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ABSTRACT

A difficult class of problems for th disrret -ordinates rn-utrar particle
transport methsd is to accurctely computrs the flux du to & Sfpatially joc:l-
lzra source. Gecauss the transpeort rquaticn is solved for ciscreve
directicns, the so-c¢rlled ray effect causes the flux &t spacc points far
fror the source to b~ jnaccurate. Thus, {rn fgener:]l, dlscrete cordintes
would not be the mcrhod of cholcre Lo solve such problerms! It is better
sulited for calculating fproblems with significont scattering. Tre Mon'e
Carlo method is suitcd to localiz¢d source problems, particularly {f the
amount ¢f collisicnal interactions is minimul. How vi~m, if thero ore miny
scat'e:'ing coliisions and the flux at all space polnts ic aeslred, then the
Mon e Carlc method becomes expensive. To ':=:ke zdvartage of the ttributis
of both appro-ches, we have devised a first collision scurce method to com-
bine the Mentr Carlo and disecrete-ordinatces solutions, Thi' if, parricles
are¢ t-acked frem the source to their firs' scottering collision wnu ta:llied
to produc. ¢4 source for the discrete-ordin.'-s cslculntion. A sc¢ tter-d
flux is then computed by discr«te ordinates, and the tct]1 flux is the sum
of the Mon.e Carlo and discret» ordin *es calculatrd fluxs. In thisap pr,
we prosent calculaticnal results usirng the MCNP and TWODANT codes for
selectrd two-dimensional problems that show the e¢ffictiveness of this
methed.



INTRODUCTION AND GENERAL CONSIDERATIONS

From time to time many people in the field of particle transpor: have brcome
intrigued with th~ idea of somehow combirning the attributcs of the Monts
Carlo mcthod with those of the ciscrete-ordin tes (or cderTerministic) method
to some particular rlasses ¢f problems. On+ hears such talk in Lhr h:.liways
or in offices, but not much has beven preseénted in the formal literarure;
probably bccausc most such combirztions have been, ad hoe and problem
speeific. Many times tEF3]lnking has been done by hand but there dec exis:
sore au*omatrd metheds '~ for linking spreific codes. We briefly sumnirize
many of the icens that have bhecn used as follows:

GEOMETRIC LINKS

A geometric l.nking of the twe rrthods has bren by far the rmost popul:ir
consideration. The {cei is that some problems na:urally s=spar#t¢ intc °
lcast twe geom=tric reglons: @ perhops geometrically complex scurce = gion
ang a g~omrtrically simpls deep penetration regicn. In such cares, it is
neur:l to Jink the Lwe methods through some bound.ry surfuece. Monte C:rle
wculcd transport through thce g omeirically complcx regior whilce discerets» or-
dinates would trinspert from the bcundary surface through the decep
punetriation region. This has becn sSeen tc be particularly aavantareous wher,
th- Monte Carlo replcn has fre-strecming paths while the discrate-ordin-tes
region is domincted by acattering. Thic main job of the link is to tully
the Monte Cérlo results at the surfrer into a form thnt is usatle by &
discr t«=orndinatin code. !r Fincral, this would mean t.1lying into thr cor-
reet cneryy, angle, and time bins fo~ seleateq segrents eon the rcurface. The
mearh z8ssumption in this kind of gromciric splitting is th! therpe |s 1ict e
foodback through the splitting surf~ce of onc¢ reglon upon *he cther.
Cth rwise, such a spl.tiing would not mikse mu h sensd.

In the: Poverse situnrtjon. ins's .d ef the Monte Carico criving & discret.-
ordinnte¢s calculation, the discrete-ordiniten cqleula*ion ear b uacd to
generite o protbility deneity functien for the scur-ce of i subnequ: nt
Monte-Carlo raleuliation. This soure. would a18c be at o splitting surface
between two gproretric:l recions where *he tource region {is grome'rically
simplr ind ia readily trested by i+ discrote-ordinntes me* hod arnd the adjein-
ing regior I8 cither grometrlically complex or hin free=streaming pathe.,
Agrin the main the assumption {8 that there {8 14t11e ferdb: ok Lhrourh the
aplit!ing surf: cc.,

A 1as! oxample {8 the uae of a dlacrets ordinatea ndjoint caleulimtior to set
a opatial {mportanc.: function for a perticular problem Lo be sclved by Montce
Carlo. The problem would then be =erun {n the Monte Carlo mode whers oplit-
ting surficea would be act necording to the sbove penerated {mport:nec
functicon. Thun the discrete problem would be some kind cf aba'ricticn

simplitfieation) of the actuial]l Monte Carlo problem which providis the (nfor-
mation Lo allow the Monte Car'o soluior to be done much more officiantly.
At leant that {n the goanl of such met hods.,



ENERGY LINKS

In discrete-ordinates calculations, th~ spectrl jnforma*ion i3 usuzlly ob-~
tained from a multigroup approximation. For purnoaes of efficiency, th
number of energy groups used is ¢ 100 while the remaining spectral cdetail is
contained in the multigroup cross secctions which are obtained from & ropre~
sentative weighting spectrum. As the number of groups used is decreuscc,
the spectral information i{n the cross secrions becomes more ond mor.
important. This spectral Informiétion is commonly obtainec¢ frem ropre-
sentative infinite medium many group calculations. Fer complicht«d systens,
'represent-tive ' media are difficult to ¢ fine sc somr! imes & continucus
energy Monte-Carlo cAlculation is uscd to provide the spectral irfo-m-*icn
which is utilized to form th. multigroun cross sectionrn. Tris prcoredurt is
ecconomical only if miny caleulaticens on cimilar systems r- cnvivionsd.

W hnhve discussed thr Basic ideas that people have us-d te link Monie Carlce
anc deterministic methods. This Is by no means an exhaustive survey, but
serves to pgive an idr= of thr ccnsidernrions involved in this process. 1t
seems tnat the possibllities arc very numfrous, bu* 1t is very diffilculr to
quant.ify the critceria that would indicite the benofits of lirking., In *ts

followlrng, we present a merhod which thoupgh not completely gorrral, «t least

providre a system~ul¢ way of linking the two methoas for prcblem: wher. tnr
sourcr is quite localized.

DEVELOPMENT OF THE FIRST COLLISION METHOD

The first ccllision source mrthoa is & splitting ¢7 the probl.m bis:d upon
the riature of th- scurce rather than on purely geometrical consider tione,
The maln attribute of the source jo thot it is geomeirically locaiized., The
other asprct is thar the probirm is also collision dominated, :lincugh
strenming rcgions may be includid. From th Monte Cxrlo point of virw, this
preoblern is difficult br ciause for various reasons, the solution is necded in
all regjons of apace. From the discrerr-ordinites point of view, thh sourw
is geometrically sirgular or, nearly so, resulting In sevepr ray cffiorsg
which dominate the sc'ution far from the scurce. These cenditieon: ore
demonstrated In the results section below.

The firat collisicn mrthod {& best aesoribed In an rquiation form. We write
the criginal transpcrt preblem as,
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where ¥(r,E,fi,1) I8 the neutron flux defined such that nep ¥ dEdpdsdr ls.th
numbcr of particles trinsportrd across a gsurfice clement dS with normal n ot
space point r in the cnergy range db about E, in solild angle dit abou' & nind



in the time interval 0t about t; o (:,E) is the total cross sectior aefine
such that o _ds is tho probabllity of "having a collision in interval ds; ¢ s
(r,E'+E) {5 the tth Legendre moment of the scattering transfer cross sec-
tion, Q(E.E.g,t) 18 the source of particles at space point r, with energy E,
In direction 2 at time ¢; °1(E'E't) 1s the sphericezl harmonic of the angular
flux, or

u
YEm(B) are the spherical harmonics normulized such thet

L]
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To develop the method, we assume that the zngular flux is written as
¥(r,z,2,L) = v (r.E,Q,t) + ¥ (r,kE,0,t) (2)

wherc Wu is the unccllided flux and Wc is the collicded flux.

These fluxes satisfy the following cquations:
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It {s seen that Eqs. (3) and (4) arec equfvalent tec Eq. (1). Thus {f the
source G is locallzed, then the split of Eqs. (3) and (U) provides a
methodology for separating the problem solution into two parts. Wc can
solve Eq. (3) by a method which treats the streaming from a localizcd source
in an absorbing medium accurately, while we solve Fq. (U4) with & method



which does a good job of treating collision dominated problems. We then ob-
tain the total solution from Ey. (2).

Of course the prcoblem description is not complete without specifying the
boundary conditions and the {nitial conditions. If we designate a surface S
that surrounds the calculational region of the problem, the general boundary
conditions can be written as

¥(res,E,Q,t) = 7(E,Q,t) for n - @ <0 (5)

to where n 1s the outward normal to the surface. We can write the boundary
conditions for Eqs. (3) ar ! (4), respectively, as

¥, (res,EQ,t) = T(E,@,t) for @ +n <O (6)
¥ (res,E,Q,t) = 0 for 2, n <O (7)

Thus the 'singularity' caused by the incident flux boundary condition is put
into the urcollided problem while the collided problem has vacuum boundary
conditions. The initial condition for Eq. (1) {s written as ¥ (r,E,a,t ) =
x(r,E,Q). Again for Eqs. (3) and (4), we write as initial condftions

¥ (r.E,8,t ) =0 (8)
¥, (r.E.8,t ) = (r,E,Q) (9)

although, in this case, the reasons for this split is not as ciear cut as in
the case of the boundary conditions and may be very problem dependent. This
then completes the specification of the problem by what we have call=d the
first collision method.

To further {llustrate the method, we focus on Eq. (3) which has the form of
a pure absorption problem driven by a known or given source with boundary
conditions from Eq. (6) and an initial condition from Eq. {8). For simple
geometries and sources, this equation can be solved analytically. For ex-
ample, for a point source and a time independent problem, we have In
cylindrical coordinates (p,z,u,d),

"CI( EIEIEIO)
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where

/2 2
p +(z—zo)

a(E,r,r ) = IOG(E.s)ds

and the source is at the space point (0.zo)

For the more general case, the solution to Eq. (3) can be obtained by the
method of ray tracing. This ray tracing may be accomplished in a variety of
ways, elther deterministically or by Monte Carlo. How the Monte Carlo may
be carried out will be discussed in some detail below.

We solve Eq. (4) by the method of discrete ordinates. This method works
well if the dominate sources in the problems are not localized or if it is
scattering dominated. The method works poorly in free streaming, vacuum
regions, or in pure absorbers with a localized source. Both types of
problems usually give rise to the so-called ray effects. The results of the
ray effect are locally very inaccurate values for the flux. This, of
course, from the point of view of discrete ordinates, was the motivation for
the split of Eqs. (3) and (4) in the first place. However, in some cases,
the first collision source, u, itself may be quite iocalized and thus the
solution to Eq. (4) will itself exhibit ray effects and will contaminate the
solution to Eq. (3) which may be very accurate with inaccurate fluxes from
Eq. (4). One can reason thatofor each energy, this effect will be the worst

for a scattering ratio c = ;E ~ 0.5. We will see that this effect is real

by some examples in the next s&ctIOn.

In suumary, we see that the first collision source method is conceptually
very simple. It is best suited for problems which have regions in which the
source is localized and imbedded in a collision dominated medium. It can
thus be viewed as a ray effect mitigatlion method, although it may not always
work well because of residual ray effects due to the fact that the first
collision source {tself may be quite locallzed. It seems to the author that
the method is probably most useful for problems where the solution is to be
obtained by discrete ordinates but that one employes an auxiliary method to
help mitigate ray effecta. We now investigate the consideration needed to
solve Eq. (3) by the Monte Carlo method.

1n the most general of situations, Eq. (3) can be solved as a Monte Carlo
transporl process in which particles are killed as soon ag they make a
collision. When we think about using a general code 1ike MCNP“to set up the
problem, we see that we immediately have available a very general geometric
and energy description at our disposal. From the geometric point of view,
the Monte Carlo method is solving the ray tracing problenm. The most
prominent characteristic of the problem is that we need tallies in spatial
rzgions which correspond to the spatiul mesh of the discrete-ordinates



calculations. This normally is an expensive process for general Monte Carlo
calculations because it requires many collisions within each cell in order
to obtain reliable statistics. However, because the particles are killed at
each collision, it is most advantageous to employ an exponential transform
which in effect follows each particle through its entire track from the
source to the exterior boundary. This is in reality a deterministic ray
tracing using the code to obtain the correct weighting along the track. dn
the MCNP code, we write the exponential transform as,

oy = O (1 - p w),

where

Oax is the transformed cross section,

o, is the true cross section,

p is the transform (stretching) parameters |p|<|,

p is the cosine of the angle between a preferred direction and the
particle direction.

The welight of the particle is given by,

~po, us

e
wex =W 1 - pu

where

wex is the new weight,

W is the original welight.

This 1is very appropriate for a purely absorbing problem in that few par-
ticles will collide but will yield the correct contribution to the flux
tally for each cell.

The accuracy of the method is further enhanced by doing a strategic source
biasing in angle. The object here is to assure that sufficlent cracks will
go through each tally cell to cobtaln good statistics for that cell. This
geometric source blasing is relatively easy to accomplish because we know a
priori where our tally cells are and there is a one~to-one correspondence
between the source angular emission and the angle of the track between the
tally cell and the source. As an aside, after some thought, it is seen tLhat
there these processes can be readily vectorized because of their determinis-
tic propertiva. This !s not done in the MCNP code at present, but some



vectorization is slated for the future. At any rate, these biasing tech-
niques can be used effectively to efficlently obtain the first collision
source by Monte Carlo along with an estimate of the statistical error. 1In
the following, we present a numerical example which i{llustrates the points
discussed above.

SOME TYPICAL STEADY-STATE EXAMPLES IN R-Z GEOMETRY

The purpose of the section is to 1llustrate some of the points presented
above and to indicate the usefulness of the Monte Carlo first-collision
method in practical problems. All of the examples presented below are time-
dependent and involve a mono-energetic, isotropic, point source in a two-
dimensional cylinder. This type of problem, simple as it is, contains all
of the necessary ingredients to illustrate the strong and weak points of the
method. That is, a point source possesses an extreme exomple of singularity
and the two dimensiors will illustrate the ray effects of the discrete-
ordinate calculation. Also by placing the point source on the axis of the
cylinder, it is straightforward to obtain an analytic solution at each point
in space and the zone (or mesh) average {'lux can be obtained by quadrature.
This is very useful for assessing the accuracy of the Monte Carlo solution
and for assesging the var&ance reduction strategies. The problem were run
using the MCNP” and TWODANT codes.

The first problem is a homogeneous cylinder with a point scurce at the cen-
ter. The cylinder is 8 mfp high and has a 3 mfp radius. Since we have
axial symmetry, we use a discrete ordinates spatial mesh of 10 x 12 equally
spaced intervals in the r and z directions, respectively, with a reflecting
boundary condition at the cylinder mid-plane. In the following solutions,
we vary the scattering ratio using three values, ¢=0, 0.5, 1.0. The Monte
Carlo solution of Eq. (3) 18 accomplished with MCNP unmodified. The tallies
are made using the track length estimator for the flux in tally cells which
correspond to the discrete-ordinates mesh, 120 volumes in tnis instance. We
use this as exponential transform stretching parameter of 0.9 and we ex-
ponentially bias the source sampling with a parameter of 3.4. This directs
more particles upward along the axls of the cylinder. We run the Monte
Carlo problem until the error estimate in each cell 18 down to a few
percent. In Figs. 1 and 2, we present the results of three calculations for
the uncollided flux, one analytic, and two Monte Carlo. 1In Fig. 1, we show
the zone average flux along the top row of cells of the cylinder and in Fig.
2, we show the zone average flux along the outsice column of cells. The two
Monte Carlo runs contain approximately 90,000 and 170,000 histories,
respectively. The greatest discrepancy that we see i3 at the top near the
axis of the cylinder in which not enough particles have contributed to the
scores there In the 90,000 case. By 170,000 histories, we have results
which almost reproduce the analytic solution. By way of rererence to ac-
curacy, we show in Figs. 3 and 4 three calculations, one analytlc and two
di=screte ordinates, Sl and S16, respectively. We immediately see how devas-
tating the ray effects are even for the relatively small prcblem.
Incidentally, SU4 consists of 24 discrete angles spread approximately
'niformly over the unit sphere while S16 has 288 discrete angles. Tnus the
errors in either Monte Carlo calcuiation are minor in compurison with these.



Qur next calculation will serve to illustrate two things; the effect of the
Monte Carlo firat collision source errors upon the solution with scattering,
and the effect of innaccuracies in the discrete ordinates part of the cal-
culation upon the total solution. In Figs. 5 and 6, we present the zone
flux for problems with scattering ~atios of 0.5 and 1.0 computed with the
two Monte Carlo first-collision sources and the analytic first-collision
source. It 1s seen that there 13 some effect due to the different Monte
Carlo calculations in the ¢ = 0.5 case, but there are different dis-
crepancies, and as expected they do not even show up in the ¢ = 1 case,
Again we contrast these errors with those induced by the discrete ordinates
part of the calculation as shown in Figs. 7 and 8 for ¢ = 0.5 and c = 1.
There we depict S4 and S16 calculations with the aralytic first collision
source and, for reference, the Monte Carlo 170,000 history first-collisicn
source with S16 discrete ordinates. The oscillations are due to ray effects
in the Sn part of the calculation, but these oscillations are mitigated from
those occurring in normal Sn calculations as can be seen from Figs. 9 and
10. In Fig. 9, we present the calculations for ¢ = 0.5 for the first colli-
sion and the normal S16 versions and, one, can see that the oscillations
have indeed been mitigated in the first-collision case. In Fig. 10 we
present similar results for ¢ = 1 and S4 and, we see that even in this case,
there is some residual effect of ray effects for tne normal S4. Thus,
returning to Figs. 7 and 8, we see that we have not eliminated errors due to
ray effects for problems with some scattering, but we have succeeded in
greatly mitigating the errors. For example, comparing Figs. 7 and 9, we see
that tne first collision St for ¢ = 0.5 is much better than the normal S16
calculation. As we indicated above, the ¢ = 0.5 case has the largest errors
for the first-collision method so this gives an idea of what benefits can be
obtalned by employing it.

CONCLUSIONS AND RECOMMENDATIONS

We have outlined a general Monte Carlo based first-collision source method
of performing transport calculations iIn problems involving a highly
geometrically locallzed source in a scattering medium. We have [llustrated
the benefits of the procedure in a series of siimple problems which neverthe-
less contain the essential ingredients for making our point. This shows how
badly the normal discrete-ordinates method usually does for problems in
which the scattering ratio is ¢ 0.5. We have briefly examined what the
Monte Carlo considerations are and have compared the Monte Carlo generated
first-collision zone fluxes with those generated from an analytical
approach. This shows that statistical errors do have an effect, but, as the
scattering in the problem increases, these effects seem to be minor compared
with the errors generated in the discrete ordinates part of the problem as
long as the Monte Carlo sampling in each spatial cell is adequate.

It has become apparent that the Monte Carlo efficiency can be greatly im-
proved by doing some fairly simple things and one that is not so simple. Of
most benerit would be to more carefully do the source angle blagsing so that
all apatial cells will be equally covered by particle tracks. This assumes
that the exponential transform is also used so thut the partlal tracks are
followed until the outside boundary of the problem is reached. These sorts
of considerations are relatively simple to implement. Since the Monte Carlo
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involves no scatt+tering, then the whole procedure is straightforwardly
vectorized. This, however, is not so simple to do but the . payoff in com-
putational time wou'd be worth {t.

As we think of the more general time-dependent case with more complicated
sources, we can well see that there i1s a great advantage to having a
discrete-ordinate calculation enhanced by the Monte Carlo first-collision
procedure. From the discrete-ordinates point-of-view, the implementation 1is
easy and very convenient and should help to relieve many of the knotty
problems involved in multidimensional, time-dependent problems. From the
Monte Carlo pont-of-view, the question arises, why not just do the whole
problem by Monte Carlo? 1In some cases this might indeed be best; but {f a
full vectorized first-collision method is svailable and the problem requires
that the solution be obtained in all regions of its geometry and there are
many scattering collisions which take place, then this linking with discrete
ordinates will be highly advantagecus and efficient.
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RADIAL FLUX AT THE TOP OF THE CYLINDER AS A FUNCTION OF R
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RADIAL FLUX AT THE TOP OF THE CYLINDER AS A FUNCTION OF R

a COMPARISON OF ANALYTIC AND 2 MC GENERATED ZONE FLLXES FOR C=05.
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RADIAL FLUX AT THE TOP OF THE CYLINDER AS A FUNCTION OF R
To 2 ANALYTIC AND MC(17G, G NERATED ZONE FLUOES FOR C=G.5.
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Fig. 7

RADIAL FLUX AT THE TOP OF THE CYLINDER AS A FUNCTION OF R

b 3-] ANALYTIC. AND MC(170) GENERATED ZONE FLUXES FOR Ca1.0.
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RADIAL FLUX AT THE TOP OF THE CYLINDER AS A FUNCTION OF R
Y §., ZONE FLU FROM FC S16 AND NORMAL 518 CALCLLATIONS FOR G=0.3.
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