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Abstract

Parallel Computing has come of age with several commer-
cial and in-house systems available which not only promise,
but realize supercomputer or better performance. We sur-
vey several major computations underway on hypercubes,
transputer arrays and the SIMD Connection Machine CM-
2 and AMT DAP. Where possible, we compare parallel
implementations with those on CRAY and other high per-
formance conventional computers. We summarize these
experiences as a set of lessons for applications, decomposi-
tion, performance, hardware and software for parallel ma-
chines.

1 Introduction

In my banquet talk [Fox:88b] in last year’s hypercube con-
ference [Fox:88c], I reviewed several applications and al-
gorithms that had been implemented on “real” parallel
computers — mainly hypercubes. The results were en-
couraging; as shown in Table 1, 90% of the applications
parallelize well in a manner that scales to many nodes.
The main requirement is that the problem be large and
have some sort of algorithmic synchronization to ensure
that the nodes can be naturally coordinated. The source of
parallelism is essentially always domain decomposition or
data parallelism; a simple universal technique to produce
high performance scaling parallel algorithms. We intro-
duced the concepts of synchronous, loosely synchronous,
and asynchronous to describe the tiime or synchroniza-
tion structure of the problems. In this terminology, SIMD
computers are appropriate for synchronous and MIMD for
loosely synchronous problems. With this classification, we
found that about one half of all the problems surveyed
were directly suitable for SIMD machines; the other half
could make some use of the additional flexibility of the
MIMD architecture. It was left for further research to
quantify the advantage of MIMD machines for problems
which only “slightly” violated the synchronous condition.
The promise of hypercubes have been particularly well il-
lustrated by the nice results from SANDIA on the per-

*Supported by Department of Energy: Applied Mathematical Sci-
ences - Grant: DE-FG03-85ER25009; Programn Manager of the Joint
Tactical Fusion Program Office; National Science Foundation: Cen-
ter for Research in Parallel Computation - CCR-8809615, Bench-
marking Grant - ASC-8719502; and a joint study with IBM.

formance of their 1024 node NCUBE hypercube on six
prototypical applications [Gustafson:88a].

Until recently, there were several parallel computers that
were “interesting” or “cost-effective”. However, in the
past they were not effective competition for the conven-
tional supercomputers; they lacked both CPU power and
the necessary hardware or software infrastructure to sup-
port major computations. The situation is now changed,
several computations are now underway on parallel com-
puters that are comparable to or better than the state of
the art supercomputer (usually CRAY) calculations. In
Section 2, we survey several of these at Caltech describing
some of the results that bear on general issues in the paral-
lel computer field. We will also present some performance
comparisons from a recent project led by Paul Messina
[Messina:89a), [Pfeiffer:88a). This evaluation considered
the machines listed in Table 2 where the more conven-
tional high performance computers were also considered
by Kuck’s PERFECT club [Berry:88a). In Table 3, we list
the explicit machines used in the parallel supercomputer
applications; only the AMT DAP was not considered by
Messina’s group. We also will consider, but not present
in detail, results from the transputer based systems which
have similar architecture and performance characteristics
to the NCUBE hypercube. We expect transputer systems
to be productive high performance machines in the near
future as larger configurations come into service. We will
not discuss potentially interesting machines, such as the
iPSC2-VX hypercube as we only have INTEL hypercubes
without vector boards at Caltech, and in this bare form,
the iPSC-2 has modest performance, and cannot be con-
sidered a supercomputer.

In the final Section 3 of this report, we conclude with a
sumimnary of the lessons learned.

2 Applications

Here we outline a dozen separate applications. Some are
single calculations; others, such as Sec. 2.1, represent sev-
eral distinct computations.

2.1 Lattice Monte Carlo Simulations

General Remarks

Lattice theories represent one of the most computation-
ally intense class of problems [Baillie:89b]. They arise from



Table 1: Summary of 84 Separate Applications on Paralle] Computers

No. Application Field
9 | Biology
4 | Chemistry & Chemical Engineering
14 | Engineering
10 | Geology & Earth/Space Science
13 | Physics
5 | Astronomy & Astrophysics
11 | Computer Science
18 | Numerical Algorithm
Application Classification No. | Fraction
Synchronous (S) 34 0.40 Total S+L5S
Loosely Synchronous (LS) 30 0.36 0.76
{not synchronous)
Embarrassingly Parallel (EP) 6 0.07 Total S+LS+EP
- runs on SIMD 0.90
- needs MIMD 6 0.07 Clear Scaling
Truly Asynchronous 8 0.10 Unclear Scaling

Table 2: Advanced architecture computers studied in the Caltech Performance Evaluation Project [Messina:89a].

Machine Description
NCUBE Hypercube with custom scalar processors
Mark 111 Hypercube with MC68020/68882 processors
Mark 1Ilfp Mark III hypercube with XL Weitek chip set

INTEL iPSC/1
BBN Butterfly
Alliant FX/8
Sequent Balance
Sequent Symmetry

Encore Multimax
Cydrome Cydra 5
CRAY X-MP/48

CRAY-2

SCS-40

ETA-10 E

Connection Machine 2

Intel 80286/80287-based hypercube

MIMD network of MC68020/68881-based processors
Shared Memory vector multiprocessor
NS32032/32081-based shared memory multiprocessor

Intel 80386-based shared memory multiprocessor with
optional scalar Weitek chips

NS32332-based shared memory multiprocessor

Very Long Instruction Word machine

4-node vector supercomputer

4-node vector supercomputer with large memory
Vector mini-supercomputer, CRAY X-MP compatible
4 vector processors with shared memory

Massively parallel SIMD machine with 16K nodes and
Weitek chips




oot

Table 3: Parallel Supercomputers

at Edinburgh

Machine t | Configuration Key Characteristics
A
NCUBE hyper- 1324 nodes — SANDIA Scalar nodes with about 0.1 megafiop per
cube node
576 nodes — Caltech
Transputer Ar- | 32 nodes — Caltech Scalar nodes, each with about 4 times per-
ray formance of NCUBE node
(MEIKO...) Large system coming into use B

Mark 1ifp hy-

128 nodes — Caltech (only

FEach node is a (short vector) pipelined

percube used in 32 node chunks so | FPU. 1-2 megaflops with rather disap-
far) pointing compiler. 5-8 megaflops/node in
assembly language (easier than microcode
used in previous WEITEK chip sets).
Connection 64K — Los Alamos 64K single bit node system
CM-2 16K — ANL/Caltech peaks out at about 1 gigaflop.
64 K 1 bit processors is re- | Probably will improve.
ally 2048 32 bit processor for
floating point work
AMT DAP 510 | 1024 nodes — ANL Mesh of single bit processors — faster

than those of CM-2

numerical approaches to statistical physics or, in the path
integral approach, to quantum field theories. One has an
effective partition function

2= [ dpiexp(=Sled) (1)
where even in today’s modest problems, the integral run-
ning over the fields p;(z) can have over one million ditnen-
sions (degrees of freedom). Measurements or observables
are then found from
©) = [dpotyen(-Stediz @
In the Monte Carlo method, one replaces the integral (2)
by the sum
(0)= Jim Z O(:)/N. (3)
over N, configurations. These configurations are gener-
ated successively by making a series of small changes —
usually for single sites [Metropolis:53a]. This ensures that
one keeps configurations ¢; distributed according to the
function exp{—S(y;]) which emphasizes the minute region
of phase space which is not exponentially suppressed. For
the currently hardest calculations — dynamical QCD with
a 16* lattice — it takes 50~100 hours of time on CM-2 run-
ning at one gigaflop to produce a statistically distinct (un-
correlated) configuration. Very many such configurations
are needed in the averages eq.(3). The slow evolution pro-
duced by the successive application of a single site update,
has encouraged development of cluster update methods,
but these are only known at the present for the simpler

theories. This is a critical issue; not only could cluster-
ing speed up the computation, it could alter the necessary
architecture as we will illustrate later.

In general, parallelism is straightforward for these prob-
lems — one uses domain decomposition of the underlying
regular space. There have been several algorithmic im-
provements recently — which can usually be viewed as
better importance sampling in the Monte Carlo integral.
The need to continually update algorithms favors relatively
general purpose machines with flexible high level software.
This suggests to me, in the long run, that commercial par-
allel machines will be more successful than the many spe-
cial purpose computers constructed within the high energy
physics community.

Discrete Spin: Ising and Potts Models
(C. Baillie, PP. Coddington)

These have actions S given by

S= ZJ,'U]'

{5}

(4)

over nearest neighbors ij in a space of dimension d. The
spins o; are one bit (Ising) or several bits each (Potts).
These problems are ideal for bit serial machines like the
AMT DAP or Connection Machine CM-2 — although one
cannot use the WEITEK floating point units on the latter
for these bit oriented problems.

We are currently using the AMT DAP 510 to investigate
a 2562 three-dimensional Ising model. It is conventional
to rate machines by the speed at which they generate new



configurations — measured in spin updates/second. The
DAP 510 compares well with the fastest supercomputers
coming in at 0.6 x 10° spin updates/sec compared with the
Hitachi $-820/80, which is only 40% faster [I{0:88a}. How-
ever, this performance rating is misleading as our physics
calculation is dominated by the calculation by eq.(3) of
observables. In fact, we have only crudely coded the up-
date stage on the DAP 510 so that is a factor of 100 slower
than the value quoted above. Even this slow update only
consumes 1% of the total time. We do expect to optimize
(using machine language APAL) the dominant measure-
ment phase and speed up the simulations by a factor of at
least ten.

Continuous Spin: Two Dimensional XY and O(3)
Models
(J. Apostolakis, C. Baillie, R. Gupta)

These systems are given by actions with the form of
eq.(4) with spins o; that are N x N matrices of the group
O(N). We finished, last summer, a major O(2) (or XY)
calculation using the novel “over-relaxation” single site
update algorithm [Gupta:88a). This used the 128 node
FPS T Series hypercube at Los Alamos and realized two
megaflops per node. These calculations are being contin-
ued for the O(3) and similar groups by my graduate stu-
dent, John Apostolakis. The high statistics of the XY
study allowed the refutation of the conclusions of a re-
cent paper [Seiler:88a] and a confirmation of the theoreti-
cal predictions of Kosterlitz and Thouless [Kosterlitz:73a).
The T Series hypercube is a poorly designed machine and
is only suitable for a small class of regular calculations;
it has poor scalar compared to vector performance and
slow communication. We used a 256 x 256 lattice allowing
the other dimension to be viewed as a large vector (multi-
ples of 128) achieving good performance from the inflexible
WEITEK chip based node. Some of our calculations have
been marred by hardware glitches, requiring that one, for
instance, avoid the hardware vector divide and long vector
{> 256) instructions.

Niedermayer and Wolfl [Niedermayer:88a], [Wolfl:89a)
have introduced effective clustering methods which cur-
rently we believe are unsuitable for the FPS archilecture.
We expect to use the MEIKQO transputer array to con-
tinue these calculations. Note that the SIMD CM-2 would
perform well on the algorithm we used for the T Series,
but we currently believe that a true MIMD architecture
may be needed for the clustering calculation. The regu-
lar vectors needed by the T Series, make this old hyper-
cube essentially SIMD in character; more precisely in the
language of [Fox:88b], it requires synchronous problems
for good performance. The currently known clustering al-
gorithms are properly loosely synchronous. We are cur-
rently experimenting with SIMD implementations which,
although inefficient, may still have sufficiently good per-
formance [Baillie:89c].

Pure Gauge QCD
(S. Otto, J. Flower, H. Ding, C. Baillie)

In this case, the action S takes the form

S=p Z {1 — ReTrUp)

plaquettes
P

(5)

where Up is the product of (SU(3)) link matrices around
the elementary plaquettes — these are the eight 1 x 1 loops
including a given link which joins two sites. This calcula-
tion can be both vectorized and parallelized even for the so
called random block lattice [Chiu:86a)}, [Chiu:88e]. It can
achieve good performance on essentially all architectures
with MIMD, SIMD, or vector characteristics. The large
number of floating calculations in eq.(5) (explicitly 3347
for each link) dwatfs overheads such as communication.
Even a modest calculation on a 16* lattice requires
262,144 degrees of freedom, 19 megabytes of memory and
of order 10! flops of CPU power. This problem was origi-
nally tackled [Otto:84a] on the first 64 node Cosmic Cube
Hypercube [Seitz:85a] with a 123 x 16 lattice and repeated
on the 128 node Mark II hypercube with a larger 20* lat-
tice. These machines had peak performance below 5 milop.
We have implemented this application on several more
powerful machines with the performance given below.

CRAY XMP (1 processor) 60 mflops
NCUBE (1024 nodes) 80 mflops
JPL Mark I1Ifp hypercube (128 nodes) 500 mflops
Connection Machine CM-2 (64K nodes) 900 mflops

In Figure 1, we show results from Ding on the Mark IIIfp
hypercube on 243 x 10 lattice [Ding:89a). This implementa-
tion involved 8,000 lines of C and WEITEK XL assembly
code — the commercial compiler for this pipelined chip
set is poor. The CM-2 results correspond to 3,000 lines
of *LISP written by Brickner [Brickner:89a]. One needs
eight virtual processors (corresponding to eight separate
calculations) to get good performance.

Figure 3 shows the performance evaluation for this algo-
rithm; this used FORTRAN and C codes based on Otio’s
original hypercube program. Amusingly, this version of
the code vectorizes poorly even though we know that with
an optimized implementation, the algorithm performs well
on the vector supercomputers.

The flexibility of parallel machines is illustrated by
Chiu’s calculations [Chiu:88e] illustrated by Figure 2.
These use a random block lattice where a different 40* lat-
tice is calculated on each node of the 1024 node NCUBE
hypercube at SANDIA; an embarrassingly parallel appli-
cation in the language of [Fox:88b].

Dynamical Fermion QCD
(C. Baillie, R. Brickner, R. Gupta, G. Kilcup, A.
Patel, S. Sharpe)

This “ultimate” QCD calculation includes the quark
(fermion) degrees of freedom ¢ at the lattice sites with
action

S=—-p'(D+m) e (6)



pp—correlations on three lattices at g=6.
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Figure 1: The zero momentum correlation function used to extract the §g potential from three lattices at coupling
B = 6 [Ding:89a]. Each graph summarizes about two weeks worth of computation on a 32 node Mark I1Ifp hypercube.
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Figure 2: Massless Fermion Propagator in Momentum Space verifying that the new random block lattice method
extrapolates properly to the continuum limit [Chiu:88e]. The 40* lattice was simulated on the 1024 node SANDIA
NCUBE.
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Figure 3: Performance of a set of computers on the 4* lattice QCD problem studied in Figure 1 [Messina:89a]. The
results should be interpreted carefully as realistic calculations need much larger lattices.



Technically, one uses a Wilson fermion formulation and
this is dominated by inverting the 65536 x 65536 (on a 16*
lattice) sparse fermion matrix D + m. This is currently
done with a conjugate gradient or minimal residue method.
The CRAY-2 uniprocessor code runs at 100 megaflops and
the full size Connection Machine CM-2 has about one gi-
gaflop performance [Baillie:8%¢]. We expect this to im-
prove as the CM-2 support software for floating point cal-
culations is developed. We anticipate this problem to need
1016 flops or ~ 3,000 CM-2 hours for even initial studies.

Currently, there are no good clustering algorithms for ei-
ther the pure gauge or fermion QCD problem. The regular
“dumb” algorithm used so far does not require a sophis-
ticated architecture. This could change when an eflective
clustering method is introduced.

The Competition

DOE has awarded two collaborations large (~ 6,000
hours) blocks of time for “grand challenge” QCD calcu-
lations on the CRAY-2 and ETA-10 for QCD calculations.
NSF has certainly already devoted much more time than
this to this problem at the supercomputer centers. Con-
ventional and parallel supercomputers are compared in Ta-
ble 4.

With several months running on the CM-2 or Mark II-
Ifp, parallel supercomputers are very competitive with the
ETA-10 and CRAY-2. The scalar node MIMD architec-
ture of the NCUBE is not well optimized for this highly
regular vectorizable problem.

2.2 High 7, Superconductivity (Barnes,
Kotchan)

A Toronto group has been using the Caltech NCUBE
to study the Quantum Anisotropic Heisenberg Model
[Barnes:88a), [Barnes:88b], and [Barnes:89a]. This prob-
lem is related to the systems of Sec. 2.1, except one is
studying the dynamical and not the statistical properties
of a spin system. The Hamiltonian H is given by, for a
nearest neighbor sum i, j over a two dimensional grid:

H =" [SiS}+g(SFSF+S¢SY)]
{i.4)

(7)

(g = 0is Ising, g = o0 is XY model)

This can be studied as a three dimensional lattice the-
ory, but Barnes has developed an equivalent random walk
approach for solving Schrédinger’s equation with an imag-
inary time T o

- S5 = HW(T) (®)
Typically, an 8 x 8 lattice is evolved separately on each
node by the NCUBE with approximately 10° independent
evolutions needed. This algorithm is reminiscent of the (far
more complex) neutron transport calculations studied at
DOE laboratories. This embarrassingly parallel algorithm
was easily implemented in C on the NCUBE. The 256 node
NCUBE hypercube achieved three times the performance
of the original FORTRAN implementation for the CRAY
XMP.

Figure 4 shows the NCUBE calculation revealing struc-
ture at the transition point ¢ = 1. Current calculations
correspond to several hundred hours of CRAY XMP time.

2.3 Exchange Energies in He® at a Tem-
perature of 0.1 mK°® (S. Callahan, M.
Cross)

Callahan’s Caltech condensed matter Ph.D. involved a
Monte Carlo method to calculate exchange energies in
solid He3 [Callahan:88a], [Callahan:88b]. Rather modest
systems were used with 54-128 particles arranged in a
three-dimensional spatial mesh which is further extended
in time. Use of the 512 node NCUBE required parallelism
in several aspects of the problem. The forces are not near-
est neighbor and decomposition of their calculations over
space leads to a factor of four in parallelism. Decomposing
time (direction of path) leads to another factor of 16. This
64 fold data parallelism is combined with 2 — 8 indepen-
dent runs (i.e., decompose space of random configurations
in the integral of eq.(2)).

In an unfair comparison, the 64 node NCUBE has an
efficiency of only 64%, but ocutperforms the CRAY XMP
by over a factor of two. Hlowever, this used the C language
for the CRAY which only realized a few megaflops. Note
more positively that our implementation used Salmon’s
CUBIX environment [Fox:88a] allowing the identical code
of about 2500 lines of C to run on either the NCUBE
hypercube or CRAY!

Callahan’s thesis involved a total of about 250 hours
computation on the 512 node NCUBE — another super-
computer level calculation.

2.4 Computational Fluid

(CFD)

Caltech has so far not solved any large CFD appli-
cations on parallel machines although the paralleliza-
tion methodology is clear and for instance, the geo-
physics group has made extensive hypercube calcula-
tions of related finite element problems [Nour-Omid:87b],
[Raefsky:88a], [Raefsky:88b], [Gurnis:88a], [Lyzenga:85a),
and [Lyzenga:88a]. We mention here the DIME project of
Williams which generates a general irregular finite element
mesh and solves the resultant equations [Williams:88a],
[Williams:88d]. Currently, DIME can only tackle two
dimensional nonlinear or three dimensional linear prob-
lems with triangular elements. Current applications
include Navier Stokes simulations in two dimensions
[Williams:89a), calculation of fields due to an electric fish
and high energy physics string dynamics. Interesting
model problems, but not supercomputer level [Fox:88v].
In Figure 5, we show a demonstration project with
the mesh generated for a Mach 3 flow over a step
[Williams:88¢]. DIME both generates the mesh and au-
tomatically dynamically load balances the mesh points to
optimize machine performance. At one time, we thought
that decomposition of irregular problems would be a stum-
bling block; however, it is now clear that it is straight-
forward. Williams uses an orthogonal recursive bisection

Dynamics



Table 4: Approximate Dynamical Fermion QCD Performance for the “Grand Challenge”

Machine Performance Time Allocated
{megaflops) in 1989 and comments
ETA-10 (1 processor) 350 1 year
CRAY-XMP (1 processor) 100 1 year
Mark IIIfp (128 nodes) 750
NCUBE (1024 nodes) 100 Not competitive
CM-2 (64K nodes) >1,000
Several SIMD Coarse 1,000— | limited by
Grain Special Purpose Computers 10,000 software

Energy per spin versus lransverse coupling.
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method [Fox:88nn], [Baden:87a} which is sufficient for this
problem. More powerful methods based on neural net-
works and other heuristic optimization methods apply very
generally [Barhen:88a], [Chen:88a], [Ercal:88a], [Fox:88e],
[Koller:88a], [Fox:88f], [Livingston:88al.

The irregular adaptive mesh is naturally implemented
as a linked list data structure. This is hard to vectorize
on conventional supercomputers, but parallelizing well at
least in MIMD machines, such as the NCUBE. It would be
interesting to study the SIMD implementation. Seemingly,
SIMD machines would cope with data access irregularity,
but the irregularities in the computational graph (varying
multiplication of nodal points) cause inefliciencies in the
SIMD case, which are absent for MIMD machines.

2.5 Plasma Physics (Liewer, Zimmerman
(JPL), Decyk, Dawson (UCLA))

Plasina Physics computations represent interesting chal-
lenges for distributed memory machines because the PIC
or particle in the cell algorithm used involves two distinct
decompositions. Qur example problem involves calcula-
tion of the orbits of plasma electrons in their own elec-
tromagnetic field as considered by a JPL-UCLA group on
the JPL Mark IIlfp hypercube [Liewer:89a], [Liewer:88e],
[Liewer:88b]. In the first stage of the calculation, one finds
the field using an FFT; this involves a decomposition with
an equal number of mesh points on each node of the hyper-
cube. Then, one transforms to a separate decomposition
shown in Figure 6(a) with equal number of particles in each
node; this latter is the particle update or “push” part of
the computation where the parlicle positions are evolved
in the field. Each stage can be efliciently implemented on
the hypercube, but transforming between the two distinct
decompositions must be done at each time step. A general
strategy for this has been discussed by Walker [Walker:89a)
at this conference using the crystalaccumulaior algorithm
[Fox:88a). This does not attempt to localize the calculation
for each particle to a single node, but rather distributes
it with calculations done “on the fly” as information is
routed through the hypercube. This method was originally
developed by Furmanski for neural network simulations
[Furmanski:87a), {Fox:88¢g]. It can only be implemented
well on machines like the NCUBE and transputer arrays;
the Mark II1fp and Ametek S2010, where calculation and
communication subsystems are separated, do nof support
the erystalaccumulator well. If important, this algorithm
requires communication subsystems that support a com-
bination of messages in a similar fashion to fetch and add,
as proposed, for combining networks in shared memory
parallel computers [Gottlieb:86a].

Currently, we only have measurements for the more
straightforward strategy where information is routed to
the destination node and then combined; rather than be-
ing combined en route. This is almost certainly the best
algorithin for the Mark 111 hypercube which has separate
communication and calculation subsystems. The combin-
ing overhead would be severe for Walker’s approach on
this and sunilar machines, where the interface between
communication and calculation on the node introduces a

significant latency. In Table 5, we compare the perfor-
mance of (a) the push stage and (b) the total code for
a variety of machines. The 64 node Mark IIfp hyper-
cube is about twice the performance of the CRAY XMP
on the push stage, but only comparable for the total cal-
culation. This indicates that either the FFT or movement
between decompositions is inefficient on the hypercube.
Note that both the CRAY-XMP and Mark IlIfp are run-
ning far from their peak vector performance; each is about
a factor of eight below peak. In Figure 6(b), we show the
performance comparisons from [Messina:89a] for the full

calculation. This implementation involves 4,000 lines of
FORTRAN.

2.6 Astronomical Data Analysis (Ander-
son, Gorham, Kulkarni, Prince)

This group has pioneered the use of the NCUBE for as-
tronomical data analysis [Fox:88v]. Our Caltech NCUBE
system has a small (4 disks) parallel disk farm connected to
the main hypercube; these disks are controlled by a SUN-4
which also has additional peripherals, including the neces-
sary tape drives.

Radio Astronomy

In the most exciting work, radio data from the Arecibo
radio telescope was taken on December 26, 1988 in par-
ticularly advantageous circumstances in that the holiday
spirit reduced the ambient interference — especially from
a nearby naval base. Data is taken with a 0.5 millisec-
ond time interval and Fourier transformed (a large 224
one-dimensional FIF'T') to look for peaks corresponding to
radio pulses from the rapidly rotating neutron star. Two
new pulsars have been discovered, using the NCUBE. Both
are located in the globular cluster M 15, making a total of
three known pulsars in this globular cluster. The discovery
of these pulsars has prompted a reanalysis of current ideas
concerning the origin of neutron stars in globular clusters.

The computation involves both the FFT which is efli-
ciently implemented on the hypercube, and an 1/0O inten-
sive stage taking a total time comparable to the FFT. This
first 1/O dominated stage is overlapped with a calculation
which corrects for frequency dispersion in the interstellar
medium. The measured 1/O performance of the system
is modest at 40 Kbytes/sec/drive including all overheads.
Our ESMD disk drives on the NCUBE are rated at a fac-
tor of 25 higher performance and this suggests the need
for better 1/O software on the NCUBE.

The striking peak corresponding to the neutron star.ro-
tation period of 30.5 milliseconds is shown in Figure 8 for
the second pulsar discovered by the NCUBE. This pulsar
is part of a binary system and required a further compute
intensive “acceleration correction” to remove the orbital
effects of the binary system. This additional computa-
tion has negligible I/O to disk but substantial internode
communication. Processing 90 minutes of data taken at
Arecibo takes about two hours for the dispersion correction
and FFT stages (which discovered the first pulsar), while
about 40 hours of 512 node NCUBE time were needed for
the pulsar shown in figure 8. The major I/O and large
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Figure 5: Simulation of Mach 3 flow over a step [Williams:88e] showing fluid velocity, density and pressure. This was

solved with an adaptive mesh (thin solid lines) on a 32 processor NCUBE hypercube with dynamical load balancing
shown by thick solid lines in top diagram.



Table 5: Performance of One-Dimensional BEPS1 Plasma Physics Code [Liewer:89a]

(a) Comparison of Push Times per Particle on Various Computers

(Particle Update Only)

Computer Push Time
jisecs
Mark IlIifp (64 processor) 0.8 (~50 megaflops)
CRAY XMP/48 (1 processor)
Vectorized 1.5 (~25 megaflops)
Scalar 4.1
CRAY 2 (1 processor)
Vectorized 21
Scalar 10.1
IBM 3090 VF
Vectorized 2.9
Scalar 6.0
Mark III (64 processor) 3.9
Aliiant FX/8 12.6
VAX 11/750, F.P.A. 200.9
Convex C-1 (vector) 19.5

(b) Total Run Time Comparison
(Particle and Grid Updates) (720,896 particles, 1024 grid points, 1000 time steps)

Mark Il{p (64 nodes) 1062 secs
Cray 2 (1 processor) 1714 secs
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memory requirements of this calculation make it hard to
compare the NCUBE with a CRAY or IBM 3090 perfor-

mance.
Optical Astronomy

Traditionally the resolution of ground based optical tele-
scopes is limited by atmospheric turbulence to abaout one
second of arc (1/3600th of a degree). However, it is possi-
ble to eliminate the effects of turbulence using interferome-
try techniques familiar from radio astronomy, and achieve
resolution of 30 milliarcseconds. Using the 200” Mount
Palomar telescope, one divides the total aperture into ap-
proximately one thousand 15 cm disks. The correlations
between these disks are summarized in 10% Fourier coeffi-
cients — the bispectral function. These are averaged over
many samples or frames lasting from 10-100 ms over which
the turbulence is essentially constant. This technique has
been implemented on the NCUBE where a 20 minute Palo-
mar exposure on an asteroid was analyzed for 10 hours on
a 256 node subcube and obtained the best image resolu-
tion ever seen for an asteroid. Similar results are shown in
Figure 7 where the new technique resolves a binary star;
the improvement in resolution is about a factor of 30 over
traditional methods in each linear dimension.

This novel method is still in its infancy; it illustrates
graphically how powerful computers can open up new ap-
proaches to scientific problems.

2.7 Quantum Chemistry Reaction Dy-
namics (Wu, Hipes, Kuppermann,
Cuccaro)

Kuppermann’s group has been developing a fundamen-
tal approach to the understanding of chemical reactions
[Cuccaro:88a], [Kuppermann:86a). A goal is the descrip-
tion of reactions like F+Hy — FH-+ H which are the bases
of an important chemical laser. This is a difficult compu-
tation involving a factor of a thousand more computation
than the prototypical initial example.

. X + Ho(v', 5, m') nonreactive
X + Ha(v,j,m) — { 0+ XH(v",j”,m") reactive
9
where
v=10,1,2,...; labels vibrational energy content
J=0,1,2,...; labels rotational energy content

m=0,%+1,42,...,4j; labels spatial orientation
of molecule

Operationally, this problem involves solving Schrodinger’s
equation Hy = Ev for the wave function ¥ in the novel hy-
perspherical basis set. Here H, the Hamiltonian, is a sec-
ond order linear differential operation in six variables and
E is the total collision energy. This computation breaks
down into two phases which we describe separately below
[Hipes:88a], [lipes:88b)].

Phase I: Calculate Basis Functions and Matrices

1. Construct a primitive basis set composed of product
of analytic and numerical functions ~— each processor
solves an independent tridiagonal eigenvalue problem
using bisection.

2. Evaluate 2D integrals using the primitive basis func-
tions which requires spline interpolation onto the
quadrature grid. Each processor calculates a subset
of the matrix of such integrals.

3. Assemble the integrals into a real symmetric matrix.
Parallel reduction by Householder transformations.
Redundant tridiagonal QR algorithm in each proces-
sor to get eigenvalues/vectors.

4. Calculate more matrices of integrals using primitives
and coefficients from step 3. These matrix elements
are distributed among the processors.

5. I/O to store matrices

6. Repeat 51 times

Steps 1, 2, and 4 are trivially parallel and involve in-
dependent computation. Step 3 needs significant paral-
lel algorithms adapted from work by Patterson at JPL
[Patterson:88a].

This has been fully implemented for H + Hjy reactive
scattering on the 32 node Mark 11ifp hypercube with 3,000
lines of coding. The total runtime time was 9.8 hours of
which 2.2 hours were /O (stage 5). This will be improved
soon with the high performance CIO (Concurrent I/0)
hardware on the Mark Illfp. The same calculation on
the SCS-40 (which has about 25% the performance of the
CRAY XMP) took 71 hours.

This initial phase is followed by:

Phase II: Integration of Coupled Linear Systems
of Ordinary
Differential Equations

This phase uses Johnson’s algorithm [Johnson:73a}] — a
fourth order special purpose integrator for chemistry sim-
ulations. The resultant algorithm is dominated by matrix
inversion (and not LU decomposition!) with some matrix
multiplication. 1/O is also needed to initialize with the
results of Phase I which determined the matrix elements.
This involved 2,000 lines of code and 74 coupled ordinary
differential equations integrated for 250 siteps. 31 ener-
gies were calculated simultaneously to reduce I/O over-
heads and the resultant calculation took two hours on the
Mark H1fp with an additional I/O overhead of 10%. A
typical transition probabiality curve is compared with the
corresponding SCS-40 calculations in Figure 9.

In Figure 10(a), Messina’s group has accumulated the re-
sults of the Phase II (or LOGD for logarithmic derivative)
benchmark which is essentially 65 x 65 matrix inversion
[Messina:89a). The vector machines do well on this calcu-
lation and these systematics are summarized in Table 6.

The good performance of the CRAY on matrix algo-
rithms is further illustrated in Figure 10(b) for matrix mul-
tiplication. The NCUBE looks good compared to CRAY’s
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Figure 8: The peak, after NCUBE analysis, corresponding to a new binary pulsar PSR 2127+411C discovered in the
globular cluster M 15 with a pulse period of 30.5 millisecs. The data was taken at the Arecibo Radio Telescope at

430 MHz on December 26, 1988.

Table 6: Performance of High Performance Computers. The listed numbers are approximate megaflops.

Mark IIfp NCUBE
CM-2 CRAY XMP Hypercube Hypercube
64K 1 processor 128 nodes 1024 nodes
“huge” vector | “long” vector | “short” vector scalar
Super Regular 3000 200 750 160
(e.g., large full matrix)
Typical Regular 1000 75 500 100
(e.g, QCD)
Irregular Fails 10 100 50
{(e.g., chess, clustering)
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on problems like those in Secs. 2.2, 2.3, 2.4, 2.6, 2.10, 2.11,
which are irregular and vectorize poorly. Matrix algebra
and, to a lesser extent, algorithms like QCD (Sec 2.1) show
the vector machines at their best. This is not surprising
— they were designed for this problem class! Table 6 at-
tempts to show a progression from SIMD to long vector
supercomputers to hypercubes with short vector nodes to
scalar node MIMD machines. This corresponds to increas-
ingly general purpose machines. As commented in Sec. 2.1,
machines like the NCUBE are not competitive in peak per-
formance on regular problems, but they offer good per-
formance on range of problems and their speed degrades
slowly as one increases the irregularity of the problem.

2.8 Grain Gas

(Gutt)

A very interesting use of the NCUBE was recently reported
in Gary Gutt’s Ph.D. thesis at Caltech [Gutt:89a]. Ear-
lier, Werner’s Ph.D. research had studied grain dynam-
ics using the first hypercubes [Werner:87a}, [Werner:88a).
This work put in detailed Newtonian dynamics to study
the motion of sand and other granular material. This is an
interesting alternative to conventional continuum approxi-
mations to material dynamics. Gutt proposes an interme-
diate model for such systems using cellular automata or
lattice gas techniques that have already been applied to flu-
ids [Frisch:86a]. Gutt’s automata are quite dense (of order
one for every two lattice sites) and one must store the rel-
ative displacements of each automata from the lattice site
positions. Thus, this automata method does not use bi-
nary arithmetic, but rather 32 bit arithmetic. To improve
performance, integer and not floating peint arithmetic is
used. Gutt’s thesis used about 200 hours of NCUBE 512
node time with the largest simulation involving 0.5 x 10°
grains on a 8064 x 128 lattice. This involves Poiseuille flow
down a pipe driven by gravity. We do not have a CRAY
implementation of this code, but it is possible that irregu-
larities in lattice site occupancy would make vectorization
difficult. The parallelization on the NCUBE is straight
forward and efficient.

Dynamics by Lattice

2.9 Ocean General Circulation Model

This is a salutary lesson in parallelizing dusty decks. Our
original plan was that this 20,000 line FORTRAN CRAY
code would typify issues involved in converting similar but
larger and more sophisticated meteorological codes. The
program solves a three dimensional ocean model with the
Navier Stokes equations and driving terms {rom wind, tem-
perature and salinity. It uses a time stepped evolution with
successive over relaxation to solve Poisson’s equation for
the fluid.

We kept a careful record of the time spent on this project
recorded in Table 7. Parallelization involved a simple do-
main decomposition implemented by changing DO loop
indices in the original code and adding communication
calls. There was an amusing (frustrating) difficulty with
decomposing in the north-south dimension which we now
believe was an unphysical approximation introduced to im-

prove an original small memory CYBER 205 version. As it
stands, the code could only be parallelized (decomposed)
in the other two directions {east-west, depth). The parallel
code used all 256 megabytes of memory on the 512 node
NCUBE and did not need memory management necessary
in CRAY version. This 512 node hypercube performance
was comparable to that of CRAY.

A success, you might think, but there is a tragic end as
the NCUBE version does not currently agree with that for
the CRAY. Maybe this is a bug introduced by the paral-
lelization, but we doubt it. We have studied the CRAY
code and believe it is incorrect; maybe vectorization in-
troduced an error in handling the boundary conditions?
We tried to obtain help from the originators of the code,
but to no avail. We could find no one who would take
responsibility for the version we were dealing with.

We deduce from this experience that parallelizing exist-
ing code can be quite simple and quick — see the “three
day” entry in Table 7 for the essential parallelization step.
However, such endeavors should only be undertaken with
the help of someone really knowledgeable in and responsi-
ble for the sequential code.

2.10 Astrophysical Particle Dynamics (P.
Quinn, J. Salmon, M. Warren)

N-body calculations have been revolutionized by a clus-
tering technique introduced by Appel [Appel:85a] and
developed significantly by Barnes, Hut and Greengard
[Barnes:86a], [Greengard:87a]. The basic idea is simple;
consider a cluster of M stars for which we need to calculate
the interaction with a single star (far) outside the cluster.
This straightforwardly requires O(M) steps, but can gain a
factor of M by ignoring the details of the cluster and just
computing with its center of mass. As implemented by
Barnes and Hut, one can apply this idea recursively gener-
ating a tree (quad tree in two dimensions) as illustrated in
Figure 11 with, at most, one particle in the cluster at the
lowest level of tree [Warren:88b}, [Warren:88¢c]. The naive
calculation takes a time for each simulation (time) step for
a system of N particles

Tnaive — -1-N2t

step T 9 (10)

while explicit implementation, shows that the clustering
method takes time

2particle

pcluster _ (20 — 50) N log, Nt

step (11)

The cluster method has superior performance for N 2
1000 particles. The current limit of O(10,000) particles for
the O(N?) algorithm is increased by an order of magnitude
for the Barnes Hut method. The possibility of large N of
O(10°) particles opens up several important astrophysical
calculations including

2particle

e Study of the growth of fluctuations in the early uni-
verse

e Dynamics of globular clusters where one finds in na-
ture of O(10°) stars and a difficult calculation as very
short range interactions (binary stars) are critical



Table 7: Steps in Parallelizing OGCM

Time in Days

Get Original FORTRAN Running on CRAY and Un- 10
derstand use of Program

Generate Working Sequential Code for SUN 10
Construct Test Dataset 10
Find that our FORTRAN environment on NCUBE hy- 10
percube needed upgrade as up to now we had used C

language

Parallelize Code 3
Total 43

e Galaxy structure and the collision of galaxies.

We have just finished a calculation of the last type, illus-
trated in Figures 11 and 12, which used about 200 hours
on the 512 node NCUBE [Salmon:89a].

This computation has several interesting features. The
cluster tree is rebuilt each time step; a stage which is
negligible in the sequential version, but which appears to
take of order 30% of the concurrent execution time in the
N = 180, 000 particle simulation of [Salmon:87a]. Initially,
we found load imbalance, but this was solved by dynami-
cally redistributing particles at each time step. The infor-
mation for this was found from the “workload” at the pre-
viously calculated time step. As illustrated in Figure 11,
orthogonal recursive bisection is used to distribute the par-
ticles. Communication is required to fetch those parts
of the tree that are stored outside the node and will be
needed for updating particles within the node. This en-
sures maximum re-use of the communicated data and low
communication overhead — about 10%. This approach
does, however, use 75% of the available NCUBE memory
and limit the simulation size. In spite of this, we are able
to consider, on the current NCUBE, large problems that
are difficult to implement on the limited memory CRAY-
XMP and future such hypercubes with several megabytes
of memory per node will allow much larger values of N.

The program was implemented with 3,400 lines of C code
for the NCUBE, and some timing information is given in
Table 8 for a single time step. This has a comparison with
FORTRAN CRAY code.

We see that the 256 node NCUBE outperforms the
CRAY-XMP as reported in [Hernquist:87a) for 10° par-
ticles, even though the hypercube efficiency is quite low.
The CRAY efficiency is even lower!

In Figure 13, we show results from [Messina:89a] for
what is essentially the O(N?) pariicle dynamics algorithm.
This vectorizes well on CRAY and runs with > 95% effi-
ciency on the NCUBE; this time the CRAY-XMP is four
times the performance of the 256 node NCUBE.

Considering SIMD architectures, we are not certain how
to implement the clustering algorithm to get good perfor-
mance on machines like the CM-2 [Hillis:87b]. This is re-
lated to the difficulties we saw in Sec. 2.1 with Monte Carlo

Table 8: Performance on Astrophysical Particle Dynamics

104 Particles | 105 Particles
CRAY-XMP 10 secs 130 secs
Some Optimization
256 node NCUBE
— time 21 secs 118 secs
— efficiency 24% 56%

clustering and in Sec. 2.4 with adaptive grids on SIMD
machines. Note that the “regular” clustering/multiscale
algorithms such as multigrid or the FFT run quite well
on SIMD machines; the difficulties in implementations for
synchronous machines occurs for geometrically irregular
cluster algorithms.

2.11 Computer Chess

Morison)

(Felten, Otto,

Computer chess involves constructing a tree of possible
moves and dynamically pruning it with the o — @ tech-
nique as illustrated in Figure 14 [Felten:88g], [Felten:88h],
[Felten:88i]. On a parallel machine, the tree (“data do-
main”) is decomposed over the nodes. We found that
a real time graphics display {using the NCUBE parallel
graphics subsystem) was critical in achieving a factor of
five better performance. This allowed us to change the
algorithm for processor assignment and improve the load
balance. The measured speed up is shown in Figure 15
with a speed up of 101(170) seen on 256(512) nodes for
trees of depth appropriate for a middle game. Note that
the speed up increases as the problem gets bigger, i.e., as
one spends a longer time on each move. This illustrates
that for problems with real time constraints, increasing
processor performances increases parallelization efficiency
by increasing the size of the problem that can be solved in
a given fixed time.

This was a very difficult code to design and develop as
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Figure 11: A collection of interacting particles in two dimensions with the hierarchical quadtree and its load balanced
decomposition onto four nodes [Warren:88b], [Warren:88c].



(a) Time 66.5

(b) Time 68.5

Figure 12: Typical results of the simulation on the NCUBE of the collision between two galaxies with a total of 180,000
objects [Salmon:89a). Each “object” should be viewed as a collection of stars.



The O(N?) N-body algorithm
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Figure 13: Performance of an O(N?) vortex dynamics algorithm on a variety of high performance computers
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Figure 14: A schematic for a chess tree showing branches pruned away [Felten:88g].
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Figure 15: Measured speed up for the parallel chess program as a function of number of NCUBE nodes. The four
curves correspond to four tree depths with larger trees showing larger speed ups [Felten:88g], [Felten:88i).



the algorithm is asynchronous. Probably, the technical im-
plementation and in particular the debugging were harder
than the algorithmic issues. The result is 8,000 lines of
C code using the commercial NCUBE operating system
VERTEX with a “special shared memory” enhancement
to allow concurrent access and update of a distributed
database — the so-called transposition table of currently
evaluated positions. In contrast, all the other Caltech
hypercube scientific calculations use our internal loosely
synchronous communications system CrOS which is faster
than VERTEX [Fox:88a).

Let us consider the future of computer chess. We esti-
mate that the 256 node NCUBE has a U. S. chess rating of
2,100 at present, or in a more familiar unit of megamoves
searched per second, we have the results in Table 9a.

The NCUBE does quite well compared to a CRAY (a
512 node NCUBE is approximately one head of a CRAY
XMP), but neither is competitive with special purpose ma-
chines. However, we can consider using the same paral-
lelization technique developed for the NCUBE, but for an
array of special purpose chess chips — not the general pur-
pose microprocessor used on the NCUBE. We conjecture
that a system of some 8,000 special purpose chips like those
in Deep Thought, would achieve a speed up of 1,000 and
be very competitive with Kasparov as shown in Table 9b.
Each node processor of our world chess champion would
have for chess about 100 times the power of a NCUBE
node. The communication overhead for the NCUBE case
is about 10%; the “Deep Thought” chips would need an
internode bandwidth about ten times that of NCUBE to
keep a manageable (50%) communication overhead. Such
a system seems quite practical, but outside my group’s
resources. Rather, we are concentrating on a different ap-
proach; can one improve chess programs by the use of neu-
ral network based position evaluators?

2.12 Kalman Filters (Gottschalk)

A JPL team headed by D. Curkendall [Meier:89a] has
developed a sophisticated battle management simulation.
This includes threat generation (launch missiles), tracking,
engagement planning (launch anti-missiles), and graphics.
The total of 200,000 lines of code is one of the largest single
parallel computer projects — much larger than the sum of
codes described so far in the previous eleven subsections!
The current, so called, SIM88 project completely simulates
up to 2560 objects launched from six sites. There is an in-
teresting hybrid approach to the simulation with each com-
ponent (tracking satellite, planning platform) functionally
decomposed with a very coarse grained object oriented
model. Traditional data parallelism is used within func-
tions {objects) assigned to a subcube of the hypercube.
Correspondingly, a hybrid software model CENTAUR for
the Mark IIIfp hypercube supported general but slow inter
object communication and fast loosely synchronous CrOS
communication within objects [Burns:88a]. Formally, the
simulation is an asynchronous event driven simulation at
the object level, but the predictable and coarse grain na-
ture of the object to object communication allowed effi-
cient implementation within a simple conservative frame-

Table 10: Components {Time Complexity in Arbitrary
Units) of Old and New Trackers

Tracker | Calculation | Overhead | Lines of
Version C Code
SIM 87 | . 1 4,000
SIM 88 1 20,000

work [Chandy:81a).

Let us focus on the tracking component which used
a parallel implementation of a traditional multi-target
Kalman filter tracker [Gottschalk:87f], [Gottschalk:88aj.
Much of the calculation can be done independently in each
node when one distributes the tracks. There are some sig-
nificant overheads when tracks share measurements and
load balance is an issue addressed by dynamically redis-
tributing the data at each measurement cycle:

In Figure 16, we show the performance comparison
where shared memory machines do very well — these avoid
the data shuffling overheads for overlapping tracks. This
algorithm was designed for the so called boost phase when
there is modest parallelism coming from the decomposition
of a total of a few hundred objects. In Figure 16, with a
total of 480 targets, the coarse grain machines with smaller
number of nodes are clearly preferable to the NCUBE with
many slower nodes.

In Table 10, we indicate that the communication over-
head is perhaps overestimated in Figure 16 as it depends
critically on the sophistication of the track model. Im-
proving this increases the fully parallel calculation with-
out changing the absolute values of overheads. Thus, the
newer SIM 88 algorithm has higher efficiency than the orig-
inal SIM 87 implementation of Figure 16.

We expect the situation to change in the harder mid-
course phase where up to 10° real or decoy objects can
be anticipated. This will need new algorithms — perhaps
neural networks [Fox:89h] — and the parallelism issues will
be quite different. In the boost phase, it appears that exist-
ing parallel machines with a few megaflops of performance
will allow real time tracking; mid course will require true
supercomputers.

3 Lessons

Here we collect together some lessons we have drawn from
“using real parallel computers to solve real problems with
real software”.

This information is obtained from both the supercom-
puter applications of Sec. 2 and for instance the broader
surveys of [Fox:88b], [Fox:88ll].
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Figure 16: Performance evaluation results for the so called SIM87 tracker on 480 objects and 10 sites from [Messina:89a].
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faster algorithm with better load balancing.



A Possible CCSF for Production Science

Shared Disk Farm

Vector Attached
Large MIMD Processor
| Machine SIMD (CM-2. . )
— "Simple" nodes Hypercube with
Scalar vector nodes
Holsts CRAY’s!?
General
Production
Need nodes Production for
optimized for "regular” problems
Initial Irregular problems, Need nodes optimized
Test of Supporting linked for vectors, matrices.
algorithms lists etc.
Performance
Regular 1 100 1000
Irregular 1 50 Fails or 50
il

[ ;
~ 1 megaflop - now to get megaflops

"arbitrary units": Multiply by 10 megaflops soon

Figure 17: A possible design for a computer “center” built around advanced architecture high performance systems.



Table 9: (a) Chess Positions Searched per Second

Machine Performance
(10° moves/sec)

Special Purpose

BELLE (1980) 0.075

HITECH (1985) 0.25

Deep Thought (1988) 2.5

New AT and T Machine (19897) 5
General Purpose

256 node NCUBE 0.025

4 Processor CRAY XMP 0.15

(b) Ratings of the Best Chess Players

Player Rating
HITECH 2450
Deep Thought 2600
Kasparov 2850
1000x Deep Thought | 28507

3.1 Application Lessons

3.1.1 One can achieve high performance on essentially all
scientific computations which are

e Large (necessary condition)
e Loosely synchronous — MIMD (sufficient condition)

& or synchronous — SIMD

More research is needed to clarify Table 1 and see how
far one can violate synchronization and get good results
for irregular problems on SIMD machines. Note that even
for loosely synchronous problems, synchronous communi-
cation is usually sufficient; communication is typically only
necessary at the macroscopic synchronization points of the
algorithm [Fox:88a], [Fox:88b}, [Fox:88ll].

3.1.2 Domain Decomposition or data parallelism is a uni-

versal source of parallelism that scales to large numbers of
nodes [Fox:88a], [Hillis:86a].

3.1.3 These results are true on a broad range of computer
architectures (SIMD, MIMD, shared, distributed memory,
hypercubes, (transputer) meshes ... ).

3.1.4 University successes on parallel computers have
come with 1,000-10,000 line codes written from scratch
for a particular machine.

3.1.5 It is pot clear how to extrapolaie these successes
to up to 10° line commercial codes where you have per-
haps less knowledge as to the inner workings of program
cf. Sec. 2.9. Certainly, one must establish and use stan-
dard methods in parallel software to justify expense of a

new parallel implementation. These standards must apply
across a range of architectures.

3.1.6 In many cases (cf. Sec. 2.2), it is easier to decom-
pose for a parallel machine than to vectorize for a con-
ventional supercomputer. This is especially true for sinall
(university) codes.

We can superficially abstract from this that universities
should purchase parallel computers and industry vector
supercomputers!

3.1.7 The importance of parallel machines for artificial
intelligence (Al) is unclear to me. If the Al is implemented
with neural networks, then the relevance and use of parallel
computers is clear. More traditional Al systems parallelize
less easily although chess (Sec. 2.11) is a good example
which both parallelizes and needs high performance. How
many other such Al applications are there?

3.2 Performance Lessons

3.2.1 One can get high performance on essentially all
scientific computations. As shown in [Fox:84c], [Fox:85c¢],
[Fox:88a], [Gustafson:88a), and [Fox:89b)

e Performance scales linearly in number of nodes at con-
stant grain size {problem size proportional to machine
size)

e Fixed problem size does not scale; this can be viewed
as Amdahl’s Law

3.2.2 Some initial disappointments can be traced to im-
balance in early commercial machines, such as the iPSC/1
and FPS T Series hypercubes.



3.2.3 We saw in Secs. 2.2, 2.3 and Sec. 2.10 that machines
like an NCUBE or transputer arrays look particularly at-
tractive compared to the CRAY XMP class machines on
irregular problems where one finds

e it is more natural and easier to decompose than to
vectorize

o the NCUBE efficiency is “low”; maybe 50%
o but the CRAY efficiency even lower; maybe 5%.

Note that the average CRAY-XMP performance in com-
puter center operation is about 25 megaflops with a 12%
efficiency. The NCAR CRAY realizes a sustained 50
megaflops, which is perhaps the peak average performance.
Perhaps we have too high a standard for the efficiency of
parallel machines!

3.2.4 Scalar node MIMD machines are natural general
purpose machines with reasonable performance over a
range of problems. As seen in Table 6, hypercubes have
high efficiency on regular (e.g., full matrix and QCD) prob-
lems, but so does the CRAY XMP class machine. Hyper-
cubes with vector nodes or SIMD machines are attractive
for regular problems. '

@

3.2.5 Diflerent programming methodologies and lack of
standards handicap performance studies. As FTN-8X is
yet to be implemented uniformly, it is hard even to port
between CRAY XMP and the ETA-10. This, for instance,
is handicapping the “grand challenge” that I mentioned
in Sec. 2.1. Of course, porting between parallel and se-
quential machines is hard and [Messina:89a] essentially re-
implemented from scratch many algorithms for their per-
formance evalution. The different software methodologies
for shared and distributed memory machines cannot be
avoided as some sense it is the more convenient environ-
ment that motivates shared memory machines. It would
be unreasonable to require shared memory machines to
always use message passing!

3.3 Decomposition Lessons

Here we refer to issues concerning the decomposition or
dividing up of problems to minimize communication and
equalize load on processors.

3.3.1 Three years ago, I thought decomposition or load
balancing was a key problem, but as described in Sec 2.4,
it is surprisingly easy!

e Usually, the application scientist can specify it from
the natural geometric structure of the problem

e Several heuristic methods provide automatic decom-
position. These include recursive bisection, simulated
annealing and neural networks.

3.3.2 Current hardware trends have emphasized transpar-
ent message routing where the user need not be aware of
machine topology. This is clearly convenient, but Sec 3.3.1
indicates it is not strictly necessary for a broad class of
problems. We can note that:

e Most problems can be mapped with software to any
reasonable bandwidth topology with modest routing
overheads.

e In particular, for current Caltech codes (say those de-
scribed in Sec. 2) there is an average overhead of less
than 5% due to routing. This should be compared to
overheads of perhaps 50% due to poor compilers {e.g.,
for NCUBE and WEITEK), 50% as system is overall
rather flaky and 25% due to node to neighboring hy-
percube node communication.

o We must emphasize that these soffware solutions have
yet to be “packaged” nicely for general use. Not every
programmer is comfortable with simulated annealing.
Thus, automatic routing hardware is certainly conve-
nient in the “real world”.

3.3.3 In current systems, message start up time, which
includes hardware and software effects is a much more se-
rious overhead than either node to node through routing,
or channel transmission between neighboring nodes.

3.4 Hardware Lessons

3.4.1 So far, high performance computations on moder-
ately or massively parallel machines (2 8 nodes) has been
confined to distributed memory machines. The compari-
son between distributed and shared memory architecture
is hard because of the lack of comparable machines and
experience.

3.4.2 Five years ago, there were many university projects
building novel machines, but in the future commercial sys-
tems will dominate the paralle] field as they now do with
conventional supercomputers. ’

3.4.3 The U. S. entrepreneurial environment will guaran-
tee a wide range of architectures even without new univer-
sity projects. Portable sofiware will be at a premium to
exploit these machines.

3.4.4 Many or perhaps all the current commercial paral-
lel systems are disappointing in some ways. For instance,
our NCUBE is now in full use as a “production supercom-
puter” but this took two years and at least $150K costs
in software development at Caltech. If we remember Bill
Joy’s law that sequential computers improve a factor of two
per year in cost-performance, we see that a two-year de-
lay translates into a factor of four loss in cost effectiveness
compared to the conventional competition. Novel comput-
ers are bound to need extra time to develop viable sofiware
than their sequential competition; this certainly handicaps
their ability to compete.

3.4.5 As implied by Sec. 3.4.4, systems integration is not
yet well addressed in the parallel machines. This includes
issues such as,

e General multiuser operating systems especially for
distributed memory machines; debugging

e Adherence to standards



¢ Input/Output for disks and graphics. The architec-
ture of the 1/0O systern gets surprisingly little attention
in the literature.

e High performance appropriate hosts (not PC’s or
workstations) for a parallel supercomputer

3.4.6 For MIMD machines, we have already discussed
some issues in Secs. 3.1.1, 3.2.3, and 3.2.4.

e Currently, machines like the NCUBE or transputer
with scalar (floating point) nodes seem more success-
ful than machines with vector nodes. The poor old
user finds it hard to vectorize and decompose prob-
lems! One such optimization is enough.

e Given that such scalar node systems are particularly
attractive for irregular problems, maybe one should
consider adding specialized support for the data struc-
tures like linked lists needed for irregular problems.

e Several megabytes (but not arbitrarily large) mem-
ory per node is needed to hold program, decomposed

data, databases and reused communication data (see
Sec. 2.10).

e One can expect the differences between shared and
distributed memory architectures to lessen as both are
based on low latency networks. Either local memory
(for machines like the hypercube) or caches on shared
memory machines will require data locality for good
performance.

3.4.7 SIMD machines can support at least 50% of uni-
versity scientific applications as shown in Table 1. They
currently give the peak performance for regular problems
(see Tables 4, 6). Perhaps the commercial applications are
more irregular and will show a lower fraction appropriate
for the SIMD architecture.

3.4.8 In Figure 17, we show a possible structure of an
integrated high performance novel architecture computer
environment. Simple scalar node MIMD machines support
general problems with either vector or SIMD architectures
as an “accelerator” for regular problems.

3.5 Software Lessons

3.5.1 Whereas the role of universities in developing hard-
ware systems may be limited in the future, we expect uni-
versities to have a critical role in the software for parallel
machines where we cannot hope for the commercial sys-
tems to be adequate.

3.5.2 A key question is: “What is the appropriate produc-
tive standard programming environment for parallel ma-
chines?” This could be based on [Fox:88u], [Fox:88w]:

e New languages
e Compiler generated parallelism
e Application specific high level environments

e Explicit user decomposition

3.5.3 Note that essentially all successful reasonable per-
formance use of parallel machines have used explicit user
decomposition which is low level and machine dependent.
We expect we must find more portable aitractive methods
if parallel computers are to take over from the conventional
architectures.

3.5.4 Approaches like LINDA (“shared message space”)
or the new language, OCCAM, appear not to address
enough of the issues to be the solution of the question
posed in Sec. 3.5.2.

3.5.5 When I started work on the hypercube in 1981, I had
great confidence that they would be successful as I could
make a simple performance model and prove “mathemat-
ically” that for dedicated users, hypercubes would work
[Fox:83a). 1 don’t have any way of making a similar pre-
diction for the software environment!

3.5.6 The development of parallel computing has involved
collaborations between several academic fields — in par-
ticular computer scientists, applied mathematicians and
application scientists such as computational physicists and
chemists. I see large gulfs have developed between these
fields with, for instance, no agreed common language and
little global understanding or sympathy of the issues and
goals for each academic field. I suggest that universities
need to reach out to support interdisciplinary research and
education. In particular, we need to fill the gap designated
as computational science in Figure 18 [Rheinboldt:85a),
[Raveche:87a).
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