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Abstract
We discuss the possible application of algorithms de­

rived from neural networks to the DO experiment. The DO 
data acquisition system is based on a large farm of Mi­
cro VAXes, each independently performing real-time event 
filtering. A new generation of multiport memories in each 
Micro VAX node will enable special function processors 
to have direct access to event data. We describe an ex­
ploratory study of back propogation neural networks, such 
as might be configured in the nodes, for more efficient 
event filtering.

Introduction
Parallelism plays a central role in advanced high en­

ergy physics data acquisition systems, from digitization 
and collection through real-time event filtering in online 
computer farms. Both the discrete sampling nature of de­
tectors and the event structure of particle physics data 
lead to an explicit parallelism. As data handling require­
ments for real-time systems become more severe, we need 
to exploit to an ever higher degree this natural feature of 
our data. Although digitization electronics, data paths, 
and microprocessors are easily replicated for more paral­
lelism, the standard filter algorithms which run in the farm 
nodes are not so easily handled. Therein lies a major ad­
vantage of algorithms based on neural networks: they are 
intrinsically parallel.

Back Propagation Networks
Neural networks [1] are receiving increasing attention 

in many fields as a means of deriving or implementing 
pattern recognition tools [2]. As interest has grown so has 
the variety of network configurations and characteristics.

Among the more promising of these are “back propaga­
tion” networks, which have been shown capable of pattern 
recognition in diverse applications, from sonar signal anal­
ysis to stock market prediction. Our inquiry into the

application of neural networks to high energy physics, and 
specifically DO, has focused on back propagation networks 
because of their demonstrated recognition ability, the ease 
with which they can be simulated, and a natural means 
through which they can be implemented in the DO data 
acquisition system.

Neural networks are parallel structures consisting of 
units (each modelling a neuron) with many interconnec­
tions between units, and parameters called “weights” spec­
ifying the strengths of each interconnection. As the net­
work learns, it modifies these weights; and its training 
encodes features of the pattern in the values of all the 
weights. Back propagation networks, our specific exam­
ple, have several layers of units: an input layer, one or 
more “hidden” layers, and an output layer. Every unit in 
a given layer is connected to each unit in the succeeding 
layer, and the flow as the network responds to an input is 
in this “feed-forward” direction. All the information used 
by the network, for each event, is presented in the form 
of a vector, with each element linearly scaled by an input 
unit, to form an output vector. The output vector of a 
given layer is multiplied by the matrix of the weights be­
tween this layer and the next, to produce an input vector 
to the next layer. Each unit of the 2nd and subsequent 
layer uses a “sigmoid” activation function [1] to translate 
the weighted sum of its inputs into an output. With this 
combined action of forming weighted sums and evaluat­
ing response, the network converts an input vector into an 
output: in the example to be described, a two-unit vector 
with (1,0) and (0,1) representing the extremes of recogni­
tion. The label “back propagation” describing these net­
works refers to the technique used in the learning phase 
whereby the network’s response (output vector) to a given 
input is compared with the desired response, and the dif­
ference is propagated back through the network to adjust 
the weights.

The operation of back propagation networks, described
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above (and more explicitly in Ref. 1), lends itself to 
straightforward simulation and implementation. Our 
study of the performance of the network relies on a com­
puter model, which can be readily reconfigured, trained 
with data, and tested. We have used a commercial pack­
age uProfessional-IIn [3] running on an IBM PS/2 (Model 
70) for several studies described previously [4]. For the ex­
ercise described in this paper, we wrote a simulation pack­
age which runs under VAX/VMS, since convenient access 
to DO data and computer resources was important.

The DO Data Acquisition System 
Data acquisition at DO [5,6] is accomplished by dump­

ing the raw data for an entire event (250 KBytes) from 
the 100 VME digitization crates directly into memories 
of a Micro VAX system, selected from an array of Level- 
2 trigger nodes. Data flows to the node from VME over 
eight data paths Having an aggregate bandwidth of 320 
MBytes/second. Each node will be equipped with eight 
channels of ZRL Q22MPM multiport memories, which re­
ceive the event; as these memories are directly accessible 
to the processor as well as to a high speed output channel, 
additional moves of data should not be necessary for the 
Level-2 filter package to operate. As described in refer­
ence 5, a special function port on these boards will allow 
access to the event data by specialized processors. One 
such implementation, of a special purpose array proces­
sor, is shown in Figure 1. This device would lend itself 
naturally to performing algorithms derived from the back 
propagation neural networks discussed above, consisting 
as they do of a few vector-matrix multiplications and vec­
tor lookup operations.
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An Exercise: Electron Identification at DO 
To explore the possibilities of using neural network- 

derived algorithms at DO, we have studied a particular 
application, electron identification from calorimeter data. 
A large sample of Monte Carlo data, simulating the de­
tection of proton-antiproton collision events with the DO 
detector, was available. This data, generated using the 
GEANT simulation package, was produced at Brown two 
years ago, using a farm of dedicated Micro VAXes [7]. We 
extracted from candidate electron showers in this data, 
specific information from the simulated energy deposits in 
the DO uranium-liquid argon calorimeter; For each can­
didate shower in our sample, we collected the observed 
deposits in the first five layers in depth and four radial 
bins about the shower peak, from 0.1 in (Sij, Typical 
data for this (4,5) array is shown in Figure 2. We studied 
both Z —* e+e~ data (Fig 2a) and high pr two-jet back­
ground data (Fig. 2b). With each event we included also 
a tag from the ISA JET event generator which flagged the 
actual presence or absence of an electron.

Fig. 2 Sample data of energy deposits in the first five 
layers and for bins radially about a shower for 
&) Z —* e+e~ events and b) 2-jet background 
events with 80 < PT < 120GeV. The front central 
bin is in the lower left corner.

Fig. 1 Multiport memory with special purpose array 
processor for D0



Our model neural network consisted of three layers: an 
input layer of 20 units (corresponding to the 20 element 
input vector), a middle layer of 8 units, and an output 
layer of two units. During training we presented as the de­
sired output the vector (1,0) if the ISAJET eletron tag was 
present for that event, and (0,1) otherwise. Our simulation 
package allowed us to vary several parameters related to 
the learning, including the strength of the error-correction 
(related to the speed of learning) and the contribution of 
the correction from the previous event (a “momentum” 
term) [8]. We found a low but non-zero momentum term, 
and a gradually decreasing learning strength to be opti­
mum.
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Fig. 3 Response of the network to showers from a.) Z —* 
e+e~ events and b) 2-jet background events (80 <
PT < 120).

Having trained our network simulation on one set of 
data, a mixture of both Z —► e+e- and 2-jet data, we 
tested it on a similiar but independent data set. The re­
sults of this test are shown in Figure 3, where the response 
of the network to events tagged as electrons by ISAJET 
(Fig. 3a) is clearly distinct from its response to events 
without electron tags (Fig. 3b). We have also tested the 
network with backgound data generated in lower intervals 
in pr, which ate confused more often with electrons, and 
the results are included in Table 1. Shown here are the 
numbers of events considered “electrons”, with a selection 
on the network output that passes 90 percent of the sam­
ple tagged as electrons. For comparison, a selection based 
on a number of cuts on the ratios of transverse and ra­
dial energies in the event produces a poorer rejection of 
background data, while at the same time only accepting 
75 percent of the true electron sample [9].

Table 1.
Comparison of neural network and standard of algorithms

Neural Network Standard Algorithm

data set # events 
in sample

% recognized 
as “electrons”

# events 
in sample

% recognized 
as “electrons”

Z - e+e" 275 90.2 643 75
2 jet (80 <PT< 120) 225 0.9 826 5
2 jet (40 < Pr < 80) 370 1.6 681 10
2 jet (20 < Pr < 40) 122 8.2* 104 23

* This becomes 0.8%, for 80% recognition of Z —♦ e+e electrons.

Summary
Neural networks used to develop pattern recognition al­

gorithms force a parallel solution. This explicit parallelism 
of such algorithms is the key to their high speed implemen­
tation for high energy physics pattern recognition. Such 
algorithms, embedded in a natural way in the DO data ac­
quisition system, are a promising addition to DO’s event 
filtering capabilities.
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