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ABSTRACT: Recently it has been suggested that the electroweak symmetry

is Uroken by a top quark vacuum condensate. In that model, the prediction for the

- top quark mass seems to be in conflict with indirect experimental upper bounds.
_ We propose a new scenario in which the electroweak symmetry is broken by a
combination of top quark and third generation neutrino condensates, involving a

right-handed gauge singlet neutrino. We show that the top quark mass comes

out smaller in this model and can easily lie in the experimentally favored window.

The resulting neutrino spectrum is phenomenologically acceptable if we make the

natural assumption that the right handed neutrino has a very large Majorana mass.
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1. Introduction

The mass of the top quark is now known to be at least 89 GeV from direct searches at
CDF. This means that the Yukawa coupling of the top quark to the Higgs boson is at least
about 15 times as strong as the bottom quark Yukawa coupling, and of course dwarfs the
other standard model Yukawa couplings by even greater margins. Because of this relatively
strong coupling of the top quark to the Higgs, it is natural to consider the possibility that
the top quark plays an essential and unique role in breaking the electroweak symmetry by
some dynamical mechanism. In this spirit, a number of authors(1-4] have proposed that
the electroweak symmetry is broken, not by a fundamental Higgs scalar, but by a top quark
vacuum condensate (tt) # 0. In this “top bootstrap” model, the top quark condensate is
supposed to be induced by a four-fermion interaction introduced at a scale A which must

be taken to be larger than the electroweak scale.

At scales far below A, the effective action in the top condensate model should be just the
same as in the standard model, but the Higgs scalar is now a composite particle. Bardeen,
Hill and Lindner [4] (hereafter referred to as BHL) pointed out that the compos.teness
of the Higgs should cause the usual standard model running coupling constants to have
a very special behavior; the top quark Yukawa coupling yi(p) should diverge near the
compositeness scale p = A, and meanwhile the running quartic Higgs self-conpling A(p)
should obey lim,_.z A(4) /yt(p)4 — 0. This interpretation of the compositeness of the
Higgs is attractive for two reasons. First, it provides that the main tools for discovering
quantitative predictions of the model are simply the usual standard model renormalization
group equations; one picks out those special renormalization group trajectories which have
the appropriate singular behavior near the compositeness scale. Second, one finds that
the model has effectively one less parameter than the standard model. In practice, one
evolves the renormalization group equations down from the singularities at the arbitrarily
chosen scale A to predict the values of both y; and A near the electroweak scale. Thus if
A is treated as an inaccessible unknown, then measurement of the top quark mass should
in principle allow one to predict the mass of the Higgs.
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Unfortunately, it appears that the predictions implied by BHL’s analysis are already
on very shaky experimental ground. Although the top quark has not yet been directly
observed, there are indirect upper bounds on its mass. According to experimental tests
of the standard model, the top quark mass is most probably less than 200 GeV; a global
fit to the pfesent data for the standard model with just one Higgs doublet with a mass
of 250 GeV yields particularly stringent upper bounds on miep of (157,165,180) GeV
at confidence levels of (90,95,99) percent respectively[5]. (These limits can be relaxed
somewhat if a heavier Higgs or a non-minimal Higgs sector is invoked.) The problem
is that for the top condensate model, the values obtained by BHL for the top mass are
inevitably too large. Even if the compositeness scale is taken to be as large as the Planck
scale A = 1019 GeV, then BHL find that myop should be aBout 218 GeV, within a few
percent accuracy. Moreover, as the compositeness scale A is decreased, the predicted result
for myop grows monotonically. For a GUT-scale A = 101> GeV, BHL predict a top mass
of about 230 GeV, while for a much lower compositeness scale like A = 10* GeV, the top

mass prediction becomes a clearly unacceptable 450 GeV.

There is actually a simple way to see why mycp is necessarily so large in the top quark
condensate model[4]. The renormalization group equation which governs the running of

the top quark Yukawa coupling in the standard model is (to one loop order)

d 9 9 17
16#25% =y |5y’ — 8g3% - 2922 - 13912 (1.1)

t = log(p/Mz)

where we have ignored the negligible contributions of the other Yukawa couplings. Accord-
ing to the interpretation of BHL, the compositeness of the Higgs implies that we should
take lim,_,p y¢(#) = oo as a boundary condition and run eq. (1.1) down to predict ys(u)
for p near the electroweak scale. The important feature of (1.1) iv that the small x4 behav-
ior of y; is governed by the existence of an infrared quasi-fixed point[6,7] when the RHS
vanishes. Since the SU(2) and U(1)y couplings make a small contribution, we can expect

that the Yukawa coupling will end up somewhere near

yt = 4g3/3 . (1.2)
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This leads to a rough prediction of the top mass which is insensitive to the choice of
compositeness scale. Using my = y; 246 GeV//2 and the experimental result(8] g5(M;)? =
1.48+.10, one finds that myop & 280GeV. Of course, if we choose A to be sufficiently small,
then y; will not have sufficient running room between the electroweak breaking scale and
A to reach the quasi-fixed point, and it is easy to see that this leads to a larger prediction
for myop. Conversely, if A is taken to be sufficiently large, then y; will see a smaller SU(3),
running coupling constant g3 at larger scales, and so the top mass can come out slightly

smaller.

Assuming that the experimental upper bound on the top quark mass is indeed valid, it
appears to be necessary to introduce some radical modification of the top quark condensate
model in order to save it. Now, it is unlikcly that any modification of the model in the
desert between the electroweak scale and the compositeness scale A can do much good,
because the essential reason for the large top mass prediction does not lie in the desert,

but at the IR quasi-ixed peint (1.2), which is independent of physics at higher scales.

Let us consider instead the possibility that some other fermion “shares the burden” of
SU(2) x U(1)y symmetry breaking with the top quark. If some other fermion acquires &
condensate in the same manner as the top quark, then we might hope that the coupled non-
iinear renormalization group equations governing the running of the two relevant Yukawa
couplings would end up providing for a smaller y; at the electroweak scale and thus a
smaller myop. Clearly, the other Yukawa coupling participating in this cannot be any of
the ones already present in the standard model. The reason is simply that in order for the
other Yukawa coupling to be large enough to affect y; in a significant way, it would have
to also endow its fermion with a mass significantly higher than the known experimental
values. Put another way, even the bottom quark has a negligible effect on the running of

yt, and on the fixed point (1.2).

One possibility is that there is a fourth generation of fermions which have a mass
greater than the top. This seems a bit ad hoc, since it abandons the original motivation

based on the strength of the top quark coupling to the Higgs. Furthermore, one must
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be careful to avoid violating the expgrimental limit of three neutrino species lighter than
Mz /2 given us by LEP and SLC. Neverthless, it has been shown [9] that such a model is
viable; the fermion condensates induce a composite Majoron as well as a composite Higgs,
and the fourth generation neutrino can naturally acquire a large mass. Other possible

variations on the original top condensate model have appeared in refs. [10-14].

In this paper, we will investigate instead the possibility that the electroweak symmetry
is broken by a combination of top quark and neutrino condensates in a three generation
model. In addition to the usual quarks and leptons of the standard model, we suppose
that there are right-handed neutrinos Ny r for each generation. These are taken to be
singlets under the standard model gauge group SU(2). x SU(2) x U(l)y. We wish to
explofe the idea that the third generation right handed neutrino has a Yukawa coupling
yy to the Higgs and the usual left-handed third generation lepton doublet L = (vr 7)
whose strength is just comparable to that of top quark Yukawa coupling y;. We further
suppose that there is an appropriate set of four-fermi interactions at some large scale A
which will produce condensates (¢t) # 0 and (ZN) # 0. The electroweak symmetry is then
spontaneously broken by both condensates, with the top quark obtaining a smaller mass

than in the original top condensate model, as we shall see.

In order for the third generation neutrino to be effective in lowering the top mass, its
Yukawa coupling must endow it with a Dirac mass on the order of 100 GeV or so. This is
not a disaster, however, because it is natural to assume that the see-saw mechanism [15]
will determine the neutrino mass eigenstates, Because the right-handed neutrino N is a
gauge singlet in the standard model, it is eminently reasonable that it should acquire a

large bare Majorana mass M. Then the third generation neutrino mass matrix will take

(m %) 13)

where we assume that, very roughly speaking, m =~ 100 GeV. Now if the Majorana mass

M is taken to be of the GUT scale, e.g. M =~ 1015 GeV, then the eigenvalues of (1.3)

the form

are approximately mjgh;, ~ m2/M =~ 10~2% eV and Mheavy = M ~ 1015 GeV. The heavy
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neutrino mass eigenstate thus acquires a- GUT-scale mass and has a negligible effect on
low energy physics, while the light neutrino mass eigenstate acquires a mass well below
the experimental limits. In fact, a neutrino mass eigenstate with my;gp; ~ 10~2 eV fits in
very nicely with the notion that the deficit of observed solar neutrinos can be explained
by the MSW effect[16], if we assume a moderate mixing between the third generation
neutrino and its first and second generation cousins. Roughly speaking, a non-adiabatic
MSW explanation of the solar neutrino deficit can work if the electron neutrino and muon

neutrino masses satisfy[17]
(m,,,‘2 —mucg)sinQG ~ 1078 eV? (1.4)

where 6 is the mixing angle between the two species, and the masses my, and m,, arise
from myjgh¢ by mixing with the third generation. (Such a mixing can arise e.g. from a
non-diagonal matrix of bare Majorana masses for Ne ; r.) Thus we conclude that a third
generation neutrino with a Dirac mass of order 100 GeV is not only acceptable, but may
actually be phenomenologically desireable. This is clearly a very elastic conclusion given
the paucity of experimental data; a large range of possibilities for the bare Majorana mass

M is available depending on the details of the mixing between the three neutrino species.

Why should the top quark Yukawa coupling and the third generation neutrino Yukawa
coupling be comparable? We will here regard this as simply an ad hoc assumption of the
model. However, it is worth noting than in certain GUT models (e.g. SO(10)), one obtains
the tree-level prediction y; = yy at the GUT breaking scale, due to the fact that the top
quark and the neutrino inhabit the same fermion multiplet before symmetry breaking.

This relation is of course modified by loop effects in passing to lower energy scales.
2. A Model with Top Quark and Neutrino Condensates

Let us consider the usual standard model action without a fundamental Higgs scalar,

and add in four-fermion couplings as follows:

Ly = Lygual + (5¢ @'t + 5w I'N)(5: 1Q; + 6y N L) (2.1)
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Here x; and ky are coupling constants with dimensions of (mass)~!, @Q; = (tb) is the
left-handed quark doublet, and L; = (vr ) is the left-handed lepton doublet. The index
; =1,2is an SU(2) index and the SU(3) color indices are suppressed. Ly is postulated to
be the effective action at the compositeness scale A. We can rewrite (2.1) by introducing
an auxiliary, static, scalar field H; with the same quantum numbers as the usual Higgs
doublet: ‘

Li = Lysual + (H,- [Yg@it + Yy 'E"N] +he) - My H'H (2.2)
where Y; and Yy are Yukawa type couplings with ¥y = ktMy and Yy = &nMu. Now
following the philosophy of BHL, we can imagine computing the effective action at scales
4 < A by integrating out the modes of all fields with Euclidean momenta in the range p? <
pg < A2. This will induce in the resulting low energy effective theory all renormalizable
and gauge invariant terms involving the field Hj, including, besides the types of terms
already in (2.2), a kinetic term and a quartic self-coupling for H;. So one obtains, for

4 < A, the low energy effective action
H) = Lomnt) + 20D — 30 1~ 2 (s1E)
+ (8 [t +Tn() I'N] +he) (2.3)
All of the coupling constants in the low energy effective action run with the scale u ac-
cording to Wilson’s renormalization group equations.
By comparison of (2.3) with (2.2), we obtain the following boundary conditions on the
behavior ¢§ the running couplings at the scale u = A;
Z(A) =0; MA) =0
Gi(A) = Yi; n(A) = Yu my(A) =My - (2:4)

Now (2.3) is just the usual action for the standard model, except that the kinetic term for

H does not have the standard (unit) normalization. To rectify this, one can renormalize
the feld H according to H — H/+/Z(u) and reexpress the action in terms of the rescaled

parameters

w=u/VZ yy = v/ VZ



m? =m%/Z A=2X/z% . (2.5)
Then the effective action takes precisely the same form as the standard model:

L(1) = Lusyat(1) + [DaHP? = () B 2 (2
+ (Hi [un @+ T'N| +he) (26)

(We should note that (2.1) contains only two independent parameters x¢ and «y, while a
more general possibility might contain the terms @iﬁQi and T'N NL; and —(?it?\_fLi + h.c.
with three independent coefficients. This would correspond in general to the more compli-
cated situation of two composite Higgs doublets. We will not investigate that possibility

here.)

The boundary conditions (2.4) translate into conditions on the standard model param-

eters appearing in (2.6):

lim y(p) = oo lim yn(p) = 0o (2.7)
p—A p—A

lim A(p)/ye(w)* = Lim A()/yn(p)* =0 (2.8)
p—A u—A

l}iﬂyt(ﬂ)/yN(ﬂ) =Yi/Yn (2.9)
lim mi(p)/yn () = Mg/ Yy (2.10)
#——v

So in this model, the compositeness of the Higgs scalar manifests itself as the boundary

conditions (2.7)-(2.10) on the running coupling constants in the standard model.

In order to translate the compositeness boundary conditions (2.7)-(2.10) into low en-
ergy predictions of the model, one can follow the strategy used by BHL and evolve the
couplings from the scale A down to the electroweak scale using the one loop renormalization

group equations

9d (9 2. 92 o a_9 o 17 9
167" =yt = yt <2yt tyn” — 893" = 292" — 51
d 5 9 3
167r2;l—ty~ = YN (3yt2 + §yn2 - Zgzz - ;1912) (2.11)
d 34 3 9
1672 =) = 123 + ) (1207 + 4} - 30f - 903) — 120} — 4 + S0t + 59703 + 208 .
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The standard model SU(8)¢, SU(2) and U(1l)y gauge coupling constants appearing in

(2.11) run according to the renormalization group equations, which at one loop order are

d
16m2—gq = 41g13/6

dt

167r?5-tgg = —19g9%/6 (2.12)
od 5.3

16m°—93 793

We use the values gl(MZ)2 = 128, gg(]VIZ)2 = .423, and gg(]\/[z)2 = 1.48 and Mz =
01.17 GeV.

As one approaches the scale A, the top quark and Yukawa couplings become large.
Thus the one loop beta functions for y; and yn are very large and positive, but the higher
loop contributions also begin to become important. Furthermore, irrelevant operators in
the effective action which are suppressed at lower scales can have an important effect near
A. It is important to realize that this makes it impossible to make precise statements
about the behavior of the theory near the compositeness scale using just the perturbative
beta functions to any finite order in the loop expansion. In particular, there is no way
to be certain that the divergence of the Yukawa couplings as one approaches A is really
maintained in the full nonperturbative theory. In practice, one just has to assume that
the rapid growth of y; and yy near A can be extrapolated in a qualitative sense. In other
words, we trust that once the Yukawa couplings become sufficiently large that the one
loop beta functions can no longer be trusted, they will nevertheless continue to diverge
as 4 — A. A necessary consequence of this is that we should not attach any physical
significance to the details of the behavior of the couplings, such as the ratios (2.9)-(2.10),
near A. Instead, the detailed behavior of the couplings (as calculated from the one loop
beta functions) near A should merely be viewed as a param.strization of our ignorance of
the true behavior of tue theory near A. What saves the day is that the behavior of the
theory at much lower scales is relatively insensitive to the unknown behavior near the scale

A.

Once we have evolved the parameters yi(p), yn(p) and A(p) down from A to the

clectroweak scale, we can predict the value of the top quark mass according to the mass
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shell condition

Miop = Yt(4 = Miop) v/V2 (2.13)

with v = 246 GeV. The Dirac mass parameter of the neutrino at the scale y = My is
similarly given by

Mpeutrino = Yn (¢ = Mz) U/\/§ ' (2.14)

Finally, the mass of the composite Higgs is predicted to be
MHiggs = Mp = mlliggs)1/2 v . (2.15)

In practice, it turns out to be convenient to carry out the numerical running of the

couplings in terms of the quantities

2 = 1/y52, N = 1/yN2, (2.16)

and

hy = Mywt  or k= A/yd (2.17)

instead of the couplings themselves. (It turns out to be numerically convenient to use the
variable hy in situations where zy < 2¢ near A and to use the variable hy if 2 < zy near

A.) The parameters z, zy, hy, and h¢ should each vanish at u = A, because of (2.7) and
(2.8), and by using (2.11) we find that to one loop order they run according to:

16#2%% =—0 - 2% + 2 (16g32 + -g-gz2 + —167-‘912> (2-18)(
;GWZ%zN =—5- 6% + 2y (9922 + gg12> (2.19)
167 %hN =—-4- Gh + 1"];% 22 + 2y (ggf’ + -3-912922 + 2924> (2.20)
16#2%ht —12- 6% + 1f:; 2 (ggl“ + -3912922 + 72924>

+ -éht g% + 32hy g3 (2.21)

Now, for each value of A, we proceed by taking hy(A) = 0 (or ht(A) = 0) and picking very
small values for z¢(A) and zy(A), and numerically integrating the equations (2.18)-(2.21)
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down to the electroweak scale. The choice of very small values at A is just a numerical
convenience; it corresponds to the freedom to pick the ratio of limits in (2.9). One can also
pick a small value for hy(A) (or ~Ay(A)), but the results turn out to be extremely insensitive
to this, so we just take hy(A) = 0 (or hy(A) = 0). (This strong insensitivity of the low
energy results to hy(A) or ht(A) can be understood from the fact that the running of hy
and hy is determined completely by the gauge couplings and 2y and z, which do not in
turn depend on hy or Ay at all to one loop order.) So the resulting predictions for mop,
Myiggs and the neutrino Dirac neutrino mass parameter Mpeytrino can then he thought of
as functions only of the scale A and of the ratio of the initial very small values chosen for
zt(A) and zy(A). However,“ as we have already mentioned, the specific detailed behavior
such as the numerical ratios of the couplings near A should not be taken seriously except
as a parametrization of our ignorance concerning the true behavior near the compositeness
scale. Thus for the purposes of presenting the results, it is much more meaningful to
replace the ratio of the very small initial values of z;(A) and zy(A) as a parametrization
of our ignorance, by a suitable low energy parameter which varies smoothly as the high
energy boundary conditions are varied. A good choice for this “ignorance parameter” is
Mpeutrino: LNUS We present our results by giving myop and myjggs as a function of the two

parameters A and Mueutrino

The numerical predictions for various choices of A ranging from the Planck scale down
to A = 104GeV are given in Figs. 1-5. It is apparent that as mpeytrino is increased, thé mass
of the top quark decreases in this model. One way of understanding this qualitatively is
that y; and yu are in competition with each other in the terms in parentheses in egs. (2.11).
For small values of Myeytrino, the effect of the neutrino should become negligible. As we
take Mpeutrino tO zero in Figs. 1-5 we indeed recover the results given by BHL, as expected.
On the other hand, if we assume that the neutrino Dirac mass parameter is sufficiently
large, the top quark mass can be made arbitrarily small. In particular, it is not difficult
to make mop lie in the experimentally favored window. For our scheme to work, we need
to assume that the two relevant Yukawa couplings should be roughly of the same order.

The prediction for the mass of the Higgs is evidently roughly insensitive to the value of
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Mpeutrinos 80d increases slowly as A decreases.

One feature of this model is that reasonable values for the top quark mass are evidently
available regardless of the choice of the compositeness scale. This might give us a way to
circumvent the usual fine-tuning problem which occurs when the scale of new physics A is
taken to be much greater than the electroweak breaking scale. However, it is important
to realize that when A is taken small enough to alleviate the fine-tuning problem, the
reliability of predictions made using the renormalization group becomes suspect. (The fine
tuning associated with large values of A is actually beneficial from the point of view of
making accurate predictions, because it provides a lot of “running room” for the coupling
constants, which tends to wash out unknown details of the theory near A.) Still, this is
an indictment of our method of calculation, and not necessarily of the model itself. So
one may hope that the qualitative features of the model will survive, and look for a more

reliable scheme for calculating the consequences of the model for small A.
3. Conclusion

We have shown thé,t a right handed third generation neutrino can successfully conspire
with the top quark to break the electroweak symmetry, without giving the top quark an
unacceptably large mass. The essential point is that a large Yukawa coupling for the
neutrino can have a dramatic effect on the IR quasi-fixed point (1.2), with the resulting
neutrino Dirac mass being hidden by the see-saw mechanism. Two of the nice features
of this are that the neutrino mass eigenstates can easily obtain the right sort of masses
to explain the solar neutrino deficit using the MSW effect, and that it may be possible
to take the scale A to be small enough to alleviate the usual fine-tuning problem. An
outstanding weakness of all models of this type is that so far they exist only as effective
theories below the compositeness scale. It would be very interesting to understand how
this type of mechanism could be realized as the low energy limit of some renormalizable

theory.
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Figure Captions

Figures 1-5: Predictions for the masses of the top quark (circles) and composite Higgs

scalar boson (squares) are shown as a function of the neutrino Dirac mass parameter for

choices of compositeness scale A = 1019 GeV, 1015 GeV, 10!! GeV, 108 GeV, and 104 GeV.

14



250

200

150

GeV

100

50

80 0 0 [ MHiggs
- O g
O

o a
OO0 O O 0o o o o O
- ° 4 a
S mtop o ﬁ
| o )

o 0 pOo
B o
— @)
- @)
- o)
— 0]
B A =107 Gev o
- o
— o)
[ I ‘ [ 1 1 ‘ I T | | 1 1 1

0 50 150



1
‘u
-
|
1

250

200

150

GeV

100

50

A =101 GeV




400 —
350 —

300

250'0—0 (o] (o) o DDDEFI

200
GeV L

150 — o

I i
O

- 101!
100 — A=10" GeV

50 —

| | l l | ‘ I ‘ | i |

0 50 100 150 200 250 300
Mneutrino (GeV)

Fig. 3




400 —

350 —
MHiggs

O O -
300 - 9 g
O oo

‘ m
250 |— fop ° 5

200 — o)
GeV L ©

150 — o

A =108 GeV 0
100 —

l | l I | l
0 50 100 150 200 250 300

Mpeutrino (GeV)
Fig. 4

N T



800

700

600

500

400

GeV

200

100

300 |

MHiggs
0 O O
R i o
O
o)
m o)
top .
o)
A =10 GeV
o
(o]
(o]
(o]
o)
| l | I I ' I
100 200 300 400 500 600

Mpeutrino (GeV)
Fig. 5









