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ABSTRACT

These lectures first provide an overview of the current status of lautice

gauge theory calculations. They then review some technical points on group

integration, gauge fixing, and order parameters. Various Monte Carlo

algorithms are discussed. Finally, alternatives to the Wilson action are

considered in the context of universality for the continuum limit.
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I . OVERVIEW ' DE83 014055

This ia an exciting time for particle physics. In Eudition to the recent

experimental discoveries ve now have a rather successful candidate theory for

the strong Interactions. Indeed, we have no major puzzles at presently

accessible energies. This Is In part responsible for the recant enthusiasm: fc:

more speculative topics, such as supersyuetry, Supcrgravlty, and Kaluza-Klain

type theories. •

Nevertheless, reliable calculations of low energy phenomena In the Tang-

Hil ls theory of quarks and gluons remain frustratingly elusive. Here nooper-

turbatlve effects play a key role, requiring implementation of new techniques.

In the last few years, the most popular framework for the study of such pheno-

mena has been the la t t i ce formulation of Wilson1. This scaffolding serves

primarily as an ultraviolet cutoff rendering the theory well defined and

amenable~to numerical and analytical work. As with any cutoff, one Bust u l t i -

mately consider i t s removal; thus, for particle physics applications one must"

discuss the continuum limit of vanishing la t t i ce spacing.

Let rae begin by reviewing the parameters on which the gauge theory of the

strong interactions depends. The quark masses presumably arise through a gram

unification of the interactions and are thus generally regarded as uncalculable

when the etrong interactions are considered in i so lat ion . These masses are

intimately tied to the pseudoscalar meson masses, which would vanish in a

chirally symmetric world of massless quarks. The remarkable feature of the

strong Interactions i s that these are the only parameters. Once the quark

masses have been determined, al l dimensionless observables, such as the ratio

of the rho meson mass to that of the nucleon, are f ixed. This applies not onl;

to mass ratios , but also to three point vertices such as the plon nucleon

coupling. MASTER
DISTRIBUTION OF THIS DOSllMEHT IS UNLIMITED'



But shouldn't the gauge theory coupling constant be regarded as param-

eter? Indeed, It Is not; in the continuum limit the coupling drops out of

physical quantities via the phenomenon of dimensional transmutation*, which I

will now discus* in lattice Zzr-Z"--S~- "ii.ii cnis cutoff In place, it is natural

to consider Measuring some particular mass in units of the lattice spacing. In

statistical mechanics this dimensionless combination represents an Inverse

correlation length.

« - r1 • <i>
where • i s the mass In question and a i s the lat t ice spacing. A continuum ;

limit requires taking a to zero while holding n at i t s physical value. In this

limit the correlation length diverges. Thus, we have the statement that one :

must go to a cr i t i ca l point of a s tat is t ical system to have a continuum f ie ld >

theory model.

The non-Abelian gauge theory of the strong interactions i s asyaptotically

free-3. This means thut we know something about how the coupling varies for :

the continuum l imit . As the bare counling i s an effective coupling at the :

scale of the cutoff, standard renormalization group arguments show that i t

decreases logarithmically with the cutoff

r1-? 0)(g Z
(3)

Here y0 and y1 are the first two coefficients in a weak coupling expansion of

the Cell -Mann-Low renormalization group function*1 . The parameter Ao is an

integration constant of the renormalization group equation. Its value sets the

scale for the ther.ry and will cancel from any dimenslonless ratio. We now cake

equation (2), solve it for a as-a function of the bare coupling gj, and put the

result in equation (1). This gives the explicit form of the divergence of the

correlation length as w^,'approach the critical point at vanishing bare coupling

Kote that the coefficient of the divergence i s the ratio of the mass In

question to the integration constant A-,

The important point her* i s that AQ i s independent of the particular mast

being measured. On* could consider the correlation between operators with say

rho quantum numbers and also the correlation between operators with nudeon

quantum numbers. The ratio of the coefficients of corresponding weak coupling

divergences gives the ratio of the rho to proton mass with no parameters to

adjust beyond the bare quark masses, which have presumably been already deter-

mined via current algebra and the pseudoscalar meson masses.

To i l lus trate the idea, consider the long rang* linear potential between

quark-like sources In the pure SU(3) gauge theory. In figure (1) I show Monte

Carlo' measurements of the effective force between such sources at various

separations on a 121* s i t e l a t t i ce 6 . The points form an envelop* represent- "

ing the strength of the constant long range force K in units of the lat t ice

spacing squared. Plotting this force against £™6/gB makes the.weak coupling

exponential behavior of equation (3) appear as a nearly straight line on this

logarithmic graph. The normalization gives the string tension in units of tht

square of the parameter Ao. The band plotted in the figure represents

Afl - (8 + 1) x 10"3/K (4)

Correcting for renomalization scheme dependence, and putting in the phenomena

logical value /K - 400 HeV, this corresponds to th? more conventional AMOH

being about 270 MeV.

Let me now turn to a brief review of Wilson's formulation of gauge

theories on a l a t t i c e 1 . A lattice cutoff i s a highly non-unique concept.



With the cutoff in plase, one can add to the Lagrangian terms which w i n not H e M the SUB ls ° W e r *" e l e n ™ t a r y " I " " " °* V - q u - t t - " of the lattice, «n£

contribute in the continuum limit. Using this freedom, Hllson presented a ^ P r ° d U C t 1S *" **"'* g r ° U P P r ° d U C t ° f the e l e M D t S »"« o u n d i°8 «*• «i'«

, , , , j, ' . «j >,JJ,I. » . , square. For convenience, we choose the normalization factor H *a the dioeoclcr
particularly elegant discrete action which keeps an exact local gauge
. . of the group matrices, i.e. 3 for SD(3).
Invarlance.

, . V J V J . I . .. « i. L Given our variables and action, we use the Feynmaa path Integral to obtal-Lattice gauge theory is based on the concept of a gauge theory as a theory • ' * r °

_ , . , . . - . . 7 ,- i . . i . i i ,, • quantum theory. Thus we Integrate the exponential of the action o»ev all

of non-lntegrable phase factors . When a charged particle traverses a world o r

line C In space tint, its Interaction with the electromagnetic field can be

described by saying that Its wave function picks up a phase Z - / d u e ° . - (7)

1/ • + exp (igQ /.A dy ) (5) Here 3 is proportional to the inverse bare coupling constant; for SD(N) we hcv

B •• 2Nc~^ C8i

This ls easily understood in the particle's rest frame, where the wave function •

picks up additional time oscillation proportional, to £he scalar potential. Note that the path Integral is equivalent to the partition function for the

This increase In energy uhen transformed to rjx arbitrary frame gives equation statistical mechanics of a four dimensional system of spins belonging to Hie .

(5). To put this concept on a lattice, Wilson approximates an arbitrary path gauge group. Their interaction ls tlrnugh the four spin coupling in Eq. (6).

with a sequence of nearest neighbor steps on a hypercubical lattice. The phase Numerous techniques have been developed or borrowed fron statistical

factor in equation (5) then becomes a product of elementary phases associated mechanics for the study of this systea. As the lattice is ju»t a cutoff, one

with the lattice links making up C. One nice feature of this formulation is could proceed with ordinary perturbation theory. In condensed matter language,

that the generalization to a non-Abelian model is straightforward; one merely this ls a spin waVe expansion. This should reproduce all the standard results

replaces the phases with matrices from the internal symmetry group. Thus, our obtained with other regulators. The lattice propagators are, hosever, rather

variables are elements U^i of the gauge group associated with every nearest complicated, and thus only a few one loop calculations have been done < As

neighbor pair of sites (i,j) of the lattice. For the strong Interactions, other schemes for perturbative analysis are rather highly developed, the valiu

these elements are of the group SU(3). of the lattice lies elsewhere.

In terms of these variables, we need an action which will reduce to the Ordinary perturbation theory is a weak coupling expansion.. The opposite

ordinary gauge theory action in the continuua limit. Wilson proposed the par- extreme Is the strong coupling series proposed for lattice gauge theory In

tlcularly simple form . Wilson's original work on the subject1. In the statistical analog, this serif
S = V f l-N^ReTr n u 1 (6) ls tne nigh ten|Pe'ral:ure expansion, a well developed technique in condensed

p ij£P 1J



matter physics. In Wilson's formulation, this series Is particularly simple

and readily shows confinement. Indeed, the theory reduces to one of quarks on

the ends of strings of gluonic flux. These strings have a finite energy per

unit length and thus we have a linear interquark potential. Unfortunately, tna

strong coupling limit is not the continuum limit, and one mist sorry as to

whether this confinement phenomenon survives as we reduce the coupling to the

asymptotically free, fixed point at zero coupling, as discussed above. In the.

statistical picture, In going froa strong to weak coupling we reduce the

temperature fron Infinity to zero, and one must consider possible phase

transitions between regimes with qualitatively distinct behaviors.

Another tool of the solid state theorist Is mean field theory. This

technique becomes exact as the space tine dimensionality of the system beconas

large. In this approximation a deconfining phase transition is predicted to '

occur and be first order9. Such a transition Is also known to exist for

certain toy aodels based on discrete groups, where duality arguments locate the

transition temperature exactly. Thus the utility of the lattice approach

depends on four dimensions being sufficiently snail that the mean field theory

treatment breaks down at weak coupling for non-Abelian gauge groups.

The Higdal-Kadanoff recursion relations provide an analytic approximation,

co the renormallzation group function of a general statistical system1".

Before the Monte Carlo evidence appeared, these relations provided the

strongest arguments for confinement in Yang-Hills theories. This technique

indicates a close analogy between spin models in two dimensions and gauge

theories in four. From this point of view, the absence of a deconfining phase

transition in a four dimensional gauge theory corresponds directly to the

absence of ferromagnetism in a corresponding two dimensional model. Although

this approximation to the renormalizatlon group function does appear to

correctly predict the critical dimensionality and the existence of M M

transitions, It can mlsldentlfy their nature. Tomboulls has recently argued

that this approach can give a lower bound to the interquark potential and thus

may be a first step towards a rigorous proof of confinement11.

Currently the most' popular tool for investigating lattice gauge theory is

Monte Carlo simulation. This Is an old technique of the solid state theorist

wiiich the particle physicist has recently realized can be used to numerically

- evaluate path Integrals. The method converges reasonably well for balk

properties properties In all domains of coupling. As all field values arc

stored, In principle any desired correlation function Is available. In a cease

one Is directly solving an interacting field theory.

Nevertheless, Monte Carlo methods do have inherent practical limitation*•

As we live in a four dimensional world, the lattices are necessarily rather

United in linear dinension, typically being of order 10 sites on a side. This

Beans that both finite volume and finite lattice spacing effects Bust be

carefully monitored and coaproniaed against each other. This may not be as bad

as it at first seems because precocious scaling In deep inelastic lepton

scattering shows that short and long distance phenomena are not widely

separated in nature's solution of the theory. The other inherent limitation in

Monte CarJ.o approaches is statistical. Such errors decrease only with the -

square root of the computer time. This is a severe problem when signals are

comparable to noise, as in the case of glueball masses.

The first observable number to be extracted from Monte Carlo analysis of

non-Abelian gauge theory was the ratio of the string tension to the asymptotic

freedom scale parameter indicated in Eq. (4). The second reasonably
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uncontroversial number measured numerically vas the physical temperature of a

phase transition where confinement loses meaning because the vacuum becomes a

scup of gluonic flux12. This concept of a physical temperature must not be

confused with the abstract coupling-temperature analog between the Feynman path

integral and the partition function for a four dimensional statistical system.

The physical deconfinement transition with gauge group S0(3) appears to be

first order, with the vacuum going abruptly from a dilute thermal gas of

glueballs to a nearly black body spectrum of gluons. This may tie in well vith

the success of the bag model13, which would suggest this transition occurring

when the pressure of a free gluon gas equals the bag constant. The estimated

deconfinement transition temperature of 180 HeV then gives a bag constant of

B - | (210 MeV)A . (9)

Note that the recent uncertainties in the ratio of string tension to asymptotic

freedom scale are unlikely to dramatically change the estimate of the

deconfinement transition. This numerical value i s normalized to the string

tension, and this ratio of two physical dimensional numbers should not have

higher order perturbative contributions.

Another observable that has received considerable attention i s the

glueball mass. Indeed, a whole spectrum of states i s under Investigation,

primarily by the groups in Ref. 14. In these calculations a J p c » 04"1" state

i s reasonably clear in the range 700-1000 HeV. The higher states are more

controversial, but a l l indications are for a rich spectrum below 2 GeV.

Much of the recent work in this field has been on including quark f ie lds

in the simulations. How to do this efficiently renains an active and unsettled

question. From an analytic point of view, a fermionic path integral i s

perfectly well defined15. Nevertheless i t i s not an integral in ibe classical

sense and i t i s unclear how to use importance sampling techniques for munics*

work. This problem can be circumvented, perhaps foolishly, 'ay integrating *>-it

the anticomuuting variables analytically. As the action is a quadratic fora 1:

the quark variables, this integration merely gives a determinant which can the.

be included in the Mont* Carlo weighting procedure for the gauga f ie lds . The

d i f f i cu l t / with this l ine of attack i s that the determinant i* e~ an extresaly

large matrix, the number of rows being the product of the nuance of latt ice

s i te3 with the ranges of the apinor, gauge symmetry, and flavor indices* Also,

this determinant introduces effective long range couplings between the gauge

! variables.

The actual situation i s not quite so hopeless because of various tricks.

The fermioBtc action i t se l f i s local, and thus the matrix of which vt need the

determinant has an enormous number of zero elements. Furthermore, on changing

a link variable only a few elements of this matrix are altered. Various

schemes exploiting these features are being developed. I will briefly describi

a version of Ref. 16 as formulated in Ref. 17. What ve actually need in

deciding whether to accept a change in a gauge f ie ld Is the ratio of two

determinants | M ' | / | M | where M' differs from M only in a few elements. This

: ratio can be determined from a ratio of path integrals over auxiliary scalar

f ie lds , referred to as "pseudofermions" . -

* *M * «-•*"'•) . do)

Adding and subtracting M1 from the exponential in the numerator gives

(11)
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where the expectation value Is over fields 4 weighted by the exponential In thi

denominator of Eq. (10). How as H'-M is nonvantshing In only a local region,

this expectation is readily evaluated with standard Monte Carlo methods. This

method In principle becomes exact as the latter evaluation Improves. It

remains to be demonstrated that this can be done in a reasonable amount of

computer time. Nevertheless, I regard the concept of a Monte Carlo inside of 1

Mont* Carle as esthetically distasteful.

Postponing these problems, an interesting approximation has been

reasonably successful in approximately reproducing the hadronic spectrum18.

The "valence" or "quenched" approximation consists of evaluating the

propagators for quarks in a gauge field configuration obtained from, a Monte

Carlo sinulation without any feedback froa virtual quark loops. The

experimental fact that a valence quark picture works fairly well suggests that

the approximation nay not be unreasonable. The results support the existence

of chiral symmetry breaking and the consequent massless pion when the quark

Basses are zero. Other than this, the results are essentially those of a

simple quark model, although the nucleon masses are coming out a few hundred

MeV too heavy.

II. GROUP INTEGRATION, GAUGE INVARIANCE, AM) ORDER PARAMETERS

Lattice gauge theory ia defined by the partition function in Eq. (7).

Here we are instructed to integrate over all possible values for the variables,

which are matrices from the gauge group. For a compact Lie groups such as

considered here, there exists a rather natural invariant measure to use In thi.::

summation. I will begin this lecture with e brief review of the aeaning of

this invariant measure, and then discuss the gauge invariancc of this system

and its Implication for the definition of order parameter* to distinguish

various phases of the analog statistical system.

The invariant group measure is uniquely determined up to normalization by

the requirement of left lnvariance

J dg f(g) - J dg f(g'g) , (1Z)

where f is an arbitrary function over the group and g* is an arbitrary group

element. For compact groups as considered here we normalize such that

/ dg 1 - 1 . (13)

The measure is easily constructed by t*.;.ing a small volume near the

Identity element and translating it to an arbitrary point in the group. To set

this explicitly, consider sone parametrization of the group in terns of a set

of parameters a± where the index runs from 1 to n, the dimension of the group

manifold. Assume that as the parameters run over some domain D of Rn. the

corresponding group element runs once over the group

G - {g(a)|a6 D} . (14) "

The group multiplication la» is represented by a function O(B»Y) satisfying

g(a(B,Y» - g(B)g(Y> , (15)

where a.B. and y are in the region D. He now wish to express the invariant

measure as an ordinary integral over our parameters

/dg f(g) - Jdaj ... dan K(o)f(g(o)) . (16)
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Using this notation, the group invariance property reads

/dBJ(B)f(g(B» - Jd0J(6)f<g(a<Y,B))) , (17)

where y parametrizes the factor g' of Eq. (12). We now change variables on, the

right hand side of this equation to a(y>B) with the result

/dgJ(6)f(g(B)) - j da JflJ"1 J(S)f(B<o)) , (IS)

where lSaJy$i represents the Jacoblan determinant far the change of variables.

Since £ is arbitrary, ve conclude

J(o) - I3o/36I"1J(3) • (19)

Taking p to the identity, denoted by e, we find

J(y) -KJ3(a(6,Y>V3BI"I|B,e. (20)

where K - J(e) is a normalization factor, determined in magnitude via eq.

(13). We conclude that the invariant measure is simply a Jacobian factor.

Using associativity of the group operarion, one can show that this measure

factor indeed works and that it is unique. A further straightforward argument

shows that the left invariant measure is also right invariant.

Knowing of its existence nay not be useful if the group combination law is

complicated. A more explicit formula for the measure for groups of matrices

follows from a natural definition of a metric tensor on the group

Mij*

(21)

where the derivatives are with respect to the parameters

i±B - 3 / 8 0 ^ ( 0 ) . (22)

A standard formula of differential geometry then gives the integration measure

(23)

14.

/dgf(g) - K/da|det(M)|
1/r> f(g(o)),

where the factor K is again a normalization.

For most theoretical purposes an explicit fora for the measure Is unneces-

sary. In Monte Carlo simulation with the Metropolis algorithm, a random walk

around the group automatically generates the correct weight. For analytic

work, symmetry arguments give many Integrals directly. A group integral

selects the singlet part of any function over the group. For example, we hat:

the relation

) ( ) - »s(Ri © .. .©Rk), (24)

where the character XR(S) denotes the trace of the matrix corresponding to g

in representation R and ns(R} © . . . ) i s the number of times the singlet

representation occurs in the direct product of the representation* Rj to R .̂

I vr l l now change the subject and discuss order parameters for latt ice

gauge theory. Note how the Wilson formulation emphasizes the analogy with a

model of magnetism in s tat i s t ica l mechanics. The link variables Dy are much

l ike spins located on the bonds of a four dimensional hypercubical crystal.

These variables interact through the four-spin coupling of the Wilson action.

I t i s then natural to ask whether a latt ice gauge theory can develop a

spontaneous magnetization wherein these spins acquire an expectation value

<Ui;j> * 0. (25)

However, due to gauge invariance, this is impossible in the Wilson theory".

The Wilson formulation maintains an exact local symmetry of the action

under the substitution

"u * ̂ "i^r1 (26)
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Because this is a local symmetry, thermal fluctuations will induce such

rotations and ultimately average over all gauges. Thus, the average value of

any single link variable is necessarily zero, and the magnetization vanishes in

pure lattice gauge theory.

This is an unfortunate result because in spin models the magnetization is

a. useful parameter for distinguishing phases. At higb temperatures the ay«ten

Is disordered and the magnetization vanishes. If at lower temperatures tha

•pins do acquire an expectation value, then we know that somewhere in between

there oust be a phase transition. In lattice gauge theory the expectation

value of U., always vanishes and therefore cannot be used to monitor phase

changes.

As thermal fluctuations will result in an averaging over gauges, it is

natural to look for a gauge-invariant order parameter. The simplest quantity '

invariant^ under the transformation of equation (26) is the trace of the product

of four links around a plaquette. The expectation value of this is the average

action or the internal energy of the corresponding thermal system and it is

obtained by a derivative of the partition function

V - <l-N"1TrU > - (1/6) 3/3B logZ (27)

The average plaquette P is an order parameter in the sense that it will

exhibit the thernodynaoic singularities of the bulk system. However, It lacks

a useful property of a magnetization in that it never vanishes identically

except at exactly zero temperature. He cannot distinguish phases by P vanish-

ing in one and not the other. Indeed, gauge invariance precludes any local

order paraoeter from having this property20. Despite this shortcoming, the

average plaquette has played a major role in numerical work where it is the

simplest variable to evaluate; indeed, many transitions are easily seen as

jumps or singularities in P regarded as a function of the coupling.

Although local order parameters do not work for lattice gauge theory,

there are some interesting non-local ones. An unconfined phase in a gauge

theory based on a continuous group should contain nassless gauge bosons. In

contrast, in. a confining phase the spectrua should consist of massive glue-

balls. This suggest* that we can use the u s s gap as an order parameter

expected to vanish in one phase and not the other. The mass gap id a non-local

order parameter because to determine It one oust study the aaymptotic behavior

of correlation functions. The Bass of a particle determine* how it propagates

over long distances* A slight complication with the use of the nass gap to

study confinement occurs in the full theory containing quarks if some of the

quark species happen to be nassless. In this case one also expects aassless

Goldstone bosons associated with the breaking of cuirsl symmetry. A discussion

of confinement in terms of the mass gap would then require a spin analysis of

the. ma'ssless quanta.

For the pure gluon theory without quarks the aost popular order parameter

in lattice gauge theory Is the area law coefficient of Hilson1. The trace of

a product of links around a closed loop is a gauge invariant construction

called the Hilson loop

H(C) - <Tr (28)
ij€.C iJ

Here C denotes the loop in question and the group elements are ordered as

encountered in a circumnavigation of the contour. Wilson has argued that if

widely separated quark-like sources experience a linear potential, then

asymptotically large loops should give an expectation value decreasing

exponentially with the area of the loop

H(C) « e - 1 0 1 ^ (2g)
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• A(C) is the minimal surface area endc

this exponential decay is associated with tl

out by a gluonic flux tube ending on the coo. -, »..= tueirxcient

precisely the coefficient of the long range linear interquark force

! E00 + KR (30)

The coefficient K of the area law provides order another parameter for .

lattice gauge theory. It vanishes identically in unconflned phases while

remaining non-zero whenever the linear long range force is present. It is

similar to the nass gap in that it represents a non-local quantity, being

defined in terms of the asymptotic behavior of a correlation function.

Nevertheless, the area.law criterion for confinement loses its value when

quarks are introduced as dynamical variables. In this case widely separated

sources will reduce their energy by creating a pair of quarks from the vacuum

fluctuations and screening the long range gange fields. A large Wilson loop

will then effectively measure the potential between two mesons rather than

simple bare quarks.

I will now leave the question of order parameters and turn to the question

of gauge fixing in the lattice theory. In Wilson's formulation the Integrals

over the link variables are over compact domains end thus there are no diver-

gences associated with integrating over gauges. This contrasts with usual

continual formulations where the volume of the gauge orbits is infinite and some

sort of gauge fixing is necessary. Nevertheless, the gauge invariance of the

Wilson action still permits working within a fixed gauge without affecting

expectations of gauge Invariant operators. I will now discuss a particularly-

simple class of gauges for lattice gauge theory21.

let P(D) be SOES polynomial in the link variables which is invariant under

the transformation of equation (26). Associated with this polynomial i* «'

Green's function

G(P) - 2/(dU)e B ( D )P(D) (31)

Consider now one of the lattice links, say from «ite 1 to j, Suppose th»t in

evaluating eq. (3D we forget to integrate over that particular variable.

Remarkably, the result for G(P) will be unaffected. To aee this formally, nott

that fixing Uj_4 at some element g replaces eq. (31) with

l(P,g)-z"1/(dU)a(Dij)g)e"
S(B>P(H). (32)

where SCujj.g) represents a Dirac delta function on group space. Clearly if

we integrate over g we return to eq. (31). Now consider the gauge transforma-

tion of eq. (26). Because the action, P(U), and the integration measure are

all invariant under this transformation, we can change variable* to obtain

KP.g) - KP.g^ggj). (33)

Since g^ and gj are arbitrary, we conclude that I(P,g) is actually

Independent of g and we have

I(P,g) - G(P), C34)

The above process can be repeated to fix more link variables. The final resuj.

is that we can continue to fix links in any set which contains no closed

loops. The fixed links should fora a tree, which nay be disconnected. The

gauge is completely fixed when we have a maximal tree, a tree to which the

addition of any more links would create a closed loop.

A particularly simple gauge is obtained when all links pointing in a

particular direction are set to unity. This correspond* to an axial gauge

where one component of the vector potential vanishes. Note that in this
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situation those plaquettes parallel to the fixed axis represent a simple two

spin coupling of the unfixed variables. The theory reduces into a set of

one-dimensional spin chains interacting with each other via the four spin

coupling of the remaining plaquettes. In two dimensions there i s no interchain

coupling and the pure gauge theory i s equivalent to the exactly solvable one—

diaensional spin system.

The gauges discussad above are simple extensions of the axial gauge and

are a l l ghost free . One can introduce an arbitrary gauge fixing function f(U)

into the path integral at the expense of introducing the necessary

Fadeev-Popov correction factor . Thus, we can write

G(P) - Z^/CdUXfCUV+CD^e-SpCD), (35)

' vhere +(U) i s an integral of the function f over a l l gauges

f(V)_ - (36

MONTE CARM ALGORITHMS

In this lecture I review the basic ides of a Honte Carlo simulation of a

statistical system and discuss several alternative algorithms. A Monte Carlo

program begins v%th some initial configuration of the fields stored in the

computer Henory. Pseudo-random changes are then induced on the variables, thus

generating a Markov chain of configurations. The procedure is designed so that

the ultimate probability for encountering any given configuration is propor-

tional to the Boltzmann factor

FCC) « *'B5lC) (37)

where S(C) is the action associated with the given configuration.

To discuss Monte Carlo algorithms, we need a criterion for determining

when some procedure wi l l bring an ensenble of configurations e l d e r to

equilibrium Each stsp of a Markov chain i s specified by a probability

distribution P(C',C) for taking configuration C into C . An obvious necessary

condition i s that P leave an equilibrium ensemble in equilibrium. Thus, th«

Boltzmann weights should be an eigenvector of P

J P(C,C')e-B S { C > )- «-BS{C> (38)

C

I w. .11 now show that if the algorithm also has eventual access to any config-

uration, this provides a sufficient condition for any ensettble to ultimately

approach the equilibrium distribution. For this purpose, I need a notion a of

distance between two ensembles. Suppose we have two ensenbles E and E', each

of many configurations. Denote the probability for configuration C in E or 2 ' , -

by p(C) or p'(C), respectively. The distance between E and E' Is then defined

to be ~

IE-E'1 - I |p(C)-p'(C)| (39)

C ! '

where the sum i s over a l l possible configurations. Now suppose th*t E'

resulted from the application of a Monte Carlo algorithm satisfying eq. (38) to

ensemble E. This means that

P'(c) - y P(C,C)P(CI) - W o )

As P(C',C) is a probability, i t satisfies

P(C',C) > 0 . (41)

T P(C',C) - J
C (42)



2 1 . 22.

Comparing the distance of E1 from equilibrium with the distance of E from

equilibrium gives

- P
e q

P(C,C')|p'C')-Pe(J(C')| - ,E-Ee

(C>))|

(A3)

We conclude that the algorithm brings an ensemble closer to equilibrium. Note

that i f P(C' ,C) never vanishes, i . e . i f say configuration can be reached from

any other, then the inequality i s str ict unless we are already in equilibrium.

To ensure that an'algorithm has the equilibrium distribution as an eigen-

vector, most algorithms in practice are based on a condition of detailed

balance

PT(U,U') - PT(O',D)

P(C\C) e-» S ( C ) - P(C.C') e " B S < C ) (44)

Summing over the index C and using eq. (42) immediately gives eq. (38) . This

condition, which i s sufficient but not necessary for the approach to equi l i -

brium, far from uniquely specifies P(C',C). The Dost intuitive Honte Carlo

procedure effectively consists of talcing a heat bath at Inverse temperature £S

and touching i t sequentially to the variables of the system23. A real ther-

mal source in contact wih a link variable would cause that element to fluctuate

throughout the group manifold. Uhsn the source is removed, the link would be

l e f t in any of i t s allowed states with a probability proportional to the Boltz-

oann weight associated with the interaction with i t s neighbors. A heat bath

program, then, consists of calculating Boltzraann factors and generating

correspondingly weighted group elements. This automatically sa t i s f i e s the

detailed balance condition because the two probabilities in eq. (44) are

directly proportional to the Soltzmann weights in the same equation.

The main disadvantage of the heat bath algorithm i s that when the group

manifold i s intricate the required selection procedure may be rather difficult

or time consuming. The Metropolis et a l . algorithm21* uses the detailed balance

criterion to give another procedure which, because of i t s calculation*! sim-

pl ic i ty , has become the most popular in practice. For the gauge theory, the

method begioa vith the selection of a trial U' as a tentative replacement for

some link variable U. The test variable i s selected with a distribution

PT(U,U') which is usually taken as sysnetric in U and U'

(45)

Once U1 i s chosen, we evaluate the tentative new action S(U') for comparison

with i t s old value S(0 ) . If the action i» lowered, that i s , i f the new con-

figuration has a larger Boltznann weight, then the change i s accepted. The

detailed balance condition then determines the remainder of the algorithn; i f

the action i s raised, the change i s accepted with conditional probability

exp(-B(S(U')-S(tJ)).

The Metropolis procedure depends essentially on two parameters. First Is

the tr ial distribution P(U,U'), which i s normally given a weighting toward

small changes. This peaking can be adjusted to optimize convergence and shoulr

be more extreme at low temperature where thermal fluctuations decrease. A

second parameter of the algorithm i s the number of tr ia l changes' attempted on

any given link before proceeding to the next. In s t a t i s t i c a l mechanics this It

usually taken to be one; however, for a gauge theory the interaction i s rather

complicated and considerable arithmetic nust be done with an element's neigh-

bors in the process of evaluating the old and new actions. With several trial

changes much of this arithmetic need only be done once and thus i t can be
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quite beneficial to do as good a job as possible before moving on. Note that

a3 the nunber of tries, or "hits," increases, the Metropolis algorithm

approaches the heat bath. This is because repeating the procedure on one link

will ultimately bring that link into thermal equilibrium with i t s neighbors.

This is what the heat bath does in one step. For SD(3) typically 5-20 hits per

link seen* to work well.

A recent resurrection of Che tangevln stochastic differential equation in

the contest of quantua field theory has provided an interesting variation on

the sore conventional Monte Carlo methods25. I will describe the procedure for

a system of one degree of freedom x, for which we want to obtain an ensemble of

values distributed with a Boltsmann probability distribution

P(x) « exp(-p S(x)) (46)

For this purpose we introduce a new "Monte Carlo" time variable x and study Che'

evolution"of some particular x under the differential equation

dx/it - - a S/3x + n(-t) (47)

Here n(r) represents a random "thermal" noise satisfying

<n(T> n(T f » - (2/g)4<T-T'> ' («)

To make numerical sense of this equation, we do the discreet thing and dis—

cretize time by introducing the- infinitesmal time step dt • e . Going from one

time step to the next, x changes to

x' •= x-c 3S/3X + en (49) •

At each time n i s independently obtained from a random number generator and i s

distributed with some probability distribution p(n)« Equation (48) te l ls us

that we want

/d n p(n> - 1

/dn n O(T,) - 0 (50)

Jdn n2p(n) - 2/BE

Higher moments of p are irrelevant to our discussion he.r«, although i t i s

popular to consider a Gaussian distribution.

We now have the machinery necessary to discuss the Langevin equation in

the context of the evolution of ensembles. If we have an ensemble with IOM

distribution P(x), in one time step i t will evolve, into a new distribution

P'(x) - / dx' P(x') p (<x-x- + £SS/3x')/e) (51)

Changing variables to the argument of p and expanding in powers' of e shows -

that to order e2 the equilibrium distribution of Eq. (46) i s an eigenvector o;

the procedure. Thus the earlier discussion applies and iterating this equatic

must britv one closer to equilibrium. - •

I t i s interesting to contrast this method with that of Metropolis. In

both cases one make* random steps in the variables. To maintain the peaking c

. the equilibrium distribution towards lower actions, the Metropolis procedure

' rejects some changes to higher action. The langevin approach, on the other

, hand, always accepts changes, but selects the new variables In a domain «hlftt

towards lower action by the "force" t e n 3S/3X.

A different approach also using a differential evolution to simulate

latt ice gauge theory has been recently pursued in Ref. (26). This method is ;

analog of molecular dynamics techniques in stat ist ical physics, and differs

from Monte Carlo simulations in that no randon numbers are involved in Che

evolution of the system. For the U(l) gauge group, in addition to the fields

Uy on the lattice inks, the authors Introduce conjugate momenta i j j and a

new cime coordinate T> They then study the classical evolution of the four

dimensional Euclidean lattice under the dynamics governed by the Hamiltonian
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I I t 2

1 i j 1;t
(52)

This results in a meandering through phase space on the surface of constant

total "energy". If the behavior is ergodic, this wil l sample the

microcanonical ensemble. Note that in addition to not Involving random

numbers, the procedure does not depend on a temperature parameter. The

randomness arises from ttiL complexity of the system i tse l f , and the temperature

can be measured from the average kinetic energy

4 *2> " T kT " i/(2e) • <53)

An interesting hybrid of microcanonical and Monte Carl~ methods consists

of a random walk through configurations of constant total energy. In simple

cases this can be done without the introduction auxiliary variables such as the

momenta in Eq. (52). Consider, for example, SU(2) gauge theory. When looking

at a given link, the action would be unchanged if that link were replaced by

anottier SD(2) element on E two dimensional submanifold of the gauge group.

With Wilson's action, this submasifold is a simple sphere from which it is

quite easy to select a random element. This suggests the simulation algorithm

wherein one sweeps through the lattice and replaces each group element with

another from the corresponding sphere. This has the advantage over the

differential equation approach that it allows large steps. Empirically, the

algorithm seems to converge comparably to either a heat bath or a well

optimized Metropolis algorithm. It has the disadvantage that extracting the

temperature is not straightforward. This is not a particular problem ior

particle physics applications because the bare coupling is not a physical

observable. To test asymptotic freedom scaling laws, one can use any
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quantity which perturbatively begins as the coupling squared. The simplest

such parameter i s the internal energy, which is exactly constant in this

algorithm.

This procedure takes special advantage of the simplicity of the SU(2)

manifold. I w i l l now present a aicrocanonical simulation technique which i s

easily applied to any type of field variable, including discrete onei2 7 . A.

single extra degree of freedom, « "demon", travels around the aystea,

transferring energy is he changes the dynamical variables. This demon i s

analogous to the extra kinetic energy terns in the conventional volecular

dynamics method, except that he is net associated with cay particular lat t ice

variable. In his travels he carries a sac«. of energy with non-negative

content. Upon vis i t ing a variable, he f irst attempts to change i t using some,

distribution as in Eq. (45) . Instead of accepting or rejecting the change

based on-random numbers, he makes the change only i f he has sufficient energy

in his sack. The latter i s then adjusted so that the demon and the lat t ice •

together maintain a constant total energy.

The demon might be regarded as a very amall heat.reservoir. From hia

average load, one can obtain the temperature

<ED> - T - 1/g (54)

If Instead of a single demon one releases a number comparable to the number of

lat t ice variables, then they collectively can contain an appreciable amount, of

energy. When the number of demons goes to inf in i ty , the algorithm reduces to

that of Metropolis et a l .

The procesure has some advantages. First , the demon has no need for

transcendental functions; his energy becomes automatically exponentially

distributed. Secondly, he is rather lenient in his demands on the random
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number generator. Indeed, with an Ising model no random numbers are needed at

all. Third, for discrete groups all arithmetic can be done with small

integers. This raises the possibility of very fast programs involving many

decons riding on a few computer words and all acting simultaneously on

different parts of the lattice. Finally, the method does not treat the

Boltznaon weight as a probability. Hopefully this will point the way to future

algorithms which do not even treat the action as a number, which it is not when

femlonic fields ere present.

VARIANTS CM THE WILSON THEORY

Although rather elegant, Wilson's formulation of gauge theories on a

letci .e is somewhat arbitrary. It is only on the removal of the cutoff that

one should obtain unique answers for the continuum renornalizable field

theory. The fact that physical results are independent of cutoff scheme has

been investigated perturbatively for many years. Monte Carlo methods gi >e us »

chance to study this universality of the continuum limit in a non-perturbative

manner. In this lecture I will review results on alternatives to the

Wilson action.

One simple alternative is to merely place a vectti- potential A on each

site of a lattice and define an action by replacing derivatives in the

continuum Yang-Mills Lagrangian with nearest neighbor differences. This

procedure does not keep local gauge invariance as an exact symmetry. An

interesting unresolved point is whether the gauge non-invariant pieces of the

action go to zero sufficiently rapidly in the continuum limit to overcome any

new ultraviolet divergences associated with these terras. In this formulation

the integral over gauges is not compact, and thus a gauge fixing is necessary

at the outset. In Ref. (28) preliminary Monte Carlo simulations were done on

this model. The authors did not observe the area law behavior for Wilson
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loops, but this is probably due to a xenormalizatlon of the bare charge making

the string tension unobservably snail except at very strong coupling.

Closer in spirit to the Wilson model. Ref. (29) considers replacing the

simple plaquette with the 2 by 1 Wilson loop as the fundamental tern In the

action. Simulations with this 'fenetre" action show a strong first order

transition. This means that the absence of a phase transition, is not a

universal property of a gauge aodel. This transition is presumably not

deconfining and is an artifact of the cutoff scheme when tht lattice spscing if

not small.

Keeping the action a function of plaquette variables, It is st i l l possible

to use other class functions than the trace. Manton30 presented e particularly

simple alter itive, taking for the action of a single plaquette

(55)SpOJ) - dz(u,I)

where d(U,I) i s the minimal distance In the group manifold between the elemnt:

D and the identity. The metric for defining this distance Is that of Eq.

(21). The Hanton action Is convenient for analytic work in the weak coupling

lim.lt hut is singular for those elements lying at a maximal distance from the

identity. This singularity has the annoying property of giving a theory whlcti

does not satisfy reflection positivity31. A closely related action which

avoids this problem is the "heat kernel" form32. Using the metric tensor of

Eq.(21), one can define a Laplace operator on the group

V2 - (det M)~ 1/2 (3/3Ol) (det M)
I / 2My /a/attj . . (56)

Introducing a new time parameter t, consider the heat diffusion equation

VZK(t,g) - - d/dt K(t,g) . (57)

For an initial condition, take

K(O,g) - 6(g,I) . (58)
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The heat kernel action is direccly identified with the solution of this

equation at a "time" given by the coupling constant

exp(Sp(B,U» - KU/B.U) . (59)

Both the Manton and heat kernel actions have been subjected to Monte Carlo

analysis with the gauge group SU(2)33. The string tension was obtained as

discussed earlier in these lectures. For comparison with the usual Wilson

action results, the scheme dependence of the Integration constant Ao has been

calculated perturbatively. The results show deviations of 20-402 from the

theoretical calculations assuming a universal string tension. This should be

regarded as the systematic uncertainty due to the practical fact that the

lattice spacing Dust be kept fairly large and higher terms in the

renorraalization group function can be important.

Another variation of the theory is to replace tha trace of the plaquette

variables with the trace in some other group representation than the

fundamental. For SU(2) if we use the trice in the adjoint representation, a

clear first order transition appears31*. One possible explanation of this

transition is in terns of Z^ monopole excitations. These arise because the

adjoint or S0(3) representation of SU(2) does not see the Z2 center of the

group, A plaquette near —1 has the same energy as one near 1. This can be

used to define a Dirac string as a sequence of plaquetces near —1. Several

closely related schemes have been presented for making this concept precise35.

Including both fundamental and adjoint traces in the action gives a two

parameter action which interpolates between the SU(2) and the S0(3) Wilson

theories36

4 B Tr U + } BA TrA U . (30)

30

i ere TrA denotes the trace or character in the adjoint representation. In

addition to giving the above theories when either pA or g is zero, this

theory reduces to a Zj lattice gauge theory when gA goes to infinity. This

forces all plaquettes to lie in the group center, a situation which is gauge

equivalent to all links lying in this same set.

Monte Carlo simulations have studied the evolution of tne Zj and S0(3)

transitions Into this two coupling phase plane. The resulting phase diagram is

shown in Fig. (2). Note that these transitions enter the diagr^a and meet at s

triple point. The third line emanating fron this point is directed towards the

region of rapid crossover from strong to weak coupling behavior in the Wilson

theory.

This system provides a nice place to test universality. The connection

between the bare charge and the parameters is

: g0"
2 - e/4 + 2eA/3 . (6i)

A continuum limit requires taking gQ
2 to zero; however, this can be done along

numerous paths. Note that some of these paths could cross a first order

transition liae. Nevertheless, we can continue around this transition in the

two coupling plane and thus the encountered transition is not deconficing. If

the continuum limit is indeed independent of cutoff scheme, theu physical

observables should approach the same values along any of these paths. This has

been tested for the string tension, ratios of Wilson loops, and the

deconfinement transition. 3 7. As always with Monte Carlo methods,

statistical errors remain, but In the vicinity of the Wilson theory along the

axis these analyses are consistent with universality. However, if one keeps

the lattice spacing fairly large and goes near the critical endpoint in this

phase diagram, then new physics associated with the lattice comes into play.
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As the parameter gA Increases relative to g, the extremum of the action

at plaquette variables near -1 changes from a maximum to a minimum upon

crossing the line BA - 3p/8. The critical endpolnt in Fig. (2) lies just

above this line. Investigations with SU(3) indicate a similar critical

endpolnt in Che analogous two coupling plane near the line where new minima of

the plaquette action appear for Up - exp(± 2,1/3). As the N of SU(N)

increases beyond four, those elements of the group center nearest the Identity

become minima of the action even for the conventional Wilson action . This

correlates well vith the observation of first order transitions in SD(N)

lattice gauge theory with the Wilson action when N is four or larger39.

As finite lattice spacing effects do depend or. formulation, it is

interesting to look for an action which minimizes them1*0. This will permit

•aore accurate calculations on a fixed size lattice at the expense of a more

complicated action. Preliminary results with this approach are quite

promising1*' .

To conclude, Monte Carlo simulation has become a powerful tool for

non-perturbative studies in field theory. Nevertheless, in several areas the

techniques are approaching technological limits. The glueball and ferraionic

calculations are using hundreds of hours on state-of-the-art computers.

Relative to this, analytic techniques for lattice gauge theory are being

somewhat neglected. Presumably new hybrid approaches could be developed. In

any case, as I stated at the beginning of these lectures, the progress in the

last few years has been dramatic and exciting. This will hopefully continue in

new and unpredictable directions.
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FIGURE CAPTIONS
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