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I. INTRODUCTION 
There has been a recent resurgence of interest in the use of algebraic 

variational methods for studying a variety of collision problems. Much of 
this interest stems from the discovery that spurious singularities, which 
plagued the traditional methods, can be eliminated when the variational 
principle is formulated with outgoing-wave boundary conditions.1,2 Another 
reason for the recent activity is the obvious suitability of these methods 
to present-day supercomputers. My purpose here is to describe an 
implementation of the complex Kohn method', an algebraic variational 
technique, for studying electron collisions with small molecules, both 
linear and non-linear. Unlike variational principles based on the integral 
form of the Schroedinger equation (Lippraann-Schwinger equation), the method 
only requires Hamiltonian matrix elements. I will also show how the 
formalism allows one to develop a variational principle for computing 
first-ordei properties, such as bound-free dipole transition amplitudes. 
I will show results for the electron-impact dissociation of hydrogen as a 
function of initial vibrational quantum number. I will also illustrate the 
method for polyatomic molecules with results for elastic scattering of 
electrons by formaldehyde. 

II. THEORY 
A. Trial Vave Function 

To describe the scattering of low energy electrons, incident in a 
channel denoted by the label P , by an N-electron target molecule, we 
formulate the problem in body-frame coordinates within the framework of the 
fixed-nuclei approximation using an antisymmetrized trial wave function of 
the form, 

•r< =p(*r Frri) + X dJ' \ • W 
r n 

where the first sum runs over the energetically opea N-electron target 
states, denoted by the normalized functions x> *no the operator k 
antisymmetrizes, the orbital functions F into the functions x- The © are an 



orthonormal set of antisymmetric, square-integrable (N+l)-electron 
functions used to represent polarization and correlation effects not-
included in the first summation. The symbol T is being used to label all 
the quantum numbers needed to represent a physical state of the composite 
system, ie. the internal state of the target molecule as well as the energy 
and orbital angular momentum of the scattered electron. 

To calculate physical differential cross sections, it is necessary to 
express the scattering amplitude in the laboratory frame 4. Since this is 
easily accomplished by projecting the T-matrix onto a set of angular 
functions, the channel continuum functions, F, are further expanded as: 

rF m(?) = I t f ^ r ) ^ ^ , ^ ^ g r ( r ) ] W r ) + y crr^r ( ? ) (2) 

where Y« is a normalized spherical harmonic, the ip, are a set of 
square-integrable functions, and the functions {f} and {g} are linearly 
independent continuum orbitals which are regular at the origin and, in the 
case of neutral targets, behave asymptotically as regular and outgoing 
Riccati-Bessel functions, respectively, 

f£(r) = sin(irr - l*/2)/JkT ; 
r-ioo 

(3) 
£t{r) = exp(i(krr - ir/2 ))M r . 

r-«a> 

The channel momenta are determined by energy conservation, 

kf/2 = E - Ej, , (4) 

where E is the total energy and Ep is the energy of target state Xr- The 
functions {f} and {g} may be modified to Coulomb form to treat ionic 
targets. The coefficients [f\ are elements of the T-matrix and are the 
fundamental dynamical quantities that determine scattering amplitudes and 
cross sections. 

If the target molecule has symmetry, we can use it to restrict the sum 
over angular quantum numbers that appear in Eq. (2). For example, in 
linear molecules, m is a good quantum number and the sum over m collapses 
to the single term with m=m'. Moreover, the sum over £-values can be 
restricted to the number of "asymptotic l'sn needed to represent the 
channel wave function at large distances and to provide converged cross 
sections at a particular energy. 

Electron scattering cross sections can be expressed solely in terms of 
the T-matrix. In such cases, fil we need is the open-channel part of the 
wave function and the correlai'on functions © can be formally incorporated 
into an effective optical potential. This is accomplished using Feshbach 
partitioning with operators P and Q that project onto the open- and 
closed-channel subspaces, respectively. However, there are cases where we 
need the full wave function. For example; if we wish to calculate 
properties such as dipole transition matrix elements, we will need both P# 
and Q*. In such cases, it may be simpler to work with Eq. (1) directly. 
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B. Variational Principles 
The Kohn principle5 can be used to characterize the T-matrix as the 

stationary value of the functional: 

^ l t = ̂  " 2 J *r ( D " E > • P • (5) 
Trial values for the coefficients T , c and d, which define the "Kohn trial 
wave function", are determined from the linear equations obtained by 
requiring that the derivatives of eleaents of Tl{. a t with respect to these 
parameters vanish. These coefficients, when substituted back into Eq. (5), 
give a stationary expression for the T-natrix. In a condensed matrix 
notation, in which open-channel indices are supressed, the result is 3 

[W--2*!*,-!^!*. } {6) 

where o refers to A(xr f£ Y ^ ) and q to A(xr g£ Y ^ ) , t(xr f{) and < y For 
example, the elements of U 0 are defined as 

Because of the outgoing-wave behavior of the functions {g}, the matrix H 
will be complex-symmetric and thus its inverse will be non-singular for 
real energies 1, 2. Thus with complex, outgoing-wave boundary conditions, 
the Kohn method leads to an anomaly-free expression for the T-matrix. 

The Kohn trial wave function, when substituted into Eq. (5), gives a 
stationary expression for the T-matrix. Less obvious, but nonetheless 
true, is that this same wave function, when used to compute any first-order 
property, will also give a value accurate through second-order. Suppose we 
wish to calculate the amplitude, 

B = <W|tr,> (8) 

where V is some known function. For example, if |W>= ft\ta>, where ft is the 
dipole operator and 9Q is the initial state of the target, then B is simply 
the bound-free dipole transition amplitude for photoabsorption. Me start 
with a stationary principle for B given by Gerjouy, Rau and Spruch*: 

B' 5 <«|tr,> + <h'|H|tr,> (9) 

where H = H-E and h' is some auxiliary function. The second term in Eq. 
(9) obviously vanishes when tp, is exact. The auxiliary function is 
required to satisfy the equation: 

Jf|h'> + |W> = 0 (10) 
along with the boundary condition 

<h'|H|<5*ri> - <» r,|M|h'> = 0 , (11) 
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where 

s*r> =*rf C t - *ri . (12) 
Because of the asymptotic boundary conditions specified by Eqs. (2) 

and (3), Eq. (11) will be satisfied if h' is chosen to be regular at the 
origin and to behave as a purely outgoing scattered wave asymptotically. 
Thus we take, in analogy with Eqs. (l)-(3), 

h ' = I ^ r c r r . ) + I eJ' ^ • <13> 
r A 

with 

rG r r i (?) = J[V(

TJl gT(r)] Y, n(r) + J i"\[(r) (14) 

The derivation proceeds as before. Ke substitute Eqs. (1), (2), (13) and 
(14) into Eq. (9) and set the derivatives of B 1 with respect to the trial 
coefficients in both h' and *r, equal to zero. The result, when 
substituted back into Eq. (9), gives: 

B ' = < « M U r i f£ Y, l m l)>- V q r q j M q o (15) 

where H is as in Eq. (6) and V is a vector whose elements are: 

V q = <W|q> (16) 

r r 
where q again refers to the space spanned by A(xr g/ Y/m)> ^(Xr PL.) and ffl . 
But Eq. (15), which we have now shown to be a stationary expression, is 
simply the result one would have obtained by using the Kohn trial wave 
function in Eq. (8). 
C. Orthogonality and Separable Expansions 

The essence of the entire calculation can be reduced to the evaluation 
of the matrix elements of one- and two-body operators over bound and 
continuum basis functions. The first practical step is to reformulate the 
entire procedure in terms of mutually orthogonal bound and continuum 
functions. This can be done quite rigorously and follows from a property 
of the Kohn principle called transfer invariance which has been described 
elsewhere7,8. The matrix elements involving only bound functions can be 
evaluated using the standard techniques of bound-state molecular electronic 
structure theory. The matrix elements involving continuum (Bessel or 
Coulomb) functions are more problematic, and the principal difficulty of 
any molecular scattering calculation ie their evaluation. There are two 
critical steps in making this problem tractable for molecules. The first 
is the rigorous relegation of exchange forces to matrix elements over the 
square-integrable part of the basis. That reformulation is accomplished by 
constructing a separable represention of all exchange operators and by 
orthogonalizing the continuum basis functions to the square-integrable 
basis used in the representation of exchange. If an optical potential is 



used, it too is treated in separable form. I will give no further details 
of that step here because it has been discussed in detail elsewhere3,8. 
The only remaining matrix elements involving continuum functions are 
"direct". Thus the second step in rendering the molecular problem 
tractable is to devise an efficient numerical scheme for evaluating these 
intergals. 
P. Adaptive Quadratures 

All direct "bound-free" and "free-free" matrix elements can be reduced 
to single three-dimensional integrals. For diatomic targets, single-center 
expansions can be used to further reduce these to suns of radial integrals, 
which can be quadratured numerically, times known angular factors. For 
polyatomic targets, single-center expansions can converge quite slowly so 
we evaluate the three-dimensional integrals directly using novel quadrature 
schemes. 

The key to making this quadrature practical is to make it adaptive so 
that points are clustered with nearly spherical symmetry around each 
nucleus while the points at large distances from the molecule are arranged 
with spherical symmetry around its center9. Ve begin by defining a new 
variable: 

?(q) = q - ^ (q - \ w ) S n u c(q ) (17) 

where S (q) is a strength function depending on the distance of a point 
from the nuclear position R_lir. The function 3 may be chosen in any 
number of ways, but it must have the property that 

S n u c(q) - — 0 (18) 
q -> oo 

so that the transformation in Eq.(17) will reduce to the identity, and r 
will be the same as q at large distances from the molecule. With this 
change of variable, a typical integral we wish to evaluate becomes 

I = / F(?C3» I W d3q (19) 
Now we choose a quadrature in q consisting of shells of points around the 
center of the molecule which we can construct from standard Gauss 
quadrature points and weights. Applying that quadrature to Eq.(19) 
transforms the points under the new mapping so that they are distributed 
adaptively while the Jacobian,|dr/#q|, provides the correct weights. 
Further details and an evaluation of the accuracy of such quadratures are 
given elsewhere9. 

III. EXAMPLES 
A. Electron Impact Dissociation of Hydrogen 

At low energies, electron-impact dissociation of molecular hydrogen 
proceeds mainly through excitation of the lowest triplet electronic state, 
which dissociates to neutral ground-state hydrogen atoms. Cross sections 
for this process, and particularly their dependence on initial vibrational 
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quantum number, are required for accurate modelling of hydrogen plasmas. 
Ve previously calculated these cross sections10 in a two-state 
close-coupling approximation using the complex Kohn method. The complex 
Kohn equations were solved by using Cartesian Gaussian basis sets in each 
of four symmetries, c ,<r ,T ,and t , along with regular and outgoing-wave 
Bessel functions up to 1=12. The details of these computations, including 
basis set information, target state description and assumptions about the 
nuclear dynamics, have all been given previously and will not be repeated 
here. I nave since extended these calculations to lower energies than were 
originally reported and these new results are shown here. Figure 1 gives 
the energy dependence of the excitation(dissociation) cross sections for 
hydrogen starting in each of the first ten vibrational levels. 
B. Low Energy Electron-Formaldehyde Scattering 

A low energy shape resonance, corresponding to a 2Bi state of CH 20", has .been observed in elastic electron-formaldehyde collisions as well as in 
vibrational excitation 1 1, 1 2. Target distortion effects are critical in 
determining the positions and widths of such resonances. In our 
calculations on formaldehyde13 we included these effects through the use of 
a Feshbach optical potential constructed using the techniques of ob initio 
electronic structure theory. This formalism allows the description of the 
elastic scattering problem in terms of an effective, energy-dependent, 
nonlocal Hamiltoman, In our case P projects on the space appropriate to 
the static-exchange approximation while the physics included by the optical 
potential is determined by the choice of configurations which span the 
Q-space. In these calculations we chose configurations representing the 
dominant effect of correlation in a shape resonance, which is the 
relaxation of the occupied target orbitals in the presence of the scattered 
electron. The ground state of formaldehyde was represented by a 
closed-shell Hartree-Fock wave function. The configurations in the !)-space 

Figure 1. Total cross sections (a?) for excitation cf the b 3£u state of H 2 from various vibrational levels of the ground state. 
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all consisted of antisymmetrized products of a basis orbital and target 
configurations which are singlet-coupled, single excitations from the 
occupied Hartree-Fock orbitals to virtual orbitals of the same symmetry. 
Ve used 624 such Q-space configurations to effectively allow the target 
orbitals to relax in the presence of a scattered electron at the resonance 
energy. The ab initio optical potential has the correct energy dependence 
to represent the enhancement of target orbital relaxation near the 
resonan:e energy and its reduction elsewhere, while preserving the correct 
asymptotic dipole behavior of the interaction. 

Except in bi symmetry, where there is a shape resonance, electron 
scattering from CH2O at low energies can be expected to be dominated by its 
permanent dipole potential, ibis presents ns with an additional physical 
problem, because the partial wave expansion of the total cross section in 
terms of the body-frame T-matrix elements fails to converge, as does the 
differential cross section in the forward direction. A simple remedy for 
this problem was proposed by Norcross and Padial1*. It is summarized by 
the expression for the laboratory frame differential cross section for the 
rotational transition j->j', where j denotes all relevant rotational quantum 
numbers, 

M = fdfflBoni + Jdffl ( 2 0 ) 

In Eq. (20) th° first term is the Born approximation to the cross section 
for a rotating point dipole (whose magnetude is that of the molecule's 
permanent dipole) and the second term denotes the difference between the 
contribution due the computed T-matrix elements and that due to their 
counterparts in the Born approximation for the point dipole. The latter is 
evaluated in the fixed-nuclei approximation. This treatment is called the 
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Figure 2. Elastic differential cross section for e"-CB20. Solid curve: 
optical potential results at 90"; dashed curve: optical potential results 
at 120°; dashed-dot curve: static-exchange result at 90°. Insert shows 
expermental results of Benoit and Abouaf (ref. 12). 
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multipole extracted adiabatic nuclei (MEAN) method 1 4 because it is the 
result of adding and subtracting the Born cross section in two different 
representations: the analytic expression for the laboratory cross section 
and its body-frame partial wave expansion. Additional details of the 
transformation of the partial wave amplitudes from the body-fixed to 
laboratory-fixed frames are given by Lane 4. 

Our results'3 are summarized in Figure 2. In the static-exchange 
approximation the resonance appears at an energy nearly two eV above the 
correct position and with a far broader width than botn the optical 
potential results and experiment1 ?. The results of the optical potential 
calculation place the resonance essentially exactly at the experimentally 
observed position. Our calculations at the •olecule's equilibrium geometry 
produce a width which is somewhat narrower than the experimentally observed 
resonance peak in elastic scattering. Also shown in Figure 2 is the cross 
section from the optical potential calculation at a scattering angle of 
120°. The resonance peak is increasingly visible at higher angles and is 
essentially invisible near the forward direction where scattering from the 
dipole potential dominates. 

The experimental elastic scattering measurements shown in Figure 2 
display vibrational structure due to the vibrational states of the 
metastable formaldehyde anion. A complete comparison between theory and 
experiment must wait for theoretical calculations which have been performed 
over a range of nuclear positions so that vibrational motion can be 
included. 
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