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ABSTRACT

Adaptive preferential employment of interceptors in midcourse ballistic missile 
defense is considered. The defense discriminates decoys, with such 
discrimination characterized by a K-factor, and determines optimal intercepts 
and salvo structure in shoot-look-shoot scenarios. The attacker's strategy to 
determine proper allocation of warheads to targets of varying value in the 
presence of a defense is also described. Representative results are presented 
for the effectiveness of the preferential midcourse defense by itself and in 
conjunction with a random-subtractive boost/deployment phase defense tier. 
Quality of discrimination is by far the strongest determinant of performance; the 
ability to perform a shoot-look-shoot is also important. Inventory requirements 
for midcourse and boost-phase defenses are determined for missions in which 
target value saved is the goal, for representative defense parameters. Based 
on these results, the midcourse tier appears to be a necessary component of a 
cost-effective defense.

I. Introduction

Presently we are engaged in a joint study with the Phase One Engineering 
Team (POET) and the National Test Facility (NTF) to determine the 
effectiveness of a Phase One strategic defense as a function of the force mix of 
space-based and ground-based interceptors. An important part of LLNL's 
contribution will be to relate results from the NTF regarding warheads killed by 
the defense in a strategic attack to the value of ground installations which is 
saved by the presence of the defense.

To perform this calculation we have decided to adopt the strategy used by 
Chrzanowski, Duffy and Abey in similar studies. (Reference 1,2) Briefly, this 
methodology treats the allocation of attacking and defending resources to a 
variety of target classes as a two-person game and determines a min/max 
solution for the target value remaining after the attack. It was necessary to 
extend the formal models developed by Chrzanowski (Reference 1) in order to 
consider interceptor allocation when midcourse decoys are present and when a 
shoot-look-shoot (-look-shoot-...) strategy may be used, both quite important
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elements of the present study. Further details in the context of the study will be 
presented elsewhere.

This paper formally describes the problem faced by the defender in midcourse. 
He knows which clusters of RVs and associated decoys have penetrated the 
boost/deployment layer of the defense and can determine the ground targets 
toward which they are heading. A discrimination system provides him with 
information as to the most likely RV candidates in each cluster. He then must 
decide which objects in which clusters must be intercepted in order to maximize 
the defense performance, i.e., to maximize the value of ground installations 
surviving after the attack. We note that this construct does not necessarily apply 
to the proposal Phase One defense, for which the resolution and track accuracy 
of SSTS, the midcourse sensor system, is still under discussion and might not 
permit aimpoint prediction.

The defender is constrained by a limited number of interceptors. He can 
significantly reduce the number he needs by firing them in salvos, assessing in 
which clusters the RVs have been killed (a successfully intercepted RV should 
give a dramatic signature) and firing again (i.e., shoot-look-shoot-...). However, 
this adds another level of complexity to the defense’s planning, since he must 
determine the salvo structure as well as the objects to be attacked.

II. Mathematical Formulation

Suppose the target set may be divided into classes of identical targets with NT 
the number and VT the individual value of targets in T. The defender finds that 
there are N^(np) targets in T for each of which exactly np RVs (and associated 
decoys) have penetrated into midcourse. If each target in T were allocated a 
total of orv RVs initially and the probabilities Ppt of each RV penetrating to 
midcourse were independent, then NT(np) would have a binomial distribution

NT(np) = Nt CnnPv (Pp1)nP (1 - Pp1) n"v-nP (1a)

Cn = n!/i! (n-i)!

The total value of targets surviving the attack is therefore

(1b)

(2)

where Ps^(np) is the probability that a target in T attacked by np RVs will 
survive, assuming an optimal defense strategy. Similarly the number of 
interceptors used will be
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(3)
T,np

Where lT(np) is the number of interceptors used, on the average, for each target 
in T which is attacked by np RVs.

Now the total surviving value V is to be maximized for a constrained number of 
interceptors used I. This maximization is to be accomplished by selecting the 
appropriate strategy to be used for each subclass of targets (of class T and
attacked by np). Let us suppose that we have a single parameter a describing 
these strategies and that Ps^(np.a) and fT(np,c) are continuous functions of this 
parameter. If the strategy parameter a were itself continuous, we would have 
that for all targets which were defended by any interceptors, the strategies must 
be such that

VT Ps ^(np.a),* / lT(np,a)|0 = (dV/dl)* (4)

where ".a" denotes a partial derivative, Ps^* is the convex hull of PsT, and 
(dV/dl)* is some constant. If (4) were not true, it would be possible to slightly 
change two of the strategies and increase V for constant I. In fact, we shall use 
a discrete, rather than a continuous, strategy parameter. In this case, the 
generalization of (4) is straightforward.

The convex hull f* of function f(x) is the upper bound of linear combinations of 
elements of f(x):

f*(x) = X^<X1 [(X! - x) f ( x0) + (x - x0) f (x^Mxt - x0) (5)

In (4) PsT* is understood as the hull of PsT over domain lT; i.e., PsT(|T).

Our strategy parameter will be denoted m|, the maximum number of 
interceptors the defense is willing to use to defend a single target. One may 
show that for an optimal strategy each of the np penetrating RVs is to be 
allocated the same maximum number, so that m| is a multiple of np:

m| = n|np (6)

Then

PsT(np,m|) = (1-PsRV(n,)PM)np

where PklT is the probability of target kill by a single RV which penetrates all 
layers of the defense and Ps^(nl) is the probability that an RV which
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penetrates to midcourse will survive (a maximum of) n| interceptors. It is evident 
that the desired sequence of defense strategies minimizes P$RV for given n|.

Each RV is associated with a number of decoys, the total number of objects 
being o*. These objects have been discriminated and rank-ordered with 
respect to the discriminant, and Prv(o) is the probability that the object of rank 
o is the RV; thus

P^v(n|) = IPRv(o)(P^)m(o) (8)O

where Ps1 RV is the probability that the RV will survive a single interceptor 
directed at it and m(o) is the number of interceptors directed at object o. This 
equation may be rewritten as

ni

Psv <n|) = 1 - X AP*V(i) (9a)
i = 1

APk(i) = PRV[o(i)] (P^f0^1 (1 - P^) (9b)

where o(i) is the object which is targeted by the i*h interceptor and m(i) is the 
number of times that object has been targeted. These equations imply how to 
pick o(i): it should simply be the object for maximum APk(i).

The probability that the object of rank in a cluster of o* objects containing one 
RV is the RV itself may be written

Prv(o) = J [dPRV(Z)] C°0r_\ [PD(Z)]° ~1 [1 - PD(Z)]°''0 (10)

where Prv(Z) and Pd(Z) are the cumulative probabilities that an RV and a 
decoy have discriminants less than standard variable Z. If the discriminants for 
each class of objects are normally distributed with unit variance (a common 
assumption for lack of a better one) then

PRv (Z) = PD(Z + K) = [erf(Zy V2) + 1 ] /2 (11)

where the "K-factor" K is the ratio of the separation in means of the RV and 
decoy distributions to the (unit) standard error and erf(x) is the error function.

In practice, performing the integration (10) in the vicinity of PRV(Z) ~ 1 proved 
tricky for large K. We found that an open-type Newton-Cotes method worked 
fairly well.
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it is quite likely that the defense will have more than one opportunity to 
discriminate the decoys. Both the ground-launched Surveillance and Tracking 
Systems (an IR sensor) and the Ground-Based Radar have been proposed as 
components of the Phase One Strategic Defense System. Thus it is possible 
the defense may fire one (or several) salvos with data from one sensor system, 
re-discriminate with a second system and fire again.

Let PsRV*(n| *) and Ps^t(n|t) be the probabilities for the RV to survive 
intercepts using data from either two different sensor systems independently, as 
described above. Then if the systems are used jointly the cumulative probability 
of survival is

assuming that these probabilities are independent. It is quite possible, and is 
planned for Phase One, that the defense would want to use information from the 
first discrimination, and the (negative) outcomes of interceptor engagements 
together with the second discrimination results to plan his strategy. In the case 
the probabilities in equation (12) would not be independent. Such issues are 
outside the scope of this simple analysis.

Consider now the salvo structure of the intercepts and the average number of 
interceptors used lT(np,mi). We have just described the way to pick a sequence 
of intercepts [o(i),m(i)] in such a way that RV probability of survival decreases as 
rapidly as possible along the sequence. For minimum interceptor usage, the 
first h intercepts in the sequence should be made in the first salvo and RV kill 
assessed, then intercepts up to element 12 should be made in the second salvo 
and kill assessed, etc., with remaining intercepts up to nj made in the last salvo.
If Ps^(i) denotes the probability of RV survival through the intercept and s 
the number of salvos, then the average number of interceptors used in 
protection of the target will be

There are np RVs to be attacked and the probability of launching salvo s against 
each of them is PsRV(is-l). i-©-. the probability that the RV has not been 
observed to have been destroyed prior to salvo launch.

The total number of salvos exceeds the number of looks by one. However, 
since is = nj for the last salvo, the number of degrees of freedom in choice of 
salvo structure, i.e., the ways to pick {is}, subject to the above optimality 
condition, equals the number of looks n|_ook- In practice, we used a hill­
climbing technique in an nLook-dimensional representation of {is} to find a 
near-optimum.

PsRV(rV + rtf) = PsRV'(n;) PsRVt(rtf) (12)

(13)
s
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111. Representative Results

In the previous section we introduced several variables which determine the 
interceptor engagement. Along with illustrative values, they are:

Table 1. Exemplary engagement parameters

Description Value
RVs deployed for target 8
RVs in midcourse bound for target 4
Probability that target survives RV 0.3
Objects in discriminated cluster 100
K-factor for decoy discrimination 3
Probability that RV survives interceptor 0.1
Number of "looks" 2

Thus, we consider the attack of a hard target for which two RVs are needed for a 
high confidence kill. Four RVs have penetrated into midcourse, a comfortable 
excess. They are accompanied by a very large, although not unreasonable, 
number of decoys, but discrimination is good: K = 3 corresponds to only an 
0.067 probability of equal false alarm and discrimination leakage (type 2 and 
type 1 errors). The interceptors are very reliable with a 90% SSPk, and they 
may be utilized in up to three salvos: shoot-look-shoot-look-shoot. Thus, both 
offense and defense seem to be in fairly advantageous positions. In the Phase 
One system, it seems unlikely that three salvos will be possible with ERIS, the 
ground based interceptor. For three salvos, the space based interceptors might 
be used for the initial salvo, or some of the ground based interceptors might be 
forward based, or a terminal underlay might be added. In any case, the 
advantage gained by the third salvo is slight, as seen in Figure 1, to follow.

Figures 1-3 show results and some sensitivities for this attack. Figure 1 shows 
the variation of the target probability of survival PsT with average number of
interceptors used per target lT for 0-2 looks. The ability to perform a shoot-look- 
shoot has a dramatic effect on the results, at least with regard to the numbers of 
interceptors required to ensure a high probability of target survival: for our 
example, it required 28 interceptors per target, on average, to ensure a 70% 
probability of survival if no looks could be taken. This number dropped to 13 
interceptors for one look, and 11 interceptors for two looks. White the 
advantage for two vs. one look is not nearly as great as for one vs. no looks, for 
90% target survival 19 interceptors are required with two looks and 28 with one 
look.
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Effectiveness of looks
Curve IabcIs : 

number of looks

Average number of interceptors

Figure 1. Curves of target survival vs. number of interceptors used differ by 
number of looks in a multiple shoot-look-shoot scheme. Other 
parameters as in Table 1.

Figure 2 presents target survival as a function of interceptor usage for different 
numbers of RVs penetrating into midcourse. While this plot holds few 
qualitative surprises, it shows that interceptor requirements do not scale linearly 
with numbers of RVs. A target survival of 70% requires 3.3 interceptors for 2 
RVs, 11 interceptors for 4 RVs, and 20 interceptors for 6 RVs. (For a fixed 
number of interceptors per RV, the RV probability of arrival will be constant. 
Target probability of survival then scales non-linearly with np by equation 7.)

Influence of attack strength

Curve labels : 
number of RVs

Average number of interceptors

Figure 2. RVs per target is the variable illustrated. Other parameters as in 
Table 1.
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Figure 3 presents a similar plot for curves of different K-factor. The importance 
of discrimination when many decoys are present cannot be overemphasized: it 
is the strongest sensitivity in the problem. Although K = 3 corresponds to quite 
good discrimination, it represents the regime in which results are most sensitive 
to K-factor for our example with 100 decoys: K = 4 helps the interceptors 
remarkably, while for K = 2 the interceptors perform poorly, even with many tens 
of them per target and the opportunity for two looks.

Influence of discrimination

Curve labels : 
K-faclor

Average number of interceptors

Figure 3. Probability of survival vs. interceptors used. Curves are labeled by 
K-factor.

IV. Attacker Allocation Strategy

In order to put these results in context, consider the attack of a large number of 
hard targets. The targets may either have similar values, as would be true for 
missile silos, or have a pronounced contrast in values, as would be true for 
political leadership or military targets. We must now take into account the 
probability that RVs are killed before reaching midcourse, i.e., by a boost-(and 
deployment) phase defense. The probability of a given number of RVs for a 
target penetrating boost defense is given by the binomial distribution of 
equation (1).

For the case of equal-target values, the attacker does best to allocate RVs 
evenly among targets. Results for this attack are shown in Figure 4. Here we 
assume the system parameters are still as in Table 1; in particular enough RVs 
are launched to get four per target into midcourse. The boost-phase defense 
kills either 50% of the RVs launched, or else none of them (for comparison). 
The midcourse defense takes either two looks during the battle, or else none.
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Influence of boost phase leakage
4 RVs in uiidcourse per target 
Boost-phase leakage : wo looks

■^Tfo ooks

Average number of interceptors

Figure 4. For 0 or 2 looks, leakage varies from 50-100%. Attack is sized to 
always give 4 RVs in midcourse per target.

When the defense is present the offense must launch twice as many RVs in 
order to get 4 RVs per target into midcourse. Whether or not there is any 
additonal benefit to the random-subtractive defense depends upon the level of 
defense required. If only a few interceptors per target on average are to be 
used, the presence of the random-subtractive defense may more than double 
their effectiveness. However, if a target probability of survival of 50% or greater 
is to be achieved and several interceptors per target are to be used, then the 
boost phase defense's "ability to break up structured attacks" matters little. The 
ability of the midcourse defense to look during the engagement is shown to be a 
very important parameter, as we have already seen.

If the targets are not of equivalent value, the attacker should not allocate RVs to 
them evenly. His optimal strategy is analogous to that of the defense, cf. 
equation (4). Specifically each RV assigned to any particular target must extract 
a value greater than some limit (-dV/dRV)*. In calculating this extraction, we 
shall assume that the offense knows the size of the midcourse interceptor 
inventory and therefore can evaluate (dV/dl)*, which determines the defense's 
strategy. Since the number of interceptors is constrained, a putative RV 
assignment will draw interceptors away from other targets, thus:

(-dV/dRV) = OVVaRV) + (- dl/dRV) (dV/dl)*
> (-dV/dRV) (14)
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where (-3V73RV) represents the damage to the specific target under attack, V* 
is the hull of target value V over RVs used, and (-dl/dRV) represents the 
depletion of the defender's inventory due to the assignment.
Equivalently, the attacker's problem may be written as a linear program and 
solved by standard techniques. More formal details about sequential games of 
this sort will be presented shortly. (Reference 3).

Chrzanowski suggests that a good form for the value profile of non-silo targets 
has the value of the n^ target proportional to 1/^n. With this value profile the 
average number of RVs and interceptors assigned to the various value classes 
are as shown in Figure 5 for an attack in which an average of eight RVs per 
target are launched initially and four RVs per target enter midcourse to be met 
by eight midcourse interceptors per target using two looks.

RV and interceptor allocation

i. 8 RVs per target initially - r
* (50% boost-phase leakage)

©
15- \ 8 midcourse interceptors - i

ec
\ r

S 10- r
1
z:

r 1 ‘
• r initial target value

V
fee
<c 5-

» , s , ,

>
■< value surviving

0 5 10 15 20
Target

Figure 5. The r's give number of RVs initially deployed to each target; i’s give 
average interceptor use for each target. Targets have a 1/Vn value 
distribution. Value surviving after the attack is roughly constant. An 
average over all targets of 8 RVs and 8 interceptors per target is 
used.

The optimal assignments had both RVs and interceptors per target almost 
exactly proportional to target value. The only deviations from this simple rule 
were caused by the necessity that the number of RVs per target be a small 
integer (at least for all but one of the target classes). Chrzanowski suggests that 
by means of this strategy the offense keeps the value associated with each 
attacking RV nearly constant in order to deprive the defense of good preferential 
opportunities.



This assignment scheme tended to save the low value targets preferentially: as 
we remarked in Figure 2, the attacker is favored when large numbers of 
interceptors and RVs are assigned per target.

Similar results were obtained for the case in which a shoot-look-shoot strategy 
was not used. Again the numbers of RVs and interceptors used in each value 
class was nearly proportional to target value. Compared to the results of Figure 
5 the value surviving was even less for the high value targets since the shoot- 
look-shoot scheme makes better use of large numbers of interceptors.

In Figure 6 we compare the fraction of value surviving for varying numbers of 
interceptors for the two value profiles. Since we have seen in Figure 2 that 
large numbers favor the attacker, it is not surprising to see that the fraction of 
value saved is lower in the case of a pronounced value contrast, in which 
offense and defense tend to load resources preferentially on a few targets. 
However, the overall effect of the strong value contrast, compared to uniform 
target value, is surprisingly minor. The figure also shows results for two looks or 
no looks taken by the midcourse defense. This has a stronger effect on the 
results than does the difference in value contrast.

Influence of value contrast

4 RVs in midcourse per target
Value contrast : ^-------

— Flat
— Square-root

no looks

Average number of interceptors

Figure 6. Curves give target survival weighted by target value for two looks or 
no looks in target sets in which the target value is either constant or . 
varies as 1/Vn, with n the number of the target.



V. Inventory Requirements

We now consider the relative effectiveness of RV intercepts in midcourse vs. 
those in boost or deployment phases. Qualitatively, the midcourse interceptors 
may be deployed in an adaptive preferential manner to protect targets which 
are easy to defend and of high value, whereas earlier intercepts simply thin the 
attack. However, the midcourse tier is more vulnerable to decoys.

We determine the effectiveness of the space-based interceptor (SBI) tier in 
boost and deployment phases using an engagement simulation. Parameters 
for a representative engagement are given in Table 2.

Table 2. Representative parameters for SBI engagement analysis

Constellation 
Altitude 
Inclination

SBIs
Warning/start up delay 
Axial velocity 
Axial acceleration 
Minimum altitude during flight 
RangeA/iewing constraints 
Kill probability 
Salvo

Threat: SS-18 follow-on 
Basing
Launch duration 
Boost duration 
Deployment duration 
MIRV

500 km 
80 deg

60 sec 
6 km/sec 
20 g 
100 km 
none 
0.9 
2 max

SS-18 (all fields) 
Simultaneous 
240 sec 
300 sec 
15

Engagements of this sort are more fully described in Reference 4. The threat 
chosen here is one of the less stressing which might be considered in the late 
1990s time frame since it relies on a highly MIRVed heavy liquid booster with 
only modest reductions in boost and deployment times in response to the 
defense.



The probability of RV kill in boost and deployment phases is plotted as a 
function of SBI inventory in Figure 7. We see that for each SBI deployed about 
one RV is killed up to an RV kill probability of about O.7.*

‘This is better performance for the defense against this threat than was reported 
in Reference 4 in which about two deployed SBIs were needed for an RV kill. 
This difference arises primarily since that earlier analysis considered a partial 
launch from the 200 western-most SS-18 silos whereas this calculation 
assumes that the launch is spread proportionately over all SS-18 silo fields. In 
addition, the earlier results assumed threat launch at the worst moment for the 
defense, whereas these results represent time averages (a 10-20% effect). A 
performance of one RV kill per SBI deployed was seen in Reference 4 to be 
more characteristic of a threat based on the current SS-18 (than on an SS-18 
follow-on).

Consider now the numbers of interceptors required to achieve a particular 
objective. In this case a specified fraction of targets or target value surviving 
after the attack. For a given ratio of SBIs to attacking RVs the probability of an 
RV penetrating the defense is found from Figure 7, then finding the number of 
midcourse interceptors needed to meet the objective is straiahtforward.

Representative SBI performance
Mean defense performance

.5 1.0 1.5
SBIs deployed per RVs deployed

Figure 7. The figure gives the probability of RV kill in boost or deployment
phases as a function of the ratio of SBIs deployed in the defense to 
RVs deployed in the threat. Parameters for threat and defense are 
given in Table 2.
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In Figure 8 we plot the inventory levels needed for 50% survival of a set of 
targets of uniform value for two different attack levels and for the baseline 
system parameters of Table t. If we assume that these targets are ICBM silos 
(as would be consistent with the rather low SSPk assumed for an RV against 
them), that the two adversaries are treaty limited to about the same number of 
ICBM warheads, and that the primary targets for ICBM warheads are ICBM 
silos, then the number of RVs per target should be roughly the MIRV of the 
missiles. Thus eight RVs per target would correspond to the attack of a medium 
system like the MX (ten MIRV) while four RVs per target would correspond to a 
lighter system like Minuteman (three MIRV). An attack of eight RVs per target is 
baseline in Table 1 and will be used henceforward.

Force mix and attack strength

50% target survival

Midcourse interceptors per RV

Figure 8. The curves give the tradeoff between boost phase and midcourse 
phase interceptors required for constant performance. Two attack 
strengths are considered.

We see that the number of interceptors needed does not scale linearly with the 
number of RVs in the attack, as was also noted in Figure 1. About 2.5-3 times 
as many interceptors are needed for the eight RV vs. the four RV attack. The 
curves of Figure 8 have a shape which will be characteristic of all the examples 
of this sort. They have relatively constant slopes when use of midcourse 
interceptors predominates but become progressively steeper as the boost 
phase interceptors become dominant. This is due to the fact that large numbers 
of adaptive preferential interceptors may be used efficiently whereas large 
numbers of random subtractive interceptors may not. This relatively constant 
slope for a high proportion of midcourse interceptors means that an all­
midcourse system might be the most cost effective, as will be discussed. The 
all-midcourse requirement for the eight RV per target attack, not shown on the 
graph, is about 2.6 midcourse interceptors per RV, compared with about 1.7



interceptors per RV for the four RV attack. At least some midcourse capability 
appears desirable for cost-effectiveness: solely boost/PBV inventory 
requirements are 1.3 and 2.4 space-based interceptors per RV for the four RV 
and eight RV per target attacks, respectively.

Figure 9 gives similar results for different values of K-factor. As noted earlier, 
discrimination is the overwhelming determinant of system performance, 
particularly in these examples with 100 decoys per RV. With K = 4, less than 
one interceptor per RV is required in an all-midcourse system, while with K = 2 
an all-midcourse system is clearly not desirable; it would require about 13 
interceptors per RV! Nonetheless, even in this case the midcourse tier should 
not be eliminated: a good mix might be about one boost/PBV interceptor and 
one midcourse interceptor per RV.

Force mix and discrimination

50% target survival 
8 RVs per target

«- 1.0-

Midcourse interceptors per RV

Figure 9. The boost/midcourse trade is parameterized by the K-factor of the 
discrimination system.

Another important parameter is the mission goal. The goal of 90%, as opposed 
to 50%, target survival about doubles inventory requirements, as is shown in 
Figure 10.



Force mix and mission

8 RVs per target

Midcourse interceptors per RV

Figure 10. Two levels of desired target survival are considered.

The ability to use a shoot-look-shoot strategy is very important in order to make 
effective use of the midcourse interceptors as is shown in Figure 11. The 
number of interceptors required in an all-midcourse defense more than doubles 
from 2.6 per RV to 6.6 per RV if no looks may be taken.

Force mix and number of looks

50ro target survival 
8 RVs per target

no looks

two looks

Midcourse interceptors per RV

Figure 11. The shoot-look-shoot-look-shoot scheme reduces midcourse 
inventory requirement by a factor of two.



Inventory requirements are not very different to save 50% of the value in 
Chrzanowski's 1/Vn scheme, compared to saving 50% of equal-value targets. 
About 14% more interceptors were required for the strong value contrast. (This 
said, we shall not show the figure.)

The above examples lead one to the conclusion that the defense architecture 
that meets mission requirements for targets saved or value saved at minimum 
cost is either composed of midcourse interceptors only (probably all ground- 
based interceptors GBI), or else has a mix of midcourse and boost/PBV-phase 
space-based interceptors (SBI). If a mix is used, there should not be so many 
space-based interceptors that they operate in a target-poor environment (which 
causes the notable inflection in Figure 7). This implies that at most about half 
the threat will be killed in boost or deployment phase. For the threat 
engagement considered here this corresponds to about one SBI deployed for 
every two RVs in the threat.

Whether a pure GBI architecture or a mixed GBI-SBI architecture will be more 
cost effective depends upon the relation of marginal SBI/GBI performance in the 
vicinity of the pure GBI solution. For our baseline system (50% mission, eight 
RV attack, K = 3) one SBI in boost or deployment replaces about four midcourse 
interceptors. Thus, if one SBI costs more than about four GBIs, the pure GBI 
solution is favored; if it costs less, a mixed solution is favored with about 50%
RV kill prior to midcourse (about 0.5 SBIs deployed per RV).

We have seen that this result (the one-to-four rule) is relatively insensitive to 
value contrast, mission criterion, or attack level. It is very sensitive to decoys 
and discrimination. For 100 decoys per RV and K = 2 one SBI replaces about 
eight GBIs, with K = 4 two SBIs replace three GBIs. It is also very sensitive to 
SBI performance. We considered an example in which for each SBI deployed 
there was about one RV killed in a target rich environment. However, this is 
about the best performance which could be expected. We have shown 
elsewhere (Reference 4) that performance may be lower by a factor of two, even 
against not-particularly-responsive threats, requiring SBIs to be less than twice 
the cost of a GBI, etc.

Another striking conclusion to emerge from this study is the importance of a 
shoot-look-shoot strategy to midcourse interceptor performance. Since the 
ability to use such a strategy can reduce inventory requirements by more than a 
factor of two, significant penalties would be justified in GBI design in order to 
assure the ability to commit promptly and detect an RV hit.
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