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I. INTRODUCTION

There has been a recent resurgence of interest in the use of algebraic
variational methods for studying a variety of collision problems. Much of
this interest stems from the discovery that spurious singularities, which
plagued the traditional methods, can ﬁe eliminated when the variatiomal
principle is formulated with outgoing-wave boundary conditions.?,? Another
reason for the recent activity is the obvious suitability of these methods
to present-day supercomputers. My purpose here is to describe an
implementation of the complex Kohn method?, an algebraic variational
technique, for studying electron collisions with small molecules, both
linear and non- linear. Unlike variational principles based on the integral
form of the Schroedinger equation (Lippmann-Schwinger equation), the method
only requires Hamiltonian matrix elements. I will also show how the
formalism allows one to develop a variational principle for computin
first-order properties, such as bound-free dipole transition amplituges.

I will show results for the electron- impact dissociation of hydrogen as a
function of initial vibrational quantum number. I will also illustrate the
method for polyatomic molecules with results for elastic scattering of
electrons by formaldehyde.

II. THEORY

A. Trial Wave Function

To describe the scattering of low energy electrons, incident in a
channel denoted b{ the label I'', by an N-electron target molecule, we
formulate the problem in body-frame coordinates within the framework of the
f%xeg—nuclei approximation using an antisymmetrized trial wave function of
the form,

1
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where the first sum runs over the energetically opea N-electron target
states, denoted bg the normalized functions y, and the operator 4
antisymmetrizes the orbital functions F into the functions y. The © are an



orthonormal set of antisymmetric, square- integrable (N+1)-electron
functions used to represent polarization and correlation effects not
included in the first summation. The symbol I' is being used to label all
the quantum numbers needed to represent a physical state of the composite
system, ie. the internal state og the target molecule as well as the energy
and orbital angular momentum of the scattered electron.

To calculate physical differential cross sections, it is necessary to
express the scatterirg amplitude in the laboratory framet. Since this is
easily accomplished by projecting the T-matrix onto a set of angular
functions, the channe{ continuum functions, F, are further expanded as:
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where Ylm is a normalized spherical harmonic, the ¥ are a set of

square- integrable functions, and the functions {f} and {g} are linearly
independent continuum orbitals which are refular at the origin and, in the
case of neutral targets, behave asymptotically as regular and outgoing
Riccati- Bessel functions, respectively,

f;(r) = sin(kpr - !r/2)/vﬁr H
T+
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The channel momenta are determined by emergy comservationm,
K/2=E- B , (4)

where E is the total energy amd EP is the energy of target state xp. The

functions {f} and ig} may be modified to Coulomb form to treat ionic
targets. The coefticients [T] are elements of the T-matrix and are the
fundamental dynamical quantities that determine scattering amplitudes and
£ross sections.

If the target molecule has symmetry, we can use it to restrict the sum
over angular quantum numbers that appear in Eq. (2). For example, in
linear molecu?es, m is a gocd quantum number and the sum over m collapses
to the single term with m=m!. Moreover, the sum over ¢-values can be
restricted to the number of "asymptotic £'s" needed to represent the
channel wave function at large distances and to provide converged cross
sections at a particular energy.

Electron scattering cross sections can be expressed solely in terms of
the T-matrix. In such cases, 11l we nced is the open- channel part of the
wave function and the correlai:on functions @ can be formally incorporated
into an effective optical potential. This is accomplished using Feshbach
partitioning with operators P ana { that project onto the open- and
closed- channel subspaces, respectively. However, there are cases where we
need the full wave function. For example, if we wish to calculate
properties such as dipole tramsition matrix elements, we will need both P¥
and Q¥. In such cases, it may be simpler to work with Eq. (1) directly.
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B. Variational Principles

The Kobn principle® can be used to characterize the T-matrix as the
statiopary value of the functiopal:

1 1
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Trial values for the coefficients T , ¢ and d, which define the "Kohn trial
wave function", are determined from the linear equations obtained by

i . . T!'l’l .
requiring that the derivatives of elements of with respect to these
stat

parameters vanish. These coefficients, when substituted back into Eq. (5),
give a stationary expression for the T-matrix. In a condensed matrix
notation, in which open-channel indices are supressed, the result is3

- H

(Tstat) = -2 (M - !qo !;lq !qo ) (6)
xhere o refers te 4(xp fE Yg,) and g to A(xp gB Yoo)» 40p p{) and Gb. For
example, the elements of !qo are defined as
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Because of the outgoing-wave behavior of the functions {g}, the matrix qu

will be complex- symmetric and thus its inverse will be non-singular for
real energies!,2. Thus with complex, outgoing-wave boundary conditions,
the Kohn method leads to an anomaly-free expression for the T-matrix.

The Kohn trial wave function, when substituted into Eq. (5), gives a
stationary expression for the T-matrix. Less obvious, but nonetheless
true, is that this same wave function, when used to compute any first-order
property, will also give a value accurate through second-order. Suppose we
wish to calculate the amplitude,

B = <W|¥p,> (®)

vhere ¥ is some known function. For example, if |W>= y|¥,>, where y is the
dipole operator and ¥, is the initial state of the target, then B is simply
the bound-free dipole trausition amplitude for photoabsorption. We start
with a stationary prianciple for B given by Gerjouy, Rau and Spruché:

B' = <¥|tn,> + <h'{H|¥p> 9

wbere M = H-FE and h' is some auxillary function. The second term in Eq.
(9) obviously vanishes when ¥y, is exact. The auxillary function is

required to satisfy the equation:

Mh'> + [W> =0 (10)
along with the boundary condition

<h'[M|&6p,> - <Bbpy [H[a'> =0 (1)
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where
t
CLIVER kiRl (12)

Because of the asymptotic boundary conditions specified by Eqs. (2)
and (3), Eq. (Ilg will be satisfied if h' is chosen to be regular at the
origin' and to behave as a purely outgoing scattered wave asymptotically.
Thus we take, in amalogy with Egs. (1)-(3),

b = Y AQp Gpp) + ze}:’ °, - (13)
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with
rpps (F) = Z[v,;ﬁgf,’,,, 8] Vo) + J 57 7P (14)

The derivation proceeds as before. We substitute Egs. (1), (2), (13) and
(14) into Eq. (9% and set the derivatives of B' with respect to the trial
coefficients in both h' and 'Pl equal to zero. The result, when

substituted back into Eq. (9), gives:

- Ty 1
B' = <V|A(xr1 f[, \£1m1)> - Vq !;q !qo (15)
vhere M is as in Eq. (6) and V is a vector whose elements are:

Vq = <V|q> (16)

vhere q again refers to the space spanned by A(xr gE ng), A(XP pE) and eh.

But Eq. (13), which we have now shown to be a stationarﬁ expression, is
simply the result one would have obtained by using the Kohn trial wave
function in Eq. (8).

C. Drthogonality and Separable Expansions

The essence of the entire calculation canm be reduced to the evaluation
of the matrix elements of one- aund two-body operators over bound and
continuum basis functions. The first practical step is to reformulate the
entire procedure in terms of mutually orthogonal bound and continuum
functions. This can be done quite rigorously and follows from a property
of the Kohn principle called Zrarsfer imvariance which has been described
elsewhere? 8. The matrix elements involving only bound functions can be
evaluated using the standard techniques of bound-state molecular electromic
structure theory. The matrix elements involving continuum éBessel or
Coulomb) functions are more problepatic, and the principal difficulty of
any molecular scattering calculation ig their evaluation. There are two
critical steps in making this problem tractable for molecules. The first
is the rigorous relegation of exchange forces to mutrix elements over the
square- integrable part of the basis. That reformulation is accomplished by
constructing a separable represention of all exchange operators and by
orthogonalizing the continuum basis functions to the square- integrable
basis used in the representation of exchange. If an optical potential is
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used, it too is treated in separable form. I will give no further details
of that step here because it has been discussed in detail elsewhere3,8.
The only remaining matrix elements involving continuum functions are
"direct". Thus tﬁe second step in rendering the molecular problem
tractable is to devise an efficient numerical scheme for evaluating these
intergals.

D. Adaptive Quadratures

All direct ‘bound- free" and "free-free" matrix elements can be reduced
to single three-dimensional integrals. For diatomic targets, single-center
expansions can be used to further reduce these to sums of radial imtegrals,
which can be quadratured numerically, times known angular factors. For
polyatomic targets, single-center expansions can converge quite slowly so
weheva]uate the three-dimensional integrals directly using novel quadrature
schemes.

The key to making this quadrature practical is to make it adaptive so
that points are clustered with nearly spherical symmetry around each
nucleus while the points at large distances from the moiecule are arranged
with gpherical symmetry around its centerd. Ve begin by defining a new
variable:

@ =9- % a-ﬁ S (@) 17
q nuc( aue) Snuc(d (17)

vhere S (q) is a strength function depending on the distance of a point

rucC
from the nuclear position Rnuc' The function snuc may be chosen in amy

number of ways, but it must have the property that

Spye(@ ----= 0 (18)

q-

so that the transformation in Eq.(17) will reduce to the identity, and r
w11l be the same as q at large distances from the molecule. With this
change of variable, a typical integral we wish to evaluate becomes

1= [ FRQ) |#/%| d% (19)

Now we choose a quadrature in g cousisting of shells of points around the
center of the molecule which we can construct from standard Gauss
quadrature points and weights. Applying that quadrature to Eq.(19)
transforms the points under the new mapping so that they are distributed
adaptively while the Jacobian,lar/agl, provides the correct weights.
Further details and an evaluation of the accuracy of such quadratures are
given elsewhere?,

III. EXAMPLES
A._ Flectron Impact Dissociation of Hydrogen

At low energies, electron- impact dissociation of molecular hydrogen
proceeds mainly through excitation of the lowest triplet electronic state,
vhich dissociates to neutral ground-state hydrogen atoms. Cross sections
for this process, and particularly their dependence on initial vibrational
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quantum number, are required for accurate modelling of hydrogen plasmas.

We previously calculated these cross sections!® in a two-state

close- coupling approximation using the complex Kohn method. The complex

Kohn equations were solved by using Cartesian Gaussian basis sets in each

of four symmetries, ¢ 10,07,,and 7, along with regular end outgoing-wave

Bessel functions up to #=12. The details of these cozputations, including
basis set information, target state description and assumptions about the
nuclear dynamics, have all been given previously and will not be repeated
here. T have since extended these calculations to lower emergies than were
originally reported and these new results are shown here. Figure 1 gives
the energy dependence of the excitation{dissociation) cross sections for
hydrogen starting in each of the first ten vibrational levels.

B. Low Energy Electron-Formaldeh in

A low energy shape resonance, corresponding to a 2B; state of CH.0",
has Jbeen observed in elastic electron-formaldehyde collisions as well as in
vibrational excitation!1,12. Target distortion effects are critical in
determining the positions and widths of such resonances. In our
calculations on formaldehyde!3 we included these effects through the use of
a Feshbach optical potential constructed using the techniques of ab énitio
electronic structure theory. This formalism allows the description of the
elastic_scattering problem in terms of an effective, energy-dependent,
nonlocal Hamiltonian. In our case P Trojects on the space apgropriate to
the static- exchange approximation while the physics included by the optical
potential is determined by the choice of configurations which span the
Q-space. In these calculations we chose configurations representing the
dominant effect of correlation in a shape resonance, which is the
relaxation of the occupied target orbitals in the presence of the scattered
electron. The ground state of formaldehyde was represented by a
closed- shell Bartree-Fock wave function. The configurations in the §-space
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Figure 1. Total cross sections (af) for excitation cf the b3Zi state of H,
from various vibrational levels of the ground state.
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all consisted of antisymmetrized products of a basis orbital and target
configurations which are sin§]et-coupled single excitations from the
occupied Hariree-Fock orbitals to virtual orbitals of the same synmetry.
We used 624 such §-space configurations to effectively allow the target
orbitals to relax in the preseuce of a scattered electron at the resonance
energy. The ab iritio optical potentizl has the correct emergy dependence
to represent the enhancement of target orbital relaxation mear the
resonan:e energy and its reduction elsewhere, while preserving the correct
asymptotic dipole behavior of the interaction.

Except in by sxmmetry, where there is a shape resonauce, electron
scattering from CHz0 at low energies can be expected to be dominated by its
permanent dipole potential. This presents us with an additional physical
problem, because the partial wave expansion of the total cross section in
terms of the body-irame T-matrix elements fails to converge, as does the
differential cross section in the forvard direction. A simple remedy for
this problem was proposed by Norcross and Padiall4. It is summarized by
the expression for the laboratory frame differential cross section for the
rotgtional transition j-j‘, where j denotes all relevant rotatiomal quantum
numbers,

de . [ds}Born + A de . (20)
) j45 @) g ) -3
In Eq. (20) the first term is the Born approximation to the cross section
for a rotating point diﬁo]e (vhose magnetude is that of the molecule's
permanent dipole) and the second term denotes the difference between the
contribution due the computed T-matrix elements and that due to their

counterparts in the Born agproximation for the Eqint dipole. The latter is
evaluated in the fixed-nuclei approximation. This treatment is called the
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Figure 2. Elastic differential cross section for ¢ -CH;0. Solid curve:
optical potential results at 90°; dashed curve: optical pctential results
at 1209; dashed- ¢ot curve: static-exchange result at 900. Insert shows
expermental results of Benoit and Abouaf (ref. 12).

-7



multipole extracted adiabatic nuclei éMEAN) method!4 because it is the
result of adding and subtracting the Born cross section in two different
representations: the analytic expression for the laboratory cross section
and its body-frame partial wave expansion. Additional Jetails of the
transformation of tge partial wave amfzitudes from the body-fixed to
laboratory-fixed frames are given by Lanesd.

Dur results!3 are summarized in Figure 2. In the static-exchange
approximation the resonance appears at an energy nearly two eV above the
correct position and with a far broader width than both the optical
potential results and experimenti?. The results of the optical potential
calculation place the resonance essentially exactly at the erimentally
observed position. Qur calculations at the molecule's equilibrium geometry
produce a width vhich is somevhat narrower than the experimentally observed
resonance peak in elastic scattering. Also shown im Figure 2 is the cross
section from the optical potential calculation at a scattering angle of
120°. The resonance peak is increasingly visible at higher angles and is
essentially invisible near the forward direction where scattering from the
dipnle potential dominates.

The experimental elastic scattering measurements shown in Figure 2
display vibrational structure due to the vibrational states of the
metastable formaldehyde anion. A complete comparison between theory and
experiment must wait for theoretical calculations which have been performed
qve{ g sange of nuclear positions so that vibrational motion can be
included. .
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