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A FIRST CWLISION SOURCE METHOD FCR COUPLING MONTE CARLO
AND DISCRETE ORDINATES FOliLOCALIZED SOURCE PROBLEW

Raymond E. Alcouffe
Rac!i?tion Transport Croup, Y-A

Los Ala~OS Na?lofial Laboratory

Los Alamos, NP F,?5U5

ABSTRACT

A Clifflcu!t class of probl~)rr.s for th, dis~rF* --orc!jnat.~’sE:u’.?ai parric:l

transport me!hcd is to accur:te:y corr.putrth(:f!ux ou~ to L s~.atia]!yi@~+l-
izra Saurrf.. 5Pcaus~ the transpcrt <-qu:Jt!cn!s SOiVC({ fcr cis(r(?(

dircct!cns, The so-c;.11(,’aray eff~ct causes :he ~lux ::,spac( poir?ts rar
fro~ th~ sour~~ to bI> i~accurat.r-. Thus , irlFcner:.1, d!sc’?etc c~”ain:,t(s

would not be the mrrhoc!of choit:e Lo so!vt’ such problet?,s! It is be!~c”r
sui~ed for ca]culatin~ problfms wj!h signific:.nt sea!!.e~’in~.Ttf,Yor]’EI
Carlo method is sultcd to lorallzl d sou~cF pnobl’’ms, part.i’”u!arly 1~ thf
amount Lf Coll!sicnal int~’rat!.ions js mi:lnl:~l. HOU. v(.”’, if th(’r( ..r’c rr.ir,y

Scat,! e:’ing Co::islons and the flux at al! spa(IPpoints Is ae:.Ired,thvn the
Mon.e Carlc method becomes F.xpenslve. TO !+kf:PdVi3P!,~~f cf’Lh( .,;t~lbuti’s,

of both approaches, we have devised a first ~o~ll~ion scurce m(~l,t:odLO 120mI--

binc the Mc!nt.~ C;,rlo and discret,(-o~din~tcs so!utions. Th;,l i:, ~7r’r~C][*S

arc t-ackcd fr’cm t.h[’sourer to th(ir firs” sci’:.terin~collision .Jnut::lli(d
to p?oduct ii source for thf’discrett?-ordir,;.’‘-srii]cul:!tlon.A :L r!!r,d
fJux is t%~ computed by disc’r’t(’ orctir)a: es, and !hr tc!;l flux is !he sum
or ~ho ~on’,p~ar]o and djscret)?ordin:+cs calrul;~tfd r!UX,’S. IK !hln p,p,r,

ue pr~,sl’nt cclrulati~nfll I-I suits usinF Ihr tiCFJF’and TW(JDA!;Troc!rs ~r,r
sclect( d two-dlmf:nsional problf’r.sthat.show the efr, ct.ive~ess of”this
methcd.
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INTRODUCTION AND GENERAL CONSIDERATIONS

From time to t!me many peoplP in the field or part!cle t.~anspor:. have b~c:orw”
intrigued with thr” Idpa of somehow eombir!tnpth~ attrlbtitcsor th~ t!ont.c
Carlo method with those or thr aiscrcte-ordin t{.s(or d~’:erministlc)method
to some particular rlasses of problems. Onr’hears such talk in Lhl”hs.:Iways
or in offices, but not much has bt”en pres(.nt~d in the formal literature:
probably bccausc most such combinations have b~enlad hoc and prob!cm
8p~c;rlcm Many times t F linking has twen done by hsnc!’but.there cicPxis!.

23sorr~ .?u-omGt(dmet.hcrls for linking specific redrs. We brjrfly sumr.~riz~
manv o!’thr ;e~~jsthat hnv~ hpcn us~d as fol]oh’s:

GEOHETRIC LINKS
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ENERGY LINKS

lR discrete-ordinates calculations, th”.Spectr”l jnforma’.lon is usually ok-
tained from a multigroup approximation. For purr)osesof erfici~ncy, t.h
number o!’energy groups used is L 100 whilv th~ rmalrijng spf?ctr.nld(’t~ilis
contained in the rrultlgroupcross sections which are obtainrd from a r~’pre-
sentative h-lghtlng spectrur. As ?he number or groups usc+d is ctecre;,scc,
the spectral information in th~ cross seer.ions bccorcs mor’~.i.nd rnort
important, This spectral inform;.tion is commcnly obtainf’d ~rrm rcprc-.
sent~~.lveinfirlirem~dium many group calculations. Fcr compli~ilt~d SYSt~r:s,

‘repr~s~ntrt{v?’ ‘ media arf dirficult to d,fln~ so some! jreg a c~n~jrucu~
Fnmrgy Yont.f”-Carloralculatlon is us(d to provid{ the sp(c”ral ir?c-m;’icn
which is utiliz~d to rorm th, multiFroup cross st’c!ionc. Tt.isprCr”Pdllrf jS

econorr,!ca]only if m;.nycalculnlicr;rjon simiilnrsystems ::r:crvi~io~ld.

DEVELOPMENT OF THE FIRST COLLISION RETHOD

The fjrst collislcn m~thod 1s best ol’nwil)l’dIn ;lnrqultion f’o!’m.W(”Wrll.(,
th~ crtglna] transpcrt.prcbllm ;1s,

m

12dE‘ $
Ll+l)oJg,l’’+E) ‘ Y (n) i:(ry,t) + Q(~,E:,fJ,l), (1)

. =-”1.km -



=k-

ln the time interval c!tabout t; ot(~,E) is the Lotal cross sectior a(~finc
such that o cisis th= probability of h~ving a collision in interval cls; c
(~,E’*E) 1~ the Lth Legendre moment or the scatr,~rlngtransfer cross se&
tion, Q(~,E,~,t) j.sthe sou~ce or particles at space point ~, with en[~rgyE,
in direction & at Lim~ t; @L(~,E,t) is Lhe spherical harmonic of the angular
flux, or

YRm(&) iir’eth( spherical h;irmonicshnormdliz,t?dsurh Lhdr,

To develop t.h~method, wt.~ssumf:that th~ angular flux is wr”itt{nas

where I+“ is the uncollid~’cflux and Vc is the collid(:dflux.

Thesv fluxes satisfy the following (!quarions:

, hv
iJ.— +(? . Viu(r,E,Q,t) + 9L(C,E) Yu(~,E,lJ,t)m Q(r,E,iJ,t)v ;Jt -

(2)

(3)

1 2Vc-—+fj
● VYc(r,E,Q,l.)+ Ot(~,E) +c(~,E,fJ,t)Mv tit su(~,E,Q,t)

wtlerv

,W

su(gE,iJ,t) -
m
dE’ (71+I)69E(E,E’+E)

$
YEMQ) QDk(g,M .

0- --R

It 1s seen tha! Eqs. (3) and (41 arc ~+qulvalenttc Eq. (l). Thus Ir th~’
sourc?~ G 1s locullzcd, then the spilt ~!’Eqs. (3) and (U) provides (1
methodology ror separating the problem solutlon into two parts. Wc can
SOIV[lEq. (3) by a method which treats th~ stre;lmlngfrom a localized sourc!p
in an absorbir,g medium accurately, while wv soJve Eq. (U) wjth a method
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which does a good Job of treating collision dominated problems. We then ob-
tain the total solution from Eq. (2).

Of course the prcblem description is not complete without speci~ying the
boundary conditions and the initial condition. If’we designate a surface S
that surrounds the calculational region of the problem, the general boundary
conditions can be written as

.
Y(~cS,E,fJ,t)- ~(E,iJ,t)for n ● Q <O (5)--

.
to where ~ is the outward normal to the surface. We can write the b~tindary
conditions for Eqs. (3) al I (4), respectively, as

vu

Yc

.
rcS,E,O,t) - I’(E,iJ,t)for & “ g < 0 (6).- .-

.
rcS,E,il,t)= O forfi, ~cO (7)

Thus the ‘singularity’ caused by the incident flux boundary con~ition is put
into the uncollided problem while the collided problem has vacuum boundary
conditions. The initial condition for Eq. (1) !s written as Y (~,E,iJ,to)=
x(~,E,Q). Again for Eqs. (3) and (4), we write as initial cOrid tlonsY

Yu(~,E,Q,to) - 0 (8)

Yc(~,E,~,to) = y(~,E,Q) (9)

although, in this case, the reasons for this split is not as ciear cut as in
the case of the boundary conditions and may be very problem dependent. This
then completes the specification of the problem by what we have callad the
first collision method.

To further illustrate the method, we fucua on Eq. (j) which has the form of
a pure absorption problem d?iven by a known or given source with boundary

conditions from Eq. (6) and an initial condition from Eq. (8). For simple
geometries and sources, this equation can be solved analytically. For ex--
ample, for a point ~ource and a Lime lndegendent problem, w~ have in
cylindrical coordinates (p,z,u,d),

-a(F,,r,r,o)--

Y(~,E,~) ● q(E)6(@)6[p--/~Z ) e
o p~+(z--zo)z
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where

,#G7
o

a(E, g,Q - I o(E,s)ds
o

and the source is at the space point (O,zo) .

For the ❑ore general case, the solution to Eq. (3) can be obtained by the
method of ray tracing. This ray tracing may be accomplished in a variety of
ways, either deterministically or by Monte Carlo. How the Monte Carlo may
be carried out will be dis:ussed in some detail below.

We solve Eq. (4) by the method of discrete ordinates. This method works
well if the dominate sources in the problems are not locallzed or if it is
scattering dominated. The method works poorly in free streaming, vacuum
regions, or in pure absorbers with a localized source. Both types of
problems usually give rise to the so-called ray effects. The results of the
ray effect are locally very inaccurate values for the flux. This, of
course, f’romthe point of view of discrete ordinates, was the motivation for
the split of Eqs. (3) and (4) in the first place. However, in some cases,
the first collision source, u, itself may be quite localized and thus the
solution to Eq. (4) will itself exhibit ray effects and will contaminate the
solution to Eq. (3) which may be very accurate with inaccurate fluxes from
Eq. (4). One can reason thatofor each energy, this effect will be the worst

.
for a scattering ratio c - ~ - 0.5. We will see that this effect is real

b-
by some examples in the next s$ctiorl.

In su[,lmary,we see that the first.collision source method is conceptually
very simple. It is best suited for problems which have regions in which the
source 1s localized and lmbedded in a collision dominated medium. It can
thus be viewed as a ray effect mitigation method, although it may not always
work well because of residual, ray effects due to the fact that the first
collision source itself may be quite localized. It seems to the author that
the method is probably most useful for problems where the solution is to be
obtained by digcrete ordinates but that one employes an auxiliary method to
help mitigate ray effects. He now investigate the consideration needed to
solve Eq. (3) by the Monte Carlo method.

In the most general of situations, Eq. (3) can be solved as a Monte Carlo
transporl.process in which particles are killed as soon a~ they make a
collision. When we think about using a general code like MCNP to set up the
problem, wu see that we immediately have available a very general geometric
and energy description at our disposal. From the geometric point of view,
the Monte Carlo method is solving the ray tracing p?oblem. The most
prominent characteristic of the problem 1s that we need tallies in spatial
regions which correspond to the spatl~l mesh of the discrete-ordinates
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calculatlona. This normally is an expensive process for general Monte Carlo
calculations because it requ!re~ many collisions within each cell in order
to obtain reliable statistics. However, because the particles are killed at
each collision, it Iz ❑ost advantageoufrto employ an exponential transform
which in effect follows each particle through its entire track from the
source to the exterior boundary. Thi3 1s ir?reality a deterministic ray
tracing using the code to obtain the correct weighting along the track. tIn
the HCNP code, we write the exponential transform as,

-Ot(l-pld,
‘e x

where

aex Is the transformed cross section,

‘t
is the true cross section,

p is the trawform (stretching) parameters lpi<],

p is the cosine of the angle between a preferred di~ection and the
particle direction.

The weight of the particle is given by,

-prJtLls

w -H ;
ex - PP

where

This

u=X is the new weight,

W is the original weight.

is very appropriate for a purely absorbing problem in that few par-
ticles will collide but will yield the correct contribution to the flux
tally for each cell.

The accuracy of the method 1s further enhanced by doing a strategic! source
biaaing In angle. The object here is to assure that sufficient ~racks will
go through each tally cell to obtain good atatistica for that cell. This
geometric source biasing is relatively easy to accomplish because we know a
priori where our tally cells are and there is a one-to-one correspondence
between the source angular emission and the angle of the track between the
tally cell and the source. A9 an aside, after some thought, it is seen Lhat
there these processes can be readily vectorized because of their determinis-
tic proper*tius- Thi:~!s not done in the MCNP code at preeent, but some
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vector ization is slated for the future. At any rate, these biasing tech-
niques can be used effectively to efficiently obtain the first collision
source by Monte Carlo along with an estimate of the statistical error. In
the following, we present a numerical example which illustrates the points
discussed above.

SOHE TYPICAL STEADY-STATE EXAMPLES IN R-Z GEOMETRY

The purpose of the section is to illustrate some of the points presented
above and to indicate the usefulness of the Monte Carlo first-collision
❑ethod in practical problems. All of the examples presented below are time-
dependent and involve a mono-energetic, isotropic, point source in a two-
dimensional cylinder. This type of problem, simple as it is, contains all
of the necessary ingredients to illustrate the strong and weak points of the
method. That is, a point source possesses an extreme example of singularity
and the two dimensions will illustrate the ray effects of the dlscrete-
ordinate calculation. Also by placlnG the point source on the axis of the
cylinder, it is straightforward to obtain an analytic solution at each point
In space and the zone (or mesh) average l“luxcan be obtained by quadrature.
This is very useful for assessing the accuracy of the Monte Carlo solution
and for asses ing the var ante reduction strategies.

f b The problem were run
using the MCNP and TMODANT codes.

The first problem is a homogeneous cylinder with a point source at the cen-
ter. The cylinder is 8 mfp high and has a 3 mfp radius. Since we have
axial symmetry, we use a discrete ordinates spatial ❑esh of 10 x 12 equally
spaced intervals J,nthe r a~d z directions, respectively, with a reflecting
boundary condition at the cylinder mid-plane. In the following solutions,
we vary the scattering ratio using three values, c-O, 0.5, 1.0. The Monte
Carlo solution of Eq. (3) is accomplished with FICNPunmodified. The tallies
are made using the track length estimator for the flux in tally cells which
correspond to the discrete-ordinatesmesh, 120 volumes in this instance. We
use this as exponential transform stretching parameter of 0.9 and we ex-
ponentially bias the source sampling with a parameter of 3.4. This directs
more particles upward along the axis of the cylinder. We run the Monte
Carlo problem until the error estimate in each cell is down to a few
percent. In Fl&9. 1 and 2, he present the results of three calculations for
the uncollided flux, one analytic, and two Monte Carlo. In Fig. 1, we show
the zone average flux along the top row of cells of the cylinder and in Fig.
2, we show the zone average flux along the outside column of cells. The two
Monte Carlo runs contain approximately 90,000 and 170,000 histories,
respectively. The greatest discrepancy that we see is at the top near the
axis of the cylinder in which not enough particles have contributed to the
scores there in the 90,000 case. By 170,000 histories, we have results
which almost reproduce the analytic solution. By way of reference to ac-
curacy, we show in Figs. 3 and 4 three calculat~or?s,one analytlc and two
discrete ordinates, S4 and s16, respectively. We immediately see how deva~-
tating the ray effects are even for the relatively small prcblem.
Incidentally, S4 consists of 24 discrete angles spread approximately
IIniformly over the unit sphers wh,iles16 has 288 dlsc~ete angles. Tnus the
errors In either Monte Carlo calculation are minor in comparison with these.
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!)urnext calculation will serve to Illustrate two things; the effect of the
Monte Carlo first collision source errors upon the solution with scattering,
and the effect of inaccuracies in the discrete ordinates part of the cal-
culation upon the total solution. In Figs. 5 arid 6, we present the zone
flux for problems with scattering ,-atioso.e 0.5 and 1.0 computed with the
two Monte Carlo first-collision sources and the analytic first-collision
source. It is seen that there Is some effect due to the different Monte
Carlo calculations in the c - C.5 case, but there are different dis-
crepancies, and as expected they do not even show up in the c = 1 case.
Again we contrast these e,-rorswith those induced by the discrete ordinates
part of the calculation as shown in Figs. 7 and d for c = 0.5 and c “ 1.
There we depict S4 and s16 calculations with the a~alytic first collision
source and, for reference, the Monte Carlo 170,00@ !listOrYfirst-collisicn
source with s16 discrete ordinates. The oscillations are due to ray effects
in the Sn part of the calculation, but these oscillations are mitigated from
those occurring in normal Sn calculations as can be seen from Figs. 9 and
10. In Fig. 9, we present the calculations for c - 0.5 for the first colli-
sion and the normal s16 vers~ons and, one, can see that the oscillations
hs.ve indeed been mitigated in the first-collision case. In FiI?.10 we
present similar results for c = 1 and S4 and, we see that even in this zase,
there is some residual effect. of ray effects for the normal S4. Thus,
returning to Figs. 7 and 8, we see that we have not eliminated errors due to
ray effects for problems with some scattering, but we have succeeded in
greatly mitigating the errors. For example, comparing Figs. 7 and 9, we see
that tne first collision SU for c - 0.5 is much better than the normal s16
calculation. As we indicated above, the c - 0.5 case has the largest errors
for the first-collision method so this gives an idea of what benefits can be
obtained by employlng it.

CONCLUSIONS AND RECOMMENDATIONS

We have outllned a general Monte Carlo based first-collision source method
of performing transport calculations in problems involving a highly
geometrically localized source in a scattering medium. We have illustrated
the benefits of the procedure in a series of siinpleproblems which neverthe-
less contain the essential lngredier?tsfor making our point. This shows how
badly the normal discrete-ordinates method usually does fol’problems In
whlc!lthe scattering ratio is ~ 0.5. He have briefly examined what the
Monte Carlo conslderat~ons are and have compared the Monte Carlo generated
first-collision zone fluxes with those generated from an analytical
approach. This shows that statistical errors do have an effect, but, as the
scattering in the problem increases, these effects seem to be minor compared
with the errors generated in the discrete ordinates part of the problem as
long an the Monte Carlo sampling in each spatial cell is adequate.

It has become apparent that the Monte Carlo efficiency can be greatly im-
proved by doing some fairly simple things and one that is not so simple. Of
❑ost benefit would be to more carefully do the source angle !?!?singso that
all spatial cells will be equally covered by particle tracks. This assumes
that the exponential transform is also used so thtitthe partial tracks are
followed until the outside boundary of the problem is reached. These sorts
of conslderat~$ms are relatively simple to implement. Since the Monte Carlo
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involves no scattering, then the whole procedure is straightforwardly
vectorized. This, however, is not so simple to do but the~payoff in com-
putational time wou’d be worth it.

As we think of the ❑ ore general time-dependent case with more complicated
sources, we can well see that there 1s a great advantage to having a

discrete-ord:nate calculation enhanced by the Monte Carlo first-collision
pracedure. From the discrete-ordinates po~nt-of-view, the implementation is

easy and very convenient and should help to relieve many of the knotty
problems involved in multidimensional, time-dependent problems. Fram the
Monte Carlo pent-of-view, the question arises, why not Just do the whole
problem by Monte Carlo? In some cases this might indeed be best; but if a
full vectorized first-collision method !s ~vailable and the problem requires
that the solution be obtained in all re~ions of its geometry and there are

marly scatterifig collisions which take place, then this ltnking with discrete

o?dlnates will be highly advantageous and efficient.
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