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Abstract
The Simulation Problem Analysis Kernel (SPANK) was originally described as a pro­
totype Energy Kernel System in a paper presented at the Second International 
Conference on System Simulation in Buildings in 1986. Since that time, it has 
undergone several enhancements and has been integrated into a larger software sys­
tem that may be more properly called a prototype Energy Kernel System for building 
energy analysis, EKS/US. Among the enhancements is the capability to simulate 
dynamic problems. Also, symbolic manipulation techniques are now used to generate 
objects and macro objects from equations expressed as text. Currently underway is 
the development of a graphical user interface. Newer developments include a 
reevaluation of the semantics of dynamic problem definition, which will ultimately 
result in much greater generality in user specification of numerical methods. This 
paper reports on these developments and indicates directions for future EKS/US 
development.

1. Introduction
Efforts were launched in 1985 to improve modeling tools for building energy systems 
[Hirsch 1985, LBL 1985, Clarke 1986]. In this connection, the name “Energy Kernel 
System” (EKS) was coined to refer to the envisioned software genre in. which the 
basic elements (i.e., components or objects) were to be packaged along with tools 
required to assemble them into arbitrary building simulation programs. An
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outgrowth of that effort was the Simulation Problem Analysis Kernel (SPANK), 
comprising methodology for describing and solving equation systems such as those 
that arise in simulation problems. Although the EKS then had yet to be fully 
defined, SPANK was intended to lie along the EKS evolutionary path.

It soon became evident that the fundamental EKS ideas admit to at least two 
significantly different implementations. One of these, currently under development in 
the UK [Clarke 1987], defines objects to be modules of substantial size and complex­
ity that may be extracted from existing software. The second possible implementa­
tion takes a lower-level view, with individual equations as atomic objects that are 
interconnected to form larger entities (macro objects), which in turn are intercon­
nected to form simulation problems. SPANK has evolved into an EKS of the second 
kind, referred to in this paper as EKS/US to distinguish it from its UK counterpart.

Although ambitiously described in earlier papers as a prototype EKS, SPANK is really 
a software system for description and solution of general differential-algebraic equa­
tions, with one of many possible applications being to building energy system simula­
tion. EKS/US is a more complete embodiment of the original EKS/US with SPANK at 
the nucleus providing the means for object interconnection and problem solution.

Figure 1 represents the overall organization of the EKS/US and shows the relation­
ship between EKS/US and SPANK. The user interacts with the system in four basic 
ways: defining objects (e.g., component models); defining problems by linking objects 
together; specifying run-time data (e.g., coefficients, time-varying data); and specify­
ing desired output. The objects are defined in text files, either as mathematical equa­
tions or as component models in Neutral Model Format [Sowell 1989]. These files are 
processed symbolically with programs written in MACSYMA, producing C language 
functions and objects that are stored in libraries. Problems are defined by intercon­
necting objects using the graphical user interface, producing a problem specification 
file in the Network Specification Language (NSL) [Anderson 1986]. The nucleus ot’ 
kernel is the dynamic SPANK program system. It works from the NSL description, 
generating internal data structures based on graphs. Matching and reduction algo­
rithms are employed with these graphs to automatically devise an efficient solution 
algorithm, producing an executable program for a particular problem. This program 
reads constant and time-varying data from files, producing the problem solution. 
The output processor reads the result file and generates graphical displays according 
to interactive user requests.

The basic ideas and theoretical development of SPANK were described by Sowell, 
Buhl, Erdem, and Winkelmann [1986], with extensions to include differential models 
reported later by Sowell and Buhl [1988]. Buhl, Sowell, and Nataf [1989] have 
expanded upon these ideas and analyzed their importance in relation to other simula­
tion methodologies. More recently, the use of symbolic manipulation in connection 
with SPANK modeling has been demonstrated by Sowell, Nataf and Winkelmann 
[1990], and Moshier and Sowell [1990] have reported semantic extensions to allow 
more flexibility in describing dynamic models. Several application examples for 
SPANK have also been reported [Sowell 1986, Sowell 1988, Sowell 1990, Nataf 1990].

The current paper summarizes recent developments in SPANK and reports new work 
in progress on a graphical user interface. For the benefit of those unfamiliar with the 
earlier work, we begin with a brief review of the motivation and basic ideas behind 
the SPANK kernel.
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Figure 1: Configuration of the U.S. Energy Kernel System. Shaded boxes are 
programs; unshaded boxes are files. Ovals show user actions.
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2. Review of SPANK Principles
Simulation programs differ with regard to how problems are specified and with 
regard to how they are solved. SPANK differs from most currently available simula­
tion programs in both respects. In this discussion we will attempt to distinguish 
between these differences.

2.1 Problem Specification
With respect to problem specification, SPANK is closest in kin to existing modular 
programs used in simulating building service systems, e.g., TRNSYS and HYACSIM+ 
[TRNSYS 1983, HVACSIM+ 1985]. That is, SPANK allows the user to interconnect 
component models in a flexible manner so that systems of arbitrary configuration 
may be defined. However, it goes beyond the existing modular programs in several 
ways. First, the atomic element in SPANK is an object representing a single equa­
tion, whereas other simulators use the subroutine, normally composed of several or 
many equations, as the smallest element available to the user. Larger SPANK ele­
ments, called macro objects, are definable by the user in terms of equation objects. 
One benefit of the SPANK approach is flexibility, because the user can define new 
macro objects as the need arises. Another benefit is code reuse, because the same 
equation object can be used in many macro objects. While it is true that TRNSYS or 
HVACSIM+ users (who also happen to be FORTRAN programmers) can define new 
component models, sometimes using all or part of existing ones, SPANK aims for a 
seamless simulation environment in which the means of object, macro object, and 
problem definition are identical, and code (i.e., existing objects and macro objects) 
can be reused without modification.

Another important aspect of SPANK problem specification is that objects and macro 
objects are defined as mathematical models only, rather than as algorithms. This 
means that component models do not have a priori specification of input or output 
variables, so that they can be interconnected arbitrarily. In contrast, most widely 
used modular simulators employ algorithmic component models with prescribed 
input/output relationships. Such models are inherently less flexible, limiting the 
class of problems that can be defined without modification of the component models. 
These arguments were originally put forth by Elmqvist [1978] and recently summar­
ized by Sahlin [1988] and Mattsson [1989].

In SPANK, components are interconnected merely by identifying object interface 
variables with problem variables. Once all objects are thus interconnected, certain of 
them are specified by the user to be problem inputs, thereby defining a specific prob­
lem. The only requirement is that the problem so specified be well-posed, i.e., have a 
solution that is uniquely determined from the specified inputs. Although proof of 
well-posedness in the general nonlinear differential-algebraic system remains an 
unsolved problem in mathematics, for simulations of most physical systems it is 
sufficient to be sure the number of problem variables (interface variables minus input 
variables) is equal to the number of objects (i.e., equations), and that a complete 
matching is possible between problem variables and objects. These requirements are 
checked by the SPANK parser.

Summarizing, the important observations regarding SPANK problem specification 
are: (a) there is a single implementation of a component model rather than one for 
each possible set of input variables; (b) the user need not be concerned about which 
are inputs and which are outputs when defining either component models or
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problems; (c) inverting a problem, i.e., changing which variables are inputs and 
which are output, can be done without revising component models or interconnec­
tions; and (d) the user does not have to devise solution sequences, i.e., algorithms, 
when defining either component models or problems.

2.2 Solution Methodology
The SPANK solution methodology is also unique. Because the problem is specified 
entirely in terms of individual equations, graph algorithms can be employed to find a 
solution sequence. This is a two-step process. The objective of the first step is to 
select an appropriate equation to calculate each problem variable. To accomplish 
this, SPANK represents the equation objects and the problem variables as the two 
disjoint sets of a bipartite graph [Aho 1983]. The variables appearing in each equa­
tion object are represented as edges in the graph. When viewed in this way, the 
selection of an equation for each problem variable is analagous to finding a complete 
matching in the bipartite graph. There are several well known algorithms for finding 
such matchings [Johnson 1988]. Currently, SPANK employs the Dinic algorithm 
[Even 1979], although others would work as well. Upon completion of the first step, 
there is a one-to-one relationship between equation objects and problem variables. 
Also, the matching identifies the particular inverse of each equation that gives a for­
mula for the selected variable.

The objective of the second step is to determine a sequence in which the formulas 
could be evaluated to determine a solution to the posed problem. This would be 
straightforward if the problem was known to be acyclic, i.e., solvable without itera­
tion; one would simply sort the formulas to ensure that all right-hand-side variables 
in each are determined by prior formulas (or by problem input). However, in most 
cases this will not be possible due to situations like y = fi(x) when x=f2{y), i.e., 
cyclic problems. An iterative solution sequence must then be found. Because most 
simulation problems are of this nature, it is important that the iterative calculations 
be carried out as efficiently as possible. Since most iterative schemes, e.g., Newton- 
Raphson, involve solving a linear equation set with a size equal to the number of 
iteration variables, one way of improving efficiency is to reduce the number of itera­
tion variables. Therefore an important part of determining the solution sequence in 
SPANK is finding a small number of iteration variables. This is in contrast to con­
ventional simulation programs that typically treat every problem variable as an 
iteration variable.

Finding the SPANK solution sequence begins with the construction of another graph 
representing the problem. This is a directed graph in which each equation object is a 
vertex, with edges representing dependencies of an equation on problem variables. In 
other words, the in-edges of a vertex represent the variables upon which the equation 
for that vertex depends. Because of the matching, every vertex also represents a 
problem variable, so every in-edge is an out-edge of another vertex (or an input vari­
able). A graph constructed in this manner is sometimes called a data flow graph. 
Data flow graphs can be either acyclic or cyclic. In the first case there is an order in 
which every vertex can be visited without encountering a previously visited vertex. 
Obviously, problems that can be solved without iteration have data flow graphs 
without cycles, while cyclic data flow graphs indicate the need for iteration.

Finding a small set of problem variables to serve as iteration variables is equivalent 
to finding a small set of vertices, called a cut set, that break all cycles in the data 
flow graph. While finding the minimum cut set in the general directed graph is
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known to be impossible'in polynomial time [Karp 1972], there are many well known 
algorithms for finding small cut set in such graphs [Levy 1986]. SPANK employs an 
algorithm developed by Levy and Low [Levy 1988]*.

Once the cut set is known, the data flow graph is modified by introduction of a new. 
auxiliary vertex for each cut set member. These new vertices act as source vertices 
for the outgoing edges of the cut set variables, thus breaking all cycles and creating a 
directed acyclic graph. The system of nonlinear equations is then solved with the 
Newton-Raphson method, using the acyclic data flow graph to guide the evaluation 
of functions and derivatives. Specifically, a starting guess is made for each cut set 
variable and assigned to the corresponding, newly introduced cut set node. The 
graph is then traversed in “topological order11, i.e., visiting only vertices whose 
incoming edges emanate from already-visited vertices. When a vertex is visited, the 
corresponding formula is evaluated. This process leads finally to calculated values 
for the cut set variables. The differences between calculated and assumed values of 
the cut set variables are treated as function values, upon which the Newton-Raphson 
method operates. Currently, SPANK calculates derivatives numerically, again using 
the acyclic data flow graph.

Observe that the dimensionality of the simultaneous set is the dimension of the cut 
set, as opposed to the dimensionality of the original problem. This means a smaller 
linear set needs to be solved to get the next estimate of the iteration variables. Typi­
cally, HVAC systems show very large reductions. For example a five-zone variable 
air volume system with a simple algebraic zone model has a cut set of size three, giv­
ing a reduction of about 30:1; this is very significant since solution time is propor­
tional to the cube of the size of the linear set. Moreover, it often develops that the 
cut set size grows slower than the number of zones so that larger problems have even 
larger reduction ratios. For example, with simple algebraic zone models the cut set 
size is independent of number of zones, so a 50-zone model would exhibit a reduction 
of 300:1.

The preceding paragraphs describe the essential ideas employed in SPANK for solving 
algebraic equations. As shown below, the same techniques apply directly to solution 
of differential-algebraic systems. Many other extensions and refinements are possible, 
some of which are described later in the paper.

3. Dynamic SPANK
3.1 Basic Ideas
SPANK was originally developed to solve simulation problems which could be 
described by a set of nonlinear algebraic equations. SPANK has recently been 
extended to allow the solution of dynamic problems — problems describable as a 
mixed set of algebraic and first order ordinary differential equations (ODE’s). 
SPANK’s new capability of solving differential-algebraic systems was designed to 
exploit the existing algebraic solver and to be flexible and general in terms of prob­
lem definition and choice of integration methods.

* The Levy and Low work was in connection with the ENET program, the direct predecessor 
of SPANK. See Sowell [1983],

7



A dynamic problem with Ar variables can be described by m algebraic and n 
differential equations (Ar=n+m):

0 = fl{t, xv x2, — , xN)

0 = f2{t, x^ x2,..., xN)

0 = fm{t, xv x2, ...,xN) (1)

•^m + l == 3\(t, X2,..., X^])

•^m+2 = 2-11 X2,..., Xft)

Xj\j — gn(t, Xj, x2,.., x^)

Since there are Ar+n variables (A problem variables and n derivatives), another n 
equations are needed to form a well-posed problem. These are given by the integrat­
ing formulas for the dynamic variables xm+1,...,xN.

xm+\, j+l = I (xm + \, j ‘An + l, j-1’^m+l, j + l> xm + l, ji ••■)

xm+2,j+l, = I[xm+2,ji xm+2, j—li ' Xm+2, y+l> 2:m+2,i’’") (^)

XN, j+l I{xN,j' XN, j —1’ "• ’ XN, y+l> XN, ;)•••)

Here j labels the j'th time step and / is the integrating formula. Open integrating 
formulas (explicit methods) involve only past values of a variable and its derivative; 
closed formulas (implicit methods) also involve the present (j+l) value of the deriva­
tive. Open formulas are decoupled from the rest of the problem and thus can be 
solved individually. Closed formulas are coupled to the other problem equations 
through xi j+\ and must be solved simultaneously with all or part of the complete 
equation set. Runge-Kutta integration schemes use integration formulas that require 
evaluation of the derivatives (the (?,■ in (1)) at several points within the integration 
step, but past values of the variables and derivatives are not required. Runge-Kutta 
methods are sometimes called single-step methods in contrast to the multistep 
methods which use past values of problem variables and derivatives. Note that if a 
predictor-corrector method is used, the equations in (2) comprise the correctors. 
Predictors are always explicit formulas involving only prior values and derivatives 
and therefore are not involved in the simultaneous solution; they are evaluated by a 
strictly sequential process that yields starting values for the (possibly iterative) simul­
taneous solution of (l) and (2).

Literature on solving ODE’s focuses on individual equations, with much attention 
devoted to the efficiency, stability, and accuracy of integration formulas and step-size 
algorithms. The integration of a set of ODE’s is usually regarded as a straightfor­
ward extension of the methods for solving single ODE’s. The additional complica­
tions introduced by a mixed differential-algebraic equation set are rarely discussed.
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Runge-Kutta methods, for instance, are often favored for their flexibility, simplicity, 
and efficiency. Because values at prior times are not used, a Runge-Kutta algorithm 
can easily be started or restarted, and step size can be easily varied. The efficiency of 
Runge-Kutta schemes depends on the ability to obtain a value for a derivative func­
tion gx at each subinterval point without iteration. While this can be done for a sin­
gle ODE or for a purely differential equation set, in a general differential-algebraic 
system the gt will not be independent of the algebraic equations and evaluation of 
the gt at each subinterval point will require a simultaneous solution of all or part of 
the equation set. Thus the Runge-Kutta schemes lose part of their simplicity and 
efficiency when extended to general differential-algebraic problems. Implicit mul­
tistep methods, on the other hand, w'hich may be less efficient and less simple for sin­
gle ODE’s or for systems of purely differential equations, generalize easily and natur­
ally to differential-algebraic systems.

Dynamic SPANK allows a differential-algebraic problem to be defined in a more gen­
eral way than (l), namely:

0 = / j(Xj,..., Xjy, ..., Xpj)

0 = •••) ■RV’ ‘Rn+l > •••> T/v) (3)

0 = f]\/(xi, ..., Xjy,xm i, ..., Xj\j)

The integrating formulas are the same as (2). This more general problem statement 
is a natural extension of the statement of the algebraic problem — dynamic variables 
and their derivatives are not singled out for special treatment. Here there may be no 
explicit £/,• or a <7,- may be a function of other derivatives, potentially making direct 
solution for derivatives impossible. From (2) and (3) it is evident that, for closed 
integrating formulas, a dynamic problem involving N variables and n derivatives 
reduces to the problem of solving a system of N+n algebraic equations at each time 
step. Creating dynamic SPANK then simply involves choosing an integrating for­
mula, devising a scheme for storing, accessing and updating the past values of the 
dynamic variables and their derivatives, implementing a time step algorithm, and 
invoking the old, algebraic SPANK on the full ((2)+(3)) equation set at each time 
step.

3.2 Current Implementation
For the initial implementation of dynamic SPANK it was decided to concentrate on 
seamlessly merging the integration process with the algebraic solver and making the 
integration method available to the user by treating the integrating formulas as 
SPANK objects. Inclusion of variable time step algorithms and the capability to 
switch integration methods or orders within a calculation was postponed to a future 
version of the program. Treating these capabilities in an object-oriented way such 
that the time step and method switching algorithms are choosable and alterable by 
the user will require extensions to the SPANK formalism and syntax. Definition of 
such extensions is near completion and is discussed in Sec. 6, Semantic Extensions.

For the above reasons, a very simple step size algorithm has been implemented in the 
current dynamic SPANK — a user-input fixed time step. For similar reasons,
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integration schemes requiring subinterval derivative evaluations (Runge-Kutta 
methods) were disallowed. Although a Runge-Kutta integrator object could be writ­
ten for the current SPANK, it would not fit naturally into the existing SPANK formal­
ism. Such an object would need to invoke another object (the derivative formula), 
and this ability would need to be hardwired into the integrator object. Thus the 
capability to include Runge-Kutta methods was also deferred to a future version of 
SPANK with a more general syntax. (See Sec. 6, Semantic Extensions.)

Aside from Runge-Kutta methods, the user has considerable flexibility in choosing or 
writing an integration method. The methods are embodied in integrating formulas, 
which are user accessible objects just like the normal problem equations. Any mul­
tistep formula can be used, and separate predictor and corrector objects are allowed.

In dynamic SPANK the past values of dynamic variables and their derivatives needed 
by the integrating formulas are called “histories”. In order to include histories in the 
SPANK formalism in a natural way, a separate object class (and data structure) for 
histories was created, as well as the capability to pass history data from one object to 
another as if it were the value of a problem variable.

In keeping with the decision to make histories “objects” in the eyes of the user, we 
also chose to make them objects internally. That is, these special objects are stored 
in the same data structure, i.e., a data flow graph, as normal equation objects. Thus 
there is now a history class of nodes whose function is to obtain the appropriate his­
tory data structure and provide it to the appropriate integrator objects. History 
nodes are created when a problem variable is denoted as a “history” in the problem 
definition file.

Actually, histories are not the only “special” nodes in the data flow graph. Even in 
the original algebraic SPANK, for example, there are several special classes of node 
that have no in edges. One class comprises input nodes. These nodes obtain values 
for variables the user has designated as “input” and pass them to the equation 
objects. These values come from program data structures external to the data flow 
graph, and are obtained either by querying the user at program initiation in the case 
of fixed values, or by reading a file in the case of time varying inputs. Another spe­
cial node class comprises the cut set “guess” nodes. These are the nodes duplicating 
the nodes in the cut set which are used to pass initial or Newton-Raphson guess 
values to the rest of the flow graph.

Integrator objects form two more special classes of node. Corrector objects are 
treated like normal equation objects, but predictor objects need special treatment. 
They must not be “fired” (executed) when the full data flow graph is executed. 
Rather, a subset of the data flow graph (all input and history nodes, followed by the 
predictor nodes) is executed to fire the predictor nodes. The output from the predic­
tor nodes provide initial guess values for the corrector objects in the cut set.

Currently, corrector objects (yielding values for the dependent variables of the 
differential equations) are always forced to be in the cut set. Fundamentally, this is 
not always necessary, since (a) the corrector might be an explicit formula, or (b) the 
derivative could serve just as well to cut the inevitable cycle even with an implicit 
formula. However, we decided that explicit correctors are rarely used, and initial 
guess values to start the iteration are problematical for derivatives because most 
predictors are formulas for the dependent variable, not the derivative. In this
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manner we explain our decision to force corrector objects into the cut set, but we also 
recognize the problem it creates, i.e., unnecessarily large cut set size when the user 
wishes to use explicit integration. The issue will be reopened for future versions.

3.3 Procedure
The general procedure followed by dynamic SPANK is then:

(1) Set up and fill the problem data structure using the input from the user’s 
problem description file.

(2) Perform matching of equations and variables.

(3) Perform reduction to obtain a cut set.

(4) Define a flow graph for the problem.

(5) Obtain an execution sequence for the predictor subset of the flow graph and 
for the full flow graph.

(G) Set starting guess values for the cut set variables.

(7) Initialize the dynamic variable histories.

(8) Solve the flow graph at the initial time.

(9) Loop over the time steps:
while (t <= tlimit ) {

(a) Execute the predictor subgraph
(b) Increment time and obtain new values for time varying 
inputs
(c) Set the cut set variable guess values using predictor 
results (if variable is dynamic and there is a predictor for it) 
or use last step values.
(d) Invoke the SPANK algebraic solver
(e) Update dynamic variable histories 

} /* End of time loop */

Note that the integration of dynamic variables, aside from the optional predictor 
step, is fully incorporated into the algebraic solver. Integration of a dynamic vari­
able is no different from solving an algebraic equation for a steady-state variable.

The present dynamic SPANK is already a useful real world tool. As part of EKS/US, 
it has successfully solved a variety of dynamic problems using several different 
integration methods (see Sec. 5, Applications). In the future we plan to increase its 
sophistication and efficiency.

4. Symbolic manipulation in EKS/US
Symbolic manipulation in mathematical computation refers to automatic derivation 
of a formula or sequence of formulas that solve a problem. Thus the “answer” is a 
formula or a procedure that can be used to calculate a numerical answer. This is 
accomplished by manipulation of the symbols by special software, much as one would 
do when manually deriving a formula using the rules of algebra. (Hence, the terms 
symbolic manipulation or computer algebra are often used.) With the more familiar 
alternative the calculation is entirely numeric, and the answer is one or more
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numbers. In all but the most trivial simulation problems, it is unlikely that a totally 
symbolic solution will be practical. However, it is now recognized that there is also a 
role for symbolic computation, even though numerical analysis will likely continue to 
be the keystone of continuous system simulation.

The SPANK methodology offers several opportunities for symbolic manipulation. 
Most importantly, inverse formulas needed by the solution process must be derived 
from the object equations. This is a laborious task if done by hand, but one that is 
readily automated with available symbolic manipulation software. Also, macro 
objects representing models of physical components can be manipulated symbolically 
to get the requisite atomic equation objects. This is especially important for com­
ponent models that are most easily represented by repeated instances of the same 
equation, e.g., finite-difference models. Such models are tedious to write manually, 
but are easy to express symbolically, and symbolic manipulation software can be used 
to generate the models in the required form. Finally, SPANK objects ultimately must 
be expressed in a compilable language (now C). This step can also be done readily 
with symbolic manipulation software, producing text files in the format required by 
the compiler or other software.

4.1 Symbolic Manipulation Software: MACSYMA
There are several widely available symbolic manipulation packages [REDUCE 1987, 
MACSYMA 1983, MAPLE 1985]. The EKS/US symbolic manipulation software is 
currently written in the MACSYMA command language. MACSYMY was selected pri­
marily because a public domain version is available. Also, it is probably the best- 
known package, has good documentation, and runs on a variety of computers. The 
essential requirement for the SPANK application is the ability to solve symbolically 
for inverses of equations, together with general list processing capabilities needed for 
construction of the SPANK files. Other MACSYMA capabilities, such as derivation of 
symbolic derivative or integration formulas, are not currently used in SPANK.

A modest understanding of MACSYMA is prerequisite to understanding the 
SPANK/MACSYMA interface. A concise introduction using examples from applied 
mathematics is provided by Rand [1984]. Here we provide an even more concise 
introduction with emphasis on the aspects that are especially important in the 
SPANK interface.

MACSYMA depends heavily on functions. Many fundamental functions are provided 
with MACSYMA, and users may write their own functions as well. Since function 
arguments can be of any type, they can be symbols or strings representing, for exam­
ple, equations. Thus, using the MACSYMA “solve” function, we can write:

sol ve(equation, variable);

Here the argument list has two elements, an equation and a variable that appears in 
the equation, “solve” performs symbolic operations on the first argument to generate 
an expression that is a formula for the second argument in terms of other variables 
that may be in the equation. This is an important MACSYMA function used in the 
SPANK interface; it is used to generate the inverses of object equations. For exam­
ple, if we consider an object representing the Stefan-Boltzmann law of radiation, 
e=crT'4, then the inverses, i.e., the formulas for temperature, can be obtained with 
the MACSYMA command:
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solve(e=sigma*t'4,t);

This command could be issued interactively within the MACSYMA system or from 
within a program written in the MACSYMA command language. In either case 
MACSYMA will return the solution list for the variable T, which in this example will 
be:

[-(e/sigma)'(1/4), 
(e/sigma)'(l/4), 

-%I*(e/sigma)A(l/4), 
%I*(e/sigma)'(l/4 )

where %l is the imaginary number i. Knowledge of the physics of the problem must 
be used to select which of the four, mathematically correct, inverses is appropriate. 
The MACSYMA command language allows selection rules to be programmed, so this 
step can also be automated.

The above list of symbolic solutions contains the one we want, along with two com­
plex solutions and another that suggests a negative absolute temperature. The 
MACSYMA command language can be used to “filter” this list and give the single 
solution that makes physical sense. A complete description of the details of this 
operation would require more explanation of the MACSYMA command language than 
we can present in this paper. Nonetheless, the flavor of the method can be seen from 
the following code fragment which omits details:

/^Condition on the solution t (absolute temperature >0)*/ 

conditions: [t>0,e>0,sigma>0];

/*Put conditions in current data base*/

for condition in conditions do ( if condition^’true then assume(condition));
/*Solution filter*/

for solution in solutions do (
/*Keep real solutions*/
if ( (member(%i,listofvars(solution))=’false
or realpart(solution)=solution)
/*Keep solutions within range*/
and is(ev( subst(solution,t,t>0) ) )#’false)
then ( goodsolutions:endcons(solution, goodsolutions))

);

print("Final Solution is ",goodsolutions);

In this code fragment, we assume the list of symbolic solutions found by solve is in 
the MACSYMA variable called “solutions”, and the result is placed in “goodsolution”. 
The temporary variable “solution” holds one member of solutions at a time as it is 
tested against the list of “conditions” that are defined before the loop begins. We 
omit the rather intricate MACSYMA code that formats the goodsolution to SPANK 
code. 13



The MACSYMA solve function is powerful, but not limitless. It is able to solve poly­
nomials up to the fourth order, and can handle equations requiring inversion of 
exponential, logarithmic or circular functions. In common use, as in SPANK, these 
forms, together with the standard operations (+,-,*,/), account for most of what is 
needed, so the function meets the need.

MACSYMA can also solve for systems of equations, but this capability has practical 
limits. For one thing, symbolic solution of systems of equations is computationally 
intensive and can take inordinate amounts of computer time. Also, the solution is 
less reliable than when inverting single equations. Indeed, if the system is nonlinear, 
MACSYMA usually encounters severe problems, and often fails to find a solution at 
all. Although we have not yet found beneficial use for this feature in the 
SPANK/MACSYMA interface, it is being considered for certain advanced capabilities, 
such as merging of components.

An additional feature of MYCSYMA, which is quite useful, is its ability to evaluate 
and simplify expressions. For example, the function RATSIMP(A) simplifies a polyno­
mial A and returns a ratio of two polynomials. The user can control the way the 
evaluation and simplification is to be performed through the use of switches, common 
environment variables, or optional arguments to functions.

MACSYMA can also check whether a proposition can be derived from a set of equa­
tions or other propositions, using its “assume” facility. This feature is used in the 
SPANK/MACSYMA interface to solve for piecewise-defined functions, where the vari­
ables to be solved for have a limited validity range.

While MACSYMA serves well in EKS/US, it is not ideally suited for the purpose. 
Interestingly, the most significant disadvantage is not its weaknesses, but its power; it 
is really more than is needed for the job. Because of its power it is large (roughly 
twice as large as SPANK in terms of disk space). Ultimately, we will incorporate a 
subset of MACSYMA functionality in a C or C++ program to support EKS/US.

4.2 The SPANK/MACSYMA Interface
The SPANK/MACSYMA interface is a collection of programs written in the 
MACSYMA language. The basic module of this package is about 1500 lines of 
MACSYMA code. This module allows the user to generate required C functions, 
objects, and macros in the SPANK format by entering the equations in natural form 
along with intended object names [Sowell 1990]. A second module (which invokes 
the basic module) allows generation of a complete simulation file and all associated 
objects and functions. This module is about 200 lines of MACSYMA code. Addi­
tional modules include one for generation of macros that are composed of many 
instances of the same elementary object (500 lines), and one for merging of equations 
to eliminate selected intermediate variables (500 lines). Thus, the entire package is 
not a large program.

So far we have mentioned the central issues in the interface, namely solving equa­
tions using the “solve” MACSYMA function, dealing with list of variables to solve for 
using the list handling utilities, and checking whether they are within range using the 
relational data utilities. The programs also include code devoted to more mundane 
issues, such as formatting the solutions into SPANK or C syntax. It is notable that 
MACSYMA has a built-in translator for arithmetic expressions in MACSYMA to
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FORTRAN, but not to C. Therefore a MACSYMA to C expression translator was dev­
ised using substitution rules. For example, x~y in MACSYMA becomes pow(x,y) in C, 
and %PI in MACSYMA becomes M_PI in C. Another problem was the limited for­
matted output capability of MACSYMA. In order to get text files in the format 
needed by SPANK and the C compiler it was necessary to develop special file writing 
functions using Lisp. Another issue that complicates the interface code is bookkeep­
ing. In the case of macro objects and global simulation generation, we have to keep 
track of what variables are common among different equations to ensure proper link­
ing. Last, string handling routines are used for SPANK file generation and name gen­
eration. The syntax of the MACSYMA language is fairly natural and the function 
names are usually self explanatory (although long). All of these secondary issues con­
stitute about 50% of the code in the interface.

The derivation of equations and generation of files is performed in a reasonable time 
(from seconds to minutes, depending on system size). Some care must be taken to 
ensure that MACSYMA is not launched into feasible but extremely time consuming 
tasks. A typical example is the symbolic resolution of fourth-order polynomial equa­
tions. MACSYMA will do it, but will take an inordinate amount of time, ask for 
much additional information, like the sign of some complicated discriminant, and 
generate huge expressions. To prevent this, a careful user will avoid requesting such 
equations to be inverted. This can be done at the SPANK/MACSYMA interface level 
by declaring the variable appearing to the fourth order as a “bad inverse,” and not 
try to solve for it (unless it is short and simple, as in the Stefan radiation law above).
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5. Applications of EKS/US
EKS/US has been tested on a range of simple to complex problems in energy analysis. 
We briefly describe here a subset of these problems to give the reader a feeling for 
the scope of applications that are possible. References are given when a more 
detailed discussion of the problem has been published. Due to space limitations, we 
show' results for only the last case, the lighting/HVAC problem.

5.1 Three-Node Room
Figure 2 shows a very simple 
room model that was used as a 
first test of dynamic SPANK 
[Sowell 1988]. The three nodes 
correspond to a massless ceiling, a 
massive floor, and massless room 
air. The floor and ceiling 
exchange long-wave radiation and 
convect to the room air. EKS/US 
solved the problem of finding the 
floor and ceiling temperature for 
time-varying air temperature.
The block diagram, in Fig. 2(b), 
shows the objects for this problem 
and their links. In addition to 
the floor, air, and ceiling objects, 
there are predictor and corrector 
objects for differential equation 
integration. Sample results of 
running this problem are shown 
in Fig. 2(c).

(a)

OUTPUTS

INPUTS h

PRED.

CORR.

CEILING

FLOOR

______________________  Massless Ceiling
1

Air ,3

2
Massive Floor

Figure 2: (a) Three-node room model, (b) Block diagram showing objects and
links; T = node temperature, q = heat addition rate, h = convective 
heat transfer coefficient, dt = timestep.
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T3:
Air temperature
■o—a—a .0—a—o

294 _

T2:
Floor
temperature

290

288 _

time (hours)

Figure 2(c): Simulation results for 3-node room showing calculated floor tempera­
ture for user-input time-varying air temperature.

5.2 Thermal conduction
Finite-difference simulation was done for one-dimensional conduction problems with 
variable conductivity, mixed boundary conditions, and bulk domain heat generation. 
Both steady state and dynamic cases were treated with various spatial discretizations. 
Figure 3 shows a typical configuration in which the heat flux is constant at one end 
of the conductor and natural convection takes place on the other end.

h

Figure 3: One-dimensional thermal conduction model; q = heat flux,
t = temperature, k = conductivity, u = heat generation rate, 
h = convective heat transfer coefficient, tinf = ambient temperature.
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5.3 Steady-state zone convection
Natural convection in a room 
heated by a radiator was modeled 
according to the Inard [1988] for­
malism. As shown in Fig. 4, the 
room is divided into five cells, 
each of which has a simple flow 
pattern. The primitive cell 
objects are linked into a zone 
macro object. The convective 
conductances between subzones 
are based on empirical correla­
tions. Given the heater output, 
Qconv, and the temperature at 
nodes 1, 3, and 5, EKS/US solved 
for the intercell heat fluxes and 
the temperature nodes 2 and 4.

Inard/Ngendakumana Convective Model 
Radiator-Heated Room 

Partitioned into 5 Zones

■o Ta3

Qconv

Five-cell model for in-room 
natural convection;

Figure 4:

T = temperature,
Q = radiator heat, 
g = intercell convective 
conductance.

H

1 o

5.4 Multiroom air flow
Figure 5 shows a schematic for air 
flow between rooms driven by 
wind pressure and stack effect 
[Buhl 1989]. A variable number 
of rooms are connected to each 
other by a variable number of 
orifices. The smallest problem 
solved had one room with six 
orifices, the largest had 24 rooms 
with six orifices per room. Pres­
sures on the orifices connected to 
the outside are input, and the 
pressure difference at and mass 
flow through each orifice are 
obtained. Reduction factors 
between 10 and 20 were obtained; 
the number of iterations to solu­
tion varied from 8 to 44.

3 Room Simulation with 
Orifice Equations and Stack Effect

Room 1 Room 2 Room 3

Pl.Tl.rhol P2.T2.rho2 P3,T3,rho3

m

ACdO m

S

m

ACdl

Outside
PO.TO.
rhoO.PfO Pfl Pf2

ACd2

Pf3

ACd3
Outside 
P4.T4.rho4. 

_ Pf4

Figure 5: Air flow between rooms driven by 
wind pressure, stack effect;
P = air pressure,
T = air temperature, 
rho = air density, 
m = mass flow,
ACd = effective orifice area.
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5.5 Hamburg Cell
The Hamburg Cell, shown in Fig. 6, is an exercise originally used to test the French 
ZOOM program [Bonin 1987]. We are using it as a test problem to compare EKS/US 
and ZOOM. The problem consists of a idealized three-zone room enclosed by four 
three-node walls. Two of the walls face north and have constant outside tempera­
ture; the others face south and are exposed to time-varying outside air temperature 
and solar radiation. Convection between room zones is modeled, but long-wave radi­
ation exchange between room surfaces is neglected. The only nonlinearity is intro­
duced by a room heater that is controlled by the average of the north wall inside sur­
face temperature and the temperature of one of the air cells. Preliminary results 
show good agreement between EKS/US and ZOOM results on this problem.

Figure 6: The “Hamburg Cell11, an “idealized” three-zone room enclosed by four,
three-node walls. Arrows (except for the one labeled “control”) indi­
cate energy transfer.
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5.6 Desiccant Cooling
Figure 7 shows a hybrid liquid desiccant system that provides cool, dry air to a space 
[Nataf 1990]. The working fluid is a solution of lithium chloride in water. The sys­
tem contains an interchanger, a heater, and a cooler (all modeled with the LMTD 
method), and a regenerator and conditioner (both of w'hich are modeled with a 
Kathabar equation). It also contains two sumps, one of which is massive and, there­
fore, dynamic. In the EKS/US object-oriented approach, the conditioner and regen­
erator are instantiations of a single object class. Similarly, the cooler, heater, and 
interchanger are instantiations of a single heat exchanger object class. The problem 
consists of 83 equations. After reduction there were only 9 iteration variables.

T13 (55.04 degFW6(64921 Ib/hr), T6,x6
Concentrated LiCl/Water Solution Cold water from 

auxilliary chiller 
(not shown)Conditioned Air

CoolerT5 (66.7 degF)
ConditionerW4(53175 Ib/hr) 

T4(76-96 degF) 
H4 (0.0093)

Outside Air

Massless Sump

Interchanger

Til (140 degFW3 (65874 Ib/hr) ,T3,x3

Dilute LiCl/Water Solution Hot water from boiler 
(not shown)

HeaterExhaust Air22 Ib/hr 
8 de gF)

Regenerator
T1 (76.
HI (0. )093

Return Ai

W12 (34127 Ib/hr

Figure 7: Liquid desiccant cooling system. Unknown variables are shown in bold­
face and input variables in lighter type, with input values in 
parentheses. W = mass flow, x = salt concentration, H = humidity 
ratio, i = specific enthalpy, T = temperature, m = mass of solution in 
regenerator sump.
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5.7 Boiler plus DHW Heater
In this problem, shown schematically in Fig. 8, a boiler and domestic hot water 
heater are connected to the same chimney. Heat transfer in the chimney is modeled 
using 1-d finite difference. EKS/US solved for the various temperatures and mass 
flows given ambient temperature and pressure and the water temperature in the 
boiler and DHW heater.

tbricklS
Pout
rhoout

Chimney

tbrickO

tds
rhods

DHW StackBoiler Stack

DHW Draft 
Diverter

Boiler
Draft
Diverter

Domestic
Hot
Water

Boiler

Boiler and DHW Heater

Figure 8: Boiler and domestic hot water heater sharing a common chimney;
m = air mass flow, t = temperature, rho = density, p = pressure.
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5.8 Constant Volume Reheat System
Figure 9 shows a constant volume reheat system used to test the early, steady-state 
version of EKS/US [Sowell 1986]. Outside air is mixed with return air and passed 
through a cooling coil, a heating coil, and a fan to become the zone supply air 
stream. The zone has sensible heat gain, Etn, air infiltration, mxnj, and water vapor 
addition, water—in. In addition to the physical components the diagram shows 
dashed blocks representing “data conversion” objects that transform enthalpy and 
humidity ratio to drybulb temperature and vice-versa. This problem results in 23 
equations and 38 variables, 15 of which were chosen as inputs (the circled variables in 
the figure), leaving 23 to be solved for. After reduction, this problem has only one 
iteration variable, the humidity ratio, w2, leaving the cooling coil.

qha f3n
l‘a parameters

h3 w3 m3h2 w2 m2hi wl ml
ho wo

outside

hdbw
’tempi"

h5 w5 m5

water in

heating
coil

cooling
coil

zonedistributor

■' collector

Figure 9: Constant volume reheat system showing problem variables. Inputs are
circled, unknowns uncircled. T = temperature, m = mass flow, 
h = specific enthalpy, w = humidity ratio, E = sensible heat gain,
RH = relative humidity, P = pressure.
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5.9 VAV Reheat System
Figure 10 shows a variable volume reheat system containing a preheat coil, cooling 
coil, zone heating coils, supply and return fans, and nonlinear controls. The system 
can serve an arbitrary number of zones; the 5-zone case is shown in the figure. In the 
problem analyzed, zone loads were input. For dynamic simulation, there are four 
iteration variables independent of the number of zones. The reduction factor can 
therefore be quite high; for example, for 20 zones there are 264 equations and four 
iteration variables, giving a reduction factor of 66.

Fan 1

Fan 2

ZONE 3 
SOUTH

ZONE 4 
NORTH

ZONE 2 
EAST

ZONES
WEST

ZONE 1 
INTERIOR

Figure 10: VAV reheat system serving five zones. HC = heating coil, 
CC = cooling coil, C = control, T = type of control.
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5.10 Lighting/HVAC Problem
Figure 11 shows the schematic of a model used to study lighting/FTYAC interactions 
[Sowell 1990]. Lighting is provided by fluorescent lamps in the plenum space of a 
10,000-ft2 room. A translucent ceiling lens separates the plenum from the room 
below. Supply air enters the room, mixes with the room air, then exhausts to the 
plenum through small openings in the ceiling lens. Input power leaves the lamp by 
shortwave (visible) and longwave (infrared) radiation and by convection to the ple­
num air. The radiative portion undergoes interreflection and transmission, and is 
ultimately absorbed by surfaces in the plenum and the room. If the plenum air tem­
perature is greater than the room temperature, some or all of the convective portion 
can also escape the plenum by conduction through the transparent ceiling to the 
room air. Ultimately, all lamp power must be removed by the airstream after con­
vective transfer from the various solid surfaces in the room and plenum. We wish to 
determine the surface and air temperatures, and the heat removal rate in the room 
and plenum. Naturally, these will be functions of the mass flow-rate of air and the 
supply air temperature.

For simplicity, we assumed that the dimensions in the horizontal plane are large rela­
tive to room and plenum height, thus making losses through walls negligible. It is 
also assumed that the floor and ceiling are adiabatic, i.e., that no heat transfer occurs 
between the ceiling and the room above or the floor and the plenum below. View 
factors for radiation exchange were calculated with a separate program.

The convective heat transfer coefficients used assume free convection and were taken 
to be constant. A later improvement to the model used recently measured correla­
tions [Spitler 1991] giving these coefficients as a function of supply air jet momen­
tum.

The above problem can be formulated as an n-node network in which each node is 
viewed as a surface that can emit, absorb, reflect, and transmit radiant energy in the 
short and long wave bands. Also, nodes can interact through surface-to-air convec­
tion, and through bulk flow convection. The system variables include node tempera­
tures, short and long wave radiosities and irradiations at each node. The basic physi­
cal laws governing the system are those of diffuse radiative transfer, convective heat 
transfer, and conservation of energy and mass [Sowell 1973].

The block diagram, Figure 12, shows the macro objects for this problem and their 
connections. The equations corresponding to these objects are given in [Sowell 1990]. 
By virtue of designation of particular system variables as “inputs”, Fig. 12 also 
represents a particular “problem”. One problem that can be represented (which 
corresponds to case (1), below) is:

Given:
All geometric and property data, and convection coefficients.
The short wave emission at each surface, JOS.
The source energy addition/removal rates at all surface nodes and plenum air
node, Q0(l)—Q0(6).
The temperature at the room air node, T(7).

Find:
The temperatures at all surface nodes and plenum air node, T(l)—T(6).
The heat addition/removal rate at the room air node, Q0(7).
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The short and long wave radiosities and irradiations at each node.

An important feature of EKS/US is that different problems on the same system can 
be specified without structural changes in the model. For example, if we wished to 
specify a surface temperature and solve for the required heat addition/removal rate 
we could simply designate a different input set.

Dynamic simulation results for some of the problem variables are shown in Fig. 13. 
Two cases are shown: fixed room air temperature and fixed supply air temperature. 
For this study the air flow rate was set at 1.0 cfm/ft2. A run period of 200 hours was 
chosen, with a time step of 6 minutes. Initially, all of the node temperatures are near 
the steady-state lights on condition. Then, at time zero, the lights are turned off and 
remain off for 50 hours, during which time the system approaches a steady-state 
lights off condition. The lights are then switched on with an input power of 3.5 
W/ft2.

The general behavior observed in Fig. 13 is an initial decrease in temperatures, fol­
lowed by an asymptotic approach to equilibrium lights-off values, then a relatively 
rapid increase at 50 hours when the lights are turned on, followed by an asymptotic 
approach to equilibrium lights-on values. The initial decrease is due to the fact that 
the temperature starting values chosen for the simulation were above the equilibrium 
lights-off values.

This example shows that EKS/US can be used to solve complex, nonlinear dynamic 
heat transfer problems involving simultaneous radiative, conductive and convective 
Processes. i„sulated

Lamps - Node 2 p]enum _
O O O O Air_ O O ^

Lens Top - Node 3 Node 6

Lens Bottom - Node 4

Room Air - Node 7

Air Flow

Floor - Node 5

Insulated

Figure 11: Lighting heat transfer problem: vertical section through room 
and plenum. 2 5



Figure 12: Block diagram showing objects for the lighting heat transfer problem.
Dashed lines indicate inputs or system variables shared by objects.
T = temperature, J = radiosity, FJ = irradiation,
R = reflectance, tau = transmittance, A = area,
U = conductance, QO = heat addition rate,
Qr = net radiant heat transfer rate.
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Figure 13: Simulation results for the lighting heat transfer problem. The lights 
are turned on at t = 50 hours. The supply air flowrate is fixed at 1.0 
CFM/sf. For the left-hand graphs, supply air temperature varies to 
maintain a fixed 75F room air temperature. For the right-hand graphs 
the supply air temperature is fixed at 70F.
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Figure 13 Simulation results for the lighting heat transfer problem (Cont.)
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6. Semantic Extensions
6.1 Current Limitations
The original design of SPANK was based on static models. As such only algebraic 
systems could be specified. As demonstrated above, we were able to implement 
significant dynamic simulation capability with minor modifications to the original 
syntax. However, the user is currently limited to a small range of numerical integra­
tion methods, namely those with predictors and correctors employing three or fewer 
previous values of variables and derivatives and a fixed, global time-step. Although 
Runge-Kutta integrators can be specified, doing so is awkward, requiring the integra­
tor object to involve elements of the particular problem rather than being a semanti­
cally distinct entity. More complex integration schemes, including those with 
separate start-up methods, cannot be specified. Moreover, certain kinds of dynamic 
systems cannot be specified, such as those with some constraints applying only at cer­
tain times or under certain conditions depending on system state.

Other current limitations, unrelated to dynamics, have to do with the way objects, 
macro objects, and problems are specified. The current implementation lacks unifor­
mity in the way these entities are seen by the user, imposing unnecessary burdens on 
the user to keep track of the differences between various constructs which semanti­
cally ought to be treated the same. Similarly, in the current implementation there are 
artificial differences between “scalar” values, such as temperature, and “compound” 
values, such as air flow, which are characterized by several variables, e.g, tempera­
ture, humidity ratio, pressure, etc. It is often the case that statement of a problem is 
more naturally expressed in terms of such compound values, but the current imple­
mentation forces the user to decompose them into their constituent scalar values.

Consideration of these needs led to reevaluation of the semantics of dynamic simula­
tion as the first step toward a completely new specification language. Below we 
present a specification for this new language, called the Component Definition 
Language (CDL).

6.2 Component Definition Language (CDL)
In the following section, we describe a grammar for CDL along with an informal 
semantic specification. We use certain conventions for describing the grammar. In 
particular, keywords are always typed in bold face, e.g., object is a keyword. Like­
wise, punctuation marks in the object language are typed in boldface. Thus, “(” is 
an object language punctuation mark as distinct from “(”, which serves to group 
constructs together in the grammar. Syntactic variables (think of them as names for 
syntactic categories) are denoted by italic typeface enclosed in angle brackets, e.g., 
<type> is a certain syntactic category. In the grammar, a construct with a super­
script asterisk means zero or more occurrences of the construct, a superscript plus 
means one or more occurrences. Vertical bars separating constructs means exactly 
one of the constructs must occur. Finally, a construct in square brackets is optional.

6.2.1 The Basic Semantic Categories
The semantic entities of CDL fall into seven basic categories: kinds, classes, objects, 
types, values, variables, and connections. Roughly speaking, the relation of class to 
kind is the same as that of value to type. That is, a type is a certain collection of 
values all having similar shape. Likewise, a kind is a certain collection of classes all 
having similar shape.

29



The semantic notion of a value is fairly clear. Likewise, the notion of a variable in 
CDL is essentially the familiar notion of a variable in programming languages.

Types are built up inductively from a collection of simple types (double, real, int, 
etc.) together with a construct essentially like the “struct” type in C. Any value 
must fall into one of these types. Likewise, any variable has an associated type con­
straining the possible values for that variable. The kinds are also built up induc­
tively from structured types together with a construct that describes functions from 
kinds to structured types.

The semantic intuition for objects is that they correspond to physically real objects 
obeying certain laws, or constraints. For example, an object might correspond to a 
specific fan in a system. And there might be more than one fan obeying the same 
constraints. By contrast, a class corresponds to a collection of all similarly behaving 
objects. So we could have a class named fan which embodies the physical 
specifications of all fans of a particular sort. Then, we might have objects fan-a and 
fan-b both of the class fan. Thus fan-a and fan-b are distinct objects (so they may be 
in different states at a given time), yet they both obey the same laws. Somewhat 
more formally, in the simple case a class is a collection of laws. However, a class may 
depend on other classes in its definition. So, in general, a class is a function from n- 
tuples of classes to a collection of laws. [N.B. n may be zero here, taking care of the 
simple case.] An object is a variable of a structured type, constrained by the laws of 
some class.

A connection is an equality constraint between (fields of) variables, together with an 
indication of the role that the constrained variables play in a network. In particular, 
a connection tells us where the value for that variable is obtained, i.e., from exo­
genous sources, by feedback from solution of the network, as unknowns in the net­
work that can be solved iteratively, or as unknowns that must be solved explicitly.

6.2.2 Naming Things
As usual, we have to provide some sort of collection of names for the entities of a 
category. For most purposes the collection of C identifiers will suffice. So we have 
our first (informal) grammar rule:

<identifier> ::= The usual C identifiers

A variable is named by an identifier, as are objects and classes.
[N.B. An object will go by the same name as the variable of which it is composed.] 
The names of types are built inductively following the inductive definition of types.

<type>
< simple-type >
<struct-type>
<typed-id>

<simple-type> \ <struct-type>
double | int | bool | ...
(<typed-id>(, <typed-id>)*) 
<identifier> [<type>]

If a <typed-id> is an <identifier> only, it is implicitly assumed to be of type dou­
ble.

Because <type> expressions can be rather verbose, we also allow abbreviations to be 
defined by the following construct.

<type-def> ::= type <identifier> = <type>
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And we allow <struct-type> to use these abbreviations. Thus, we add a clause to 
the grammar rule for <struct-type>:

<struct-type> ::= <identifier> \ <type-id> (, <type-id>)*

Similarly, kinds are defined inductively, allowing for defined abbreviations.

<kind> <identifier> | <struct-type> \ [<kind-list>> > <struct-type>]
<kind-list> ::= <kind>(*<kind>)*
<kind-def> kind <identifier> = <kind>

If x names a variable of structured type that has a field named field, then we can 
indicate the value of that field by writing x.field. In general, names of values 
obtained in this way are called descriptors.

<descriptor> ::= <identifier>(.<identifier>)*

Connections do not have to be named. However, if the constrained fields are to be 
used as a single unit elsewhere, then they must share a name. So a connection can 
optionally be named by a simple <identifier>. The effect of this is to associate a 
variable with the name <identifier> with the connection.

6.2.3 Declaring Objects
An object is declared by specifying its name, and its associated class. Remember 
that a class may depend on other classes, so specifying a class may involve parame­
ters. Thus,

<declaration> declare<tden^7ier>(, <identifi,er>)[<param-list>\',
<class-instance> ::= {<identifier> \ <class>)\<param-list>]
<param-list> ::= [< class-instance >{\< class-instance >Y]

6.2.4 Making Connections
To specify a connection, we give a keyword indicating the relation of the constrained 
fields to the advancement of time, followed optionally by a name for the connection, 
followed by a list of fields of variables (typically, fields of objects) that are to be 
equated, and finally followed by a specification of how the value of the connection 
should be obtained from previous time steps (if this is appropriate).

There are five sorts of connections: inputs, feedbacks, unknowns, clocks, and signals. 
Inputs are essentially initial values. They do not change over time. Feedbacks are 
values that cannot be solved for; they are used to communicate values from one time 
step to the next. Unknowns are values that are suitable for solving at a time step. 
Clocks are mechanisms for advancing the system time. Signals are values similar to 
unknowns, but which are not allowed to enter into the iterative solution for unk­
nowns. Typically, signals will be of some discrete type, e.g., boolean, so that 
Newton-Raphson would not make sense if it involved values of that type. In addi­
tion to these five sorts of connection, we allow for a “link” connection, which simply 
inherits its sort from the fields it equates. The grammar for the connections is this.

<connection^ <link> \ <unknown> \ <feedbacks
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< link>
<unknown>

<feedback>

< clock >

< input>
< signal >
< descriptor-list >
< connection-id >
< expr>

<clock> | <input> \ <signal>
link <connection-id>{ <descriptor-list>)\
unknown <connection-id>{ <descriptor-list>)

predict-init <ea:pr>predict-next <expr>;
::= feedback <connection-id>( <descriptor-list>) 

init <expr>next <expr>; 
clock <connection-id>( <descriptor-list>) 

init <expr>next <expr>]
::= input <connection-id>( <descriptor-list>)\
::= s\gna\< connection-id >(< descriptor-list >)\

< descriptor >{,< descriptor >)*
<identifier> \ <typed-id>

::= Any C expression with variable names drawn 
from the names of connections.

We assume that several clocks can be extant in a simulation. This means that the 
current time should be available to the system as a specially named variable, say 
current-time. The value of a clock connection will advance only when it is 
scheduled to tick. Thus, if t is a clock connection, then the boolean expression 
current-time = t will evaluate to true if and only if the clock t has just ticked.

6.2.5 Defining classes
A class is defined by giving a <struct-type> called the <interface>, and then speci­
fying constraints on values of the interface type. Typically, the interface has two 
parts: the object interface and the class interface (the class interface may be empty). 
The object interface simply tells us the type of objects of the defined class. The class 
interface tell us that the class itself has a variable associated with it. This is for the 
purpose of specifying information shared amongst all objects of a particular class. 
The class interface is similar in spirit to the notion of a class variable in Smalltalk, 
except that class variables in Smalltalk are typically hidden from all objects outside 
the class, whereas a class interface is necessarily visible to the rest of the system.

The grammar for class definitions is the following.

<class-def> 
<class> 
<simple-def >

<macro-def>

<switch-def>

<identifier>=<class> <identifier>\ 
(<simple-def> | <macro-def> | <switch-def>
simple class <interface>
< inverse >* end
class[ <param-spec>\ <struct-type>

[class interface. <struct-type>]
< library >*
< definition >*
<declaration>*
<connection>*
<equation>*

end
switch[<param-spec>] <struct-type>

[class interface<struct-type>]is
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< library >*
< definition >*
<cases>*

end < identifier >\
<definition> ::= | <interface-de}> | <kind-def>

The syntactic category <library> will be explained below. The <param-spec> part 
of this definition indicates (optionally) the kinds of classes on which the macro class 
depends. So, a <param-spec> is given by

<param-spec> [<identifier>:<kind>(-,<identifier>:<kind>)*]

And <cases> is essentially like the switch construct in C.

<cases> ::= (<bool-expr>: <class-instance>-)* 
else: <class-instance>;

Here <bool-expr> is just an <expr> that returns a boolean value. The semantics 
of a switch is that at each time step, the boolean expressions are evaluated in order 
until the first true expression is found. Then the switch class is constrained as if it 
were defined by the accompanying declared class. If all expressions are false, the 
“else:” class is used instead.

6.2.6 Equational Constraints
In defining a macro class, we can specify that certain variables are constrained by an 
equation. The effect of this is essentially to define an anonymous simple class and an 
anonymous object of that class, the interface of which is connected to the variable 
occurring in the equation.

<equation> eqn <expression> = <expression>end eqn;

6.2.7 Libraries
For the sake of modularity, a collection of definitions can be stored in a separate file 
to be used in other definitions. So, a library is simply a file containing 
<definition>*. To refer to a library in another file, we have the construct

<library> Xihrary <filename>\

where <filename> is the name of a file containing a library.

6.2.8 Systems
A system is a special macro class, analogous to the main procedure in a C program. 
One and only one system must be specified in any simulation. When SPANK runs a 
system, it instantiates an object of the system class with initial values determined by 
the user, and then runs the simulation. A system is specified by the following.

<system> ::= <library>*
system < identifier >[< interface >}is 

<library> *
<definition> *
<declaration> *
<connection> * 

end < identifier >.
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6.3 Example
The ideas formalized above are made concrete in the example shown in the Appen­
dix. There we show a CDL problem specification for the three-node room problem 
described in Sec. 5.1, Three Node Room. Comments in the code should allow the 
dedicated reader to see how the CDL specifies the problem. We will not describe the 
example line by line, but a few comments are in order.

First, note that the system definition (called “room”) is completely in terms of 
objects that have intuitive meanings, strongly coupled to the physics of the problem. 
Numerical details are contained within the objects, out of view at this level. Yet the 
knowledgeable user can, for example, change to a different integration method, 
presently Milne4, by changing the argument in the declaration of the massive object, 
“floor”. Also note that we can link the room interface variables h, alpha, sigma, T, 
T_air, and dt directly to interfaces of objects comprising the system wherever 
needed; this is exactly the same as when defining a class in terms of simple classes (or 
other classes), thus demonstrating the intended seamless transition from class 
definitions to problem definitions.

Classes used in the system definition are defined in separate CDL files referenced with 
the keyword library. These files are included in the Appendix. For example, 
energy.cdl contains all classes pertaining to the problem physics, while Milned has 
those for the Milne fourth order integration method. In energy.cdl we see how simple 
classes are defined as a single equation. This equation is placed directly in the CDL 
file, in contrast to the current SPANK implementation which requires an intermediate 
C function definition. In the same file we see the class “air” defined in terms of the 
simple class “conductive_heat”, augmented with one equation. In the class “mas­
sive” we see that classes can also employ other classes in their definition.

7. Graphical User Interface
Currently users of EKS/US must express their problems textually using the Network 
Specification Language. While this language has served well for the development and 
testing of the program, it leaves much to be desired as an intuitive and efficient user 
interface. Currently under development is a graphical user interface called the Ker­
nel Graphical Editor (KGE) that will come closer to these goals.

The basic idea of the KGE is that objects, macro objects, and problems are specified 
by the user by manipulation of screen icons. Available object classes are selected 
from libraries, using a browser, and then appear as icons on a menu, from which they 
can be selected (instantiated) and placed anywhere on the screen. Once placed, they 
can be interconnected to form a macro object or a problem. The objects can also be 
moved, deleted, or modified in any way. Also, any object can be expanded to show 
internal structure when needed. When the problem image is complete, the KGE will 
create a CDL file for SPANK processing. The implementation employs the X- 
Windows system in order to allow maximum portability. Figure 14 shows a prelim­
inary KGE screen.
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*/
define sum2 {

o = sum2_o\ il, i2 ) ;
11 = sum2_i( o, 12 ) ;
12 = sum2_i( o, il ) ;

>

#ifdef CC 
double

sum2_o ( il, i2 ) double 11, i2 ;{
return ( il ♦ i2 > ;

>

doub1e
sutr.2_i < o, il ) double o, il ;
<

return ( o - il ) ;
>

•tendi f

Figure 14: Example screen from the Kernel Graphical Editor (KGE), the graphical 
user interface for EKS/US. The three windows show: harmonic oscilla­
tor problem with multiplier, sum, and integrator objects and links 
(upper left); the “sum” macro object showing its constituent objects 
(lower middle); textual input for the “sum” object with associated C 
code. Buttons along the left side of the screen perform operations such 
as positioning objects in a window, drawing links between objects, and 
grouping objects into macro objects.
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8. Conclusions
The current state of the U.S. Energy Kernel System has been reviewed, and its rela­
tionship to the Simulation Problem Analysis Kernel (SPANK) has been described. It 
currently has the capability to simulate general differential-algebraic systems, with 
modest flexibility in specification of numerical methods to be used. Also, objects, 
macro objects, and problems can be described in concise textual form and symboli­
cally manipulated to create needed SPANK and C code for the simulation. Ten 
application problems that have been solved were briefly discussed. Finally, we 
described current work aimed at improving EKS/US capability and user interaction 
mechanisms. The Component Definition Language is the result of reassessing the 
semantics of dynamic model specification and, when implemented, will allow more 
complex system models to be expressed, as well as affording greater flexibility in 
specifying numerical methods. The Kernel Graphical Editor, currently under 
development using the X-Windows protocols, will allow users to define simulation 
problems on the computer screen using pointing devices, rather than expressing the 
problem in a textual language.

EKS/US will be released for public use in 1992/93 after we have completed the user 
interface, implemented the Component Definition Language, and built up the object 
library. In parallel, we plan to integrate the EKS/US approach into the SYSTEMS 
and PLANT portions of the existing DOE-2 hourly energy analysis program [BIRD- 
SALL 1990]. The resulting program, to be called DOE-3, will allow object-oriented 
techniques to be used in the context of a whole-building program that many users are 
already familiar with. With DOE-3 users will be able to configure and model 
advanced HVAC components and systems that cannot be simulated with DOE-2, 
while retaining DOE-2’s powerful LOADS program.
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10. Appendix: Example of Problem Specification in CDL

/* File: room.cdl */

/* A system modeling energy balance in a room with
(1) massive floor,
(2) massless ceiling,
(3) height/floor-area negligible.

as described in Sec. 5.1 and in [Sowell 1988].
We assume that the floor, air and ceiling are held at a constant temperature TO prior 
to the simulation; and at time tO the air temperature is instantaneously changed to 
T ajr, and is held constant thereafter. The model then simulates the ensuing loads.

(1) The ceiling is modeled by the energy balance equation for a massless object:
0 = sigma*(T_rad**4 - T**4) + h*(T_air - T);

(2) The air is modeled by the air energy balance equation

qo = h*(T_surfacel - T) + h*(T_surface2 - T);

(3) The ceiling is modeled by the energy balance differential equation for a 
massive object:

alpha*T’ = (sigma*(T_rad**4 - T**4) + h*(T_air - T) 

where T = integral of T' dt;

with
h = convective film coefficient 
alpha = floor thermal capacitance 
sigma = Stefan-Boltzmann constant

In this file, the integration in (3) is done by a 4th order Milne method. Comments 
indicate exactly where changes must be made to change to another integration 
method.

7
library stdio.cdl 
library energy.cdl 
library Milne4.cdl

/* a library that implements the standard i/o */
/* read in the energy balance objects */
/* read in the 4th order Milne method. Change this to 

"library RungeK2.cdl" for 2nd order Runge-Kutta */
I
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system room(h, alpha, sigma, T, T_air, TO, tO, dt) 
declare ceiling massless; 
declare air air;
declare floor massive[Milnedj; /* Replace "Milne4" with "RungeK2" 

for 2nd order Runge-Kutta */
declare report-load reporter; /* reporter is an output class defined in stdio.cdl

that records its interface at each time step */

input h(room.h, floor.h, air.h, ceiling.h); /* convective film coefficient */ 
input alpha(room.alpha, floor.alpha); /* floor thermal capacitance */ 
input sig(room.sigma, floor.sigma, ceiling.sigma);/* Stefan-Boltzmann constant */ 
input T0(room.T0, floor.TO); /* As everything else is massless, the floor is

the only object that "remembers" the 
temperature prior to simulation time */

input T_air(room.T_air, floor.T_air, air.T, ceiling.T_air); /* air node temperature */ 
input dt(room.dt, floor.dt); /* time step (in hours) */

link qo_air(air.q, report-load.x); /* load */
link T_floor(floor.T, air.T_surfacel, ceiling.T_rad); /* floor temperature */ 
link T_ceiling(floor.T_rad, air.T_surface2, ceiling.T); /* ceiling temperature */ 
link t(floor.time, report-load.time); /* communicate the time from

the floor to the reporter */

end room.

j*_____________________________________* /
/* File: energy.cdl */
/*

This file contains definitions for various heat balance equations. As of now, we have 
three kinds implemented: massless, air and massive. The definitions should make 
the underlying models evident.
CONVENTION: Loads transfers will always be measured as positive values indicat­
ing incoming heat.

V
radiant-heat = simple class (T, T_rad, q, sigma) /* radiant heat transfer */ 

q = sigma*(T_rad**4 - T**4) 
end radiant—heat;

conductive-heat = simple class(T, T_cont, h, q) is /* conductive heat transfer */ 
q = h*(T_cont-T) 

end conductive—heat;
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air = class (T, T-Jsurfacel, T_surface2, h, q)

/* An air object obeys the heat balance:

q = h*(Tl-T) + h*(T2-T)

where q is the load,
T is the temp of the air object,
Tl and T2 are temps of surfaces.

V

declare slcond, s2cond conductive_heat;

link T(air.T, slcond.T, s2cond.T); 
link T_surfacel(air.T_surfacel, slcond.T_cont); 
link T_surface2(air.T_surface2, slcond.T_cont); 
link h(air.h, slcond.h, s2cond.h);

eqn
air.q = sl.q + s2.q 

end eqn; 
end air;

massless = class(T, T_rad, T_air, h, sigma)

/* A massless object obeys the heat balance:

0= sigma*(T_rad**4 - T**4) + h*(T_air - T)

where T is temp of the object,
T_air is temp of air,
T_rad is temp of nearby radiator

7

declare r radiant_heat; /* q = sigma*(T_rad**4 - T**4) */ 
declare c conductive_heat; /* q = h*(T_cont-T) */

link h(massless.h, cv.h); 
link sigma(massless.sigma, rd.sigma); 
link T(massless.T, cy.T, rd.T); 
link T2(massless.T_rad, rd.T); 
link T3(massless.T_air, cv.T_cont);

eqn
0 = r.q + c.q 

end eqn; 
end massless;
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massive = class[Int[ODE(y, y’, t)](y, y\ t, dt, yO, tO)](T, T_rad, T_air, t, dt, TO, tO, h. sigma, alpha)

/* A massive object obeys the heat balance equation:

alpha*!’ = sigma*(T_rad**4 - T**4) + h*(T_air-T)

where T is temp of the object,
T air is temp of the surrounding air 
T_rad is temp of nearby radiator

Because this is a dynamic object (involving T’), it is only well defined when given a 
method of integration Int. The class Int has the interface (y, y\ t, dt, yO, tO) and 
depends on a class ODE with interface (y, y’, t). Specifically, this definition assumes 
that the integrator doesn’t require any start-up values beyond the initial conditions: 
(yO, to).

7
Mass_ode = class(y, y’, t) class interface (T_rad, T_air, h, sigma, alpha) 

declare r radiant_heat; /* q = sigma*(T_rad**4 - T**4) */ 
declare c conductive_heat; /* q = h*(T_cont-T) */

link sigma(Mass_ode.sigma, r.sigma); 
link h(Mass_ode.h, c.h);
link y(Mass_ode.y, rd.T, c.T); /* T is renamed y for the ODE */
link T_rad(Mass_ode.T_rad, r.T_rad); 
link T_air(Mass_ode.T_air, c.T_cont);

eqn
/* T’ is named y’ for the ODE */

Mass_ode.alpha * Mass_ode.y’ = r.q + c.q 
end eqn;

end Mass_ode;

declare mass Int[Mass_ode]; /* the mass object integrates y by the
method implemented in the class Int */

link T(massive.T, mass.y); /* the integrated variable y is really T */ 
link T_air(massive.T_air, Mass_ode.T_air); 
link T_rad(massive.T_rad, Mass_ode.T_rad); 
link t(massive.t, mass.t); 
link dt(massive.dt, mass.dt); 
link tO(massive.tO, mass.tO); 
link T0(massive.T0, mass.yO); 
link sigma(massive.sigma, Mass_ode.sigma); 
link alpha(massive.alpha, Mass_ode.alpha); 
link h(massive.h, Mass_ode.h); 
link T’(massive.T’, mass.y’); 

end massive;
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7/*--------------------------------
/* File: Milne4.cdl */
r

In this file we implement a 4th Order Milne integration method.
See Conte and DeBoor p385 for an explanation of the method.

7

type diff_eq_type = (y, y\ t); '
type int_diff_eq_type = (y, t, yO, tO, dt);

Milne4 = class[ODE:diff_eq_type](int_diff_eq_type)

declare eq, eq_next of class ODE; /* eq is used in the corrector part,
eq_next in the predictor part */

declare p simple class(y_kpl, y_km3, f_k, f_kml, f_km2, dt) /* 4th order Milne predictor */ 
y_kpl = y_km3 -f 4*dt*(2*f_k - f_kml + 2+f_mk2)/3; 

end p;

declare c simple class(y_kpl, y_kml, f_kpl, f_k, f_kml, dt) /* 4th order Milne corrector */ 
y_kpl = y_kml + dt*(f_kpl + 4*f_k + f_kml)/3; 

end c;

declare timestep sum;

unknown y(Milne4.y, c.y_kpl, eq.y) init yO predict y_next; /*y is solved for by corrector */ 
unknown y’(c.f_kpl, p.f_k, eq.y’) init 0 predict y’_next; /* y’ is solved for by corrector */ 
clock t(Milne4.t, eq.t) init tO next t_next;

link dt(Milne4.dt, c.dt, p.dt); /* use constant time step of dt */ 
link yO(Milne4.yO); /* initial value of y */
link tO(Milne4.tO); /* simulation start time */

feedback y_k:ml() init yO next y; /* cascade historical values of y */ 
feedback y_km2(c.y_kml) init yO next y_kml; 
feedback y_km3(p.y_km3) init yO next y_km2;

feedback y’_kml(c.f_k, p.f_kml) init 0 next y’; /* cascade historical values of y’ */ 
feedback y’_km2(c.f_kml, p.f_km2) init 0 next y’_kml;

unknown y_next(p.y_kpl, eq_next.y); /* predicted next value of y */ I
unknown t_next(eq_next.t); /* next time */
unknown y’_next(eq_next.y’); /* predicted next value of y’

(calculated from y_next and t_next */

eqn
t_next = t + dt 

end eqn; 
end Milne4;
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