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Abstract
Parallel Computing has come of age with several commer­
cial and in-house systems available which not only promise, 
but realize supercomputer or better performance. We sur­
vey several major computations underway on hypercubes, 
transputer arrays and the SIMD Connection Machine CM- 
2 and AMT DAP. Where possible, we compare parallel 
implementations with those on CRAY and other high per­
formance conventional computers. We summarize these 
experiences as a set of lessons for applications, decomposi­
tion, performance, hardware and software for parallel ma­
chines.

1 Introduction
In my banquet talk [Fox:88b] in last year’s hypercube con­
ference [Fox:88c], I reviewed several applications and al­
gorithms that had been implemented on “real” parallel 
computers — mainly hypercubes. The results were en­
couraging; as shown in Table 1, 90% of the applications 
parallelize well in a manner that scales to many nodes. 
The main requirement is that the problem be large and 
have some sort of algorithmic synchronization to ensure 
that the nodes can be naturally coordinated. The source of 
parallelism is essentially always domain decomposition or 
data parallelism; a simple universal technique to produce 
high performance scaling parallel algorithms. We intro­
duced the concepts of synchronous, loosely synchronous, 
and asynchronous to describe the time or synchroniza­
tion structure of the problems. In this terminology, SIMD 
computers are appropriate for synchronous and MIMD for 
loosely synchronous problems. With this classification, we 
found that about one half of all the problems surveyed 
were directly suitable for SIMD machines; the other half 
could make some use of the additional flexibility of the 
MIMD architecture. It was left for further research to 
quantify the advantage of MIMD machines for problems 
which only “slightly” violated the synchronous condition. 
The promise of hypercubes have been particularly well il­
lustrated by the nice results from SANDIA on the per­

* Supported by Department of Energy: Applied Mathematical Sci­
ences - Grant: DE-FG03-85ER25009; Program Manager of the Joint 
Tactical Fusion Program Office; National Science Foundation: Cen­
ter for Research in Parallel Computation - CCR-8809615, Bench­
marking Grant - ASC-8719502; and a joint study with IBM.

formance of their 1024 node NCUBE hypercube on six 
prototypical applications [Gustafson:88a].

Until recently, there were several parallel computers that 
were “interesting” or “cost-effective”. However, in the 
past they were not effective competition for the conven­
tional supercomputers; they lacked both CPU power and 
the necessary hardware or software infrastructure to sup­
port major computations. The situation is now changed, 
several computations are now underway on parallel com­
puters that are comparable to or better than the state of 
the art supercomputer (usually CRAY) calculations. In 
Section 2, we survey several of these at Caltech describing 
some of the results that bear on general issues in the paral­
lel computer field. We will also present some performance 
comparisons from a recent project led by Paul Messina 
[Messina:89a], [Pfeiffer:88a], This evaluation considered 
the machines listed in Table 2 where the more conven­
tional high performance computers were also considered 
by Kuck’s PERFECT club [Berry:88a]. In Table 3, we list 
the explicit machines used in the parallel supercomputer 
applications; only the AMT DAP was not considered by 
Messina’s group. We also will consider, but not present 
in detail, results from the transputer based systems which 
have similar architecture and performance characteristics 
to the NCUBE hypercube. We expect transputer systems 
to be productive high performance machines in the near 
future as larger configurations come into service. We will 
not discuss potentially interesting machines, such as the 
iPSC2-VX hypercube as we only have INTEL hypercubes 
without vector boards at Caltech, and in this bare form, 
the iPSC-2 has modest performance, and cannot be con­
sidered a supercomputer.

In the final Section 3 of this report, we conclude with a 
summary of the lessons learned.

2 Applications
Here we outline a dozen separate applications. Some are 
single calculations; others, such as Sec. 2.1, represent sev­
eral distinct computations.

2.1 Lattice Monte Carlo Simulations
General Remarks

Lattice theories represent one of the most computation­
ally intense class of problems [Baillie:89b]. They arise from



Table 1: Summary of 84 Separate Applications on Parallel Computers

No. Application Field

9 Biology
4 Chemistry & Chemical Engineering

14 Engineering
10 Geology & Earth/Space Science
13 Physics
5 Astronomy & Astrophysics

11 Computer Science
18 Numerical Algorithm

Application Classification No. Fraction
Synchronous (S) 34 0.40 Total S+LS
Loosely Synchronous (LS)
(not synchronous)

30 0.36 0.76

Embarrassingly Parallel (EP)
- runs on SIMD

6 0.07 Total S+LS+EP 
0.90

- needs MIMD 6 0.07 Clear Scaling
Truly Asynchronous 8 0.10 Unclear Scaling

Table 2: Advanced architecture computers studied in the Caltech Performance Evaluation Project [Messina:89a],

Machine Description
NCUBE Hypercube with custom scalar processors
Mark III Hypercube with MC68020/68882 processors
Mark Illfp Mark III hypercube with XL Weitek chip set
INTEL iPSC/1 Intel 80286/80287-based hypercube
BBN Butterfly MIMD network of MC68020/68881-based processors
Alliant FX/8 Shared Memory vector multiprocessor
Sequent Balance NS32032/32081-based shared memory multiprocessor
Sequent Symmetry Intel 80386-based shared memory multiprocessor with 

optional scalar Weitek chips
Encore Multimax NS32332-based shared memory multiprocessor
Cydrome Cydra 5 Very Long Instruction Word machine
CRAY X-MP/48 4-node vector supercomputer
CRAY-2 4-node vector supercomputer with large memory
SCS-40 Vector mini-supercomputer, CRAY X-MP compatible
ETA-10 E 4 vector processors with shared memory
Connection Machine 2 Massively parallel SIMD machine with 16K nodes and 

Weitek chips



Table 3: Parallel Supercomputers

Machine ( Configuration Key Characteristics

NCUBE hyper­
cube

V._y
1024 nodes — SANDIA Scalar nodes with about 0.1 megaflop per 

node

576 nodes — Caltech
Transputer Ar­
ray
(MEIKO...)

32 nodes — Caltech

Large system coming into use 
at Edinburgh

Scalar nodes, each with about 4 times per­
formance of NCUBE node

Mark Illfp hy­
percube

128 nodes — Caltech (only 
used in 32 node chunks so 
far)

Each node is a (short vector) pipelined 
FPU. 1-2 megaflops with rather disap­
pointing compiler. 5-8 megaflops/node in 
assembly language (easier than microcode 
used in previous WEITEK chip sets).

Connection
CM-2

64K — Los Alamos
16K — ANL/Caltech
64 K 1 bit processors is re­
ally 2048 32 bit processor for 
floating point work

64K single bit node system 
peaks out at about 1 gigaflop.
Probably will improve.

AMT DAP 510 1024 nodes — ANL Mesh of single bit processors — faster 
than those of CM-2

numerical approaches to statistical physics or, in the path 
integral approach, to quantum field theories. One has an 
effective partition function

Z = J d<piexp(-S[<pi}) (1)

where even in today’s modest problems, the integral run­
ning over the fields <pi(x) can have over one million dimen­
sions (degrees of freedom). Measurements or observables 
are then found from

(O) = J dfiO(<pi) exp(-5[v?,])/2 (2)

In the Monte Carlo method, one replaces the integral (2) 
by the sum

W = (3)
i

over Nc configurations. These configurations are gener­
ated successively by making a series of small changes — 
usually for single sites [Metropolis:53a], This ensures that 
one keeps configurations <pi distributed according to the 
function exp[—S(y>,-]) which emphasizes the minute region 
of phase space which is not exponentially suppressed. For 
the currently hardest calculations — dynamical QCD with 
a 164 lattice — it takes 50-100 hours of time on CM-2 run­
ning at one gigaflop to produce a statistically distinct (un­
correlated) configuration. Very many such configurations 
are needed in the averages eq.(3). The slow evolution pro­
duced by the successive application of a single site update, 
has encouraged development of cluster update methods, 
but these are only known at the present for the simpler

theories. This is a critical issue; not only could cluster­
ing speed up the computation, it could alter the necessary 
architecture as we will illustrate later.

In general, parallelism is straightforward for these prob­
lems — one uses domain decomposition of the underlying 
regular space. There have been several algorithmic im­
provements recently — which can usually be viewed as 
better importance sampling in the Monte Carlo integral. 
The need to continually update algorithms favors relatively 
general purpose machines with flexible high level software. 
This suggests to me, in the long run, that commercial par­
allel machines will be more successful than the many spe­
cial purpose computers constructed within the high energy 
physics community.

Discrete Spin: Ising and Potts Models 
(C. Baillie, P. Coddington)

These have actions S given by

S=Yl<ri<ri (4)
(01

over nearest neighbors ij in a space of dimension d. The 
spins <Ti are one bit (Ising) or several bits each (Potts). 
These problems are ideal for bit serial machines like the 
AMT DAP or Connection Machine CM-2 — although one 
cannot use the WEITEK floating point units on the latter 
for these bit oriented problems.

We are currently using the AMT DAP 510 to investigate 
a 2563 three-dimensional Ising model. It is conventional 
to rate machines by the speed at which they generate new



configurations — measured in spin updates/second. The
DAP 510 compares well with the fastest supercomputers 
coming in at 0.6 x 109 spin updates/sec compared with the 
Hitachi S-820/80, which is only 40% faster [Ito:88a], How­
ever, this performance rating is misleading as our physics 
calculation is dominated by the calculation by eq.(3) of 
observables. In fact, we have only crudely coded the up­
date stage on the DAP 510 so that is a factor of 100 slower 
than the value quoted above. Even this slow update only 
consumes 1% of the total time. We do expect to optimize 
(using machine language APAL) the dominant measure­
ment phase and speed up the simulations by a factor of at 
least ten.

Continuous Spin: Two Dimensional XY and 0(3) 
Models

(J. Apostolakis, C. Baillie, R. Gupta)

These systems are given by actions with the form of 
eq.(4) with spins <r,- that are N x N matrices of the group 
O(N). We finished, last summer, a major 0(2) (or XY) 
calculation using the novel “over-relaxation” single site 
update algorithm [Gupta:88aj. This used the 128 node 
FPS T Series hypercube at Los Alamos and realized two 
megaflops per node. These calculations are being contin­
ued for the 0(3) and similar groups by my graduate stu­
dent, John Apostolakis. The high statistics of the XY 
study allowed the refutation of the conclusions of a re­
cent paper [Seiler :88a] and a confirmation of the theoreti­
cal predictions of Kosterlitz and Thouless [Kosterlitz:73a]. 
The T Series hypercube is a poorly designed machine and 
is only suitable for a small class of regular calculations; 
it has poor scalar compared to vector performance and 
slow communication. We used a 256 x 256 lattice allowing 
the other dimension to be viewed as a large vector (multi­
ples of 128) achieving good performance from the inflexible 
WEITEK chip based node. Some of our calculations have 
been marred by hardware glitches, requiring that one, for 
instance, avoid the hardware vector divide and long vector 
(> 256) instructions.

Niedermayer and Wolff [Niedermayer:88a], [Wolff:89a] 
have introduced effective clustering methods which cur­
rently we believe are unsuitable for the FPS architecture. 
We expect to use the MEIKO transputer array to con­
tinue these calculations. Note that the SIMD CM-2 would 
perform well on the algorithm we used for the T Series, 
but we currently believe that a true MIMD architecture 
may be needed for the clustering calculation. The regu­
lar vectors needed by the T Series, make this old hyper­
cube essentially SIMD in character; more precisely in the 
language of [Fox:88b], it requires synchronous problems 
for good performance. The currently known clustering al­
gorithms are properly loosely synchronous. We are cur­
rently experimenting with SIMD implementations which, 
although inefficient, may still have sufficiently good per­
formance [Baillie:89c].

Pure Gauge QCD
(S. Otto, J. Flower, H. Ding, C. Baillie)

In this case, the action S takes the form

s = 0 J2 (1-ReTrUp) (5)
pl&qeettes

P

where Up is the product of (SU(3)) link matrices around 
the elementary plaquettes — these are the eight 1x1 loops 
including a given link which joins two sites. This calcula­
tion can be both vectorized and parallelized even for the so 
called random block lattice [Chiu:86a], [Chiu:88e]. It can 
achieve good performance on essentially all architectures 
with MIMD, SIMD, or vector characteristics. The large 
number of floating calculations in eq.(5) (explicitly 3347 
for each link) dwarfs overheads such as communication.

Even a modest calculation on a 164 lattice requires 
262,144 degrees of freedom, 19 megabytes of memory and 
of order 1015 flops of CPU power. This problem was origi­
nally tackled [Otto:84a] on the first 64 node Cosmic Cube 
Hypercube [Seitz:85a] with a 123 x 16 lattice and repeated 
on the 128 node Mark II hypercube with a larger 204 lat­
tice. These machines had peak performance below 5 mflop. 
We have implemented this application on several more 
powerful machines with the performance given below.

CRAY XMP (1 processor) 60 mflops
NCUBE (1024 nodes) 80 mflops
JPL Mark Illfp hypercube (128 nodes) 500 mflops 
Connection Machine CM-2 (64K nodes) 900 mflops

In Figure 1, we show results from Ding on the Mark Illfp 
hypercube on 243x 10 lattice [Ding:89a]. This implementa­
tion involved 8,000 lines of C and WEITEK XL assembly 
code — the commercial compiler for this pipelined chip 
set is poor. The CM-2 results correspond to 3,000 lines 
of *LISP written by Brickner [Brickner:89a]. One needs 
eight virtual processors (corresponding to eight separate 
calculations) to get good performance.

Figure 3 shows the performance evaluation for this algo­
rithm; this used FORTRAN and C codes based on Otto’s 
original hypercube program. Amusingly, this version of 
the code vectorizes poorly even though we know that with 
an optimized implementation, the algorithm performs well 
on the vector supercomputers.

The flexibility of parallel machines is illustrated by 
Chiu’s calculations [Chiu:88e] illustrated by Figure 2. 
These use a random block lattice where a different 404 lat­
tice is calculated on each node of the 1024 node NCUBE 
hypercube at SANDIA; an embarrassingly parallel appli­
cation in the language of [Fox:88b],

Dynamical Fermion QCD 
(C. Baillie, R. Brickner, R. Gupta, G. Kilcup, A.

Patel, S. Sharpe)

This “ultimate” QCD calculation includes the quark 
(fermion) degrees of freedom ip at the lattice sites with 
action

S = —y>t(D-fm) lip (6)



pp—correlations on three lattices at /3=6.
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Figure 1: The zero momentum correlation function used to extract the qq potential from three lattices at coupling 
/? = 6 [Ding:89a], Each graph summarizes about two weeks worth of computation on a 32 node Mark Illfp hypercube.
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Technically, one uses a Wilson fermion formulation and 
this is dominated by inverting the 65536 x 65536 (on a 164 
lattice) sparse fermion matrix D + m. This is currently 
done with a conjugate gradient or minimal residue method. 
The CRAY-2 uniprocessor code runs at 100 megaflops and 
the full size Connection Machine CM-2 has about one gi­
gaflop performance [Baillie:89ej. We expect this to im­
prove as the CM-2 support software for floating point cal­
culations is developed. We anticipate this problem to need 
1016 flops or ~ 3,000 CM-2 hours for even initial studies.

Currently, there are no good clustering algorithms for ei­
ther the pure gauge or fermion QCD problem. The regular 
“dumb” algorithm used so far does not require a sophis­
ticated architecture. This could change when an effective 
clustering method is introduced.

The Competition

DOE has awarded two collaborations large (~ 6,000 
hours) blocks of time for “grand challenge” QCD calcu­
lations on the CRAY-2 and ETA-10 for QCD calculations. 
NSF has certainly already devoted much more time than 
this to this problem at the supercomputer centers. Con­
ventional and parallel supercomputers are compared in Ta­
ble 4.

With several months running on the CM-2 or Mark Il­
lfp, parallel supercomputers are very competitive with the 
ETA-10 and CRAY-2. The scalar node MIMD architec­
ture of the NCUBE is not well optimized for this highly 
regular vectorizable problem.

2.2 High Tc Superconductivity (Barnes, 
Kotchan)

A Toronto group has been using the Caltech NCUBE 
to study the Quantum Anisotropic Heisenberg Model 
[Barnes:88a], [Barnes:88b], and [Barnes:89a]. This prob­
lem is related to the systems of Sec. 2.1, except one is 
studying the dynamical and not the statistical properties 
of a spin system. The Hamiltonian H is given by, for a 
nearest neighbor sum i,j over a two dimensional grid:

H = H &SJ + 9(SfSJ + SfSj)] (7)
{'.i)

(<jr = 0 is Ising, <7 = oo is X Y model)
This can be studied as a three dimensional lattice the­

ory, but Barnes has developed an equivalent random walk 
approach for solving Schrodinger’s equation with an imag­
inary time T:

-|p = HrP(T) (8)

Typically, an 8 x 8 lattice is evolved separately on each 
node by the NCUBE with approximately 106 independent 
evolutions needed. This algorithm is reminiscent of the (far 
more complex) neutron transport calculations studied at 
DOE laboratories. This embarrassingly parallel algorithm 
was easily implemented in C on the NCUBE. The 256 node 
NCUBE hypercube achieved three times the performance 
of the original FORTRAN implementation for the CRAY 
XMP.

Figure 4 shows the NCUBE calculation revealing struc­
ture at the transition point g = l. Current calculations 
correspond to several hundred hours of CRAY XMP time.

2.3 Exchange Energies in He3 at a Tem­
perature of 0.1 mK° (S. Callahan, M.
Cross)

Callahan’s Caltech condensed matter Ph.D. involved a 
Monte Carlo method to calculate exchange energies in 
solid He3 [Callahan:88a], [Callahan:88b]. Rather modest 
systems were used with 54-128 particles arranged in a 
three-dimensional spatial mesh which is further extended 
in time. Use of the 512 node NCUBE required parallelism 
in several aspects of the problem. The forces are not near­
est neighbor and decomposition of their calculations over 
space leads to a factor of four in parallelism. Decomposing 
time (direction of path) leads to another factor of 16. This 
64 fold data parallelism is combined with 2 -+ 8 indepen­
dent runs (i.e., decompose space of random configurations 
in the integral of eq.(2)).

In an unfair comparison, the 64 node NCUBE has an 
efficiency of only 64%, but outperforms the CRAY XMP 
by over a factor of two. However, this used the C language 
for the CRAY which only realized a few megaflops. Note 
more positively that our implementation used Salmon’s 
CUBIX environment [Fox:88a] allowing the identical code 
of about 2500 lines of C to run on either the NCUBE 
hypercube or CRAY!

Callahan’s thesis involved a total of about 250 hours 
computation on the 512 node NCUBE — another super­
computer level calculation.

2.4 Computational Fluid Dynamics 
(CFD)

Caltech has so far not solved any large CFD appli­
cations on parallel machines although the paralleliza­
tion methodology is clear and for instance, the geo­
physics group has made extensive hypercube calcula­
tions of related finite element problems [Nour-Omid:87b], 
[Raefsky:88a], [Raefsky:88b], [Gurnis:88a], [Lyzenga:85a], 
and [Lyzenga:88a], We mention here the DIME project of 
Williams which generates a general irregular finite element 
mesh and solves the resultant equations [Williams:88a], 
[Williams:88d]. Currently, DIME can only tackle two 
dimensional nonlinear or three dimensional linear prob­
lems with triangular elements. Current applications 
include Navier Stokes simulations in two dimensions 
[Williams:89a], calculation of fields due to an electric fish 
and high energy physics string dynamics. Interesting 
model problems, but not supercomputer level [Fox:88v],

In Figure 5, we show a demonstration project with 
the mesh generated for a Mach 3 flow over a step 
[Williams:88e]. DIME both generates the mesh and au­
tomatically dynamically load balances the mesh points to 
optimize machine performance. At one time, we thought 
that decomposition of irregular problems would be a stum­
bling block; however, it is now clear that it is straight­
forward. Williams uses an orthogonal recursive bisection
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Table 4: Approximate Dynamical Fermion QCD Performance for the “Grand Challenge”

Machine Performance
(megaflops)

Time Allocated 
in 1989 and comments

ETA-10 (1 processor) 350 1 year
CRAY-XMP (1 processor) 100 1 year
Mark Illfp (128 nodes) 750
NCUBE (1024 nodes) 100 Not competitive
CM-2 (64K nodes) >1,000
Several SIMD Coarse 1,000-+ limited by
Grain Special Purpose Computers 10,000 software

Energy per spin versus transverse coupling.
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Figure 4: Energy per spin versus transverse coupling for the anistropic Heisenberg model simulated on the NCUBE 
[Barnes:89a]. Significant is the transition at coupling g = \.



method [Fox:88nn], [Baden:87a] winch is sufficient for this 
problem. More powerful methods based on neural net­
works and other heuristic optimization methods apply very 
generally [Barhen:88a], [Chen:88a], [Ercal:88a], [Fox:88e], 
[Koller:88a], [Fox:88f], [Livingston:88a].

The irregular adaptive mesh is naturally implemented 
as a linked list data structure. This is hard to vectorize 
on conventional supercomputers, but parallelizing well at 
least in MIMD machines, such as the NCUBE. It would be 
interesting to study the SIMD implementation. Seemingly, 
SIMD machines would cope with data access irregularity, 
but the irregularities in the computational graph (varying 
multiplication of nodal points) cause inefficiencies in the 
SIMD case, which are absent for MIMD machines.

2.5 Plasma Physics (Liewer, Zimmerman 
(JPL), Decyk, Dawson (UCLA))

Plasma Physics computations represent interesting chal­
lenges for distributed memory machines because the PIC 
or particle in the cell algorithm used involves two distinct 
decompositions. Our example problem involves calcula­
tion of the orbits of plasma electrons in their own elec­
tromagnetic field as considered by a JPL-UCLA group on 
the JPL Mark Illfp hypercube [Liewer:89a], [Liewer:88e], 
[Liewer:88b], In the first stage of the calculation, one finds 
the field using an FFT; this involves a decomposition with 
an equal number of mesh points on each node of the hyper­
cube. Then, one transforms to a separate decomposition 
shown in Figure 6(a) with equal number of particles in each 
node; this latter is the particle update or “push” part of 
the computation where the particle positions are evolved 
in the field. Each stage can be efficiently implemented on 
the hypercube, but transforming between the two distinct 
decompositions must be done at each time step. A general 
strategy for this has been discussed by Walker [Walker:89a] 
at this conference using the cryslaLaccumulaior algorithm 
[Fox:88a], This does not attempt to localize the calculation 
for each particle to a single node, but rather distributes 
it with calculations done “on the fly” as information is 
routed through the hypercube. This method was originally 
developed by Furmanski for neural network simulations 
[Furmanski:87a], [Fox:88g]. It can only be implemented 
well on machines like the NCUBE and transputer arrays; 
the Mark Illfp and Ametek S2010, where calculation and 
communication subsystems are separated, do not support 
the crystal-accumulator well. If important, this algorithm 
requires communication subsystems that support a com­
bination of messages in a similar fashion to fetch and add, 
as proposed, for combining networks in shared memory 
parallel computers [Gottlieb:86a].

Currently, we only have measurements for the more 
straightforward strategy where information is routed to 
the destination node and then combined; rather than be­
ing combined en route. This is almost certainly the best 
algorithm for the Mark III hypercube which has separate 
communication and calculation subsystems. The combin­
ing overhead would be severe for Walker’s approach on 
this and similar machines, where the interface between 
communication and calculation on the node introduces a

significant latency. In Table 5, we compare the perfor­
mance of (a) the push stage and (b) the total code for 
a variety of machines. The 64 node Mark Illfp hyper­
cube is about twice the performance of the GRAY XMP 
on the push stage, but only comparable for the total cal­
culation. This indicates that either the FFT or movement 
between decompositions is inefficient on the hypercube. 
Note that both the CRAY-XMP and Mark Illfp are run­
ning far from their peak vector performance; each is about 
a factor of eight below peak. In Figure 6(b), we show the 
performance comparisons from [Messina:89a] for the full 
calculation. This implementation involves 4,000 lines of 
FORTRAN.

2.6 Astronomical Data Analysis (Ander­
son, Gorham, Kulkarni, Prince)

This group has pioneered the use of the NCUBE for as­
tronomical data analysis [Fox:88v]. Our Caltech NCUBE 
system has a small (4 disks) parallel disk farm connected to 
the main hypercube; these disks are controlled by a SUN-4 
which also has additional peripherals, including the neces­
sary tape drives.

Radio Astronomy

In the most exciting work, radio data from the Arecibo 
radio telescope was taken on December 26, 1988 in par­
ticularly advantageous circumstances in that the holiday 
spirit reduced the ambient interference — especially from 
a nearby naval base. Data is taken with a 0.5 millisec­
ond time interval and Fourier transformed (a large 224 
one-dimensional FFT) to look for peaks corresponding to 
radio pulses from the rapidly rotating neutron star. Two 
new pulsars have been discovered, using the NCUBE. Both 
are located in the globular cluster M 15, making a total of 
three known pulsars in this globular cluster. The discovery 
of these pulsars has prompted a reanalysis of current ideas 
concerning the origin of neutron stars in globular clusters.

The computation involves both the FFT which is effi­
ciently implemented on the hypercube, and an I/O inten­
sive stage taking a total time comparable to the FFT. This 
first I/O dominated stage is overlapped with a calculation 
which corrects for frequency dispersion in the interstellar 
medium. The measured I/O performance of the system 
is modest at 40 Kbytes/sec/drive including all overheads. 
Our ESMD disk drives on the NCUBE are rated at a fac­
tor of 25 higher performance and this suggests the need 
for better I/O software on the NCUBE.

The striking peak corresponding to the neutron star.ro­
tation period of 30.5 milliseconds is shown in Figure 8 for 
the second pulsar discovered by the NCUBE. This pulsar 
is part of a binary system and required a further compute 
intensive “acceleration correction” to remove the orbital 
effects of the binary "/stem. This additional computa­
tion has negligible I/O to disk but substantial internode 
communication. Processing 90 minutes of data taken at 
Arecibo takes about two hours for the dispersion correction 
and FFT stages (which discovered the first pulsar), while 
about 40 hours of 512 node NCUBE time were needed for 
the pulsar shown in figure 8. The major I/O and large



32 Processor Mesh

Figure 5: Simulation of Mach 3 flow over a step [Wiltiams:88e] showing fluid velocity, density and pressure. This was 
solved with an adaptive mesh (thin solid lines) on a 32 processor NCUBE hypercube with dynamical load balancing 
shown by thick solid lines in top diagram.



Table 5: Performance of One-Dimensional BEPS1 Plasma Physics Code [Liewer:89a]

(a) Comparison of Push Times per Particle on Various Computers

(Particle Update Only)

Computer Push Time 
psecs

Mark Illfp (64 processor) 0.8 (~50 megaflops)
CRAY XMP/48 (1 processor)

Vectorized 1.5 (~25 megaflops)
Scalar 4.1

CRAY 2 (1 processor)
Vectorized 2.1
Scalar 10.1

IBM 3090 VF
Vectorized 2.9
Scalar 6.0

Mark III (64 processor) 3.9
Alliant FX/8 12.6
VAX 11/750, F.P.A. 200.9
Convex C-l (vector) 19.5

(b) Total Run Time Comparison
(Particle and Grid Updates) (720,896 particles, 1024 grid points, 1000 time steps)

Mark Illfp (64 nodes) 1062 secs 
Cray 2 (1 processor) 1714 secs
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Figure 6: (a) The particle distribution in the load balanced "push” stage of the PIC code of [Liewer:89a] in one and 
two dimensions; (b) The benchmark results of [Messina:89a] for the one dimensional particle in the cell UCLA code 
[Decyk:88a] called BEPS1.



memory requirements of this calculation make it hard to 
compare the NCUBE with a CRAY or IBM 3090 perfor­
mance.

Optical Astronomy

Traditionally the resolution of ground based optical tele­
scopes is limited by atmospheric turbulence to abaout one 
second of arc (l/3600th of a degree). However, it is possi­
ble to eliminate the effects of turbulence using interferome­
try techniques familiar from radio astronomy, and achieve 
resolution of 30 milliarcseconds. Using the 200” Mount 
Palomar telescope, one divides the total aperture into ap­
proximately one thousand 15 cm disks. The correlations 
between these disks are summarized in 106 Fourier coeffi­
cients — the bispectral function. These are averaged over 
many samples or frames lasting from 10-100 ms over which 
the turbulence is essentially constant. This technique has 
been implemented on the NCUBE where a 20 minute Palo­
mar exposure on an asteroid was analyzed for 10 hours on 
a 256 node subcube and obtained the best image resolu­
tion ever seen for an asteroid. Similar results are shown in 
Figure 7 where the new technique resolves a binary star; 
the improvement in resolution is about a factor of 30 over 
traditional methods in each linear dimension.

This novel method is still in its infancy; it illustrates 
graphically how powerful computers can open up new ap­
proaches to scientific problems.

2.7 Quantum Chemistry Reaction Dy­
namics (Wu, Hipes, Kuppermann, 
Cuccaro)

Kuppermann’s group has been developing a fundamen­
tal approach to the understanding of chemical reactions 
[Cuccaro:88a], [Kuppermann:86a]. A goal is the descrip­
tion of reactions like F+H? —* FH+H which are the bases 
of an important chemical laser. This is a difficult compu­
tation involving a factor of a thousand more computation 
than the prototypical initial example.

A + H2(v,j, rn)

where

X F H2{v',j',m') nonreactive 
H + X H(v" ,j" ,m") reactive

(9)

v = 0,1,2,...; labels vibrational energy content 
j = 0,1,2,...; labels rotational energy content 
m = 0, ±1, ±2,..., ±j; labels spatial orientation 
of molecule

Operationally, this problem involves solving Schrodinger’s 
equation Hip = Eip for the wave function tp in the novel hy- 
perspherical basis set. Here //, the Hamiltonian, is a sec­
ond order linear differential operation in six variables and 
E is the total collision energy. This computation breaks 
down into two phases which we describe separately below 
[Hipes:88a], [Hipes:88b].

Phase I: Calculate Basis Functions and Matrices

1. Construct a primitive basis set composed of product 
of analytic and numerical functions — each processor 
solves an independent tridiagonal eigenvalue problem 
using bisection.

2. Evaluate 2D integrals using the primitive basis func­
tions which requires spline interpolation onto the 
quadrature grid. Each processor calculates a subset 
of the matrix .of such integrals.

3. Assemble the integrals into a real symmetric matrix. 
Parallel reduction by Householder transformations. 
Redundant tridiagonal QR algorithm in each proces­
sor to get eigenvalues/vectors.

4. Calculate more matrices of integrals using primitives 
and coefficients from step 3. These matrix elements 
are distributed among the processors.

5. I/O to store matrices

6. Repeat 51 times

Steps 1, 2, and 4 are trivially parallel and involve in­
dependent computation. Step 3 needs significant paral­
lel algorithms adapted from work by Patterson at JPL
[Patterson:88a].

This has been fully implemented for H + H2 reactive 
scattering on the 32 node Mark Illfp hypercube with 3,000 
lines of coding. The total runtime time was 9.8 hours of 
which 2.2 hours were I/O (stage 5). This will be improved 
soon with the high performance CIO (Concurrent I/O) 
hardware on the Mark Illfp. The same calculation on 
the SCS-40 (which has about 25% the performance of the 
CRAY XMP) took 71 hours.

This initial phase is followed by:

Phase II: Integration of Coupled Linear Systems 
of Ordinary 

Differential Equations

This phase uses Johnson’s algorithm [Johnson:73a] — a 
fourth order special purpose integrator for chemistry sim­
ulations. The resultant algorithm is dominated by matrix 
inversion (and not LU decomposition!) with some matrix 
multiplication. I/O is also needed to initialize with the 
results of Phase I which determined the matrix elements. 
This involved 2,000 lines of code and 74 coupled ordinary 
differential equations integrated for 250 steps. 31 ener­
gies were calculated simultaneously to reduce I/O over­
heads and the resultant calculation took two hours on the 
Mark Illfp with an additional I/O overhead of 10%. A 
typical transition probabiality curve is compared with the 
corresponding SCS-40 calculations in Figure 9.

In Figure 10(a), Messina’s group has accumulated the re­
sults of the Phase II (or LOGO for logarithmic derivative) 
benchmark which is essentially 65 x 65 matrix inversion 
[Messina:89a]. The vector machines do well on this calcu­
lation and these systematics are summarized in Table 6.

The good performance of the CRAY on matrix algo­
rithms is further illustrated in Figure 10(b) for matrix mul­
tiplication. The NCUBE looks good compared to CRAY’s



(a) Normal Binary Image

(b) Image after Atmospheric Turbulence Removed

Figure 7: (a) The raw data which is a six second exposure of BS 5747 (/? Corona Borealis) with a diameter of ^ 1 
arcsec. The magnification of (a) and (b) are ~ x 1000 in linear scale over how they appear at the 200’ Palomar 
telescope focus; (b) Reconstructed image after NCUBE analysis, with same scale as (a). This reconstruction required 
about 6,000 frames of 100 ms duration. The central star is approximately six times brighter than the companion.



PSR 2127+1 1C

30.5 ms

pulse phase (millisec), 2 cycles

Figure 8: The peak, after NCUBE analysis, corresponding to a new binary pulsar PSR 2127+11C discovered in the 
globular cluster M 15 with a pulse period of 30.5 millisecs. The data was taken at the Arecibo Radio Telescope at 
430 MHz on December 26, 1988.

Table 6: Performance of High Performance Computers. The listed numbers are approximate megaflops.

CM-2
64K

“huge” vector

CRAY XMP
1 processor 

“long” vector

Mark Illfp 
Hypercube
128 nodes 

“short” vector

NCUBE 
Hypercube 
1024 nodes 

scalar
Super Regular 
(e.g., large full matrix)

3000 200 750 100

Typical Regular 
(e.g., QCD)

1000 75 500 100

Irregular
(e.g., chess, clustering)

Fails 10 100 50
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Figure 9: Results for the chemical reaction H + = 0,j = 2, m = 1) —+ (u = 0, j — 2,m = l)/f2 + H and a
comparison of the SCS-40 and Mark Illfp hypercube calculations [Hipes:88b].
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Figure 10: (a) Results from [Messina:89a] for the LOGD code which is essentially the 65 x 65 matrix inversion kernel 
of the logarithmic derivate chemical reaction code, (b) A further linear algebra benchmark from [Messina:89aj. This 
graph is for 1024 x 1024 matrix multiplication.
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on problems like those in Secs. 2.2, 2.3, 2.4, 2.6, 2.10, 2.11,
which are irregular and vectorize poorly. Matrix algebra 
and, to a lesser extent, algorithms like QCD (Sec 2.1) show 
the vector machines at their best. This is not surprising 
— they were designed for this problem class! Table 6 at­
tempts to show a progression from SIMD to long vector 
supercomputers to hypercubes with short vector nodes to 
scalar node MIMD machines. This corresponds to increas­
ingly general purpose machines. As commented in Sec. 2.1, 
machines like the NCUBE are not competitive in peak per­
formance on regular problems, but they offer good per­
formance on range of problems and their speed degrades 
slowly as one increases the irregularity of the problem.

2.8 Grain Dynamics by Lattice Gas 
(Gutt)

A very interesting use of the NCUBE was recently reported 
in Gary Gutt’s Ph.D. thesis at Caltech [Gutt:89a], Ear­
lier, Werner’s Ph.D. research had studied grain dynam­
ics using the first hypercubes [Werner:87a], [Werner:88aj. 
This work put in detailed Newtonian dynamics to study 
the motion of sand and other granular material. This is an 
interesting alternative to conventional continuum approxi­
mations to material dynamics. Gutt proposes an interme­
diate model for such systems using cellular automata or 
lattice gas techniques that have already been applied to flu­
ids [Frisch:86a]. Gutt’s automata are quite dense (of order 
one for every two lattice sites) and one must store the rel­
ative displacements of each automata from the lattice site 
positions. Thus, this automata method does not use bi­
nary arithmetic, but rather 32 bit arithmetic. To improve 
performance, integer and not floating point arithmetic is 
used. Gutt’s thesis used about 200 hours of NCUBE 512 
node time with the largest simulation involving 0.5 x 10s 
grains on a 8064 x 128 lattice. This involves Poiseuille flow 
down a pipe driven by gravity. We do not have a CRAY 
implementation of this code, but it is possible that irregu­
larities in lattice site occupancy would make vectorization 
difficult. The parallelization on the NCUBE is straight 
forward and efficient.

2.9 Ocean General Circulation Model
This is a salutary lesson in parallelizing dusty decks. Our 
original plan was that this 20,000 fine FORTRAN CRAY 
code would typify issues involved in converting similar but 
larger and more sophisticated meteorological codes. The 
program solves a three dimensional ocean model with the 
Navier Stokes equations and driving terms from wind, tem­
perature and salinity. It uses a time stepped evolution with 
successive over relaxation to solve Poisson’s equation for 
the fluid.

We kept a careful record of the time spent on this project 
recorded in Table 7. Parallelization involved a simple do­
main decomposition implemented by changing DO loop 
indices in the original code and adding communication 
calls. There was an amusing (frustrating) difficulty with 
decomposing in the north-south dimension which we now 
believe was an unphysical approximation introduced to im­

prove an original small memory CYBER 205 version. As it 
stands, the code could only be parallelized (decomposed) 
in the other two directions (east-west, depth). The parallel 
code used all 256 megabytes of memory on the 512 node 
NCUBE and did not need memory management necessary 
in CRAY version. This 512 node hypercube performance 
was comparable to that of CRAY.

A success, you might think, but there is a tragic end as 
the NCUBE version does not currently agree with that for 
the CRAY. Maybe this is a bug introduced by the paral­
lelization, but we doubt it. We have studied the CRAY 
code and believe it is incorrect; maybe vectorization in­
troduced an error in handling the boundary conditions? 
We tried to obtain help from the originators of the code, 
but to no avail. We could find no one who would take 
responsibility for the version we were dealing with.

We deduce from this experience that parallelizing exist­
ing code can be quite simple and quick — see the “three 
day” entry in Table 7 for the essential parallelization step. 
However, such endeavors should only be undertaken with 
the help of someone really knowledgeable in and responsi­
ble for the sequential code.

2.10 Astrophysical Particle Dynamics (P. 
Quinn, J. Salmon, M. Warren)

N-body calculations have been revolutionized by a clus­
tering technique introduced by Appel [Appel:85a] and 
developed significantly by Barnes, Hut and Greengard 
[Barnes:86a], [Greengard:87a]. The basic idea is simple; 
consider a cluster of M stars for which we need to calculate 
the interaction with a single star (far) outside the cluster. 
This straightforwardly requires O(M) steps, but can gain a 
factor of M by ignoring the details of the cluster and just 
computing with its center of mass. As implemented by 
Barnes and Hut, one can apply this idea recursively gener­
ating a tree (quad tree in two dimensions) as illustrated in 
Figure 11 with, at most, one particle in the cluster at the 
lowest level of tree [Warren:88b], [Warren:88c]. The naive 
calculation takes a time for each simulation (time) step for 
a system of N particles

nnt?pe = ^«%pa,ticle (10)

while explicit implementation, shows that the clustering 
method takes time

= (20 - 50)Niog!m,pat,icle (ii)

The cluster method has superior performance for N > 
1000 particles. The current limit of 0(10,000) particles for 
the 0(N2) algorithm is increased by an order of magnitude 
for the Barnes Hut method. The possibility of large N of 
0(1O6) particles opens up several important astrophysical 
calculations including

• Study of the growth of fluctuations in the early uni­
verse

• Dynamics of globular clusters where one finds in na­
ture of 0(1O6) stars and a difficult calculation as very 
short range interactions (binary stars) are critical



Table 7: Steps in Parallelizing OGCM

Time in Days
Get Original FORTRAN Running on CRAY and Un­
derstand use of Program

10

Generate Working Sequential Code for SUN 10
Construct Test Dataset 10
Find that our FORTRAN environment on NCUBE hy­
percube needed upgrade as up to now we had used C 
language

10

Parallelize Code 3

Total 43

• Galaxy structure and the collision of galaxies.

We have just finished a calculation of the last type, illus­
trated in Figures 11 and 12, which used about 200 hours 
on the 512 node NCUBE [Salmon:89a].

This computation has several interesting features. The 
cluster tree is rebuilt each time step; a stage which is 
negligible in the sequential version, but which appears to 
take of order 30% of the concurrent execution time in the 
N = 180,000 particle simulation of [Salmon:87a]. Initially, 
we found load imbalance, but this was solved by dynami­
cally redistributing particles at each time step. The infor­
mation for this was found from the “workload” at the pre­
viously calculated time step. As illustrated in Figure 11, 
orthogonal recursive bisection is used to distribute the par­
ticles. Communication is required to fetch those parts 
of the tree that are stored outside the node and will be 
needed for updating particles within the node. This en­
sures maximum re-use of the communicated data and low 
communication overhead — about 10%. This approach 
does, however, use 75% of the available NCUBE memory 
and limit the simulation size. In spite of this, we are able 
to consider, on the current NCUBE, large problems that 
are difficult to implement on the limited memory CRAY- 
XMP and future such hypercubes with several megabytes 
of memory per node will allow much larger values of N.

The program was implemented with 3,400 lines of C code 
for the NCUBE, and some timing information is given in 
Table 8 for a single time step. This has a comparison with 
FORTRAN CRAY code.

We see that the 256 node NCUBE outperforms the 
CRAY-XMP as reported in [Hernquist:87a] for 105 par­
ticles, even though the hypercube efficiency is quite low. 
The CRAY efficiency is even lower!

In Figure 13, we show results from [Messina:89a] for 
what is essentially the 0(N2) particle dynamics algorithm. 
This vectorizes well on CRAY and runs with > 95% effi­
ciency on the NCUBE; this time the CRAY-XMP is four 
times the performance of the 256 node NCUBE.

Considering SIMD architectures, we are not certain how 
to implement the clustering algorithm to get good perfor­
mance on machines like the CM-2 [flillis:87b]. This is re­
lated to the difficulties we saw in Sec. 2.1 with Monte Carlo

Table 8: Performance on Astrophysical Particle Dynamics

104 Particles 105 Particles

CRAY-XMP
Some Optimization

10 secs 130 secs

256 node NCUBE
— time
— efficiency

21 secs
24%

118 secs
56%

clustering and in Sec. 2.4 with adaptive grids on SIMD 
machines. Note that the “regular” clustering/multiscale 
algorithms such as multigrid or the FFT run quite well 
on SIMD machines; the difficulties in implementations for 
synchronous machines occurs for geometrically irregular 
cluster algorithms.

2.11 Computer Chess (Felten, Otto, 
Morison)

Computer chess involves constructing a tree of possible 
moves and dynamically pruning it with the a — 0 tech­
nique as illustrated in Figure 14 [Felten:88g], [Felten:88h], 
[Felten:88i]. On a parallel machine, the tree (“data do­
main” ) is decomposed over the nodes. We found that 
a real time graphics display (using the NCUBE parallel 
graphics subsystem) was critical in achieving a factor of 
five better performance. This allowed us to change the 
algorithm for processor assignment and improve the load 
balance. The measured speed up is shown in Figure 15 
with a speed up of 101(170) seen on 256(512) nodes for 
trees of depth appropriate for a middle game. Note that 
the speed up increases as the problem gets bigger, i.e., as 
one spends a longer time on each move. This illustrates 
that for problems with real time constraints, increasing 
processor performances increases parallelization efficiency 
by increasing the size of the problem that can be solved in 
a given fixed time.

This was a very difficult code to design and develop as
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(a) Time 66.5

(b) Time 68.5

Figure 12: Typical results of the simulation on the NCUBE of the collision between two galaxies with a total of 180,000 
objects [Salmon:89a]. Each “object” should be viewed as a collection of stars.



The 0(N2) N-body algorithm 
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Figure 14: A schematic for a chess tree showing branches pruned away [Felten:88g].
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Figure 15: Measured speed up for the parallel chess program as a function of number of NCUBE nodes. The four 
curves correspond to four tree depths with larger trees showing larger speed ups [Felten:88g], [Felten:88i].



the algorithm is asynchronous. Probably, the technical im­
plementation and in particular the debugging were harder 
than the algorithmic issues. The result is 8,000 lines of 
C code using the commercial NCUBE operating system 
VERTEX with a “special shared memory” enhancement 
to allow concurrent access and update of a distributed 
database — the so-called transposition table of currently 
evaluated positions. In contrast, all the other Caltech 
hypercube scientific calculations use our internal loosely 
synchronous communications system CrOS which is faster 
than VERTEX [Fox:88a].

Let us consider the future of computer chess. We esti­
mate that the 256 node NCUBE has a U. S. chess rating of 
2,100 at present, or in a more familiar unit of megamoves 
searched per second, we have the results in Table 9a.

The NCUBE does quite well compared to a CRAY (a 
512 node NCUBE is approximately one head of a CRAY 
XMP), but neither is competitive with special purpose ma­
chines. However, we can consider using the same paral­
lelization technique developed for the NCUBE, but for an 
array of special purpose chess chips — not the general pur­
pose microprocessor used on the NCUBE. We conjecture 
that a system of some 8,000 special purpose chips like those 
in Deep Thought, would achieve a speed up of 1,000 and 
be very competitive with Kasparov as shown in Table 9b. 
Each node processor of our world chess champion would 
have for chess about 100 times the power of a NCUBE 
node. The communication overhead for the NCUBE case 
is about 10%; the “Deep Thought” chips would need an 
internode bandwidth about ten times that of NCUBE to 
keep a manageable (50%) communication overhead. Such 
a system seems quite practical, but outside my group’s 
resources. Rather, we are concentrating on a different ap­
proach; can one improve chess programs by the use of neu­
ral network based position evaluators?

2.12 Kalman Filters (Gottschalk)

A JPL team headed by D. Curkendall [Meier:89a] has 
developed a sophisticated battle management simulation. 
This includes threat generation (launch missiles), tracking, 
engagement planning (launch anti-missiles), and graphics. 
The total of 200,000 lines of code is one of the largest single 
parallel computer projects — much larger than the sum of 
codes described so far in the previous eleven subsections! 
The current, so called, SIM88 project completely simulates 
up to 250 objects launched from six sites. There is an in­
teresting hybrid approach to the simulation with each com­
ponent (tracking satellite, planning platform) functionally 
decomposed with a very coarse grained object oriented 
model. Traditional data parallelism is used within func­
tions (objects) assigned to a subcube of the hypercube. 
Correspondingly, a hybrid software model CENTAUR for 
the Mark Illfp hypercube supported general but slow inter 
object communication and fast loosely synchronous CrOS 
communication within objects [Burns:88a], Formally, the 
simulation is an asynchronous event driven simulation at 
the object level, but the predictable and coarse grain na­
ture of the object to object communication allowed effi­
cient implementation within a simple conservative frame­

Table 10: Components (Time Complexity in Arbitrary 
Units) of Old and New Trackers

Tracker Calculation Overhead Lines of

Version C Code

SIM 87 1 1 4,000
SIM 88 1 3 20,000

work [Chandy:81a].

Let us focus on the tracking component which used 
a parallel implementation of a traditional multi-target 
Kalman filter tracker [Gottschalk:87fj, [Gottschalk:88a]. 
Much of the calculation can be done independently in each 
node when one distributes the tracks. There are some sig­
nificant overheads when tracks share measurements and 
load balance is an issue addressed by dynamically redis­
tributing the data at each measurement cycle.

In Figure 16, we show the performance comparison 
where shared memory machines do very well — these avoid 
the data shuffling overheads for overlapping tracks. This 
algorithm was designed for the so called boost phase when 
there is modest parallelism coming from the decomposition 
of a total of a few hundred objects. In Figure 16, with a 
total of 480 targets, the coarse grain machines with smaller 
number of nodes are clearly preferable to the NCUBE with 
many slower nodes.

In Table 10, we indicate that the communication over­
head is perhaps overestimated in Figure 16 as it depends 
critically on the sophistication of the track model. Im­
proving this increases the fully parallel calculation with­
out changing the absolute values of overheads. Thus, the 
newer SIM 88 algorithm has higher efficiency than the orig­
inal SIM 87 implementation of Figure 16.

We expect the situation to change in the harder mid­
course phase where up to 105 real or decoy objects can 
be anticipated. This will need new algorithms ■— perhaps 
neural networks [Fox:89h] — and the parallelism issues will 
be quite different. In the boost phase, it appears that exist­
ing parallel machines with a few megaflops of performance 
will allow real time tracking; mid course will require true 
supercomputers.

3 Lessons

Here we collect together some lessons we have drawn from 
“using real parallel computers to solve real problems with 
real software”.

This information is obtained from both the supercom­
puter applications of Sec. 2 and for instance the broader 
surveys of [Fox:88b], [Fox:8811j.



Tracker: 480 Targets Line of perfect Efficiency

Processors

Figure 16: Performance evaluation results for the so called SIM87 tracker on 480 objects and 10 sites from [Messina:89a]. 
We show two versions of the Nf'FPE timings using either VERTEX (marked slow CrOS ) on an optimized high 
performance crystalline communication environment marked “fast CrOS” [Baillie:88f], [Baillie:87c]. This also uses a 
faster algorithm with better load balancing.



A Possible CCSF for Production Science
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FlSure 17: A possible design for a computer “center” built around advanced architecture high performance systems.



Table 9: (a) Chess Positions Searched per Second

Machine Performance 
(108 moves/sec)

Special Purpose
BELLE (1980) 0.075
HITECH (1985) 0.25
Deep Thought (1988) 2.5
New AT and T Machine (1989?) 5

General Purpose
256 node NCUBE 0.025
4 Processor CRAY XMP 0.15

(b) Ratings of the Best Chess Players

Player Rating

HITECH 2450
Deep Thought 2600
Kasparov 2850
1000 x Deep Thought 2850?

3.1 Application Lessons
3.1.1 One can achieve high performance on essentially all 
scientific computations which are

• Large (necessary condition)

• Loosely synchronous — MIMD (sufficient condition)

• or synchronous — SIMD

More research is needed to clarify Table 1 and see how 
far one can violate synchronization and get good results 
for irregular problems on SIMD machines. Note that even 
for loosely synchronous problems, synchronous communi­
cation is usually sufficient; communication is typically only 
necessary at the macroscopic synchronization points of the 
algorithm [Fox:88a], [Fox:88b], [Fox:8811].

3.1.2 Domain Decomposition or data parallelism is a uni­
versal source of parallelism that scales to large numbers of 
nodes [Fox:88a], [Hillis:86a].

3.1.3 These results are true on a broad range of computer 
architectures (SIMD, MIMD, shared, distributed memory, 
hypercubes, (transputer) meshes ... ).

3.1.4 U niversity successes on parallel computers have 
come with 1,000-10,000 line codes written from scratch 
for a particular machine.

3.1.5 It is not clear how to extrapolate these successes 
to up to 106 line commercial codes where you have per­
haps less knowledge as to the inner workings of program 
cf. Sec. 2.9. Certainly, one must establish and use stan­
dard methods in parallel software to justify expense of a

new parallel implementation. These standards must apply 
across a range of architectures.

3.1.6 In many cases (cf. Sec. 2.2), it is easier to decom­
pose for a parallel machine than to vectorize for a con­
ventional supercomputer. This is especially true for small 
(university) codes.

We can superficially abstract from this that universities 
should purchase parallel computers and industry vector 
supercomputers!

3.1.7 The importance of parallel machines for artificial 
intelligence (AI) is unclear to me. If the AI is implemented 
with neural networks, then the relevance and use of parallel 
computers is clear. More traditional AI systems parallelize 
less easily although chess (Sec. 2.11) is a good example 
which both parallelizes and needs high performance. How 
many other such AI applications are there?

3.2 Performance Lessons
3.2.1 One can get high performance on essentially all 
scientific computations. As shown in [Fox:84c], [Fox:85c], 
[Fox:88a], [Gustafson:88a], and [Fox:89b]

• Performance scales linearly in number of nodes at con­
stant grain size (problem size proportional to machine 
size)

• Fixed problem size does not scale; this can be viewed 
as Amdahl’s Law

3.2.2 Some initial disappointments can be traced to im­
balance in early commercial machines, such as the iPSC/1 
and FPS T Series hypercubes.



3.2.3 We saw in Secs. 2.2, 2.3 and Sec. 2.10 that machines 
like an NCUBE or transputer arrays look particularly at­
tractive compared to the CRAY XMP class machines on 
irregular problems where one finds

• it is more natural and easier to decompose than to 
vectorize

• the NCUBE efficiency is “low”; maybe 50%

• but the CRAY efficiency even lower; maybe 5%.

Note that the average CRAY-XMP performance in com­
puter center operation is about 25 megaflops with a 12% 
efficiency. The NCAR CRAY realizes a sustained 50 
megaflops, which is perhaps the peak average performance. 
Perhaps we have too high a standard for the efficiency of 
parallel machines!

3.2.4 Scalar node MIMD machines are natural general 
purpose machines with reasonable performance over a 
range of problems. As seen in Table 6, hypercubes have 
high efficiency on regular (e.g., full matrix and QCD) prob­
lems, but so does the CRAY XMP class machine. Hyper- 
cubes with vector nodes or SIMD machines are attractive 
for regular problems.

3.2.5 Different programming methodologies and lack of 
standards handicap performance studies. As FTN-8X is 
yet to be implemented uniformly, it is hard even to port 
between CRAY XMP and the ETA-10. This, for instance, 
is handicapping the “grand challenge” that I mentioned 
in Sec. 2.1. Of course, porting between parallel and se­
quential machines is hard and [Messina:89a] essentially re­
implemented from scratch many algorithms for their per­
formance evalution. The different software methodologies 
for shared and distributed memory machines cannot be 
avoided as some sense it is the more convenient environ­
ment that motivates shared memory machines. It would 
be unreasonable to require shared memory machines to 
always use message passing!

3.3 Decomposition Lessons
Here we refer to issues concerning the decomposition or 
dividing up of problems to minimize communication and 
equalize load on processors.

3.3.1 Three years ago, I thought decomposition or load 
balancing was a key problem, but as described in Sec 2.4, 
it is surprisingly easy!

• Usually, the application scientist can specify it from 
the natural geometric structure of the problem

• Several heuristic methods provide automatic decom­
position. These include recursive bisection, simulated 
annealing and neural networks.

3.3.2 Current hardware trends have emphasized transpar­
ent message routing where the user need not be aware of 
machine topology. This is clearly convenient, but Sec 3.3.1 
indicates it is not strictly necessary for a broad class of 
problems. We can note that:

• Most problems can be mapped with software to any 
reasonable bandwidth topology with modest routing 
overheads.

• In particular, for current Caltech codes (say those de­
scribed in Sec. 2) there is an average overhead of less 
than 5% due to routing. This should be compared to 
overheads of perhaps 50% due to poor compilers (e.g., 
for NCUBE and WEITEK), 50% as system is overall 
rather flaky and 25% due to node to neighboring hy­
percube node communication.

• We must emphasize that these software solutions have 
yet to be “packaged” nicely for general use. Not every 
programmer is comfortable with simulated annealing. 
Thus, automatic routing hardware is certainly conve­
nient in the “real world”.

3.3.3 In current systems, message start up time, which 
includes hardware and software effects is a much more se­
rious overhead than either node to node through routing, 
or channel transmission between neighboring nodes.

3.4 Hardware Lessons
3.4.1 So far, high performance computations on moder­
ately or massively parallel machines (> 8 nodes) has been 
confined to distributed memory machines. The compari­
son between distributed and shared memory architecture 
is hard because of the lack of comparable machines and 
experience.

3.4.2 Five years ago, there were many university projects 
building novel machines, but in the future commercial sys­
tems will dominate the parallel field as they now do with 
conventional supercomputers.

3.4.3 The U. S. entrepreneurial environment will guaran­
tee a wide range of architectures even without new univer­
sity projects. Portable software will be at a premium to 
exploit these machines.

3.4.4 Many or perhaps all the current commercial paral­
lel systems are disappointing in some ways. For instance, 
our NCUBE is now in full use as a “production supercom­
puter” but this took two years and at least $150K costs 
in software development at Caltech. If we remember Bill 
Joy’s law that sequential computers improve a factor of two 
per year in cost-performance, we see that a two-year de­
lay translates into a factor of four loss in cost effectiveness 
compared to the conventional competition. Novel comput­
ers are bound to need extra time to develop viable software 
than their sequential competition; this certainly handicaps 
their ability to compete.

3.4.5 As implied by Sec. 3.4.4, systems integration is not 
yet well addressed in the parallel machines. This includes 
issues such as,

• General multiuser operating systems especially for 
distributed memory machines; debugging

• Adherence to standards



• Input/Output for disks and graphics. The architec­
ture of the I/O system gets surprisingly little attention 
in the literature.

• High performance appropriate hosts (not PC’s or 
workstations) for a parallel supercomputer

3.4.6 For MIMD machines, we have already discussed 
some issues in Secs. 3.1.1, 3.2.3, and 3.2.4.

• Currently, machines like the NCUBE or transputer 
with scalar (floating point) nodes seem more success­
ful than machines with vector nodes. The poor old 
user finds it hard to vectorize and decompose prob­
lems! One such optimization is enough.

• Given that such scalar node systems are particularly 
attractive for irregular problems, maybe one should 
consider adding specialized support for the data struc­
tures like linked lists needed for irregular problems.

• Several megabytes (but not arbitrarily large) mem­
ory per node is needed to hold program, decomposed 
data, databases and reused communication data (see 
Sec. 2.10).

• One can expect the differences between shared and 
distributed memory architectures to lessen as both are 
based on low latency networks. Either local memory 
(for machines like the hypercube) or caches on shared 
memory machines will require data locality for good 
performance.

3.4.7 SIMD machines can support at least 50% of uni­
versity scientific applications as shown in Table 1. They 
currently give the peak performance for regular problems 
(see Tables 4, 6). Perhaps the commercial applications are 
more irregular and will show a lower fraction appropriate 
for the SIMD architecture.
3.4.8 In Figure 17, we show a possible structure of an 
integrated high performance novel architecture computer 
environment. Simple scalar node MIMD machines support 
general problems with either vector or SIMD architectures 
as an “accelerator” for regular problems.

3.5 Software Lessons
3.5.1 Whereas the role of universities in developing hard­
ware systems may be limited in the future, we expect uni­
versities to have a critical role in the software for parallel 
machines where we cannot hope for the commercial sys­
tems to be adequate.

3.5.2 A key question is: “What is the appropriate produc­
tive standard programming environment for parallel ma­
chines?” This could be based on [Fox:88u], [Fox:88w]:

• New languages

• Compiler generated parallelism

• Application specific high level environments

3.5.3 Note that essentially all successful reasonable per­
formance use of parallel machines have used explicit user 
decomposition which is low level and machine dependent. 
We expect we must find more portable attractive methods 
if parallel computers are to take over from the conventional 
architectures.

3.5.4 Approaches like LINDA (“shared message space”) 
or the new language, OCCAM, appear not to address 
enough of the issues to be the solution of the question 
posed in Sec. 3.5.2.

3.5.5 When I started work on the hypercube in 1981,1 had 
great confidence that they would be successful as I could 
make a simple performance model and prove “mathemat­
ically” that for dedicated users, hypercubes would work 
[Fox:83a|. I don’t have any way of making a similar pre­
diction for the software environment!

3.5.6 The development of parallel computing has involved 
collaborations between several academic fields — in par­
ticular computer scientists, applied mathematicians and 
application scientists such as computational physicists and 
chemists. I see large gulfs have developed between these 
fields with, for instance, no agreed common language and 
little global understanding or sympathy of the issues and 
goals for each academic field. I suggest that universities 
need to reach out to support interdisciplinary research and 
education. In particular, we need to fill the gap designated 
as computational science in Figure 18 [Rheinboldt:85a], 
[Raveche:87a].
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