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Abstract

Using multi-ion MGPT interatomic potentials derived from first-principles

generalized pseudopotential theory, we have performed accurate atomistic

simulations on the energetic of dislocation motion in the bcc transition metal

Mo. Our calculated results include the (110) and (211) generalized stacking

fault (-y) energy surfaces, the Peierls stress required to move an ideal straight

<111> screw dislocation, and the kink-pair formation energy for nonstraight

screw dislocations. Many-body angular forces, which are accounted for in

the present theory through explicit three- and four-ion potentials, are qu:,n-

titatively important to such properties for the bcc transition metals. This is

demonstrated explicitly through the calculated -y surfaces, which are found to .,

be 10-50% higher in energy than those obtained with pure radial-force mod-

els. The Peierls stress for an applied <111>/{ 112} shear is computed to be

about 0.025p, where p is the bulk shear modulus. For zero applied stress,

stable kink pairs are predicted to form for kink lengths greater than 4b, where

b is the magnitude of the Burgers vector. For long kinks greater than 15b, the

calculated asymptotic value of the kink-pair formation energy is 2.0 eV.
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I. INTRODUCTION

In bcc transition metals, the low-temperature and high-strain-rate plastic deformation

properties differ dramatically from those of the fcc metals. In particular, there is a rapid

increase of flow stress with decreasing temperature and a breakdown of the Schmid law of

critical resolved shear stress (for reviews, see Refs. [I] and [2]). Experimental observations

suggest that screw dislocations in bcc transition metals are much less mobile than edge

dislocations and, consequently, screw-dislocation behavior is the limiting factor which con-

trols both low-temperature and high-strain-rate plasticity. It is also widely believed that

a double-kink Peierls-barrier mechanism is responsible for the actual mobility of the screw

dislocations. To understand the underlying mechanisms in detail, however, it is necessary

to carry out accurate atomistic simulations on the structure and energetic of single dislo-

cat ions, as well as on dislocation-dislocation int eract ions. Moreover, an accurate atomistic

description of dislocation energetic can be used as input into larger length scale theories

and simulations in the multiscale modeling of plastic flow and other mechanical properties.

For example, the activation energy for the double-kink motion of <111> screw disloca-

tions has been identified as a key parameter for the 3D dislocation dynamics simulation of

microstructural evolution in bcc metals [3].

Accurate atomistic simulations of deformation and defect energetic in bcc transition

met als require a quantum-mechanical treatment of the strong angular forces present in these

materials, which arise from multi-ion d-state interactions [4–7]. Moriarty [5] has derived

appropriate quantum-based multi-ion interatomic potentials for transition metals from first-

principles generalized pseudopotential theory (GPT). For atomistic simulations on the bcc

metals, a simplified model GPT (MGPT) has been developed using canonical d bands. This

produces entirely analytic three- and four-ion potentials which are both computationally

efficient and physically robust [6–8]. In the case of molybdenum (Me), MGPT potentials

have been successfully applied to the cohesive, structural, elastic, vibrational, thermal, and

melting properties of the bulk metal [7]. In a recent paper [8], we have also used the same
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potentials to calculate a wide variety of deformation and defect properties of bcc Mo with

considerable success, including the equilibrium structure of the <111> screw dislocation

core. In the present work, we have further investigated the energetic and motion of these

screw dislocations on the primary {110} and {112} slip planes in the bcc lattice. Specifically,

we report here on calculations of the generalized stacking fault (~) energy surfaces and on

the Peierls stress and related energetic barriers associated with the motion of ideal straight

<111> screw dislocations in bcc Mo. We also report on corresponding calculations of the

kink-pair formation energy for these dislocations as a function of kink length.

This paper is organized as follows. In Sec. II, we briefly review the MGPT interatomic

potentials for Mo and discuss the general simulation method used in this work to treat

generalized stacking faults and dislocations. Our detailed calculations of the y surfaces for

the (110) and (211) slip planes in Mo are presented in Sec. 111. The calculation of the

ideal Peierls stress and related energy barriers for <111> screw dislocation motion is then

discussed in Sec. IV. In Sec. V we describe our initial simulations of kink-pair formation on

these dislocations. Finally, our conclusions are given in Sec. VI.

II. THEORETICAL APPROACH

The angular-force, multi-ion MGPT interatomic potentials used in our atornistic simula-

tions are based on first-principles generalized pseudopotential theory [5]. Complete details

of the MGPT formalism as it applies here to Mo are discussed in Refs. [6–8], and the Mo

potentials themselves can be obtained by the interested reader as described in Ref. [9].

Briefly, the first-principles GPT provides a rigorous real-space expansion of the total-energy

functional of a bulk transition metal in the form

E,O,(R1...RN) = NEVO1(Q) + ; ~’ v2(ij) + ; ~ ‘ w(ijk) + ~ ~ ‘ v4(ijkl) , (1)
td i,J,lc i,~, k,l

where RI.. .RN denotes the positions on the N ions in the metal, Q is the atomic volume,

and the prime on each sum over ion positions excludes all self-interaction terms where two
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indices are equal. The leading volume term in this expansion, E.Ol, as well as the twe-, three-

, and four-ion interatomic potentials, V2, V3 and V4, are volume dependent, but structure

independent quantities and thus iransfera61e to all bulk ion configurations. In the MGPT,

the potentials V2, V3, and V4 are systematically approximated by introducing canonical d

bands and other simplifications to achieve short-ranged, analytic forms. The radial-force,

two-ion pair potential Vz is obtained as a sum of simple-metal sp, hard-core overlap, and

tight-binding-like d-state contributions. The angular-force three- and four-ion potentials, V3

and V4, are obtained as the appropriate multi-ion gen~ralizations of the d-state component

to V2. The potential V3 is a three-dimensional function of the separation distances linking

three ions, while the potential W4is a six-dimensional function of the six separation distances

linking four ions. These latter potentials have exact analytic representations which are given

in Ref. [6]. In the MGPT, one compensates for the additional approximations introduced to

achieve analytic potentials by parameterizing the five coefficients of the d-state contributions

to V2, V3, and V4. For the present Mo potentials at the observed equilibrium volume, one

of the five parameters has been obtained from first-principle considerations while the other
,.

four have been fit to bulk experimental elastic constants and the vacancy formation energy,

as described in Ref. [7]. All remaining quantities have been calculated from first-principles.

, The general simulation method used to implement the MGPT potentials in the present

work is based on total-energy minimization at zero temperature and utilizes a rectangular

slab-shaped computational cell, whose cross section is depicted in Fig. 1. Here the z axis is

chosen perpendicular to the slab, so the cross section is in the Zy plane. The cell is divided

into an atomistic region, denoted as I in the figure, and a boundary-layer region, denoted

as II. The atomic positions in region 11 are determined by imposing either fixed or periodic

boundary conditions in the z and g directions. Fixed or periodic boundary conditions are

also applied along the z direction perpendicular to the slab. In the atomistic region, all

atoms are allowed to fully relax via a standard conjugate-gradient technique, subject to

the boundary conditions imposed in region II and along the z

boundary conditions, the size of region I and/or the thickness

4
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until convergence is reached. The thickness of region II, on the other hand, is fixed by the

effective range of the interatomic potentials. For the present Mo potentials, this thickness

is 2a, where a is the bulk bcc lattice constant.

Within this general scheme, a stacking fault in the otherwise perfect bcc lattice can be

modeled by choosing a thick, narrow slab with periodic boundary conditions applied in the

x and y directions and fixed boundary conditions applied in the z direction perpendicular

to the fault plane. Specifically, the generalized stacking fault defined by Vitek [2] is created

by rigidly displacing the top half of such a slab with respect to the bottom half, allowing

relaxation only in the z direction. The ideal <111> screw dislocation, on the other hand,

is modeled by a thin, wide slab with the z axis parallel or anti-parallel to the Burgers

vector b, with the dislocation core centered in the zy plane of the computational cell. The

x and y axes are here chosen along <112> and <110> directions, respectively. Periodic

boundary conditions are applied in the z direction, in order to simulate an infinite straight

screw dislocation, with a slab thickness of 2b = fia. In the x and y directions, we use

fixed boundary conditions with the positions of the atoms in region II established by linear

anisotropic elasticity theory [10]. The dislocation core, whose radial extent is on the order of

2b, is contained entirely within region I in all cases. This scheme can be readily generalized

to, accommodate an applied stress on the dislocation core and/or a double kink along the

dislocation line. An applied stress is simulated by imposing a corresponding homogeneous

shear strain, as given by linear elasticity, on the equilibrium dislocation core configuration.

That is, the atomic positions in region II are adjusted according to the prescribed strain,

while the atoms in region I are allowed to relax to new equilibrium positions. A double kink

is treated by using a thick slab to appropriately reduce the periodicity in the z direction. In

this case the slab thickness must be large compared to the kink length Rk.

Constrained moves of the straight screw dislocation in the xy plane are also possible

within our computational scheme. These are accomplished with a reaction coordinate

method in this work and are useful to estimate the energy barrier to dislocation motion

along prescribed paths. In this method, one identifies a single atomic row (parallel to the
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dislocation line) which has the largest displacements resulting from the movement of the

dislocation core from one equilibrium site to a neighboring site. We then march this atomic

row from its initial position to its final position. During the migration process, we allow this

atomic row to relax in the xy plane. At the same time, all other atoms in region I are fully

relaxed, while the atoms in region II remained fixed.

III. GENERALIZED STACKING FAULT ENERGY SURFACES

The stability of stacking faults on the slip planes of a crystal are intimately connected

to the mobility of dislocations on these planes. In close-packed structures, both stable and

unstable stacking faults are produced by the relative translation of two parts of a crystal

through a vector f which is a rational fraction of a lattice vector. The fault is introduced

by cutting a crystal block along the fault plane and shifting the upper part with respect to

the lower part by a vector f = zal + ya2, where al and a2 are two lattice vectors which

characterise the fault plane and O < {z, y} < 1. A generalized stacking fault (~) energy

surface is generated by varying z and y over this entire domain for a given fault plane. In

the present work, we have calculated y surfaces for the (110) and (211) slip planes in bcc

Mo. To obtain adequate convergence, a computational cell with a slab thickness of about

80a has been used. As indicated above, in the perpendicular x and y directions, we have

applied periodic boundary conditions to mimic an infinite fault plane. The whole structure

was then allowed to relax perpendicular to the fault plane.

Our calculated (110) and (211) y surfaces for bcc Mo are illustrated in Fig. 2. The

lattice vectors al and a2 for these two cases are along [110] and [001] for the (110) surface

and along [011] and [111] for the (211) surface, respectively. Neither y surface shows any

non-bee local minima, indicating that no stable stacking faults with single-layer width are

predicted to exist for the {110} and {1 12} slip planes. On the (1 10) surface, unstable stacking

faults (saddle points) are readily seen along the diagonal (z = y) directions. The (211) -y

surface also displays the so-called twinning–anti-twinning (t-a) asymmetry along the [111]
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direction, which implies non-Schmid slip behavior on this plane. Qualitatively, all of these

features agree with those obtained from previous atomistic studies [2] using radial-force pair

potentials and from more recent studies [11] using many-body, but still radial-force, Finnis-

Sinclair potentials [12]. Quantitatively, however, there are significant differences between

the y surfaces calculated from such potentials and from the present angular-force MGPT

potentials. Specifically, the MGPT potentials yield consistently higher energies for both ~

surfaces in Mo. Our maximum calculated energies on the (110) and (211) surfaces are 201

meV/~2 and 251 meV/fi2, respectively. These energies are 45’%0higher for the (110) surface

and 14?10higher for the (211) surface than obtained using the Finnis-Sinclair potentials.

IV. PEIERLS STRESS AND ENERGY BARRIERS FOR <111> SCREW

DISLOCATIONS

The possible

carefully studied

core configurations of a <111> screw dislocation in bcc Mo have been

with the MGPT potentials and the results reported in a previous paper [8].

Two mechanically stable configurations were found, the so-called “easy-” and “hard-’’core

dislocations. These two configurations can be obtained either with (i) a common geometrical

center and Burgers vectors in opposite directions or with (ii) a common Burgers vector and

geometrical centers displaced, as described below. The standard differential-displacement-

map represent at ions [2] of these configurations are displayed in Fig. 3. Both configurations

are nonplanar in character and possess three-fold symmetry. The “easy” core is the stable

ground state and is spread out in three <112> directions on {110} planes. Because there

are six possible <112> directions here, the “easy” core can have either of two orientations

and is thus doubly degenerate. The higher-energy and higher-symmetry ‘(hard)’ core is more

compact without any directional spreadout.

calculated formation energy that is 0.24 eV/b

The minimum or Peierls stress to move a

This configuration is nondegenerate with a

higher than that of the stable “easy” core.

rigid screw dislocation in the bcc lattice de-

pends strongly on the orientation of the applied stress [13]. As a step towards determining
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the full orientation dependence of the Peierls stress in Mo, we have examined the application

of pure shear or glide stresses on the relaxed “easy’’-core dislocation. As indicated above,

such stresses have been imposed by introducing a homogeneous shear strain over the entire

simulation cell. Then, keeping the atoms in the boundary-layer region II fixed, the atomit

positions of the inner region I were relaxed. For each applied stress, the resultant configura-

tion was examined for any change in the location of the core. If the core was displaced from

its unstressed location, the dislocation was taken to have moved and the applied external

stress was taken as an upper limit to the Peierls stress. Using a binary search, the minimum

stress to initiate motion was thereby determined for each orientation considered.

In general, only two pure shear stresses, oZC and azv, can generate a nonzero glide force

(Peach-Koehler force) on the <111> screw dislocation. These are stresses oriented along

the <111> direction on {112} and {110} planes, respectively. For a 15a x 15a region-I

computational cell, we have found corresponding minimum shear stresses to move the <111>

screw dislocation of about 0.03p and 0.04p, where p is the shear modulus (Cll – C12+ CA4)/3

with a value of 1.376 Mbar for bcc Mo. In both cases the dislocation moves on a primary
,,

{110} slip plane. For the case of the o ~Z stress, we have also examined the dependence of

the result on the simulation cell size. The Peierls stress was found to decrease 20’% when

the cell size was increased from 15a x 15a to 20a x 20a. Further enlarging the cell size to

25a x 25a, the Peierls stress changed only a few percent, however. For the 25a x 25a cell,

the calculated Peierls stress attains an approximately converged value of 0.025p.

Using the reaction coordinate technique discussed in Sec. H, we have also calculated the

energy barriers for constrained moves of an “easy” core on the {11 O} and {112} slip planes.

In Fig. 4, we have labeled the possible equilibrium sites for the dislocation core as 1, 2, 3,

or 4. For a given orientation of the Burgers vector b, sites 1 and 4 are stable “easy)’-core

sites and 2 and 3 are metastable “hard’’-core sites. For movement in a <112> direction on a

{110} plane, we envisage a sequence of nearest-neighbor moves or “jumps” between “easy”

and ‘Lhard’) sites such as 1 ~ 2 -+ 4. As shown in the figure, the height of the energy barrier

for moves from 1 ~ 2 or 4 -+ 2 is 0.26 eV/b, while only a very shallow barrier of 0.02 eV/b
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must be overcome to move from 2 ~ 4 or 2 ~ 1. Similarly, moving in a <110> direction on

a {112} plane involves a path like 2 -+ 1 ~ 3. The barrier to move from 2 -+ 1 is still 0.02

eV/b. However, one has to overcome a very much higher barrier of 0.90 eV/b to move from

1 ~ 3 on the {112} plane. This shows that the core prefers to move on the {110} plane in

bcc Mo. Furthermore, the asymmetrical energy barriers on the {112} plane will result in

different slopes and hence different stresses depending on the path. This confirms that the

shear stress to move a screw dislocation on a {112} plane will depend on the direction of

the slip, as is implied by the twinning–anti-twinning asymmetry of the ~ surface.

V. KINK-PAIR FORMATION ON <111> SCREW DISLOCATIONS

We have also considered kink-pair formation on a <111> screw dislocation in bcc Mo

with zero applied stress. To construct a kink pair, we first generated a screw dislocation (cZI)

with its core located at site 1, as shown in Fig. 5. Next, the central part of this dislocation

was replaced by another screw dislocation segment of equal length (cZ2) but centered at a

near-neighbor site (2 or 3). To avoid forming sharp kinks, we displaced several atomic layers

near the kinks (in the xy plane perpendicular to the <111> direction) to new positions which

were chosen to be the average value of atomic positions of the dl and d2 segments. The total,.

thickness or length of the simulation cell along the <111> direction was chosen to be w 35a
<.

(with ~ 18000 atoms in region I and a total number of atoms of about 43000). Finally, the

structure was relaxed subject to the usual anisotropic elastic boundary conditions in region

II of the computational cell. By varying the length Rk of the d2 segment, we could investigate

the stability and formation energy of different possible kink pairs. In particular, one seeks

to determine the limiting value of the formation energy for an infinitely separated kink pair

and also the minimum or “annihilation” distance below which the kinks become unstable

after relaxation and the final configuration becomes a long straight dislocation centered on

site 1 in the simulation cell.

In principle, kink pairs of different character are possible depending on whether the
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segment dz is centered on site 2, a “hard’’-core location, or on site 3, an ‘(easy ’’-core location.

The shortest near-neighbor distance involves site 2 and results in an “easy”- “hard’’-’’easy”

configuration. This configuration, which lies in <110> direction on a {112} plane, was found

to be unstable for all kink lengths l?~. Interestingly, however, this kink pair does not revert

to the “easy’’-core dislocation ground state upon relaxation. Rather a soliton structure

is formed in which the dl and d2 segments each have an “easy” core structure but with

opposite orientations. That is, the final straight dislocation line is composed of alternating

segments of the two degenerate orientations of the “easy” core structure. The instability

of the “easy”- ‘(hard)’- “eas y“ double kink is undoubtedly related to the {110} energy barrier

displayed in Fig. 4. In particular, the high formation energy of 0.24 eV/6 for a “hard’’-core

relative to an ‘(easy’) core coupled with the shallow barrier of 0.02 eV/b which stabilizes the

former probably makes it energetically favorable for any “hard” segment dz to migrate away

and return to the “easy” site dl.

For the remaining possible kink pair formed between sites 1 and 3, an “easy’’-’’easy”-

“easy” configuration results. This configuration lies in a <112> direction on a {110} plane.

Here the double kink is stabilized beyond a certain critical separation distance between the

two kinks. This “annihilation” distance was found to be about 46 (b = 2.74 ~) in bcc Mo.

Our calculated formation energy per kink as a function of kink length lil~ is plotted in Fig. 6.

Note thzit two plateau regions of near constant formation energy are found. The first occurs

for 4b < l?~ < 14b where the two kinks still appear to be interacting rather strongly and the

formation energy is near 0.7 eV/kink. The second region occurs for l?~ > 14b, where the two

kinks appear to become weakly coupled and the formation energy assumes an asymptotic

value of 1.0 eV/kink. The total formation energy for an infinitely separated kink pair is thus

inferred to be 2.0 eV.
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VI. CONCLUSIONS

In summary, we have studied several important aspects of the energetic and motion of

<111> screw dislocations in bcc Mo, using multi-ion MGPT interatomic potentials combined

with a static atomistic simulation method. Our calculated (110) and (211) y surfaces are

qualitatively similar to those previously obtained with simplier radial-force models, but are

higher in energy by as much as 50%. This demonstrates the quantitative importance of the

angular-force contributions from the three- and four-ion MGPT potentials for dislocation

calculations in such metals. For an applied <111 >/{1 12} shear, our calculated Peierls stress

is about O.025p. The related energy barriers for moving a long straight screw dislocation on

the primary {110} and {112} slip planes have also been calculated. These results confirm

that motion on a {110} plane is much easier (maximum energy barrier 0.26 eV/b) than

on the {112} plane (maximum energy barrier 0.9 eV/b). Finally, it is found that for zero

applied stress, the formation energy for a stable kink pair on a nonstraight screw dislocation

approaches about 2.0 eV for kinks separated by a distance greater than 15Z3 while the

minimum or “annihilation” distance between two such ~kinks is about 4b. In the future,

we intend to extend this work to the study of kink migration and the calculation of the

stress dependence of the double-kink activation energy, both in Mo and in other bcc metals

such as Ta. It should also be possible to treat dislocation-dislocation interactions, including

junction formation and breaking.
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FIGURES

FIG. 1. Cross section of the rectangular slab-shaped computational cell used in the present

atomistic simulations. In region I all atomic positions are fully relaxed, while in region II atomic

positions are established according to fixed or periodic boundary conditions, as described in the

text.

FIG. 2. Generalized stacking fault (-y) energy surfaces for bcc Mo, in units of meV/~2. (a)

(110) plane and (b) (211) plane. The open, grey and black circles at the top on each figure represent
.

first-j second-, and third-layer atoms, respectively. Asymmetrical twinning and anti-twinning slip
.

along the [111] direction on the (211) surface is indicated as “t” and “a”.

FIG. 3. The <111> projection of the differential displacement (DD) maps for the mechanically

stable screw dislocations in bcc Mo. (a) the ground-state “easy’’-core configuration and (b) the

higher-energy “hard’’-core configuration. In the DD method the <111> component of the relative

displacement of neighboring atoms due to the dislocation (i.e., the total relative displacement less

than that in the perfect lattice) is drawn as an arrow between the corresponding atoms.

FIG. 4. Schematic representation of constrained <111> screw dislocation motion on the {110}

and {112} slip planes, showing the relevant energy barriers for bcc Mo, in units of eV/b. The sites

1 and 4 represent stable “easy’’-core dislocation positions, while sites 2 and 3 represent metastable

“hard’’-core positions, as discussed in the text.

FIG. 5. Schematic representation of kink-pair formation on a <111> screw dislocation. The

quantity R~ is the separation distance between the two kinks (i.e., the kink length) and dl and d2

are segments of <111> screw dislocations. The sites 1, 2, and 3 represent possible stable locations

for the dislocation segments, as discussed in the text.

FIG. 6. Calculated double-kink formation energy, in units of eV/kink, for a <111> screw

dislocation for bcc Mo with zero applied stress.
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