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Abstract

The Simulation Problem Analysis Kernel (SPANK) was originally described as a pro-
totype Energy Kernel System in a paper presented at the Second International
Conference on System Simulation in Buildings in 1986. Since that time, it has
undergone several enhancements and has been integrated into a larger software sys-
tem that may be more properly called a prototype Energy Kernel System for building
energy analysis, EKS/US. Among the enhancements is the capability to simulate
dynamic problems. Also, symbolic manipulation techniques are now used to generate
objects and macro objects from equations expressed as text. Currently underway is
the development of a graphical user interface. Newer developments include a
reevaluation of the semantics of dynamic problem definition, which will ultimately
result in much greater generality in user specification of numerical methods. This
paper reports on these developments and indicates directions for future EKS/US
development.

1. Introduction

Efforts were launched in 1985 to improve modeling tools for building energy systems
[Hirsch 1985, LBL 1985, Clarke 1986]. In this connection, the name “Energy Kernel
System” (EKS) was coined to refer to the envisioned software genre in. which the
basic elements (i.e., components or objects) were to be packaged along with tools
required to assemble them into arbitrary building simulation programs. An



outgrowth of that effort was the Simulation Problem Analysis Kernel (SPANK),
comprising methodology for describing and solving equation systems such as those
that arise in simulation problems. Although the EKS then had yet to be fully
defined, SPANK was intended to lie along the EKS evolutionary path.

It soon became evident that the fundamental EKS ideas admit to at least two
significantly different implementations. One of these, currently under development in
the UK [Clarke 1987], defines objects to be modules of substantial size and complex-
ity that may be extracted from existing software. The second possible implementa-
tion takes a lower-level view, with individual equations as atomic objects that are
interconnected to form larger entities (macro objects), which in turn are intercon-
nected to form simulation problems. SPANK has evolved into an EKS of the second
kind, referred to in this paper as EKS/US to distinguish it from its UK counterpart.

Although ambitiously described in earlier papers as a prototype EKS, SPANK is really
a software system for description and solution of general differential-algebraic equa-
tions, with one of many possible applications being to building energy system simula-
tion. EKS/US is a more complete embodiment of the original EKS/US with SPANK at
the nucleus providing the means for object interconnection and problem solution.

Figure 1 represents the overall organization of the EKS/US and shows the relation-
ship between EKS/US and SPANK. The user interacts with the system in four basic
ways: defining objects (e.g., component models); defining problems by linking objects
together; specifying run-time data (e.g., coefficients, time-varying data); and specify-
ing desired output. The objects are defined in text files, either as mathematical equa-
tions or as component models in Neutral Model Format [Sowell 1989]. These files are
processed symbolically with programs written in MACSYMA, producing C language
functions and objects that are stored in libraries. Problems are defined by intercon-
necting objects using the graphical user interface, producing a problem specification
file in the Network Specification Language (NSL) [Anderson 1986]. The nucleus ot
kernel is the dynamic SPANK program system. It works from the NSL description,
generating internal data structures based on graphs. Matching and reduction algo-
rithms are employed with these graphs to automatically devise an efficient solution
algorithm, producing an executable program for a particular problem. This program
reads constant and time-varying data from files, producing the problem solution.
The output processor reads the result file and generates graphical displays according
to interactive user requests.

The basic ideas and theoretical development of SPANK were described by Sowell,
Buhl, Erdem, and Winkelmann [1986], with extensions to include differential models
reported later by Sowell and Buhl [1988]. Buhl, Sowell, and Nataf [1989] have
expanded upon these ideas and analyzed their importance in relation to other simula-
tion methodologies. More recently, the use of symbolic manipulation in connection
with SPANK modeling has been demonstrated by Sowell, Nataf and Winkelmann
[1990], and Moshier and Sowell [1990] have reported semantic extensions to allow
more flexibility in describing dynamic models. Several application examples for
SPANK have also been reported [Sowell 1986, Sowell 1988, Sowell 1990, Nataf 1990].

The current paper summarizes recent developments in SPANK and reports new work
in progress on a graphical user interface. For the benefit of those unfamiliar with the
earlier work, we begin with a brief review of the motivation and basic ideas behind
the SPANK kernel.
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2. Review of SPANK Principles

Simulation programs differ with regard to how problems are specified and with
regard to how they are solved. SPANK differs from most currently available simula-
tion programs in both respects. In this discussion we will attempt to distinguish
between these differences.

2.1 Problem Specification

With respect to problem specification, SPANK is closest in kin to existing modular
programs used in simulating building service systems, e.g., TRNSYS and HYACSIM+
[TRNSYS 1983, HVACSIM+ 1985]. That is, SPANK allows the user to interconnect
component models in a flexible manner so that systems of arbitrary configuration
may be defined. However, it goes beyond the existing modular programs in several
ways. First, the atomic element in SPANK is an object representing a single equa-
tion, whereas other simulators use the subroutine, normally composed of several or
many equations, as the smallest element available to the user. Larger SPANK ele-
ments, called macro objects, are definable by the user in terms of equation objects.
One benefit of the SPANK approach is flexibility, because the user can define new
macro objects as the need arises. Another benefit is code reuse, because the same
equation object can be used in many macro objects. While it is true that TRNSYS or
HVACSIM+ users (who also happen to be FORTRAN programmers) can define new
component models, sometimes using all or part of existing ones, SPANK aims for a
seamless simulation environment in which the means of object, macro object, and
problem definition are identical, and code (i.e., existing objects and macro objects)
can be reused without modification.

Another important aspect of SPANK problem specification is that objects and macro
objects are defined as mathematical models only, rather than as algorithms. This
means that component models do not have a priori specification of input or output
variables, so that they can be interconnected arbitrarily. In contrast, most widely
used modular simulators employ algorithmic component models with prescribed
input/output relationships. Such models are inherently less flexible, limiting the
class of problems that can be defined without modification of the component models.
These arguments were originally put forth by Elmqvist [1978] and recently summar-
ized by Sahlin [1988] and Mattsson [1989].

In SPANK, components are interconnected merely by identifying object interface
variables with problem variables. Once all objects are thus interconnected, certain of
them are specified by the user to be problem inputs, thereby defining a specific prob-
lem. The only requirement is that the problem so specified be well-posed, i.e., have a
solution that is uniquely determined from the specified inputs. Although proof of
well-posedness in the general nonlinear differential-algebraic system remains an
unsolved problem in mathematics, for simulations of most physical systems it is
sufficient to be sure the number of problem variables (interface variables minus input
variables) is equal to the number of objects (i.e., equations), and that a complete
matching is possible between problem variables and objects. These requirements are
checked by the SPANK parser.

Summarizing, the important observations regarding SPANK problem specification
are: (a) there is a single implementation of a component model rather than one for
each possible set of input variables; (b) the user need not be concerned about which
are inputs and which are outputs when defining either component models or
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problems; (c) inverting a problem, i.e., changing which variables are inputs and
which are output, can be done without revising component models or interconnec-
tions; and (d) the user does not have to devise solution sequences, i.e., algorithms,
when defining either component models or problems.

2.2 Solution Methodology

The SPANK solution methodology is also unique. Because the problem is specified
entirely in terms of individual equations, graph algorithms can be employed to find a
solution sequence. This is a two-step process. The objective of the first step is to
select an appropriate equation to calculate each problem variable. To accomplish
this, SPANK represents the equation objects and the problem variables as the two
disjoint sets of a bipartite graph [Aho 1983]. The variables appearing in each equa-
tion object are represented as edges in the graph. When viewed in this way, the
selection of an equation for each problem variable is analagous to finding a complete
matching in the bipartite graph. There are several well known algorithms for finding
such matchings [Johnson 1988]. Currently, SPANK employs the Dinic algorithm
[Even 1979], although others would work as well. Upon completion of the first step,
there is a one-to-one relationship between equation objects and problem variables.
Also, the matching identifies the particular inverse of each equation that gives a for-
mula for the selected variable.

The objective of the second step is to determine a sequence in which the formulas
could be evaluated to determine a solution to the posed problem. This would be
straightforward if the problem was known to be acyclic, i.e., solvable without itera-
tion; one would simply sort the formulas to ensure that all right-hand-side variables
in each are determined by prior formulas (or by problem input). However, in most
cases this will not be possible due to situations like y=fi(x) when x=f2{y), i.e.,
cyclic problems. An iterative solution sequence must then be found. Because most
simulation problems are of this nature, it is important that the iterative calculations
be carried out as efficiently as possible. Since most iterative schemes, e.g., Newton-
Raphson, involve solving a linear equation set with a size equal to the number of
iteration variables, one way of improving efficiency is to reduce the number of itera-
tion variables. Therefore an important part of determining the solution sequence in
SPANK is finding a small number of iteration variables. This is in contrast to con-
ventional simulation programs that typically treat every problem variable as an
iteration variable.

Finding the SPANK solution sequence begins with the construction of another graph
representing the problem. This is a directed graph in which each equation object is a
vertex, with edges representing dependencies of an equation on problem variables. In
other words, the in-edges of a vertex represent the variables upon which the equation
for that vertex depends. Because of the matching, every vertex also represents a
problem variable, so every in-edge is an out-edge of another vertex (or an input vari-
able). A graph constructed in this manner is sometimes called a data flow graph.
Data flow graphs can be either acyclic or cyclic. In the first case there is an order in
which every vertex can be visited without encountering a previously visited vertex.
Obviously, problems that can be solved without iteration have data flow graphs
without cycles, while cyclic data flow graphs indicate the need for iteration.

Finding a small set of problem variables to serve as iteration variables is equivalent
to finding a small set of vertices, called a cut set, that break all cycles in the data
flow graph. While finding the minimum cut set in the general directed graph is
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known to be impossible'in polynomial time [Karp 1972], there are many well known
algorithms for finding small cut set in such graphs [Levy 1986]. SPANK employs an
algorithm developed by Levy and Low [Levy 1988]*.

Once the cut set is known, the data flow graph is modified by introduction of a new.
auxiliary vertex for each cut set member. These new vertices act as source vertices
for the outgoing edges of the cut set variables, thus breaking all cycles and creating a
directed acyclic graph. The system of nonlinear equations is then solved with the
Newton-Raphson method, using the acyclic data flow graph to guide the evaluation
of functions and derivatives. Specifically, a starting guess is made for each cut set
variable and assigned to the corresponding, newly introduced cut set node. The
graph is then traversed in ‘‘topological orderll, i.e., visiting only vertices whose
incoming edges emanate from already-visited vertices. When a vertex is visited, the
corresponding formula is evaluated. This process leads finally to calculated values
for the cut set variables. The differences between calculated and assumed values of
the cut set variables are treated as function values, upon which the Newton-Raphson
method operates. Currently, SPANK calculates derivatives numerically, again using
the acyclic data flow graph.

Observe that the dimensionality of the simultaneous set is the dimension of the cut
set, as opposed to the dimensionality of the original problem. This means a smaller
linear set needs to be solved to get the next estimate of the iteration variables. Typi-
cally, HVAC systems show very large reductions. For example a five-zone variable
air volume system with a simple algebraic zone model has a cut set of size three, giv-
ing a reduction of about 30:1; this is very significant since solution time is propor-
tional to the cube of the size of the linear set. Moreover, it often develops that the
cut set size grows slower than the number of zones so that larger problems have even
larger reduction ratios. For example, with simple algebraic zone models the cut set
size is independent of number of zones, so a 50-zone model would exhibit a reduction
of 300:1.

The preceding paragraphs describe the essential ideas employed in SPANK for solving
algebraic equations. As shown below, the same techniques apply directly to solution
of differential-algebraic systems. Many other extensions and refinements are possible,
some of which are described later in the paper.

3. Dynamic SPANK

3.1 Basic Ideas

SPANK was originally developed to solve simulation problems which could be
described by a set of nonlinear algebraic equations. SPANK has recently been
extended to allow the solution of dynamic problems — problems describable as a
mixed set of algebraic and first order ordinary differential equations (ODE’s).
SPANK’s new capability of solving differential-algebraic systems was designed to
exploit the existing algebraic solver and to be flexible and general in terms of prob-
lem definition and choice of integration methods.

* The Levy and Low work was in connection with the ENET program, the direct predecessor
of SPANK. See Sowell [1983],



A dynamic problem with Ar variables can be described by m algebraic and n
differential equations (Ar=n-+m):

0 =_sl{t, xv x2,—, xN)
0 =_72{t, x™ x2,..., xN)

0 = fmit, xv x2, ...,.xN) 1)
Ym+1 = 3\(z, X2,..., X))
mt2 = 2-11 X2,..., Xft)

Xj\i — gn(t, x5, x2,.., x°)

Since there are Ar+n variables (A problem variables and n derivatives), another n
equations are needed to form a well-posed problem. These are given by the integrat-
ing formulas for the dynamic variables xm+1,...,xN.

xm~+\, j+l = I(xm+\ j ‘An+1 j-1 = ~m-+lj+1> xm+Z ji **m)

xm~+2, 7+l = I/xm+2,ji xm+2, j—Ili ' Xm+2, y+HI> 2m—+2,i>°") @)

XN, j+1  I¢xN,j" XN, j—1' "+ XN, y+1> XN, ;)eee)

Here ; labels the j'th time step and / is the integrating formula. Open integrating
formulas (explicit methods) involve only past values of a variable and its derivative;
closed formulas (implicit methods) also involve the present (j+1) value of the deriva-
tive. Open formulas are decoupled from the rest of the problem and thus can be
solved individually. Closed formulas are coupled to the other problem equations
through xi j+| and must be solved simultaneously with all or part of the complete
equation set. Runge-Kutta integration schemes use integration formulas that require
evaluation of the derivatives (the (g in (1)) at several points within the integration
step, but past values of the variables and derivatives are not required. Runge-Kutta
methods are sometimes called single-step methods in contrast to the multistep
methods which use past values of problem variables and derivatives. Note that if a
predictor-corrector method is used, the equations in (2) comprise the correctors.
Predictors are always explicit formulas involving only prior values and derivatives
and therefore are not involved in the simultaneous solution; they are evaluated by a
strictly sequential process that yields starting values for the (possibly iterative) simul-
taneous solution of (1) and (2).

Literature on solving ODE’s focuses on individual equations, with much attention
devoted to the efficiency, stability, and accuracy of integration formulas and step-size
algorithms. The integration of a set of ODE’s is usually regarded as a straightfor-
ward extension of the methods for solving single ODE’s. The additional complica-
tions introduced by a mixed differential-algebraic equation set are rarely discussed.
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Runge-Kutta methods, for instance, are often favored for their flexibility, simplicity,
and efficiency. Because values at prior times are not used, a Runge-Kutta algorithm
can easily be started or restarted, and step size can be easily varied. The efficiency of
Runge-Kutta schemes depends on the ability to obtain a value for a derivative func-
tion gr at each subinterval point without iteration. While this can be done for a sin-
gle ODE or for a purely differential equation set, in a general differential-algebraic
system the gt will not be independent of the algebraic equations and evaluation of
the gt at each subinterval point will require a simultaneous solution of all or part of
the equation set. Thus the Runge-Kutta schemes lose part of their simplicity and
efficiency when extended to general differential-algebraic problems. Implicit mul-
tistep methods, on the other hand, w'hich may be less efficient and less simple for sin-
gle ODE’s or for systems of purely differential equations, generalize easily and natur-
ally to differential-algebraic systems.

Dynamic SPANK allows a differential-algebraic problem to be defined in a more gen-
eral way than (1), namely:

0 = /J3XJ,..., Xjy, eees XDj)
0= se¢) IRV’ ‘Rntl> eo> Tfy) 3)
0 = giaxi, ..., Xjy.xm 1, ..., Xj\p)

The integrating formulas are the same as (2). This more general problem statement
is a natural extension of the statement of the algebraic problem — dynamic variables
and their derivatives are not singled out for special treatment. Here there may be no
explicit {i» or a J; may be a function of other derivatives, potentially making direct
solution for derivatives impossible. From (2) and (3) it is evident that, for closed
integrating formulas, a dynamic problem involving /N variables and n derivatives
reduces to the problem of solving a system of N+n algebraic equations at each time
step. Creating dynamic SPANK then simply involves choosing an integrating for-
mula, devising a scheme for storing, accessing and updating the past values of the
dynamic variables and their derivatives, implementing a time step algorithm, and
invoking the old, algebraic SPANK on the full ((2)+(3)) equation set at each time
step.

3.2 Current Implementation

For the initial implementation of dynamic SPANK it was decided to concentrate on
seamlessly merging the integration process with the algebraic solver and making the
integration method available to the user by treating the integrating formulas as
SPANK objects. Inclusion of variable time step algorithms and the capability to
switch integration methods or orders within a calculation was postponed to a future
version of the program. Treating these capabilities in an object-oriented way such
that the time step and method switching algorithms are choosable and alterable by
the user will require extensions to the SPANK formalism and syntax. Definition of
such extensions is near completion and is discussed in Sec. 6, Semantic Extensions.

For the above reasons, a very simple step size algorithm has been implemented in the
current dynamic SPANK — a user-input fixed time step. For similar reasons,
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integration schemes requiring subinterval derivative evaluations (Runge-Kutta
methods) were disallowed. Although a Runge-Kutta integrator object could be writ-
ten for the current SPANK, it would not fit naturally into the existing SPANK formal-
ism. Such an object would need to invoke another object (the derivative formula),
and this ability would need to be hardwired into the integrator object. Thus the
capability to include Runge-Kutta methods was also deferred to a future version of
SPANK with a more general syntax. (See Sec. 6, Semantic Extensions.)

Aside from Runge-Kutta methods, the user has considerable flexibility in choosing or
writing an integration method. The methods are embodied in integrating formulas,
which are user accessible objects just like the normal problem equations. Any mul-
tistep formula can be used, and separate predictor and corrector objects are allowed.

In dynamic SPANK the past values of dynamic variables and their derivatives needed
by the integrating formulas are called “‘histories’. In order to include histories in the
SPANK formalism in a natural way, a separate object class (and data structure) for
histories was created, as well as the capability to pass history data from one object to
another as if it were the value of a problem variable.

In keeping with the decision to make histories “objects” in the eyes of the user, we
also chose to make them objects internally. That is, these special objects are stored
in the same data structure, i.e., a data flow graph, as normal equation objects. Thus
there is now a history class of nodes whose function is to obtain the appropriate his-
tory data structure and provide it to the appropriate integrator objects. History
nodes are created when a problem variable is denoted as a “‘history” in the problem
definition file.

Actually, histories are not the only ‘““‘special” nodes in the data flow graph. Even in
the original algebraic SPANK, for example, there are several special classes of node
that have no in edges. One class comprises input nodes. These nodes obtain values
for variables the user has designated as ““‘input” and pass them to the equation
objects. These values come from program data structures external to the data flow
graph, and are obtained either by querying the user at program initiation in the case
of fixed values, or by reading a file in the case of time varying inputs. Another spe-
cial node class comprises the cut set ‘““guess” nodes. These are the nodes duplicating
the nodes in the cut set which are used to pass initial or Newton-Raphson guess
values to the rest of the flow graph.

Integrator objects form two more special classes of node. Corrector objects are
treated like normal equation objects, but predictor objects need special treatment.
They must not be ““fired” (executed) when the full data flow graph is executed.
Rather, a subset of the data flow graph (all input and history nodes, followed by the
predictor nodes) is executed to fire the predictor nodes. The output from the predic-
tor nodes provide initial guess values for the corrector objects in the cut set.

Currently, corrector objects (yielding values for the dependent variables of the
differential equations) are always forced to be in the cut set. Fundamentally, this is
not always necessary, since (a) the corrector might be an explicit formula, or (b) the
derivative could serve just as well to cut the inevitable cycle even with an implicit
formula. However, we decided that explicit correctors are rarely used, and initial
guess values to start the iteration are problematical for derivatives because most
predictors are formulas for the dependent variable, not the derivative. In this
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manner we explain our decision to force corrector objects into the cut set, but we also
recognize the problem it creates, i.e., unnecessarily large cut set size when the user
wishes to use explicit integration. The issue will be reopened for future versions.

3.3 Procedure
The general procedure followed by dynamic SPANK is then:
(1) Set up and fill the problem data structure using the input from the user’s
problem description file.

(2) Perform matching of equations and variables.
(3) Perform reduction to obtain a cut set.
(4) Define a flow graph for the problem.

(5) Obtain an execution sequence for the predictor subset of the flow graph and
for the full flow graph.

(G) Set starting guess values for the cut set variables.
(7) Initialize the dynamic variable histories.
(8) Solve the flow graph at the initial time.

(9) Loop over the time steps:
while (t <= tlimit ) {

(a) Execute the predictor subgraph
(b) Increment time and obtain new values for time varying
inputs
(c) Set the cut set variable guess values using predictor
results (if variable is dynamic and there is a predictor for it)
or use last step values.

(d) Invoke the SPANK algebraic solver

(e) Update dynamic variable histories
} /* End of time loop */
P

Note that the integration of dynamic variables, aside from the optional predictor
step, is fully incorporated into the algebraic solver. Integration of a dynamic vari-
able is no different from solving an algebraic equation for a steady-state variable.

The present dynamic SPANK is already a useful real world tool. As part of EKS/US,
it has successfully solved a variety of dynamic problems using several different
integration methods (see Sec. 5, Applications). In the future we plan to increase its
sophistication and efficiency.

4. Symbolic manipulation in EKS/US

Symbolic manipulation in mathematical computation refers to automatic derivation
of a formula or sequence of formulas that solve a problem. Thus the ‘“‘answer” is a
formula or a procedure that can be used to calculate a numerical answer. This is
accomplished by manipulation of the symbols by special software, much as one would
do when manually deriving a formula using the rules of algebra. (Hence, the terms
symbolic manipulation or computer algebra are often used.) With the more familiar
alternative the calculation is entirely numeric, and the answer is one or more
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numbers. In all but the most trivial simulation problems, it is unlikely that a totally
symbolic solution will be practical. However, it is now recognized that there is also a
role for symbolic computation, even though numerical analysis will likely continue to
be the keystone of continuous system simulation.

The SPANK methodology offers several opportunities for symbolic manipulation.
Most importantly, inverse formulas needed by the solution process must be derived
from the object equations. This is a laborious task if done by hand, but one that is
readily automated with available symbolic manipulation software. Also, macro
objects representing models of physical components can be manipulated symbolically
to get the requisite atomic equation objects. This is especially important for com-
ponent models that are most easily represented by repeated instances of the same
equation, e.g., finite-difference models. Such models are tedious to write manually,
but are easy to express symbolically, and symbolic manipulation software can be used
to generate the models in the required form. Finally, SPANK objects ultimately must
be expressed in a compilable language (now C). This step can also be done readily
with symbolic manipulation software, producing text files in the format required by
the compiler or other software.

4.1 Symbolic Manipulation Software: MACSYMA

There are several widely available symbolic manipulation packages [REDUCE 1987,
MACSYMA 1983, MAPLE 1985]. The EKS/US symbolic manipulation software is
currently written in the MACSYMA command language. MACSYMY was selected pri-
marily because a public domain version is available. Also, it is probably the best-
known package, has good documentation, and runs on a variety of computers. The
essential requirement for the SPANK application is the ability to solve symbolically
for inverses of equations, together with general list processing capabilities needed for
construction of the SPANK files. Other MACSYMA capabilities, such as derivation of
symbolic derivative or integration formulas, are not currently used in SPANK.

A modest understanding of MACSYMA is prerequisite to wunderstanding the
SPANK/MACSYMA interface. A concise introduction using examples from applied
mathematics is provided by Rand [1984]. Here we provide an even more concise
introduction with emphasis on the aspects that are especially important in the
SPANK interface.

MACSYMA depends heavily on functions. Many fundamental functions are provided
with MACSYMA, and users may write their own functions as well. Since function
arguments can be of any type, they can be symbols or strings representing, for exam-
ple, equations. Thus, using the MACSYMA “‘solve” function, we can write:

solve(equation, variable);

Here the argument list has two elements, an equation and a variable that appears in
the equation, “‘solve” performs symbolic operations on the first argument to generate
an expression that is a formula for the second argument in terms of other variables
that may be in the equation. This is an important MACSYMA function used in the
SPANK interface; it is used to generate the inverses of object equations. For exam-
ple, if we consider an object representing the Stefan-Boltzmann law of radiation,
e=crT'4, then the inverses, i.e., the formulas for temperature, can be obtained with

the MACSYMA command:
12



solve(e=sigma*t'4,t);

This command could be issued interactively within the MACSYMA system or from
within a program written in the MACSYMA command language. In either case
MACSYMA will return the solution list for the variable 7, which in this example will

be:

[-(e/sigma)'(1/4),
(e/sigma)'(1/4),

-%I*(e/sigma)A(1/4),
%I1*(e/sigma)'(l/4 )

where %l is the imaginary number i. Knowledge of the physics of the problem must
be used to select which of the four, mathematically correct, inverses is appropriate.
The MACSYMA command language allows selection rules to be programmed, so this
step can also be automated.

The above list of symbolic solutions contains the one we want, along with two com-
plex solutions and another that suggests a negative absolute temperature. The
MACSYMA command language can be used to “filter” this list and give the single
solution that makes physical sense. A complete description of the details of this
operation would require more explanation of the MACSYMA command language than
we can present in this paper. Nonetheless, the flavor of the method can be seen from
the following code fragment which omits details:

/~Condition on the solution t (absolute temperature >0)*/
conditions: [t>0,e>0,sigma>0];
/*Put conditions in current data base*/

for condition in conditions do ( if condition™’true then assume(condition));

/*Solution filter*/

for solution in solutions do (
/*Keep real solutions™*/
if ( (member(%oi,listofvars(solution))="false
or realpart(solution)=solution)
/*Keep solutions within range®*/
and is(ev( subst(solution,t,t=0) ) )#false)
then ( goodsolutions:endcons(solution, goodsolutions))

print("Final Solution is ",goodsolutions);

In this code fragment, we assume the list of symbolic solutions found by solve is in
the MACSYMA variable called “‘solutions™, and the result is placed in ‘““‘goodsolution”.
The temporary variable ‘“solution” holds one member of solutions at a time as it is
tested against the list of ‘““‘conditions” that are defined before the loop begins. We
omit the rather intricate MACSYMA code that formats the goodsolution to SPANK
code. 13



The MACSYMA solve function is powerful, but not limitless. It is able to solve poly-
nomials up to the fourth order, and can handle equations requiring inversion of
exponential, logarithmic or circular functions. In common use, as in SPANK, these
forms, together with the standard operations (+,-,*,/), account for most of what is
needed, so the function meets the need.

MACSYMA can also solve for systems of equations, but this capability has practical
limits. For one thing, symbolic solution of systems of equations is computationally
intensive and can take inordinate amounts of computer time. Also, the solution is
less reliable than when inverting single equations. Indeed, if the system is nonlinear,
MACSYMA usually encounters severe problems, and often fails to find a solution at
all.  Although we have not yet found beneficial use for this feature in the
SPANK/MACSYMA interface, it is being considered for certain advanced capabilities,
such as merging of components.

An additional feature of MYCSYMA, which is quite useful, is its ability to evaluate
and simplify expressions. For example, the function RATSIMP(A) simplifies a polyno-
mial A and returns a ratio of two polynomials. The user can control the way the
evaluation and simplification is to be performed through the use of switches, common
environment variables, or optional arguments to functions.

MACSYMA can also check whether a proposition can be derived from a set of equa-
tions or other propositions, using its ‘““assume” facility. This feature is used in the
SPANK/MACSYMA interface to solve for piecewise-defined functions, where the vari-
ables to be solved for have a limited validity range.

While MACSYMA serves well in EKS/US, it is not ideally suited for the purpose.
Interestingly, the most significant disadvantage is not its weaknesses, but its power; it
is really more than is needed for the job. Because of its power it is large (roughly
twice as large as SPANK in terms of disk space). Ultimately, we will incorporate a
subset of MACSYMA functionality in a C or C++ program to support EKS/US.

4.2 The SPANK/MACSYMA Interface

The SPANK/MACSYMA interface is a collection of programs written in the
MACSYMA language. The basic module of this package is about 1500 lines of
MACSYMA code. This module allows the user to generate required C functions,
objects, and macros in the SPANK format by entering the equations in natural form
along with intended object names [Sowell 1990]. A second module (which invokes
the basic module) allows generation of a complete simulation file and all associated
objects and functions. This module is about 200 lines of MACSYMA code. Addi-
tional modules include one for generation of macros that are composed of many
instances of the same elementary object (500 lines), and one for merging of equations
to eliminate selected intermediate variables (500 lines). Thus, the entire package is
not a large program.

So far we have mentioned the central issues in the interface, namely solving equa-
tions using the ““solve” MACSYMA function, dealing with list of variables to solve for
using the list handling utilities, and checking whether they are within range using the
relational data utilities. The programs also include code devoted to more mundane
issues, such as formatting the solutions into SPANK or C syntax. It is notable that
MACSYMA has a built-in translator for arithmetic expressions in MACSYMA to
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FORTRAN, but not to C. Therefore a MACSYMA to C expression translator was dev-
ised using substitution rules. For example, x~y in MACSYMA becomes pow(x,y) in C,
and %Pl in MACSYMA becomes M_PI in C. Another problem was the limited for-
matted output capability of MACSYMA. In order to get text files in the format
needed by SPANK and the C compiler it was necessary to develop special file writing
functions using Lisp. Another issue that complicates the interface code is bookkeep-
ing. In the case of macro objects and global simulation generation, we have to keep
track of what variables are common among different equations to ensure proper link-
ing. Last, string handling routines are used for SPANK file generation and name gen-
eration. The syntax of the MACSYMA language is fairly natural and the function
names are usually self explanatory (although long). All of these secondary issues con-
stitute about 50% of the code in the interface.

The derivation of equations and generation of files is performed in a reasonable time
(from seconds to minutes, depending on system size). Some care must be taken to
ensure that MACSYMA is not launched into feasible but extremely time consuming
tasks. A typical example is the symbolic resolution of fourth-order polynomial equa-
tions. MACSYMA will do it, but will take an inordinate amount of time, ask for
much additional information, like the sign of some complicated discriminant, and
generate huge expressions. To prevent this, a careful user will avoid requesting such
equations to be inverted. This can be done at the SPANK/MACSYMA interface level
by declaring the variable appearing to the fourth order as a ““bad inverse,” and not
try to solve for it (unless it is short and simple, as in the Stefan radiation law above).
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5. Applications of EKS/US

EKS/US has been tested on a range of simple to complex problems in energy analysis.
We briefly describe here a subset of these problems to give the reader a feeling for

the scope of applications that are possible.

References are given when a more

detailed discussion of the problem has been published. Due to space limitations, we
show' results for only the last case, the lighting/HVAC problem.

5.1 Three-Node Room

Figure 2 shows a very simple
room model that was used as a
first test of dynamic SPANK
[Sowell 1988]. The three nodes
correspond to a massless ceiling, a
massive floor, and massless room
air. The floor and ceiling
exchange long-wave radiation and
convect to the room air. EKS/US
solved the problem of finding the
floor and ceiling temperature for
time-varying air temperature.
The block diagram, in Fig. 2(b),
shows the objects for this problem
and their links. In addition to
the floor, air, and ceiling objects,
there are predictor and corrector
objects for differential equation
integration. Sample results of

running this problem are shown
in Fig. 2(c).

(a)

INPUTS h

Air ,3

Figure 2:

(a) Three-node room model,

CEILING
OUTPUTS
PRED.
CORR.
FLOOR

Massless Ceiling

Massive Floor

(b) Block diagram showing objects and

links; T = node temperature, q = heat addition rate, h = convective

heat transfer coefficient, dt = timestep.
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T3:
Air temperature
n—a—a 0—a—o
294
T2:

Floor
temperature

290

288 _

time (hours)

Figure 2(c¢): Simulation results for 3-node room showing calculated floor tempera-
ture for user-input time-varying air temperature.

5.2 Thermal conduction

Finite-difference simulation was done for one-dimensional conduction problems with
variable conductivity, mixed boundary conditions, and bulk domain heat generation.
Both steady state and dynamic cases were treated with various spatial discretizations.
Figure 3 shows a typical configuration in which the heat flux is constant at one end
of the conductor and natural convection takes place on the other end.

Figure 3: One-dimensional thermal conduction model; q = heat flux,
t = temperature, k = conductivity, u = heat generation rate,
h = convective heat transfer coefficient, tinf = ambient temperature.
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5.3 Steady-state zone convection

Natural convection in a room
heated by a radiator was modeled
according to the Inard [1988] for-
malism. As shown in Fig. 4, the
room 1is divided into five cells,
each of which has a simple flow
pattern. The  primitive cell
objects are linked into a zone
macro object. The convective
conductances between subzones
are based on empirical correla-
tions. Given the heater output,
Qconv, and the temperature at
nodes 1, 3, and 5, EKS/US solved
for the intercell heat fluxes and
the temperature nodes 2 and 4.

5.4 Multiroom air flow

Figure 5 shows a schematic for air
flow between rooms driven by
wind pressure and stack effect
[Buhl 1989]. A wvariable number
of rooms are connected to each
other by a wvariable number of
orifices. The smallest problem
solved had one room with six
orifices, the largest had 24 rooms
with six orifices per room. Pres-
sures on the orifices connected to
the outside are input, and the
pressure difference at and mass
flow through each orifice are
obtained. Reduction factors
between 10 and 20 were obtained;
the number of iterations to solu-
tion varied from 8§ to 44.

Qconv

Figure 4:

Inard/Ngendakumana Convective

Radiator—-Heated Room

Partitioned into 5 Zones

mo Ta3

Five-cell model for in-room
natural convection;

T = temperature,

Q = radiator heat,

g = intercell convective
conductance.

3 Room Simulation with

Model

Orifice Equations and Stack Effect

ACdO

Outside

PO.TO.
rhoO.PfO

Figure 5:
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Room | Room 2 Room 3
P1.Tl.rhol P2.T2.rho2 P3,T3,rho3
m
m ACd2
ACdl
Pfl Pf2 Pf3

Air flow between rooms driven by
wind pressure, stack effect;

P = air pressure,

T = air temperature,

rho = air density,

m = mass flow,

ACd = effective orifice area.

ACd3

Outside
P4.T4.rho4.
Pf4



5.5 Hamburg Cell

The Hamburg Cell, shown in Fig. 6, is an exercise originally used to test the French
ZOOM program [Bonin 1987]. We are using it as a test problem to compare EKS/US
and ZOOM. The problem consists of a idealized three-zone room enclosed by four
three-node walls. Two of the walls face north and have constant outside tempera-
ture; the others face south and are exposed to time-varying outside air temperature
and solar radiation. Convection between room zones is modeled, but long-wave radi-
ation exchange between room surfaces is neglected. The only nonlinearity is intro-
duced by a room heater that is controlled by the average of the north wall inside sur-
face temperature and the temperature of one of the air cells. Preliminary results
show good agreement between EKS/US and ZOOM results on this problem.

Figure 6: The “Hamburg Cellll, an ““idealized” three-zone room enclosed by four,
three-node walls. Arrows (except for the one labeled ‘‘control”) indi-
cate energy transfer.
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5.6 Desiccant Cooling

Figure 7 shows a hybrid liquid desiccant system that provides cool, dry air to a space
[Nataf 1990]. The working fluid is a solution of lithium chloride in water. The sys-
tem contains an interchanger, a heater, and a cooler (all modeled with the LMTD
method), and a regenerator and conditioner (both of w'hich are modeled with a
Kathabar equation). It also contains two sumps, one of which is massive and, there-
fore, dynamic. In the EKS/US object-oriented approach, the conditioner and regen-
erator are instantiations of a single object class. Similarly, the cooler, heater, and
interchanger are instantiations of a single heat exchanger object class. The problem
consists of 83 equations. After reduction there were only 9 iteration variables.

W6 (64921 Ib/hr), T6,x6 T13 (55.04 degF
Concentrated LiCl/Water Solution Cold water from
auxilliary chiller
Conditioned Air (not shown)
T5 (66.7 degF Cooler
W4 (53175 Ib/hr|  Conditioner ( 9E)
T4 (76-96 degF)
H4 (0.0093)

Outside Air

Massless Sump

Interchanger
W3 (65874 Ib/hr) ,T3,x3 Til (140 degF
Dilute LiCl/Water Solution Hot water from boiler
(not shown)
Exhaust Air Heater
22 Ib/hr Regenerator

Tl (76. 8 de gF)
HI (0. )093

Return Ai

W12 (34127 Ib/hr

Figure 7:  Liquid desiccant cooling system. Unknown variables are shown in bold-
face and input variables in lighter type, with input values in
parentheses. W = mass flow, x = salt concentration, H = humidity
ratio, i = specific enthalpy, T = temperature, m = mass of solution in
regenerator sump.
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5.7 Boiler plus DHW Heater

In this problem, shown schematically in Fig. 8 a boiler and domestic hot water
heater are connected to the same chimney. Heat transfer in the chimney is modeled
using 1-d finite difference. EKS/US solved for the various temperatures and mass
flows given ambient temperature and pressure and the water temperature in the

boiler and DHW heater.

tbrickIS
Pout
rhoout
Chimney
tbrickO
tds
rhods
Boiler Stack DHW Stack
DHW Draft
Diverter
Boiler
Draft
Diverter
Domestic
Boiler Hot
Water
Boiler and DHW Heater
Figure 8: Boiler and domestic hot water heater sharing a common chimney;

m = air mass flow, t = temperature, rho = density, p = pressure.
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5.8 Constant Volume Reheat System

Figure 9 shows a constant volume reheat system used to test the early, steady-state
version of EKS/US [Sowell 1986]. Outside air is mixed with return air and passed
through a cooling coil, a heating coil, and a fan to become the zone supply air
stream. The zone has sensible heat gain, Etn, air infiltration, muwj, and water vapor
addition, water—in. In addition to the physical components the diagram shows
dashed blocks representing ‘‘data conversion” objects that transform enthalpy and
humidity ratio to drybulb temperature and vice-versa. This problem results in 23
equations and 38 variables, 15 of which were chosen as inputs (the circled variables in
the figure), leaving 23 to be solved for. After reduction, this problem has only one
iteration variable, the humidity ratio, w2, leaving the cooling coil.

qha f3n
I‘a parameters

i collector hi Wl ml cooling h2 w2 m2 heating h3 w3 m3

ho wo coil coil
outside
hdbw
‘tempi"
distributor hS WS mS zone
water in
Figure 9: Constant volume reheat system showing problem variables. Inputs are

circled, unknowns uncircled. T = temperature, m = mass flow,
h = specific enthalpy, w = humidity ratio, E = sensible heat gain,
RH = relative humidity, P = pressure.
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5.9 VAV Reheat System

Figure 10 shows a variable volume reheat system containing a preheat coil, cooling
coil, zone heating coils, supply and return fans, and nonlinear controls. The system
can serve an arbitrary number of zones; the 5-zone case is shown in the figure. In the
problem analyzed, zone loads were input. For dynamic simulation, there are four
iteration variables independent of the number of zones. The reduction factor can
therefore be quite high; for example, for 20 zones there are 264 equations and four
iteration variables, giving a reduction factor of 66.

Fan 1
Fan 2
ZONE 1 ZONE 2 ZONE 3 ZONE 4 ZONES
INTERIOR EAST SOUTH NORTH WEST

Figure 10: VAV reheat system serving five zones. HC = heating coil,
CC = cooling coil, C = control, T = type of control.
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5.10 Lighting/HVAC Problem

Figure 11 shows the schematic of a model used to study lighting/FTYAC interactions
[Sowell 1990]. Lighting is provided by fluorescent lamps in the plenum space of a
10,000-ft2 room. A translucent ceiling lens separates the plenum from the room
below. Supply air enters the room, mixes with the room air, then exhausts to the
plenum through small openings in the ceiling lens. Input power leaves the lamp by
shortwave (visible) and longwave (infrared) radiation and by convection to the ple-
num air. The radiative portion undergoes interreflection and transmission, and is
ultimately absorbed by surfaces in the plenum and the room. If the plenum air tem-
perature is greater than the room temperature, some or all of the convective portion
can also escape the plenum by conduction through the transparent ceiling to the
room air. Ultimately, all lamp power must be removed by the airstream after con-
vective transfer from the various solid surfaces in the room and plenum. We wish to
determine the surface and air temperatures, and the heat removal rate in the room
and plenum. Naturally, these will be functions of the mass flow-rate of air and the
supply air temperature.

For simplicity, we assumed that the dimensions in the horizontal plane are large rela-
tive to room and plenum height, thus making losses through walls negligible. It is
also assumed that the floor and ceiling are adiabatic, i.e., that no heat transfer occurs
between the ceiling and the room above or the floor and the plenum below. View
factors for radiation exchange were calculated with a separate program.

The convective heat transfer coefficients used assume free convection and were taken
to be constant. A later improvement to the model used recently measured correla-
tions [Spitler 1991] giving these coefficients as a function of supply air jet momen-
tum.

The above problem can be formulated as an n-node network in which each node is
viewed as a surface that can emit, absorb, reflect, and transmit radiant energy in the
short and long wave bands. Also, nodes can interact through surface-to-air convec-
tion, and through bulk flow convection. The system variables include node tempera-
tures, short and long wave radiosities and irradiations at each node. The basic physi-
cal laws governing the system are those of diffuse radiative transfer, convective heat
transfer, and conservation of energy and mass [Sowell 1973].

The block diagram, Figure 12, shows the macro objects for this problem and their
connections. The equations corresponding to these objects are given in [Sowell 1990].
By virtue of designation of particular system variables as “‘inputs”, Fig. 12 also
represents a particular “‘problem”. One problem that can be represented (which
corresponds to case (1), below) is:

Given:

All geometric and property data, and convection coefficients.

The short wave emission at each surface, JOS.

The source energy addition/removal rates at all surface nodes and plenum air
node, QO(1)—QO0(6).

The temperature at the room air node, T(7).
Find:

The temperatures at all surface nodes and plenum air node, T(1)—T(6).
The heat addition/removal rate at the room air node, QO0(7).
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The short and long wave radiosities and irradiations at each node.

An important feature of EKS/US is that different problems on the same system can
be specified without structural changes in the model. For example, if we wished to
specify a surface temperature and solve for the required heat addition/removal rate
we could simply designate a different input set.

Dynamic simulation results for some of the problem variables are shown in Fig. 13.
Two cases are shown: fixed room air temperature and fixed supply air temperature.
For this study the air flow rate was set at 1.0 cfm/ft2. A run period of 200 hours was
chosen, with a time step of 6 minutes. Initially, all of the node temperatures are near
the steady-state lights on condition. Then, at time zero, the lights are turned off and
remain off for 50 hours, during which time the system approaches a steady-state

lights off condition. The lights are then switched on with an input power of 3.5
W/1t2,

The general behavior observed in Fig. 13 is an initial decrease in temperatures, fol-
lowed by an asymptotic approach to equilibrium lights-off values, then a relatively
rapid increase at 50 hours when the lights are turned on, followed by an asymptotic
approach to equilibrium lights-on values. The initial decrease is due to the fact that
the temperature starting values chosen for the simulation were above the equilibrium
lights-off values.

This example shows that EKS/US can be used to solve complex, nonlinear dynamic
heat transfer problems involving simultaneous radiative, conductive and convective

Processes. i,,sulated
Lamps - Node 2 plenum o
O 0] 0] O Air O 0O -
Lens Top - Node 3 Node 6

Lens Bottom - Node 4

Room Air - Node 7

Air Flow

Floor - Node 5

Insulated

Figure 11: Lighting heat transfer problem: vertical section through room
and plenum. 25



Figure 12:

Block diagram showing objects for the lighting heat transfer problem.
Dashed lines indicate inputs or system variables shared by objects.

T = temperature, J = radiosity, FJ = irradiation,

R = reflectance, tau = transmittance, A = area,

U = conductance, QO = heat addition rate,

Qr = net radiant heat transfer rate.
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Figure 13:

Supply Air

Temperature g 100
&
)
¢}
69.8 _ Supply Air
Temperature
____________ _ 69.0 T S S S
100 150 200 180 0 50 160 180 200 250
time (Hours) time (Hours)
Ceiling Ceiling
Temperature Temperature
time (Hours) time (Hours)
Lamp
Temperature Temperature
time (Hours) Hours

Simulation results for the lighting heat transfer problem. The lights
are turned on at t = 50 hours. The supply air flowrate is fixed at 1.0
CFM/sf. For the left-hand graphs, supply air temperature varies to
maintain a fixed 75F room air temperature. For the right-hand graphs
the supply air temperature is fixed at 70F.
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Figure 13  Simulation results for the lighting heat transfer problem (Cont.)
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6. Semantic Extensions
6.1 Current Limitations

The original design of SPANK was based on static models. As such only algebraic
systems could be specified. As demonstrated above, we were able to implement
significant dynamic simulation capability with minor modifications to the original
syntax. However, the user is currently limited to a small range of numerical integra-
tion methods, namely those with predictors and correctors employing three or fewer
previous values of variables and derivatives and a fixed, global time-step. Although
Runge-Kutta integrators can be specified, doing so is awkward, requiring the integra-
tor object to involve elements of the particular problem rather than being a semanti-
cally distinct entity. More complex integration schemes, including those with
separate start-up methods, cannot be specified. Moreover, certain kinds of dynamic
systems cannot be specified, such as those with some constraints applying only at cer-
tain times or under certain conditions depending on system state.

Other current limitations, unrelated to dynamics, have to do with the way objects,
macro objects, and problems are specified. The current implementation lacks unifor-
mity in the way these entities are seen by the user, imposing unnecessary burdens on
the user to keep track of the differences between various constructs which semanti-
cally ought to be treated the same. Similarly, in the current implementation there are
artificial differences between “scalar” values, such as temperature, and ‘“‘compound”
values, such as air flow, which are characterized by several variables, e.g, tempera-
ture, humidity ratio, pressure, etc. It is often the case that statement of a problem is
more naturally expressed in terms of such compound values, but the current imple-
mentation forces the user to decompose them into their constituent scalar values.

Consideration of these needs led to reevaluation of the semantics of dynamic simula-
tion as the first step toward a completely new specification language. Below we
present a specification for this new language, called the Component Definition
Language (CDL).

6.2 Component Definition Language (CDL)

In the following section, we describe a grammar for CDL along with an informal
semantic specification. We use certain conventions for describing the grammar. In
particular, keywords are always typed in bold face, e.g., object is a keyword. Like-
wise, punctuation marks in the object language are typed in boldface. Thus, “(” is
an object language punctuation mark as distinct from ‘(’>, which serves to group
constructs together in the grammar. Syntactic variables (think of them as names for
syntactic categories) are denoted by italic typeface enclosed in angle brackets, e.g.,
<type> is a certain syntactic category. In the grammar, a construct with a super-
script asterisk means zero or more occurrences of the construct, a superscript plus
means one or more occurrences. Vertical bars separating constructs means exactly
one of the constructs must occur. Finally, a construct in square brackets is optional.

6.2.1 The Basic Semantic Categories

The semantic entities of CDL fall into seven basic categories: kinds, classes, objects,
types, values, variables, and connections. Roughly speaking, the relation of class to
kind is the same as that of value to type. That is, a type is a certain collection of
values all having similar shape. Likewise, a kind is a certain collection of classes all
having similar shape.
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The semantic notion of a value is fairly clear. Likewise, the notion of a variable in
CDL is essentially the familiar notion of a variable in programming languages.

Types are built up inductively from a collection of simple types (double, real, int,
etc.) together with a construct essentially like the “struct” type in C. Any value
must fall into one of these types. Likewise, any variable has an associated type con-
straining the possible values for that variable. The kinds are also built up induc-
tively from structured types together with a construct that describes functions from
kinds to structured types.

The semantic intuition for objects is that they correspond to physically real objects
obeying certain laws, or constraints. For example, an object might correspond to a
specific fan in a system. And there might be more than one fan obeying the same
constraints. By contrast, a class corresponds to a collection of all similarly behaving
objects. So we could have a class named fan which embodies the physical
specifications of all fans of a particular sort. Then, we might have objects fan-a and
fan-b both of the class fan. Thus fan-a and fan-b are distinct objects (so they may be
in different states at a given time), yet they both obey the same laws. Somewhat
more formally, in the simple case a class is a collection of laws. However, a class may
depend on other classes in its definition. So, in general, a class is a function from n-
tuples of classes to a collection of laws. [N.B. n may be zero here, taking care of the
simple case.] An object is a variable of a structured type, constrained by the laws of
some class.

A connection is an equality constraint between (fields of) variables, together with an
indication of the role that the constrained variables play in a network. In particular,
a connection tells us where the value for that variable is obtained, i.e., from exo-
genous sources, by feedback from solution of the network, as unknowns in the net-
work that can be solved iteratively, or as unknowns that must be solved explicitly.

6.2.2 Naming Things

As usual, we have to provide some sort of collection of names for the entities of a
category. For most purposes the collection of C identifiers will suffice. So we have
our first (informal) grammar rule:

<identifier> ::= The usual C identifiers

A variable is named by an identifier, as are objects and classes.

[N.B. An object will go by the same name as the variable of which it is composed.]
The names of types are built inductively following the inductive definition of types.

<type=> <simple-type> | <struct-type>
<simple-type > double | int | bool | ...
<struct-type> (<wped-id>(, <typed-id>)*)
<typed-id> <identifier> [<type>]

If a <typed-id> is an <identifier> only, it is implicitly assumed to be of type dou-
ble.

Because <#ype> expressions can be rather verbose, we also allow abbreviations to be
defined by the following construct.

<type-def> ::= type <identifier> = <type>
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And we allow <struct-type> to use these abbreviations. Thus, we add a clause to
the grammar rule for <struct-type>:

<struct-type> ::= <identifier> | <type-id> (, <type-id>)%*

Similarly, kinds are defined inductively, allowing for defined abbreviations.

<kind> <identifier> | <struct-type> | [<kind-list>> > <struct-type>]
<kind-list> ::= <kind>(*<kind>)*
<kind-def> kind <identifier> = <kind>

If x names a variable of structured type that has a field named field, then we can
indicate the value of that field by writing x.field. In general, names of values
obtained in this way are called descriptors.

<descriptor> ::= <lidentifier= (. <<identifier>)*

Connections do not have to be named. However, if the constrained fields are to be
used as a single unit elsewhere, then they must share a name. So a connection can
optionally be named by a simple <identifier>. The effect of this is to associate a
variable with the name <identifier> with the connection.

6.2.3 Declaring Objects

An object is declared by specifying its name, and its associated class. Remember
that a class may depend on other classes, so specifying a class may involve parame-
ters. Thus,

<<declaration> declare<tden”7ier>(, <identifi,er>)[<param-list>\’,
<class-instance> = {<identifier> | <class>)\<param-list>]
<param-list> = [<class-instance > {\<<class-instance>Y][

6.2.4 Making Connections

To specify a connection, we give a keyword indicating the relation of the constrained
fields to the advancement of time, followed optionally by a name for the connection,
followed by a list of fields of variables (typically, fields of objects) that are to be
equated, and finally followed by a specification of how the value of the connection
should be obtained from previous time steps (if this is appropriate).

There are five sorts of connections: inputs, feedbacks, unknowns, clocks, and signals.
Inputs are essentially initial values. They do not change over time. Feedbacks are
values that cannot be solved for; they are used to communicate values from one time
step to the next. Unknowns are values that are suitable for solving at a time step.
Clocks are mechanisms for advancing the system time. Signals are values similar to
unknowns, but which are not allowed to enter into the iterative solution for unk-
nowns. Typically, signals will be of some discrete type, e.g., boolean, so that
Newton-Raphson would not make sense if it involved values of that type. In addi-
tion to these five sorts of connection, we allow for a “link” connection, which simply
inherits its sort from the fields it equates. The grammar for the connections is this.

<connection”™ <link> ' <unknown> | <feedbacks
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<clock> | <input> | <signal>
<link> link <connection-id>{ <descriptor-list>)\

<unknown> unknown <connection-id>{ <descriptor-list>)
predict-init <ea:pr>predict-next <<expr>;

<feedback> ::= feedback <connection-id>( <descriptor-list>)
init <expr>next <expr>;
<clock> clock <connection-id>( <descriptor-list>)
init <expr>next <expr>]
<input> := Input <connection-id>( <descriptor-list>)\
<signal> ::= s\gna\<connection-id > (< descriptor-list>)\
<descriptor-list> <descriptor>{,<descriptor>)*
<connection-id> <identifier> | <typed-id>
<expr> == Any C expression with variable names drawn

from the names of connections.

We assume that several clocks can be extant in a simulation. This means that the
current time should be available to the system as a specially named variable, say
current-time. The value of a clock connection will advance only when it is
scheduled to tick. Thus, if t is a clock connection, then the boolean expression
current-time = t will evaluate to true if and only if the clock t has just ticked.

6.2.5 Defining classes

A class is defined by giving a <struct-type> called the <interface>, and then speci-
fying constraints on values of the interface type. Typically, the interface has two
parts: the object interface and the class interface (the class interface may be empty).
The object interface simply tells us the type of objects of the defined class. The class
interface tell us that the class itself has a variable associated with it. This is for the
purpose of specifying information shared amongst all objects of a particular class.
The class interface is similar in spirit to the notion of a class variable in Smalltalk,
except that class variables in Smalltalk are typically hidden from all objects outside
the class, whereas a class interface is necessarily visible to the rest of the system.

The grammar for class definitions is the following.

<class-def> <identifier>=<class> <identifier>\
<class> (<simple-def> | <macro-def> | <switch-def>
<simple-def> simple class <interface>

<inverse>*end

<macro-def> class| <param-spec>\ <struct-type>
[class interface. <struct-type>]
<library>*
<definition>*
<declaration>*
<comnnection>*
<equation>*
end

<switch-def> switch[<param-spec>]| <struct-type>
[class interface<struct-type>Jis
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<library>*
<definition > *
<cases>*

end <identifier >\

<definition> = | <interface-de}> | <kind-def>

The syntactic category <Ilibrary> will be explained below. The <param-spec> part
of this definition indicates (optionally) the kinds of classes on which the macro class
depends. So, a <param-spec> is given by

<param-spec> [<identifier>:<kind> (-, <identifier>:<kind>)*]

And <cases> is essentially like the switch construct in C.

<cases> 1= (<bool-expr>: <class-instance>-)*
else: <class-instance>;

Here <bool-expr> is just an <expr> that returns a boolean value. The semantics
of a switch is that at each time step, the boolean expressions are evaluated in order
until the first true expression is found. Then the switch class is constrained as if it
were defined by the accompanying declared class. If all expressions are false, the
“else:” class is used instead.

6.2.6 Equational Constraints

In defining a macro class, we can specify that certain variables are constrained by an
equation. The effect of this is essentially to define an anonymous simple class and an
anonymous object of that class, the interface of which is connected to the variable
occurring in the equation.

<equation> eqn <expression> = <expression>end eqn;

6.2.7 Libraries

For the sake of modularity, a collection of definitions can be stored in a separate file
to be used in other definitions. So, a /ibrary is simply a file containing
<definition>*.To refer to a library in another file, we have the construct

<library> Xihrary <filename>\

where <filename> is the name of a file containing a library.

6.2.8 Systems

A system is a special macro class, analogous to the main procedure in a C program.
One and only one system must be specified in any simulation. When SPANK runs a
system, it instantiates an object of the system class with initial values determined by
the user, and then runs the simulation. A system is specified by the following.

<system> = <library>*
system <identifier > [<interface>J}is
<library> *
<definition> *
<declaration> *
<connection> *
end <identifier>.
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6.3 Example

The ideas formalized above are made concrete in the example shown in the Appen-
dix. There we show a CDL problem specification for the three-node room problem
described in Sec. 5.1, Three Node Room. Comments in the code should allow the
dedicated reader to see how the CDL specifies the problem. We will not describe the
example line by line, but a few comments are in order.

(33

First, note that the system definition (called ‘‘room”) is completely in terms of
objects that have intuitive meanings, strongly coupled to the physics of the problem.
Numerical details are contained within the objects, out of view at this level. Yet the
knowledgeable user can, for example, change to a different integration method,
presently Milne4, by changing the argument in the declaration of the massive object,
“floor”. Also note that we can link the room interface variables h, alpha, sigma, T,
T air, and dt directly to interfaces of objects comprising the system wherever
needed; this is exactly the same as when defining a class in terms of simple classes (or
other classes), thus demonstrating the intended seamless transition from class

definitions to problem definitions.

Classes used in the system definition are defined in separate CDL files referenced with
the keyword library. These files are included in the Appendix. For example,
energy.cdl contains all classes pertaining to the problem physics, while Milned has
those for the Milne fourth order integration method. In energy.cdl we see how simple
classes are defined as a single equation. This equation is placed directly in the CDL
file, in contrast to the current SPANK implementation which requires an intermediate
C function definition. In the same file we see the class ““air” defined in terms of the
simple class ‘““‘conductive heat”, augmented with one equation. In the class ‘“‘mas-
sive” we see that classes can also employ other classes in their definition.

7. Graphical User Interface

Currently users of EKS/US must express their problems textually using the Network
Specification Language. While this language has served well for the development and
testing of the program, it leaves much to be desired as an intuitive and efficient user
interface. Currently under development is a graphical user interface called the Ker-
nel Graphical Editor (KGE) that will come closer to these goals.

The basic idea of the KGE is that objects, macro objects, and problems are specified
by the user by manipulation of screen icons. Available object classes are selected
from libraries, using a browser, and then appear as icons on a menu, from which they
can be selected (instantiated) and placed anywhere on the screen. Once placed, they
can be interconnected to form a macro object or a problem. The objects can also be
moved, deleted, or modified in any way. Also, any object can be expanded to show
internal structure when needed. When the problem image is complete, the KGE will
create a CDL file for SPANK processing. The implementation employs the X-
Windows system in order to allow maximum portability. Figure 14 shows a prelim-
inary KGE screen.
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Figure 14:

/*:3 sum2 "o = il + i2¢
0.2;
<0,0> (0,200; <lu0,2u>-> \1"
, (40,100) (60,100), (50,9
0) (50,110) ;
X -+ 11 il (-20,50) (0,50)

12 12 (-20,150) (0,150>
o o (120,100) (100,100; ;

DJ v

define sum2 {
o = suM2 O\ il, i2 );
X 11 = sum2_i( o, 12 );
12 = sum2 i( o, il );

#ifdef CC
double

sum2 o ( il, i2 ) double 11, i2 ;
return ( il ¢ i2 > ;

double
sutr2 i < o, il ) double o, il ;

return (o - il ) ;

>

stendi £

Example screen from the Kernel Graphical Editor (KGE), the graphical
user interface for EKS/US. The three windows show: harmonic oscilla-
tor problem with multiplier, sum, and integrator objects and links
(upper left); the ‘“sum” macro object showing its constituent objects
(lower middle); textual input for the “sum” object with associated C
code. Buttons along the left side of the screen perform operations such
as positioning objects in a window, drawing links between objects, and
grouping objects into macro objects.
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8. Conclusions

The current state of the U.S. Energy Kernel System has been reviewed, and its rela-
tionship to the Simulation Problem Analysis Kernel (SPANK) has been described. It
currently has the capability to simulate general differential-algebraic systems, with
modest flexibility in specification of numerical methods to be used. Also, objects,
macro objects, and problems can be described in concise textual form and symboli-
cally manipulated to create needed SPANK and C code for the simulation. Ten
application problems that have been solved were briefly discussed. Finally, we
described current work aimed at improving EKS/US capability and user interaction
mechanisms. The Component Definition Language is the result of reassessing the
semantics of dynamic model specification and, when implemented, will allow more
complex system models to be expressed, as well as affording greater flexibility in
specifying numerical methods. The Kernel Graphical Editor, currently under
development using the X-Windows protocols, will allow users to define simulation
problems on the computer screen using pointing devices, rather than expressing the
problem in a textual language.

EKS/US will be released for public use in 1992/93 after we have completed the user
interface, implemented the Component Definition Language, and built up the object
library. In parallel, we plan to integrate the EKS/US approach into the SYSTEMS
and PLANT portions of the existing DOE-2 hourly energy analysis program [BIRD-
SALL 1990]. The resulting program, to be called DOE-3, will allow object-oriented
techniques to be used in the context of a whole-building program that many users are
already familiar with. With DOE-3 users will be able to configure and model
advanced HVAC components and systems that cannot be simulated with DOE-2,
while retaining DOE-2’s powerful LOADS program.
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10. Appendix: Example of Problem Specification in CDL

/* File: room.cdl */

/* A system modeling energy balance in a room with
(1) massive floor,
(2) massless ceiling,
(3) height/floor-area negligible.

as described in Sec. 5.1 and in [Sowell 1988].

We assume that the floor, air and ceiling are held at a constant temperature TO prior
to the simulation; and at time tO the air temperature is instantaneously changed to
T ajr, and is held constant thereafter. The model then simulates the ensuing loads.

(1) The ceiling is modeled by the energy balance equation for a massless object:
0 = sigma*(T_rad**4 - T**4) + h*(T_air - T);

(2) The air is modeled by the air energy balance equation
qgo = h*(T_surfacel - T) + h*(T_surface2 - T);

(3) The ceiling is modeled by the energy balance differential equation for a
massive object:

alpha*T = (sigma*(T_rad**4 - T**4) + h*(T_air - T)
where T = integral of T' dt;

with
h = convective film coefficient
alpha = floor thermal capacitance
sigma = Stefan-Boltzmann constant

In this file, the integration in (3) is done by a 4th order Milne method. Comments
indicate exactly where changes must be made to change to another integration
method.

7

library stdio.cdl /* a library that implements the standard i/o */

library energy.cdl /* read in the energy balance objects */

library Milne4.cdl /* read in the 4th order Milne method. Change this to
"library RungeK2.cdl" for 2nd order Runge-Kutta */
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system room(h, alpha, sigma, T, T air, TO, tO, dt)
declare ceiling massless;

declare air air;
declare floor massive[Milnedj; /* Replace "Milne4" with "RungeK2"

for 2nd order Runge-Kutta */
declare report-load reporter; /* reporter is an output class defined in stdio.cdl
that records its interface at each time step */

input h(room.h, floor.h, air.h, ceiling.h); /* convective film coefficient */
input alpha(room.alpha, floor.alpha); /* floor thermal capacitance */
input sig(room.sigma, floor.sigma, ceiling.sigma);/* Stefan-Boltzmann constant */
input TO(room.TO, floor.TO); /* As everything else is massless, the floor is

the only object that "remembers" the

temperature prior to simulation time */
input T air(room.T air, floor.T air, air.T, ceiling. T air); /* air node temperature */
input dt(room.dt, floor.dt); /* time step (in hours) */

link qo_air(air.q, report-load.x); /* load */
link T floor(floor.T, air.T_ surfacel, ceiling. T rad); /* floor temperature */
link T ceiling(floor.T rad, air.T_surface2, ceiling.T); /* ceiling temperature */
link t(floor.time, report-load.time); /* communicate the time from

the floor to the reporter */

end room.
* ‘/

/* File: energy.cdl */
/*

This file contains definitions for various heat balance equations. As of now, we have
three kinds implemented: massless, air and massive. The definitions should make
the underlying models evident.

CONVENTION: Loads transfers will always be measured as positive values indicat-
ing incoming heat.

Vv

radiant-heat = simple class (T, T rad, q, sigma) /* radiant heat transfer */
q = sigma*(T_rad**4 - T**4)
end radiant—heat;

conductive-heat = simple class(T, T cont, h, q) is /* conductive heat transfer */
q = h*(T _cont-T)
end conductive—heat;
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air = class (T, T-Jsurfacel, T surface2, h, q)
/* An air object obeys the heat balance:
q = h*(TI1-T) + h*(T2-T)

where ¢ is the load,
T is the temp of the air object,
Tl and T2 are temps of surfaces.

\%

declare slcond, s2cond conductive heat;

link T(air.T, slcond.T, s2cond.T);

link T surfacel(air.T_surfacel, slcond.T_cont);
link T surface2(air.T_ surface2, slcond. T cont);
link h(air.h, slcond.h, s2cond.h);

eqn
air.q = sl.q + s2.q
end eqn;
end air;

massless = class(T, T rad, T air, h, sigma)
/* A massless object obeys the heat balance:
0= sigma*(T_rad**4 - T**4) + h*(T air - T)

where T is temp of the object,

T air is temp of air,

T rad is temp of nearby radiator
7

declare r radiant heat; /* q = sigma*(T_rad**4 - T**4) */
declare ¢ conductive heat; /* q = h*(T _cont-T) */

link h(massless.h, cv.h);

link sigma(massless.sigma, rd.sigma);
link T(massless.T, cy.T, rd.T);

link T2(massless.T rad, rd.T);

link T3(massless.T air, cv.T cont);

eqn
0=rq+cq
end eqn;

end massless;
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massive = class[Int[ODE(y, y’, t)|(y, y\ t, dt, yO, tO)|(T, T rad, T air, t, dt, TO, tO, h. sigma, alpha)
/* A massive object obeys the heat balance equation:
alpha*!" = sigma*(T_rad**4 - T**4) + h*(T _air-T)

where T is temp of the object,
T air is temp of the surrounding air
T rad is temp of nearby radiator

Because this is a dynamic object (involving T’), it is only well defined when given a
method of integration Int. The class Int has the interface (y, y\ t, dt, yO, tO) and
depends on a class ODE with interface (y, y’, t). Specifically, this definition assumes
that the integrator doesn’t require any start-up values beyond the initial conditions:
(yO, to).

7

Mass ode = class(y, y’, t) class interface (T rad, T air, h, sigma, alpha)
declare r radiant_heat; /* q = sigma*(T_rad**4 - T**4) */
declare ¢ conductive heat; /* q = h*(T_cont-T) */

link sigma(Mass_ode.sigma, r.sigma);

link h(Mass_ode.h, c.h);

link y(Mass_ode.y, rd.T, ¢.T); /* T is renamed y for the ODE */
link T rad(Mass ode.T rad, r.T rad);

link T air(Mass_ode.T_air, c.T_cont);

eqn
/* T is named y for the ODE */
Mass ode.alpha * Mass ode.y' = r.q + c.q
end eqn;

end Mass_ode;

declare mass Int[Mass_ode]; /* the mass object integrates y by the
method implemented in the class Int */

link T(massive.T, mass.y); /* the integrated variable y is really T */
link T air(massive.T air, Mass ode.T air);
link T rad(massive. T rad, Mass ode.T rad);
link t(massive.t, mass.t);
link dt(massive.dt, mass.dt);
link tO(massive.tO, mass.tO);
link TO(massive.T0, mass.yO);
link sigma(massive.sigma, Mass ode.sigma);
link alpha(massive.alpha, Mass_ode.alpha);
link h(massive.h, Mass ode.h);
link T’(massive.T’, mass.y’);

end massive;
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/* 7
/* File: Milned.cdl */

y

In this file we implement a 4th Order Milne integration method.
See Conte and DeBoor p385 for an explanation of the method.

7

type diff _eq _type = (y, ¥\ t);
type int_diff eq type = (y, t, yO, tO, dt);

Milne4 = class[ODE:diff eq type](int_diff eq type)

declare eq, eq next of class ODE; /* eq is used in the corrector part,
eq_next in the predictor part */
declare p simple class(y_kpl, y km3, f k, f kml, £ km2, dt) /* 4th order Milne predictor */
y_kpl =y km3 -f4*dt*(2*f k - £ kml + 2+f mk2)/3;
end p;

declare ¢ simple class(y_kpl, y_kml, f kpl, f k, f kml, dt) /* 4th order Milne corrector */
y _kpl =y kml + dt*(f kpl + 4*f k + £ kml)/3;
end c;

declare timestep sum;

unknown y(Milned.y, c.y kpl, eq.y) init yO predict y next; /*y is solved for by corrector */
unknown y’(c.f kpl, p.f k, eq.y’) init O predict y’ next; /* y' is solved for by corrector */
clock t(Milne4.t, eq.t) init tO next t next;

link dt(Milne4.dt, c.dt, p.dt); /* use constant time step of dt */
link yO(Milne4.yO); /* initial value of'y */
link tO(Milne4.tO); /* simulation start time */

feedback y k:ml() init yO next y; /* cascade historical values of y */
feedback y_km2(c.y_kml) init yO next y_kml;
feedback y _km3(p.y_km3) init yO next y_km?2;

feedback y’ kml(c.f k, p.f kml) init 0 next y’; /* cascade historical values of y' */
feedback y’ km2(c.f kml, p.f km?2) init 0 next y’ kml;

unknown y_next(p.y_kpl, eq next.y); /* predicted next value of y */

unknown t next(eq next.t); /* next time */

unknown y’ next(eq _next.y’); /* predicted next value of y’
(calculated from y_ next and t next */

eqn
t next =t + dt
end eqn;
end Milne4;
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