* “"' (ONF - 790329;9\- o

UCRL- 101085
PREPRINT
, Received by gsTy
JUN 2 2 1989
RUN-TIME SUPPORT FOR PARALLEL FUNCTIONAL o -

PROGRAMMING ON SHARED TMEMORY MULTIPROCESSORS

Ching-Cheng Lee
H.A. Fatmi

THIS PAPER WAS PREPARED FOR SUBMITTAL TO
12th INTERNATIONAL CONGRESS ON CYBERNETICS
NAMUR, BELGIUM
AUGUST 21-25, 1989

MAY 1989

This is a preprint of a paper intended for publication in a journal or proceedings. Since
changes may be made before publication, this preprint is made available with the
understanding that it will not be cited or reproduced without the permission of the
author.

' DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thercof, nor any of their
employces, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or uscfulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

- e 5.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image
products. Images are produced from the best available
original document.

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor the University
of California nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or useful-
ness of any information, apparatus, product, or process disclosed, or represents that
its use would not infringe privately owned rights. Reference herein to any specific
commercial products, process, or service by trade name, trademark, manufacturer, or
otherwise, does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government or the University of California. The
views and upinions of authors expressed herein do not necessarily state or reflect
those of the United States Government or the University of California, and shall not
be used for advertising or product endorsement purposes.

Run-Time Support for Parallel Functional Programming
on Shared-Memory Multiprocessors

Ching-Cheng Lee * UCRL--101085
H. A. Fatmi ** DE89 013790
Abstract

The use of functional languages for parallel computing has been];roposed for many years.
Many functional languages were developed along with the design of new architectures
such as data flow and reduction machines [1,2,3,7,8,10,11]. In this paper, we present a
general model of a run-time system for a parallel functional language called SISAL [13] to be
executed on shared-memory multiprocessors. The implementation of this run-time system is
examined on two radically different architectures; i.e., a 32-way (symmetrical) Vax
Research Multiprocessor M31 [15] and a 4-way Cray X-MP system. In order to properly
evaluate the effectiveness of SISAL on shared-memory multiprocessors, we suggest
exploring an interactive visual control mechanism that dynamically show run-time
behavior in future research.

1. Introduction

Ultrahigh speed computations for complex numerical and nonnumerical
problems simulate our human intelligence, such as learning, understanding,
reasoning, and problem solving. The physical constraints of hardware has made
parallel computing the only solution that meets the demands of high-speed
computation. To enhance parallel computing, the development of effective ways
to program high speed computations is equally important. Conventional language
programs are made of sequences of statements that alter the values of variables
in memory. This makes it complicated for both programmers and automatic-
analysis software to discover which program segments can safely execute in
parallel. One of the better approaches to programming parallel computers today
is to use functional languages. In a functional language, a program is composed
of a set of function definitions that describe the computations without any side
effect (caused by an assignment), and only data dependencies constrain the
order of execution. This makes the details of the underlying architectures
transparent to the user and allows the compiler to easily detect and exploit the
parallelisms of the underlying architectures and in the programs.

&

LLNL, Livermore, CA 94550 USA. This work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National Laboratory under contract No. W-
7405-Eng-48. This is work in partial fulfillment for the Ph.D. degree at King's College,
University of London.

** King's College, University of London, Strand, London WC2R 2LS UK

Traditionally, functional languages were developed simultaneously with the
design of new architectures such as data flow and reduction machines
[1,2,3,7,8,10,11], most of which realized parallelism at the finest granularity
level (single instructions). A coarser granularity is appropriate for more
conventional multiprocessor systems. In this paper, we present a general run-
time system designed to support a parallel functional language called SISAL (
Streams and lteration in a Single Assignment Language) [13] to be executed on
conventional shared-memory multiprocessors. SISAL was derived primarily from
the data flow language VAL[1], but unlike VAL it is developed for conventional
sequential machines, shared-memory multiprocessors, and vector processors, as
well as the Manchester data flow machine. The work on SISAL was collaborated
research between the University of Manchester, Lawrence Livermore National
Laboratory, Digital Equipment Corporation, and Colorado State University.

The general issues of mapping functional language programs onto an arbitrary
multiprocessor has been addressed by Hudak [9]. The run-time support
described in this paper is an extension of the previous run-time system
developed for the Sequent Balance multiprocessor [14], which was redesigned to
make it portable on general shared-memory multiprocessor systems. The design
started with the implementation on Clustered Vax 11/784 [4]. The current
version is now running on many different multiprocessor systems, including the
(symmetrical) Vax Research Multiprocessor M31, and the Cray X-MP. The initial
performance evaluations of this run-time system on the (asymmetrical) Vax
Research multiprocessor M31 and the Cray X-MP have been discussed previously
[12]). In this paper, we describe the internal workings of the run-time system
with their implementations on the (symmetrical) Vax Research Multiprocessor
M31 and the Cray X-MP in more detail. In addition, one experiment is conducted
to show the effectiveness of parallelism on both the M31 and Cray X-MP.

2. The Run-time Model

2.1 Task management

The environment of the run-time system supports a large number of concurrent
instruction streams constituting a single SISAL program. We call such an
instruction stream a task. In SISAL, a task defines a function call, a parallel loop
slicing, and a stream producing/consuming sequential loop. The code generator
determines this partition and generates the calls to the run-time system. To
support the above parallelism, the task management has been designed as a
user-level, run-time library for task scheduling and control. This reduces the
significant amount of state information maintained for a task since the current
operating-system state never changes; only the processor state needs to be
saved and restored.

In our run-time system, when a SISAL program is started, an operating system
process called a worker is created for each processor that will be used. A
worker either executes a task or executes a "busy wait" until a task is available
to be executed. Without busy waiting, an idle worker would have to relinquish
its processor to the operating system and significant overhead would occur. The
following discussions give more details on the concept of a task and the role of a
worker.

Tasks

A task is a basic execution unit in SISAL. When a task is created, a data structure
called task control block (TCB) and a run-time stack that holds local variables
and supports run-time library calls are allocated and initialized. The TCB defines
the current state of an executing task, which includes a task's current processor
state, extant child count, and execution status. The processor state defines the
current program counter, argument pointer, register contents, etc. The extant
child count defines the current number of nonterminated children belonging to a
task and is incremented during task creation. The execution status identifies a
task's current mode of operation: READY, RUNNING, VBLOCKED (Value BLOCKED),
PBLOCKED (Producer BLOCKED), and CBLOCKED (Consumer BLOCKED). The last two
modes are discussed in later sections. All tasks available for execution, but not
yet executing, have an executing status identified as READY. The tasks are
maintained on a global ready list in FIFO (First In First Out) order. An executing
task has state RUNNING. When a RUNNING task requires the data produced by
one of its extant children, it blocks with the status VBLOCKED until all the
children tasks are completed. The following are some task management run-time
routines:

¢ GetStack: Allocates and initializes a task descriptor; i.e., TCB when a task is to be created.
+ RListEnQ: Adds the task to the ready queue.

* RListDeQ: Removes a task (if any) from the ready queue.

» Schedule: Performs a task context switch to run a newly selected task.

» Sync: Blocks the requesting task and waits for the children's completion. The invoking task will
be VBLOCKED.

¢ TermMe: Terminates execution and decrements the parent's child count. If this is the last extant
child, it will awaken a VBLOCKED parent task.

In general, an executing SISAL program defines a hierarchical tree of tasks. The
root task, called the SISAL program initiator, creates the main SISAL task and its

required stream I/O tasks and triggers worker termination on completion of its
children. Figure 1 summarizes the state transitions and the run-time routines
that cause them, including those described in Section 2.3.

Workers

Before the SISAL program is executed, the run-time data structures are
initialized and the operating system facilities are used to create the workers. In
order to synchronize all the workers to start for parallel computation, all the
workers start execution on a common barrier. Once all the processes arrive on
this barrier, parallel execution begins safely. Each worker then attempts to
acquire a READY task from the read list. If such a task exists, the old processor
state is saved and that of the acquired task is installed. Otherwise, the worker
waits busily. We refer to the act of saving and restoring processor states as
worker reassignment. When a RUNNING task requests suspension by calling run
time routine Sync, the newly freed worker attempts to acquire another task to
execute. When a RUNNING task requests termination by calling run-time routine
TermMe, its processor state is not saved during worker reassignment. Instead, its
resources are released after the new processor state is installed. Thus, task
execution is multiplexed based on voluntary suspension and termination
requests. All worker processes thus repeat their normal scheduling pattern; i.e.,
busy waiting on the ready list and searching for work until shutdown occurs.

Schedule
(\‘ Sync BLOCKED TermMe
R R
N SaddH S L £
: | 239 ! pRLOCKED—ST- g
I SaddH Y
N Eos SetEos
\ G J———»! CBLOCKED
TermMe RListEnQ

Figure 1: Task State Transitions

2.2 Loop Slicing

SISAL loops come in two forms: sequential and parallel. The parallel loop is a
forall construct that includes an index range for each independent loop-body
execution and thus provides the opportunity for parallel execution. In our run-
time system, a routine called LoopSlicer is used to divide a SISAL forall loop into
independent tasks for parallel execution. Each divided slice spans a continuous
set of index values. Figure 2 summarizes the operation of LoopSlicer. The routine
takes the entry point of the task defining the loop and the full index range of the
loop as arguments. Dividing the total number of iterations by Slices, a run- time
parameter determines slice thickness. The original SISAL loop is thus replaced by
a call to LoopSlicer with the address of the loop code as its argument. ’

LoopSlicer (LoopAddress, LowIndex, HighIndex) {

IndexRange = HighIndex - LowIndex; /* determines the range of the index */

SliceThickness = IndexRange/Slices; /* determines each slice thickness */

while (LowRange <= HighRange) {
ThisHi = LowIndex + SliceThickness; /* compute new high index for this slioce */
NewTCB = GetStack(LoopAddress); /* allocate new TCB for this slice task */
NewTCB->Low = LowIndex; /* record this task low and high index */
NewTCB->High = ThisHi;
RLitEnQ(NewTCB); /* put this new task on READY queue */
LowlIndex = ThisHi + 1; /* for next slice, start the new low index */

Figure 2: LoopSlicer Source Code in Pseudo C.

2.3 Stream Parallelism

A SISAL stream is a data structure defining a possibly infinite sequence of
homogeneous values. Streams differ from arrays in that the values can only be
accessed sequentially. The compiler compiles the stream producing/consuming
loops into functions that contain sequentially executing loops and allocates a
buffer in memory for stream values. A producer of values may execute in
parallel with consumers, and only a substream must exist at any point during
execution. Streams are the only values in SISAL required to be nonstrict; i.e., the
value can be used as soon it is available instead of waiting for the entire
structure to be operated together. In constrast, arrays in SISAL must be
completely constructed before any consumer can operate on it. To eliminate
copies for side-effect-free semantics, reference counts are associated with each
stream value. The following are some of the run-time routines that manage a
stream:

o SaddH: This routine is called by a producer loop that adds data elements to a stream until it
reaches MaxStreamSize, a run-time parameter. Then it becomes producer blocked; i.e, PBLOCKED
(refer to Figure 1). This prevents a fast stream producer from exhausting memory. Once the
consumed streams (by SremL routine described in the following) are below a producer threshold
value, the blocked producer is awaken again.

» SetEos: This routine is called by a producer loop that sets the end of the stream mark so that a
blocked consumer; i.e., CBLOCKED task, can be awaken (refer to Figure 1).

e Eos: This routine is called by a consumer loop that finds no more elements in the current stream
and desires to know the current end-of-stream status of its stream instance. If the routine returns
false, the calling consumer will become consumer blocked; i.e., CBLOCKED (refer to Figure 1).

e SremL: This routine is called by a consumer loop that implements a SISAL stream_rest opgration.
It returns a stream similar to the input stream with the first element removed. Instead of copying the
stream, a reference count is used to indicate the usage. The consumer of a stream may proceed
faster than its corresponding producer and discover that the stream is empty but the end of stream
has not been reached. Such a consumer will block. The SaddH routine will awaken CBLOCKED
tasks when a producer threshold value is reached (refer to Figure 1).

3. Implementations on Shared-Memory Machines

This section discusses the issues of implementing the run-time software on
shared-memory machines. The major machine and operating system
dependencies in our run-time software implementations are: process creation,
synchronization, and shared-memory allocation.

3.1 Vax Research Multiprocessor (M31)

The M31 system is a large-scale multiprocessor machine for supporting research
and experiments within Digital Equipment Corporation. The machine has 32
processors and run a single VMS (VS5.0) operating system to support symmetrical
(no master and slave) multiprocessing.

In M31, the creation of worker process is as follows: The VMS facility
LIBSSPAWN can be used to spawn a subprocess to execute a defined command
procedure on each individual processor. This command procedure runs the same
program image as that of the spawner process and therefore the parallel
execution becomes SPMD (Single Program Multiple Data stream) mode. All the
worker processes are thus created. The synchronization among these workers is
however via the use of shared memory described in the following paragraphs.

To allocate shared memory, the system requires that a global section in
shared memory be explicitly created and mapped to a program's virtual memory
space at run time. Creation of the global section involves two steps: (1) Open (by
using the VMS RMS facility) a file for global section mapping, and (2) Invoke a

Create and Map Section ($CRMPSC) system call. After the creation of global
section by the first worker, the global section will be mapped by subsequently
arriving workers using the VMS global section mapping facility; i.e., SMGBLSC
system call. When the program terminates, an exit handler is defined to delete
the global section and to do the final cleanup.

3.2 Cray X-MP

The run-time system was implemented on Cray X-MP, running NLTSS (Network
Livermore Time Sharing System). The NLTSS operating system currently has
multiprocessing tasking library [6] to support user-level multiprocessing and
implement the lower level machine/system dependent primitives for process
management. The following are some of the Cray NLTSS tasking primitives that
has been integrated into the SISAL run-time library.

« tasktune: Modifies tuning parameters that include maxcpu (maximum number of CPU) and
other parameters to simulate busy waiting of the run-time behavior.

» taskstart: Creates a Cray task by allocating and initializing the task descriptor (TCB).

¢ tqwait: Implements the P operation of counting semaphore, which is called when the task is
blocked.

« tgsignal; Implements the V operation of a counting semaphore, which is called when a task needs
to wakeup a blocked task.

The SISAL implementation on the Cray has integrated these NLTSS tasking
primitives into the run-time system. At the beginning of the job execution, the
tasking kemel is initialized with the number of hardware processes needed for
the job and the parameters that simulate the busy waiting of the scheduling.
Since no hardware process has been created initially except the startup process,
the subsequent calls of taskstart will create the additional worker processes.
Since task creation is relatively expensive for the Cray, a run-time option has
been designed to allow the user to specify an additional number of dummy tasks
to be created at the begining along with the worker-process creations. These
additional dummy tasks will all start on an execution entry, waiting on a binary
semaphore. When a task spawn occurs during run time, these tasks can be
awakened and tagged with additional context to be run. Although this scheme
can save some task-creation overhead during the parallel execution of the job, it
introduces some additional synchronization overhead such as signaling and
queuing/dequeing operations.

The task-state transitions in the Cray implementation are as follows: If a task
is VBLOCKED, PBLOCKED, or CBLOCKED, the worker will call TQWAIT and is

assigned to another ready task. On the other hand, the workers can wake up the
value-blocked parent task, or stream-blocked producer/consumer via TQSIGNAL.

To implement the shared memory, all the processes within the same job share
the same user memory space. The processes created by LIBSSPAWN start with the
same calling process execution environment. One noticeable difference of shared
memory from that of M31 is that the Cray does not have virtual memory and
hence no memory mapping is involved in the memory referencing.

4. Performance Evaluations

To evaluate the effectiveness of SISAL multiprocessing, the algorithm of The
Sieve of Eratosthenes was performed on the (symmetrical) VAX Research
Multiprocessor M31 and the Cray X-MP/416. Because the Cray resource is rare, the
experiments on the Cray were conducted in the time-shared environments. The
following performance measurements were used:

T(n) = execution time times on n processors as shown in Table 1.
SP(n) = parallel speedup i.e. T(1)/T(n) as shown in Table 1.

« The Sieve of Eratosthenes

This algorithm has the property of stream parallelism and works as follows: The
function Integers produces a stream of odd integers. The reference to Integers in
function Sieve causes the production in Integers to occur but execution continues
in Sieve concurrently. Each prime is found in Sieve by removing the first element
of the input stream. From the rest of this stream, a new stream is generated by
filtering out (through the function Filter) each multiple of the produced prime.
This resulting new stream is used again in the prime-finding process in Sieve
until a newly obtained prime is greater than the square root of the input
parameter Limit (all primes have been found). The SISAL code for the
implementation is shown in Figure 3.

To evaluate the Sieve prime finder with the parameter 20000, we found that
a pipeline with 35 segments will form during execution. The first segment is the
function Integer, 33 Filter segments follow (since there are 33 odd primes less
than square root of 20000), and the final segment is Sieve itself. Table 1 shows
the performance for the M31 and the Cray X-MP/416, respectively. The results are
reasonably good, with the speedup saturating near 10 processors for the M31.
The degradation of performance as more processors added is partly caused by
the stream run-time software spending a large percentage of time on testing the
end-of-stream condition in the pipeline. The performance of this algorithm on
Cray was discussed previously [12] and is now shown here for comparisons.

type Strmint = stream[Integer};
function Integer(Limit: integer returns Strmint)
% Produce a stream of odd integers i.e. 3, 5, 7, 9..Limit

for initial
|3-3
while l<= Limit repeat
" lmoldl +2
returns stream of |
end for
end function

function Filter(S: Strmint; M: integer returns Strmint)
% Produce a stream of values obtained from the argument stream S excepting those mulitiple of M
forlinS
returns stream of | unless mod(l,M) = 0
end for
end function

Function Sieve(Limit: integer returns Strmint)
% Generate a stream of primes by inserting a filter on the stream against each prime produced
Let
Maxt := Integer(Sqrt(real(Limit)))
in
for initial
S:=Integers(Limit);
Ti=2)
until stream_empty(S) repeat
T:=stream_first(old S);
S:= if T l= Maxt then
Filter(stream_rest(old S), T)
else stream_rest (old S)
end if
returns stream of T
end for
end let
end function

Figure 3: SISAL Implementation: the Sieve of Eratothenes

S. Conclusions

In this paper, we have presented the internal mechanisms of task management
to support parallel execution of SISAL. We have also discussed the parallel loop
slicing and stream pipeline parallelism. The run-time support routines have
been designed in a user-level library and were made transparant to different
architectures with minimum architectural dependencies. We have shown the
implementation and performance of this run-time system on two radically
different architectures; i.e., one with a large number of small processors (M31)
and another with only a few powerful processors (Cray X-MP). The performance
results show that the implementation is promising given the nature and newness
of the compiler and run-time system. However, the well-known inefficiencies of

functional languages were clear; in particular, memory consumption and
unnecessary copying. In order to better evaluate the effectiveness of functional
languages on multiprocessor systems, new, interactive, visual control
mechanisms need to be developed to dynamically show the running behavior so
that parallel computing can be evaluated more effectively. This deserves further
research.

6. Acknowledgement

The authors acknowledge the discussions of this paper with Professor Meera
Blattner, The University of California at Davis, and the assistance with
experiments on the M31 from John Sopka of DEC.

References

{11 W.B. Ackermann and J. B. Dennis, "VAL: A Value-Oriented Algorithmic Language," Tech. Report
LCS/TR-218, Massachusetts Inst. of Technology, Cambridge, Mass., June 1979.

[2] K. P. Arvind and K. P. Gostelow. "The U-Interpreter”. Computer, Vol. 15, No. 2, pp 42-49,
February 1982.

[3] K. P. Arvind, K. P. Gostelow and W. Plouffe. "The (Preliminary Id Report”. University of
California Ivine, Department of Information and Computer Science, Technical Report TR-114a,
Irvine, California, California, May 1978.

[4] David C. Cann, Ching-Cheng Lee, R. R. Oldehoeft, and S. K. Skedzielewski. SISAL
Multiprocessing Supprot. Technical Report UCID-21115, Lawrence Livermore National Laboratory,
Livermore, CA, 1987.

[S] K. Crispin and R. Strout II. NSYSLIB Library reference Manual, LCSD 912, Draft2. Lawrence
Livermore National Laboratory, Livermore, CA, January 1988.

[6] W.P. Crowley, C. P. Henderson, and T. E. Rudy. The Simple code. Technical Report, UCID
17715, Lawrence Livermore National Laboratory, Livermore, CA, February 1978.

[7] A. Davis. "The Architecture and System Method of DDM1: A Recursively Structured Data Driven
Machine." Proceedings of the 5th Annual Symposium on Computer Architecture, Computer
Architecture News, Vol. 6, No. 7, pp. 210-215, April 1978.

(8] A.Davis. "DDNs - A Low Level Programming Schema for Fully Distributed Systems." Proceedings
on the Workshop in Data Driven Languages and Machines, J. C. Syre (Ed.), Toulouse, France,
section X VI, February 12-13, 1979.

[9] P.Hudak and L. Smith, "Parafunctional Programming", A Paradigm for Programming
Multiprocessor Systems, ", Conf. Record Symp. Princ. Programming Languages, ACM, New
York, 1986, pp243-254.

(10]

(11]

(12]

(13]

(14]

(15]

R. M. Keller, B. Jayaraman, D. Rose, and G. Lindstrom. "FGL (Function Graphical Language)
Programmer's Guide", University of Utah, Department of Computer Science, AMPS Technical
Memorandum No. 1, Salt Lake City, Utah, 1980

R. M. Keller and F. C. H. Lin, "Simulated Performance of a Reduction-based Multiprocessor,"
Computer, Vol. 17, No. 7, July 1984, pp 70-82.

Ching-Cheng Lee, S.K. Skedzielewski, John Feo. On the implementation of Applicative Languages
on Shared-Memory, MIMD Multiprocessors. Parallel Programming: Environments, Applications,
Languages, and Systems Conference, New Haven, CT. July, 1988.

J. McGraw, S. K. Skedzielewski, Stephen Allan, Rod Oldehoeft, John Glauert, Chris Kirham, Bill
Noyce and Robert Thomas. SISAL: Streams and Iteration in a Single Assignment Language,
Reference manual Version 1.2. M-146, Rev. 1, Lawrence Livermore National Laboratory,
Livermore, CA, march 1985.

R. R. Oldehoeft and D. C. Cann. Applicative parallelism on a shared memory multiprocessor. /[EEE
software, 5(1): 62-70, January 1988.

M. H. Reilly and J. R. Sopka. M31 : a large-scale multiprocessor vax for parallel processing
research. In Proceedings of the Spring COMPON, pages 200-206, March 1988.

@ ®
n T(n) SP(n) T(n) SP(n)

1 181.72 1.00 3.77 1.00
2 102.36 1.77 2.14 1.76

4 53.31 3.41 1.55 2.43

8 28.94 6.28 - -

10 24.50 7.42 - -

12 21.98 8.27 - -

16 22.11 8.22 - -

20 20.83 8.72 - -

Table 1 : Parallel Speedup of the Sieve of Eratothenes)
(a) (symmetrical) Vax Research Multiprocessor M31 (upto 20 processors)
(b) Cray X-MP/416 (upto 4 processors)

