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Abstract

We discuss the possible application of algorithms de-
rived from neural networks to the DO experiment. The DO
data acquisition system is based on a large farm of Mi-
croVAXes, each independently performing real-time event
filtering. A new generation of multiport memories in each
MicroVAX node will enable special function processors

- to have direct access to event data. We describe an ex-
ploratory study of back propogation neural networks, such
as might be configured in the nodes, for more efficient
event filtering.

Introduction

Parallelism plays a central role in advanced high en-
ergy physics data acquisition systems, from digitization
and collection through real-time event filtering in online
computer farms. Both the discrete sampling nature of de-
tectors and the event structure of particle physics data
lead to an explicit parallelism. As data handling require-
ments for real-time systems become more severe, we need
to exploit to an ever higher degree this natural feature of
our data. Although digitization electronics, data paths;
and microprocessors are easily replicated for more paral-
lelism, the standard filter algorithms which run in the farm
nodes are not so easily handled. Therein lies a major ad-
vantage of algorithms based on neural networks: they are
intrinsically parallel.

Back Propagation Networks

Neural networks (1] are receiving increasing attention
in many fields as a means of deriving or implementing
pattern recognition tools [2]. As interest has grown so has
the variety of network configurations and characteristics.

Among the more promising of these are “back propaga-
tion” networks, which have been shown capable of pattern
recognition in diverse applications, from sonar signal anal-
ysis to stock market prediction. Our inquiry into the

application of neural networks to high energy physics, and
specifically DO, has focused on back propagation networks
because of their demonstrated recognition ability, the ease
with which they can be simulated, and a natural means
through which they can be implemented in the DO data
acquisition system.

Neural networks are parallel structures consisting of
units (each modelling a neuron) with many interconnec-
tions between units, and parameters called “weights” spec-
ifying the strengths of each interconnection. As the net-
work learns, it modifies these weights; and its training
encodes features of the pattern in the values of all the
weights. Back propagation networks, our specific exam-
ple, have several layers of units: an input layer, one or
more “hidden” layers, and an output layer. Every unit in
a given layer is connected to each unit in the succeeding
layer, and the flow as the network responds to an input is
in this “feed-forward” direction. All the information used
by the network, for each event, is presented in the form
of a vector, with each element linearly scaled by an input
unit, to form an output vector. The output vector of a
given layer is multiplied by the matrix of the weights be-
tween this layer and the next, to produce an input vector
to the next layer. Each unit of the 2nd and subsequent
layer uses a “sigmoid” activation function [1] to translate
the weighted sum of its inputs into an output. With this
combined action of forming weighted sums and evaluat-
ing response, the network converts an input vector into an
output: in the example to be described, a two-unit vector
with (1,0) and (0,1) representing the extremes of recogni-
tion. The label “back propagation” describing these net-
works refers to the technique used in the learning phase
whereby the network’s response (output vector) to a given
input is compared with the desired response, and the dif-
ference is propagated back through the network to adjust
the weights.

The operation of back propagation networks, described
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above (and more explicitly in Ref. 1), lends itself to
straightforward simulation and implementation. Our
study of the performance of the network relies on a com-
puter model, which can be readily reconfigured, trained
with data, and tested. We have used a commercial pack-
age “Professional-II” [3] running on an IBM PS/2 (Model
70) for several studies described previously [4]. For the ex-
ercise described in this paper, we wrote a simulation pack-
age which runs under VAX/VMS, since convenient access
to DO data and computer resources was important.

The DO Data Acquisition System

Data acquisition at DO [5,6] is accomplished by dump-
ing the raw data for an entire event (250 KBytes) from
the 100 VME digitization crates directly into memories
of a MicroVAX system, selected from an array of Level-
2 trigger nodes. Data flows to the node from VME over
eight data paths having an aggregate bandwidth of 320
MBytes/second. Each node will be equipped with eight
channels of ZRL Q22MPM multiport memories, which re-
ceive the event; as these memories are directly accessible
to the processor as well as to a high speed output channel,
additional moves of data should not be necessary for the
Level-2 filter package to operate. As described in refer-
ence 5, a special function port on these boards will allow
access to the event data by specialized processors. One
such implementation, of & special purpose array proces-
sor, is shown in Figure 1. This device would lend itself
naturally to performing algorithms derived from the back
propagation neural networks discussed above, consisting
as they do of a few vector-matrix multiplications and vec-
tor lookup operations.
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Fig. 1 Multiport memory with special purpose array
processor for D@

An Exercise: Electron Identification at D0

To explore the possibilities of using neural network-
derived algorithms at DO, we have studied a particular
application, electron identification from calorimeter data.
A large sample of Monte Carlo data, simulating the de-
tection of proton-antiproton collision events with the D0
detector, was available. This data, generated using the
GEANT simulation package, was produced at Brown two
years ago, using a farm of dedicated MicroVAXes [7]. We
extracted from candidate electron showers in this data,
specific information from the simulated energy deposits in .
the DO uranium-liquid argon calorimeter. For each can-
didate shower in our sample, we collected the observed
deposits in the first five layers in depth and four radial
bins about the shower peak, from 0.1 in (67,8¢). Typical
data for this (4,5) array is shown in Figure 2. We studied
both Z — ete~ data (Fig 2a) and high pr two-jet back-
ground data (Fig. 2b). With each event we included also
a tag from the ISAJET event generator which flagged the
actual presence or absence of an electron.
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Fig. 2 Sample data of energy deposits in the first five
layers and for bins radially about a shower for
a) Z — ete™ events and b) 2-jet background
events with 80 < Pr < 120GeV. The front central
bin is in the lower left corner.



Our model neural network consisted of three layers: an
input layer of 20 units (corresponding to the 20 element
input vector), a middle layer of 8 units, and an output
layer of two units. During training we presented as the de-
sired output the vector (1,0) if the ISAJET eletron tag was
present for that event, and (0,1) otherwise. Our simulation
package allowed us to vary several parameters related to
the learning, including the strength of the error-correction
(zelated to the speed of learning) and the contribution of
the correction from the previous event (a “momentum”
term) [8]. We found a low but non-zero momentum term,
and a gradually decreasing learning strength to be opti-
mum.
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Fig. 3 Response of the network to showers from a) Z —
ete~ events and b) 2-jet background events (80 <
Pr < 120).

Having trained our network simulation on one set of
data, a mixture of both Z — ete~ and 2-jet data, we
tested it on a similiar but independent data set. The re-
sults of this test are shown in Figure 3, where the response
of the network to events tagged as electrons by ISAJET
(Fig. 3a) is clearly distinct from its response to events
without electron tags (Fig. 3b). We have also tested the
network with backgound data generated in lower intervals
in pr, which are confused more often with electrons, and
the results are included in Table 1. Shown here are the
numbers of events considered “electrons”, with a selection
on the network output that passes 90 percent of the sam-
ple tagged as electrons. For comparison, a selection based
on a number of cuts on the ratios of transverse and ra-
dial energies in the event produces a poorer rejection of
background data, while at the same time only accepting
75 percent of the true electron sample [9].

Table 1.
Comparison of neural network and standard of algorithms

Neural Network Standard Algorithm
data set # events % recognized # events % recognized
in sample as “electrons” in sample as “electrons”
Z — ete” 275 90.2 643 75
2 jet (80 < Pr < 120) 225 0.9 826 5
2 jet (40 < Pr < 80) 370 1.6 681 10
2 jet (20 < Pr < 40) 122 8.2* 104 23

* This becomes 0.8%, for 80% recognition of Z — ete~ electrons.

Summary

Neural networks used to develop pattern recognition al-
gorithms force a parallel solution. This explicit parallelism
of such algorithms is the key to their high speed implemen-
tation for high energy physics pattern recognition. Such
algorithms, embedded in a natural way in the D0 data ac-
quisition system, are a promising addition to D0’s event
filtering capabilities.
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