional quadrature,
rather than the s6 used here, and some used the linear nodal flux formulation. thus, the
production studies were much more ambitious in scope than this example.

. Still with the 20-group library, a set of problems demonstrating the use of the discontinuous mesh
feature on various model buildings is solved. The first model is a concrete-air construction with
(4,2)*1*3 XYZ mesh, i.e. with either 4 or 2 mesh intervals in the x direction, depending upon y
and z, with 1 interval in the y direction, and 3 intervals in the z direction. The problem is a 2-
group P1 nodal solution. More directions would be needed to produce accurate results, but the
set used is adequate for this test. Then, the problem is solved as a 1*(4,2)*3 XYZ mesh and again
as a (4,2)*3*1 XYZ problem, providing a severe test of the remeshing facilities.

Next, this same model is solved as a 2-group P1 RZ weighted difference problem with
discontinuous mesh and distributed source for comparison with DORT, proving that these various
features can be used together.

A quarter-symmetry version of the buzz house used in an earlier problem set is next solved in XZ
geometry using a 2-group P1 weighted difference calculation with a boundary source. Results
from this problem will also be compared with DORT. It uses negfix.gt.0 for negative removal
without disturbing balance. It can also be solved using the nodal procedure by setting mode=2,
ingeom=0, and theta=0.

In the last TORT test, the quarter-symmetry buzz house is solved in XYZ geometry with multiple
mesh sets used in both x and y dimensions. A larger directional quadrature set is also used, a set
with low-weight "carrier directions"” that allow the boundary source to be concentrated near the
z axis, and p3 scattering is used. The nodal flux procedure is used, and negfix=2. This problem
can also be solved with weighted difference, but the convergence levels off before reaching 1.0e-3
and locks into a limit cycle. This is apparently due to the basic nature of the SORX procedure
used when negfix.gt.0, and it is not exclusively a problem with weighted difference.

In two DORT tests, the RZ and XZ cases described above are solved by DORT, producing
essentially the same result obtained by TORT in each case.

. The cross sections are a variant of those used for problem set 1, differing primarily in that mubar
for material 3 on output unit 4 is 1/3 in both energy groups, but the scatter from group 1 to group
2 is isotropic.




Problem 8.1 describes a metric doghouse similar to that of problem 4. Weighted difference is
used, and key responses at several points are edited. Problem 8.2 repeats this problem with a
discontinuous space mesh installed, but only one i-set and one j-set are used. The results are
unaffected. In problem 8.3, the full discontinuous mesh is used to reduce the number of space
cells from 45 to 19. All of the results are affected, of course, but only the last key flux has what
must be regarded as a large change. The integrals remain close to the previous values. An
experiment not shown indicated that the change in the key fluxes could be reduced to a nominal
amount by using the nodal procedure. Nodal would not be acceptable in the pO problem to be
solved next, however.

In problem 8.4, the second group is restarted using S2 PO rather than the S4 P1 used in all of the
above problems. Modest changes in the results are noted. Finally, problem 8.5 demonstrates that
the same result could be obtained in one step using the variable quadrature and scattering
expansion features.

It should be noted that the success of this comparison depends upon the fact that the downscatter
cross section was 0. In problem 8.4, since PO was specified for all energy groups, the downscatter
was calculated in PO. In 8.5, however, the first group is solved in P1, and so the scattering source
into group 2 is, in principle, P1. Since the corresponding cross section has been set to 0, however,
the results match as desired.
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