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ABSTRACT
These lectures first provide an overview of the current status of laltice

gauge theory calculations. They then review gome technical points on group

integration, gauge fixing, and order parameters, Various Monte Carlo

algorithms are discussed. Finally, alternatives to the Wilson action are

-

considered in the context of universality for the continuum limit,
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I. OVERVIEW DEB3 014055

This is an exciting time for particle physicas. In 2ddition to the receat

experimental discoveries we nov have a rather successful candidate theory faor

the strong interactions. Indeed, we have no major ‘purzles at presently
accegsible energies. Ih:h is in part rnponsiblc for the recent eathusiasm fo:

more apeculative topics, m.mh as .upltsymtry, supargravity, and Kaluza-Klain
type theories. '
Neverthelass, n_l.:lahle calculations of low energy phenomena in the !a;:g-

iﬂ.lh theory of quu:k- and gluons remain frustratingly eluaive. Here nonper—

turbative effects play a key role, requiring implementation of new techniquas.
In the laat few years, the most popular framework for the atudy of suck pheno~

mena haa béen the lattice formuiation of Wilson!, This scaffolding serves

primarily as an ultraviolet cutoff rendering the theory well defined and

ble " to

1cal and analytical work,

As with any cutoff, ome must ulti-
wmately consider its removal; thus, for particle physics applications one must
discuss the continuum limit of vanishing lattice spacing.

Let ne begin by reviewing the parameters on whick the gauge theory of the
strong interactions depends. The quark masses presumably arige through a grand
unification of the interactions and are thus generally rxegarded as uncalculable
when the strong interactions are considered in isolation. These wasses are
intimately tied to the pseudoscalar meson masses, which would vanish im a |

chirally symmetric world of massless guarks, The remarkable fzature of the

strong interactions is that these are the only parameters. Om:-e the quark
masses have been determined, all dimensionless observables, such as the ratio
of the rho meson mass to that of t:hc'a nucleon, are fixed. This applies wot onl)
to mass ratlos, but also to three point vertices such as the pion nucleon
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But shouldn't the gauge theory coupling constant be regarded as Param- . 1= exp

2
E ™ (1080 )

1 ) x (1 + 0)(302)]

(3)
Yo% '

eter? Indeed, it is not; in the contiguum limit the coupling drops out of

physical quantities via the phenomenon of dimensional transmutation? Note that the coefficient of the divergence is the ratio of the mass in

» Which I
will now discuss in lattice omguesas, uwiin tnis cutoff in place, it is natural

question to the integration constant Age
to comsider measuring some particular maes in units of the lattice spacing,

In The important point here is that An is independent of the particular mas:

stacistical mechanics this dimensionless conbination represents ‘an inverse being measured, One could coneider the correlation batween cparacors with say

correlation length. rho quantum nusbers and also the correlation between operators with nucleon

- E—l 1)) quantum wumbers. The ratip of the coefficients of corresponding wesk cw‘pl:lng

3 divergences gives the ratio of the rho to proton masa with no paramaters to
A continuug ;

where m ia the mass in question and a is the lattice Spacing.

Lait requires takiog a to zero while holdtog m at 1ty physteas - adjust beyond the bare quark masses, which have presumsbly been already deter-

value. TIn thig
lnit the currelation length diverges. ! mined via current alggbn and the pseud lar *

Thus, we have the Statement that one

mizt go to & critical potat of a i To 11lustrate the 1dea,_ consider the long range linear potential between

1
H

Btatistical systen to have a continuun field »
theory mode1, i quark-like sources in the pure SU(3) gauge theory. In figure (1) I show Monte

The ‘n . : the effective force betwsen such scurces at various
The non-Abelian gauge theory of the strong interactions is asymptoticali, Carlo’ measurewents of the e

freea.

separations on a 12* site latticee. The points form an envelops represent— -

the continuum limit, As the bare counling is an effective coupling at the

scale of the cutoff, standard renormalization group arguments show that it

decreases loga:ithnically with the cutoff

2 -2 -2 -2 -
fo. = (0t ™ay™) + (yy ypdamanca?y 2y 4 (5,"))"! @)

Here y, and Y1 are the first two coefficients in a veak coupling. expansion of

the gel1 -Mann-Low renormalization group func:ion""s. The parameter Ap is an

integration constant of the renormalization group equation. Its value sets the

scale for the thecry and will cancel from any dimensionless ratio. We now take

equation (2), solve it for a asf; funetion of the bare coupling 8y> and put the

result in equation (1). This gives the explieir form of the divergence of the

correlation length as ggs‘ﬁpproach the critical pPoint at vanishing bare coupling

This means that we know something about how the coupling varies for 1

ing the atrength of the constant long range force K in units of the lattice

spacing squared, Plotting-this force against 9-6/3‘,2 makes the wesk coupling
exponential behavior of equstion (3) sppear as a mnearly straight line on this
logarithmic graph. The normalization gives the string tensfon in unita of th-

square of the parsmeter Ag+ The band plotted in the figure represents

By = (8 + 1) x 1073k *.

Correcting for renormalization scheme dependence, and putting in the phenomen.
logical value YK = 400 HeV, thia corresponds to th: more conventional AMOM
being about 270 MeV.

. Let me now tun'\ to a brief review of Wilson'a formulation of gauge

theories on a lattice!. A lattice cutoff is a highly non-unique concept.




With the cutoff in plate, one can add to the Lagrangian terms which will not

contribute in the continuum limit. Using this freedom, Wilsom presented a

particularly elegant discrete action which keeps an exact local gauge

invariaunce.

Lattice gauge theory 1s based on the concept of a gauge theory as a theocy

of non-integrable phase factors7. ¥hen a charged particle traverses a world

lne € 1n space tive, its interaction with the electromagnetic field can be

described by saying that its wave function picks up a phase

b+ yexp (1g ]cA"dxu) (5)

This is easily understood in the particle's rest frame, where the wave function
picks up additirpal time oscillation proportional to the scalar potential.

This increase in energy vhen transformed to =n arbitrary frame gives equation

(5). To put this concept on a lattice, Wilson approximates an arbitrary path

with & sequence of nearest neighbor steps on a hypercubical lattice., The pha_se
factor in equation (5) then becomes a product of elementary phases assoclated
with the lattice 1inks waking up C. One nice feature of this formulation is
that the generalization to a non-Abelian model is straightforward; one merely.

replaces the phases with matrices from the internal symmetry group. Thus, our

variables are elements U;; of the gauge group associated with every nearest
13 Ty

neighbor pair of sites (1,j) of the lattice, For the strong interactions,

these elements are of the group SU{3).

In terms of these variables, we meed an action which will reduce to tbe

ordinary gauge theory action in the continuum limit. Wilson proposed the par—

ticularly simple form

saf (1-Nlretr 1w

()
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Here the sum is over all elementary squares or "plaqu'ctcu" of the lattice, and
the product is an ordered group product of the elements surrounding the given
aquare. For convenience, we choose the normalization factor N 23 the dimensto:
of the group matrices, i.e. 3 for SU(3).

Given cur variables qd action, ve use the Feynnman path integral to obtai-

a quantun theory. Thus wa integrate the exponential of the action over all

link variables

zfdu B0 a
Here g is proportional to the inverse bare coupling coustant; for SU(N) we hn.-

B = WgZ? ®)
Note that the path !.ﬁte'grll is equivalent to the partition functioljx for the
statistical mechanics of a four dlmensional system of zpins belonging to the
gauge group, Their interaction is tiwough the four spin coupling im Eq. (6).

Nuumerous techniques have been developed or borrowed from statistical
mechanics for the study of this system. As the lattice §s just a cutoff, one
could proceed with ordinary perturbation theory. 1In condensed matter language,
this is a spin wave expansion. This should reproduce all the standard resulcé
obtained with other regulators. The lattice propagators are, however, rather
complicated, and thus only a few one loop calculations have been done®, As
other schemes for perturbative analysis are rather highly develcped, the value
of the latrice lies elsewhere.

Ordinary perturbation theory is a wesk coupling expansion.. The opposire
extreme is the strong coupling series proposed for lattice gauge theory in
Wilson's original work on the subjectl. In the statistical analog, this setif

is the high temperature expausion, a well developed technique in condensed



matter physics. Iun Wilscn's formulationm, this series is particularly siwple

and readily shows confinement. Indeed, the theory reduces to one of quarks om

the ends of strings of gluonic flux. These strings have a finite energy per

unit length and thus we have a linear interquark potential. Unfortunately, the
strong coupling limit is mot the continuum limit, and cne must worry as to

whether this confi ph survives as we reduce the coupling to'th&i

asymptotically free fixed point at zero coupling, as discussed .above. In tho'.".
statistical picture, in going from strong to weak coupling we r;duce the
temperature from infinity to zero, and ome wust cousider possible pha.se
transitions between regimes with qualitatively distinct behaviors.

Another tool of the solid state theorist is mean field theom.;y. Thia -
technique becomes exact as the space time dimensionaliry of the systcn beconas
large.

In th:ls approximation a deconfining phase transition is predicted to

occur and be first order’ « Such a transition is also known to exist for
certain toy wodels based on discrete groups, where duality arguments locate tile

transition temperature exactly. Thus the utility of the lattice approach
depends on four dimensions being sufficiently small that the mean field theory
treatment breaks down at weak coupling for non-Abélian gauge groups.

The Migdal-Kadanoff recursion relations provide an analytic approximation
to the renormalization group function of a general statistical gyscewm.
Before the Monte Carlo evidence appeared, these relations provided the

strongest arguments for confinement in Yang~Mills theories. This technique
indicates a close analogy between spin wmodels in twe dimensions and gauge
theories in four. From this point of view, the absence of a deconfining phase

transition in a four dimensicnal gauge theory corresponds directly to the

absence of ferrowagnetisw in a corresponding two dimensional model, Although

“* Monte Carlo simulation,

‘- evaluate path integrals.

this approximation to the renormalization group fusction does appear to
corcectly predict the crirical dimensionality and the existence of some
transitions, it can misidentify their pature. Tomboulis has recently argusd
that this approach can give a lower bound to the interquark potential and thus
may be a first step towards a rigorous ];rooi of confinementl!,

Currently the most popular tool for investigating lattice zaug; thcoxy'il
“This is an old technique of the solid state theorist.
wirich the particle physicist has recently reslized can be used to numerically
The method converges reasonably well for bulk .
properties properties in all domains of coupling. As all field values are
stored, in principle any desired correlation function is available. In & secae
one is directly solving an interacting field theory.

Nevertheless, Monte Carlo methods do have inherent practical ldwitatioos. :
As ve 11\-11 in a four 'dinens:lnnnl world, the lattices are necessarily rather
limited in linear dimension, typically being of order 10 sites on a side. Ih-is
peans that both finite volume and finite lattice spacing effects must be -
carefully monitored and compromised against each other. This may uct be as bad
as it at first seems because prococious scaling in deep fuelastic lepton .
scattering shows that short and long disr.ance. phenomena are not widely
separated in nature's solution of the theory. The other inherent limitation in
Monte Carlo approaches is atatistical. Such errors decrease only with the -
gquare root of the computer time. This is a severe problem when aignzls are
comparable to roise, a8 in the case of glueball wasses. .

The first observable number to be extracted from Monte Carlo analysis of
non-Abelian gauge theory was the ratio of the string tension to the agymptotic

freedon scale paramcter indicated in Eq. (4). The second reasonably



uncontroversial number weasured numerically was the physical temperature of a
phase transition where confinement lozes meaning because the vacuum becomes a
scup of gluonic flux!2. This concept of a physical temperature must not be
confused with the abstract coupling-temperature analog between the Feyuman path
integral and the partition function for a four dimensional statistical system.
The physical deconfinement Fransi:ion with gauge group SU(3) appears to be
first order, with the vacuum going abruptly from a dilute thermal gas of
glueballs to. a nearly black body spectrum of gluons. This may tie in well with
the success of the bag model“, which would suggest this rransition occurring
when the pre:sure of a free gluon gas equals the bag constant. The estimated

deconfinement transition temperature of 180 MeV then gives a bag constant of

B = :g- o Tc“ - (anTcl./loS) - (210 MeW)* . )

Note that the recent uncertainties in the ratio of string tension to asymptotic

freedom scale are unlikely to dramatically change the estimate of the

deconfinement tran~ition. This numerical value is nmormalized to the string

tension, and this ratio of two physical dimensional numbers should not have

higher order perturbative contributioms.

Ancther observable that has received considerable attention is the

glueball mass. Indeed, a whole spectrum of states is under investigationm,

primarily by the groups in Ref. 14. In these calculations a JFC = ot grare

is reasonably clear in the range 700-1000 MeV, The higher states are more ’

controversial, but all indications are for a rich spectrum below 2 GeV.
Much of the recent work in this field has been on including quark fields
in the simulecions.

question, From an analytic point of view, & fermionic path integral is

How to do this efficiently remains an active and unsettled

10
perfectly well defined!S. Nevertheless it is not an integral in the classical
sense and it is unclear how to use importance sampling techniques for numerica:
work.

This problem can be circumvented, perhaps foolishly, by integrating ot

the anticommuting variables analytically. As the action is a quadratic form 1:

the quark variables, this integration merely gives a determinant which can the.

be ircluded in the Monte Carlo weighting procedure for the gauge fields. The

difficult; with this line of attack is that the determinant is ¢” sn extremsly
large matrix, the number of vows being the product of the nuaber of lattica
sites with the ranges of the spivnor, gauge symmetry, and flavor indices. Alsc,

this determinant introduces effective long range couplings between the gauge

' variables,

The actual situation 1s not quite so hopeless because of various tricks.
The fermionic action itself is local, and thus the matrix of which we need the
determinant has an enormous number of zero elements, Furthermore, on chnn‘ging

a link variable only a few elements of this matrix are altered. Various

schemes exploiting these features are being developed. I will briefly describ.
a version of Ref. 16 as formulated in Ref. 17. What we actually need in
deciding whether to accept a change in a gauge field is the ratio of two

determinants IH'l/'HI where M' differs from M only in & few elements. This

ratio can be determined from a ratio of path integrals over auxiliary scalar

fields, referred to as "pseudofermions™

e[ - (1 asae® ) () apag® ) (10)

. Adding and subtracting M' from the exponential in the numerator gives

e[/} = < ¥R an
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II. GROUP INTEGRATION, GAUGE INVARIANCE, Al ORDER PARAMETERS
wvhere the expectation value 1s over fields ¢ weighted by the exponential in thi Lattice gauge theory is defined by the partition- function in Eq. (1)
denonminator of Eq. (10). Now as M'~-M is nonvanishing in only a local region, gere we are instructed to integrate over all possible values for the variables,
this expectation is readily evaluated with standard Monte Carlo methods. This (44.p are matrices from tﬁe gauge group. For a compact Lie groups such as
method in principle becomes exact as the latter evaluation improves. It considered here, there exists a rather matural invariant measure to use in this
remains to be demonstrated that this can be done in a Teasonable amount of suzmation. I will begin this lectuve with 2 brief review of the meaning of
computer time. Nevertheless, I regard the concept of a Monte Carlo inside of i ... fuvariant weasure, and then discuss the gauge invarlance of this syll;.u
Monte Carlc as ear.heticall.ly distasteful. and its implication for the definitiop of order pax-met;u to distinguish

Postponing these problems, an interesting approximation has been varfous phases of the analog statistical system. .

N 18 : '
r bly ful in approximately reproducing the hadronle spectrum ". The invariant group measure is uniquely determined up to normalization by
The “valence® or "quenched” approximation consists of evaluating the the requirement of left invarfance

propagators for quarks in a gauge field configuration obtained from a Monte I ag £(g) ~ I dgA £(g'g) 12)
k] .

Carlo sipulation without zny feedback from virtual quark loops. The where £ is ag arb:ltrai'y function over the group and g' is au arbitrary gr&dp

experimental fact that a valence quark picture works fairly well suggests that element. For compact groups as considered here we normalize such that

fdg1=1 . (a3

of chiral symmetry breaking and the consequent massless pion when the quark R The measure is easily constructed by tuxing & small volume near the

the approximation may not be unreasonable. The results support the existence

masses are zero. Other than this, the results are essentially those of a identity element and translating it to an arbitrary point in the group. To sec
eimple quark model, although the nuclecn masses are cowing out a few hundred this explicitly, consider some paravatxization of the group in terms of a set
MeV too heavy. of parameters qg where the index runs from 1 to n, the dimension of the group
manifold. Assume that as the parameters run over some domain D of RT, the
corresponding group element runs once over the group
¢ = {g(a)|ac D} . as) -
The group multiplication law is represent;d by a function a(ﬂ,y) satisfying
glalB,v)) = glplely) , (15)
vhere a,8, and y are in the region D. We mow wish to express the invariant

measure as an ordinary integral over our parameters

Jdg £(8) = [da; --. do, K()E(2(a)) . (16)
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Using this notation, the group invariance Property reads

fd83(p)E(g(g)) = JdBI(8)£{g(aly, 8))) , (17)

where v parametrizes the factor g' of Eq. (12). we now change variabl th
es on the

right hand side of this equation to aly,g) with the result

Jasxe)etate)) - [ a0 B sprecaiary (18)

Since £ is arbitrary, we conclude
J(a) = 13afagn~lap) .

Taking g to the identity, denoted by e, we Find
J(y) =~ Kaa(u(a.y))/asl‘lle_e. (20)
vhere K = J(e) 1g a normalization factor,

determined in nagnitude via eq,
(13).

We conclude that the invariant measure is simply a Jacobian factor

Usi
Dg assoclativity of the ETOUp operatiom, one can show that this measyre

factor indeed vorks and that it 18 unique. A !u!thEl st:ra:l.ght:fotward argum,
ent

shows that the left invarjant Mmeasure 1s also right invariant
K
noving of its existence may not be useful if the group combination law is
compl i
plicated. A more explicit formula for the measure for groups of matrices
follows from a natural definition of a metric tensor on the group
My Tr(g‘l(ais)g'l(ajz))- (21

where the derivatives are witk respect to the parameters

38 = 3/30;8(a).

14,

o

”
faae(e) = Kfeo|dern|'? (g(a)), 23
vhere the factor K is again a norumalization.

For most theoretical purposes an explicit form for the messure is unneces-

sary. In Monte Carlo simulation with the Metropolis algorithm, a random walk

around the group automatically generates the correct weight, For analytic

. work, symmetry arguments give many integrals directly. A group integral

selects the singlet part of any function over the group, For example, we hav:

the relation

fdgxkl(g)-..xgk(g) =0 (R @ ..- @Ry, 6

where the character XR(g) denotes the trace of the matrix corresponding ta g
in representation R and ng(R; (9 ...) is the number of times the singlet
representation occurs in the direct product of the representations Ry to Ry
I will now change the subject and discuss order parameters for lattice
gauge theory. Note how the Wilson formulation enphasizes the analogy with a °
model of magnetism in statistical mechanics. The link variables U343 are much
1like spins located on the bonds of a four dimensional hypercubical crystal.
These variables interact through the four-apin coupling of the ln'lileon action.
It is then patural to ask whether a lattice gauge theory can develop a
spontaneous magnetization wherein these spins acquire an expectation value

@y 0. (25)

However, due to gauge invariance, this is impossible in the Wilson theory“.
The Wilson formulation maintains an exact local symmetry of the action

under the substitution

~1
by » s, (26)
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Because this is a local symmerry, thermal fluctuations will induce such

rotations and ultimately average over all gauges. Thus, the average value of

any single link variable is mnecessarily zero, and the wagnetization vanishes im
pure lattice gauge theory.

’ This is an unfortunate result becal;se in spin mcdels the magnetization is
"a vseful parameter for distinguishing phases. At high temperatures the system
is disordered and the‘mgnetization vanishes. If at lower temperatures the
‘spins do acquire an eﬁcctation value, then we know that somewhere in between

‘ there must be a phase transition. In lattice gauge theory the expectation

value of Uy i always vat‘d.shes and therefore cannot be used to monitor phase
changes.

As thermal fluctuations will result in an averaging over gauges, it is
natural to look for a gauge~invariant order parameter. The simplest quantity
invariant under the transformation of equation (26) is the trace of the product
of four links around a plaquette. The expectation value of this is the avera.ge
‘nction or the internal energy of the correspouding thermal system an;i it is
obtained by a derivative of the partition function

P = Q-N")Tru > = (1/6) a/ag logZ @2n

The average plaquette P is an order parameter in the sense that it will
exhibit the thermodynamic singularities of the bulk system. However, it lacks
a useful property of a magnetization in that it never vanishes identically .
except at exactly zero temperature. We cannot distinguish phases by P vanish-
ing in one and not the other. Indeed, gauge invariance precludes anmy local
order parameter from having this property20, Despite this shortcoming, the
average plaquette has played a major role in numerical work where it is the

similest variable to evaluate; indeed, many transitions are easily seen as

jumps or singularities in P regarded as a function of the coupling.

- over long distances.

‘Goldstone bosons assoctated with the breaking of chiral symsetry.

BRI VS R
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Although local order paraweters do mot work for lattice gauge theory,
there are some interesting non-local cnes. An vnconfined phase in a gauge
Ll}cory based on a continuons group should contain wassless gauge bosaons. In
contrast, in a confining phase the spectrum should consist of massive glue-
balls. This suggests that we can use the mays gap as an order parameter
expected to vanish in one phase and mot the other. The mass gap 1 a non-loul
order paraveter because to determine it one must study the asymptotic behavior

of correlation functions. The mass of a par:icie deternines how it propagates

A slight complication with the use of the mass gap to

study confinement occurs in the full theorxy coni:aining quarks 1f some of the

quazk species happen to be massless. In this case one also expects massless

A discussion
of confinement in terms of the mass gap would then require a spin analysis of

the massless guanta.

For the pure gluon thao):'y without quarks the most popular order parameter
in lattice gauge theory 1is the area law coefficient of Wilsonl, The trace of
a prodgct of links around a closed loop is a gauge invariant construction
called the Wilson loop

W(C) =<Tr 1 “11’ (28)
1je€c

Here C denotes the loop in question and the group elements are ordered as
encountered in a circumnavigation of the contour. Wilson has argued that 1e
widely separated quark-like sources experience & linear potential, then

asymptotically large loops should give an expectation value decreasing

exponentially with the area of the loop

W) « KAL) (29)
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vwhere A(C) is the minimal surf.ce area enclosed by ri.o loop C. Furthermore, ag
‘ »

this exponential decay is assoclated with the action of the world sheet swepr
ont by a giuonic flux tube ending on the contour C, the coefficient K should be
Precisely the coefficient of the long range linear interquark force

E(R) + KR

Rom -

(30)

The coefficient K of the area law provides order another pzra;lxeter for ’

lattice gauge theory. It vanishes identically in unconfined phases while

remaining nom~zero whenever the linear iong range force is pre.aent. Ir is

gimilar to the mags gap 1n that it represenis a non-local quantity, being

defined in terms of the asymptotic behavior of a correlation function,

Nevertheless, the area law criterion for confinement loses itg value when

quarks are introduced as dymamical variables. TIn this case widely .ueparated

sources wiu reduce their energy by creating a pair of quarks from the vacuum ’

fluctuations and screening the long range gange fields. A large Wilson loop

will then effectively measure the Potential between two mesons rather than

simple bare quarks.

I will now leave the question of order parameters and turn to Ehe question

of gauge fixing In the lartice theory. In Wilson's formulation the integrals

over the link variables are over compact domains and thusg there are no diver—

gences associated with integra:ing over gauges. This contrasts ‘with ugual

continum formularions where the volume of the 8auge orbits is infipnite and ~sone

sort of gauge fixing is necessary. Nevertheless, the Bauge invariance of the

Wilson action srili permits working within a fixed gauge without affecring

expectations of gauge invariant operators. T will now discuss a particularly

simple class of Bauges for lattics gauge theory2l,

" Remarkably, the result for G(P) will be unaffected, To sees this fénn].ly,

18.

Let P(D) be some polynomial in the link variablea which is invariant under
the transformation of equation (26). Assoclated with this polynomial 1z a

Green's function

e(p) = 27} [(am)e B Wp(yy 1)

Consider now one of the lattice links, say from site 1 to j. Suppose that in
evaluating eq. (31) we forget to integrate over that particular variable.
note

that fixing Ujj at soue element g replaces eq. (31) with

I(P,g)-z’lf(du)a(U;j’s)e's(")P(U)- @)

where 5(“1_1'3) represents a Dirac delta function on group space, Clearly if
we integrate over g we return to eq. (51). Now consider the gauge transforma-~
tion of eq. (26). Because the action, P(U), and the integration measure are

all invariant under this transformation, we can change varisbles to obrain

1(P,g) = I(P,zzlsgj). ¢33)
Since g4 and 8; are arbitrary, we conclude that I(P,g) is actually
independent of g and we have

1(p,g) = G(P), (34)

The above process can be repeated to fix more link variables. The final resul

is that we can continue to fix links in any set which contains no closed

loops. The fixed iinks should form a tree, which may be disconnected. Ths
gauge is completely fixed when we have a maximal tree, a tree to which the
addition of auy more links would create a closed loop.

A particularly simple gauge is obtained when all 1inks pointing in a
particular direction are set to unity. This corresponds to an axial gauge

where one component of the vector potential vanishes, Note that in this
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situation those plaquettes parallel to the fixed axis represent a simple two
spin coupling of the unfixed variables, The theory reduces into a set of
one~dimensional spin chains interacting with each other via the four spin

coupling of the remaining plaquettes, In two dimensions there is no interchain
coupling and the pure gauge theory is equivalent to the exactly solvable one~

dizensional spin systew.

The gauges discussed above are simple extensions of the axial gauge and
are all ghost free. » One can introduce an arbitrary gauge fixing function £{U)
into the path integral at the expense of introducing the necessary

Fadeev-Popov correction factorn. Thus, we can write

6(®) ~ 271 [Lam (/4 (D) (M), ' as)
* where ¢(U) 1s an Integral of the function £ over agll gauges
-1
). - [(2 dgi)f(giuijgj ). (36
MONTE CARLO ALGORITHMS )

In this lecture I review the baaic ides of a Monte Carlo simulation of a
statistical system and discuss several alternative algorithms. A Monte Carlo
program begins .th some initial configuration of the £ields stored in the

computer memory, Pseudo-random changes are then induced on the variables, thus

generating a Markav chain of configurations, .The procedure is designed so that
the ultimate probability for encountering any given configuration is propor—

tional to the Boltzmann factor

2(C) « & B5(C) @37

where S(C) 1s the action associated with the given confliguration.

. distance between two easembles.

ORGSR, Y. S .

To discuss Monte Carlo algorithms, we need a criterion for determining
when some procedure will bring an ensemble of configurations cloasr to
equilibrium. Each step of a Markov chain is specified by a probability
distribution P(C',C) for taking configuration C into C'. An obviocus DGCCII.III
condition 15 that P leave an equﬂibr:l.m; ensemble in equilibrium, Thus, the
Boltzmann weights should be an elgeavector of P

3 B(C,Cr e BS(EN) 8S(0) (28)

cl

‘I w.11 now shov that if the algorithm also has eventual access to any config-

uration, this prgvidu a sufficient condition for-any ensenble to ultinately
approach the equilikrium distribution. For this purpose, I need a notion a of
Suppose we have two ensembles E and Ef, each
of many configurations. WVenote the probability for configuration C in E or Z',.

by p((f) or p'(C), respectivaly. The distance between E and E' is then defined

: to be ’ -

£ = ] |e(@)-p'(0)| 39
c

where the sum is over all possible configurations. Now suppose that E'

" resulted from the application of a Monte Carlo algorithm satisfying eq. (38) to

eusemble E, This means that

p'{c) » E' p(c,c")p(ch)

(40)

As P(C',C) is a probability, it satisfles
B(C',C) > 0 . [(A))
(2:, P(c',c) = 1 )
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Comparing the distance of E' from equilibrium with the distance of E from

equilibrium gives
wng L] Mot < ne)]
(43)

S‘c)gc' P(C,C")|pret)=p (G| = 1EE 1.

We conclude that the algorithm brinmgs an ensemble closer to equilibrium. Note

that if p(c',C) nevel; vanishes, i.e, if any configuration can be reached from
any other, then the inequality is strict unless we are already in equilibrium.
To ensure that an’algorithm has the equilibrium distribution as an eigen—

vector, most algorithms in practice are based on a condition of detailed

balance

" peer,c) e BS(C p(c,ct) £BS(CN) (44)

Surming over the index C' and using eq. (42) immediately gives eq. (38). Thie
condition, which is sufficient but not necessary for the approach to equili- -

brium, far from uniquely specifies P(C',C). The wost intuitive Monte Carlo

procedure effectively consists of taking a heat bath at inverse temperature B
and touching it sequentially to the variables of the system23. A rteal ther-
mai source in contact wih a link varliable would cause that element to fluctuate
throughout the group manifold. Whan the source is removed, the link would be
left in any of its allowed states with a probability proportiona.l to the Boltz—

wann weight associated with the interaction with its neighbors. A heat bath

program, then, consists of calculating Boltzmamn factors and generating

correspondingly weighted group, elements. This automatically satisfies the

detalled balance condirion because the two probabiliries in eq. (44) are

directly proportion:i to the Soltzmann weights in the same equation.

22.

The wain disadvantage of the heat bath algorithm is that when the group
wanifnld is intricate the required selection procedure may be rather difficult
or time consuming, The Metropolis et al. algorithm?“ uses the detalled balapce
criterion to give another prgcedure which, because of its calculatiopal sim—
plicity, has become the most popular in practice. For the gauge theory, the
wethod !;eginl with the selection of a trial U' as a tentative replacement for
some link variable U. The test variable is selected with a distribution

pT(U,U') which is usually taken as symastric in U and U'

B (U,0') = PT(U' ,0) (45)

© Once U' is chosen, we evaluate the tentative new action S(U') for comparison

with its old value S(U). If the action is Jowered, that is, if the new con-
figuration has a larger Boltzmann weight, then the change is accepted. The
detalled balance condition then determines the remainder of the algorithm; if
the. action is raised, the change is accepred with conditional probability
exp(-~8(S(0')-5(0)).

The Metropolis procedure depends essentially on two parameters, First is
the tF'i:al distribution P(U,U'), which is normally given .a weighting toward
small changes. This peaking can be adjusted to optimize convergence and should
be more extreme at low temperature where thermal fluctuations decrease. A
second parameter of the algorithm is the number of trial changes attempted on
any given link before proceeding to the next. In statistical mechanics this 1¢
usually taken to be one; however, for a gauge theory the interaction is rather
complicated and considerable arithmetic must be done with an element's neigh~
bors in the process of evaluating the old and new actions.

With several trial

changes much of this arithmetic need only be done once and thus it can be
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quite beneficial to do as good a job as possible before moving on. Note that
as the number of tries, or "hirs,” Increases, the Metropoils algorithm
spproaches the heat bath. This 1s because repeating the procedure on one link
will ultiwately bring ‘that lini; into thermal equilibrium with its neighbors.
This 1s what the heat bath does in one s.tep. For SU(3) typically 5-~20 hits per
link seems to work well.

A recent resurrection of the Langevin atochastic differential equation in
the con;:ut of quantum field theory has prov:l_.ded an interesting variation on
the more conventional Monte Carlo methodsZ5,
a system of one degrée‘of freedom x, for which we want to obtain an ensemble of

‘va!.ues distriboted with a Boltzmaan probability distribution

P(x) = exp(—g S(x)) (46)

For this purpnse we introduce a new “Monte Carlo” time variable ¢ and study the’

evolution of some particular x under the differential equation

dx/2¢ = = 3 Sfax + n(1) 47)
Here n(y) represents a random “thermal” nolse satisfying
<ndt) nlx")> = (2/8)8(x1") (48)

To make numerical sense of this equation, we do the discreet thiug‘ and dis—
cretize time by introducing the infinitesmal time step dt = ¢. Going from one
time step to the next, x changes to
x' = x-¢ 35/3x + en (49)
At each time j is independently obtalned from a random number generator and is
distributed with some prohability distributiom p(pn). Equation ‘(1.8) tells us
that we want
fdn pln) =1
Jdn n pln) = 0

[dn u?pin) = 2/8e

(50)

I will describe the procedure for
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Higher woments of p are irrelevant to our discussion heve, although it is

popular to consider a Gaussian distribution.

Ve now have tha machinery

y to di the Langevin equatfon in

the context of the evolution of ensembles. If we have an ensemble with some
distribution P(x), in one time step it ';111 evolve. into a new dishtibut:l.on.
P'(x) = [ dx' B(x") p (Gex + eas/ox')e) e’
Changing variables to the argument of p and expanding in powers of c' l.holl' A
that to order £2 the equilibrium distyiburion of Eq. kbﬁ) is an cigenv;ctoi- o
the procedure. Thus the earlier discus:ion appliss and iterating this edu-:‘:l:,
wmust briv_ one closer to equilibrium. -

It is ioterestipg to contrast this mechod with that of Metropolis. In

both cases one makes random steps in the variables. To maintain the peakting o

. the equilibrium distribution towards lower actions, the Metropolis procedun
' rejects some changes to highar action. The Langevin approach, on the other
, hand, always accepts changes, but selects the new variables in a domain shifte

towards lower action by the "force™ term 3S/ax.

A different approach also using » differeatial evolution to eimulate
lattice gaug'e theory has been recently pursued in .P.ef. (26). This wethod is :
analog of ‘mleculat dynanmics techniques in statistical physics, and differs
from Monte Carlo simulations in that no rundom numbers are invo!:v;d in the
evolution of the system. ¥For the U(l) gauge group, in addition to the field:
Ty on the lattice inks, the authors introduce conjugate womenta 243 and a
new time coordinate t. They then study the classical evolut:lon- of the four

dimensional Euclidean lattice under the dyramics governed by the Hamiltonian
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H=sWw +1 Tg .2 .
213{ 1 (52)

This results in a meandering through phase space on the surface of conatant

total “energy”. If the behavior is ergodic. this will sample the

microcanonical ensemble. Note that in additior to not involving random
numbers, the procedure does not depend on a temperature parameter. The
rand;mness arises from th. complexity of the system itself, and the temperature
can be measured from the average kimetic energy

<% 22> - 3 & = 1/(28) . (53)

An interesting hybrid of microcanonical and Monte Carl: metliods consists

of a random walk through configurations of constant total energy. In simple

cases this can be done without the introduction auxiliary variables such as the
momenta in Eq. (52). Consider, for example, SU(2) gauge theory. When looking
at a given link, the action would be unchanged if that link were replaced by :
another SU(2) element on = two dimensional submanifold of the gauge group.

With Wilson's action, this submanifold is a simple sphere from which it is

quite easy to select a random element. This suggests the simulation algorithm

whereip one sveeps through the lattice and replaces each gi‘oup element with

another from the corresponding sphere. This has the advantage over the

differential equation apprcach that 1t allows large steps. Empirically, the
algoritbm seems to converge comparably to either a heat bath or a well

optimized Metropolis algorithm. It has the disadvantage that extracting the

temperature is not straightforward. This is not a particular problem :ior
pParticle physics applications because the bare coupling is not a physical

observable. To test asymptotic freedom scaling laws, one can use any

quantity which per:uri:at:ively begins as the coupling squared. The simplest
such parameter is the internal energy, which is exactiy constant in this
algorithm.

This procedure takes speclal advantage of the simplicity of the SU(2)
manifold. I will now prescnt a microcavonicsl simulation tochaique which is
easily applied to any type of field variable, including discrete ones??, A
single extra degree of freedom, a "demon”, travels around tha system,
transfexrring energy as he changes the dynamical \;ariables. This demon is
analogous to the extra kinetic energy terms in the conventional molecular
dynanics wmethod, except that he is ucz associated with any particular lattice
variable. In his travels he carries a sack of energy with non-megative
content, Upon visiting a variable, he first attempts to change 1t using some
distribution as in Eq. (45). ITostead of accepting or rejecting the change
based -on -random numbers, he makes the change only if he has sufficient energy
4n kis sack. The larter is then adjusted so that the demon and the lattlice -
together maintain a coastan: total energy.

'rh_e demon might be regarfled as a very amall heat. reservoir. From his .

average load, one can obtain the temperatuxe

(54)

E>=T= 1/g

If instead of a single demon one rel a ber parable to the number of
lattice variables, then they collectively can contain an appreciable suount_ oi
energy. When the number of demons goes to infinmity, the algorithm reduces to
that of Metropolis et al.

The procesvre has some advantages. First. the dzmon has no need for
rranscendental functions; his energy becomas automatically exponentially

distributed. Secondly, he is rather lenient in his demands on the xandom
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nugber generator. Indeed, with an Ising wadel no random numbers are needed at

all. Third, for discrete Broups all arithmetic can be done with small

integers. This raises che possibility of very fast programs involving many

derons riding on a few computer words and all acting simultaneously on

different pParts of the lattice. Finally, the method does mot treat the

Boltzmanan weight as a probaS:llity. Hopefully this wily point the way to future

algorithms which do not eéven treat the action as a number, which it #s pot vhen

fermionic fields are present,

VARIANTS O TRE WILSON THEORY

Although rather elegant, Wilson's formulation of gauge theories on a

letti e 1s somewhat arbitrary. It 1s only on the removal of the cutoff that

one should obtain uwnigue answers for the contiouum renormalizable field

theory. The fact that physical results are independent of cutoff 8chems has

been :}nve_stigated perturbatively for many years.

chance to study this universality of the continuum limit {n a non-perturbative

manoer. In this lecture T will review resultg on alternatives to the

Wilson actiaa. *

One simple alternative 1s to merely place a vectir potential A on each
1}

site of a lattice and define an action by replacing derivatives ia the

continuum Yang-Mills Lagrangian with nearest neighbor differences, This

iuteresting unresolved point is whether the gauge non-invariane pleces of tl-xe
action go to zero sufficiently rapidly in the continuum limit to overcome any

new ultraviolet divergences associated with these terms. Ya thig formulation

the integral over gauges 1s not compact, and thus a gayge fixing is necessary

at the outset. In Ref, (28) preliminary Monte Carlo simulations yere done on

this madel. The authors did not observe the area law behavior for Wilson

Monte Carlo methods gf e ug 2
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loops, but this is probably due to a remormalization of the bare charge making
the string tension unobservably small except at very strong coupling.

Closer in spirit to the Wilson model. Ref. (29) considcrs replacing the
simple plaquette with the 2 by 1 Wilsen loop as the fundamental term in che
action. Simulations with this 'fenetre'. action show a strong first order
transition. This means that the absence of a phase l:ranlit:io'nvis not a
volversal property of a gauge model. This transition is presumably not

deconfining and is an irtifact of the cutoff scheme when the lattice spscing 1:

' not small.

Keeping the acticu a function of plaquette variables, it is stil2 possihl.

to use other class funct;.ions than the trace. Manton30 presented o particularly

. simple alter. itive, taking for the action of a single plaquette

5,0 = 20,1 )

where d(U,I) is the minimal distance in the group manifold between the element
U and the identity. The wetriz for defining this distance ia that of Eq. )
(21). The Manton action is convenient for analytic work in the weak coupling
limit but is singu:lar for those elements lying at a maximal distance from tim A
identity. This singularity has the annoying property of giving a theory which
does mot satisfy reflection pusitivityal. A closely related action which

avoids this problem is the "heat kernel” form32. Using the metric tensor of

Eq.(21), one can define a Laplace operator on the group
9% = (der W7 M2 (3/30)) (der u)”zn;; Iaf2a; - (56)

Introducing a new time paramester t, consider the heat diffusion equation

v2Kk(t,g) = - d/dt K(t,g) . (67))
For an initial condition, take
K(0,g) = &(g,I) . ¢s8)
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The heat kernel action is directly identified with the solution of this
equation at a "time” given by the coupling constant

exp(sp(e.u)) = K(1/8,U) - {59)

Both the Manton and heat kernel actions have been subjected to Monte Carlo

analysis with the gauge group SU(2)33. The string tensior was obtained as

discussed earlier in these lectures. For comparison with the usual Wilson

action results, the scheme dependence of the integration constant Ag has been

calculated perturbatively. The results show deviations of 20-40% from the

theoretical calculations assuming a universal string tension. This should be

regarded as the systematic uncertainty due to the practical fact that the
lattice spacing must be kept fairly large and higher terms in the

renormalization group function can be important.

Another variation of the theory is to replace tha trace of the plaquerte

variables with the trace in some other group representation than the

fundamental., For SU(2) if we use the trice in the adjoint representation, a

clear first order transition appears3". One possible explanation of this

transition is-in terns of Z, wmonopole excitations. These arise because the
adjoint or S0(3) representation of SU(2) does not see the Z, center of the

group, A plaquette near -1 has the same energy as one near 1. This can be

used to define a Dirac string as a sequence of plaquettes near ~l1. Several

closely related schemes have been presented for making this concept precise35.

Including both fundamental and adjoint traces in the action gives a two

parameter action which Iinterpolates between the SU{2) and the 50(3) Wilson
theories36

sp(u)=—£-s'r:u+é_sA'rrAu . {50)

numerous paths.

deconfinement transitiom.

vere Trp denotes the trace or character in the adjoint representation. In
addition to giving the above theories when either BA OF B 1s zero, this
theory reduces to a Z, latt:lc‘e gauge theory when g, g;ses to infinity. This
forces all plaquettes to lie in r.?:z ‘group center, a sir.uai‘.ion which is gauge
equivalent to all links lying in this same set.

Monre Carlo simulations have studied the evolution of tne Z, and S0(3)
transitions into this two coupling phase plane. The reasulting phase diagram is

shown in Fig. (2). Note that these transitions enter the diagr:ia and meet at s

triple point. The third line emanating from this point is Airected towards the

i region of rapid crossover from strong to weak coupling behavior in the Wilson

theory.

This system provides a nice place to test universality. The connection

between the bare charge and the parameters is

go'z = 8/4 +28,/3 . (61)

A continuum limit requires taking gnz to zero; however, this can be done along

Note that some of these paths could cross a first oxder

transition line. Nevertheless, we can continue around this transition in the

two coupling plame and thus the encountered transition is not deconfiring. If
the continuum limit is indeed independent of cutoff scheme, theu physical
observables should approach the same values along any of these paths. This has

been tested for the string temsion, ratios of Wilson loops, and the
36-37_ A5 always with Monte Carlo methods, -
statistical errors remain, but in the vicinity of the Wilson theory along the .
axis these analyses are consistent with universelity. However,. if one keeps

the lattice spacing fairly large and goes near the critical endpoint in this

phase diagram, then new physics associated with the lattice comes into play.
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As the parameter g, Increases relative to g, the extremum of the action
at plaquette variables near -1 changes from a maximum to a miuvimum upon
crossing the line B, = 3g/8. The critical endpoint in Fig. (2) lies Juse
above this line. Investigations with SU(3) indicate a similar eritical
endpoint in the analogous two coupling plane mear the line where new minima of
the plaquette action appear for Up = exp(z 241/3). As the N of SU(N)
increases beyond four, those eiements of the group center nearest the identity
become uinima of the action even for the conventional Wilson action3®. This
correlates well with the observation of first order transitions in SU(N)
lattice gauge theory with the Wilson action when N is four or lnrgerag.

As finite lattice spacing effects do depend op formulation, it 1is
interesting to loock for an action which minimizes them*?. Thig will permit
more accurate calculations on a fixed size lattice at the expense of a more
complicated action. Preliminary results with this approach are quite
promising“l.

To conclude, Monte Carlo simulation has become a poverful tool for
non-perturbative studies in fleld theory. Nevertheless, in several areas the
techniques are approaching technological limits, The glueball and fermionic
calculatioas are using hundreds of hours on state~of-the-art computers.
Relative to this, analytic techniques for lattice gauge theory are being
somewhat neglected. Presumably new hybrid approaches could be éeveloped. In

any case, as I stated at the beginning of these lectures, the progress in the

last few years has been dramatiec and exciting. This will hopefully continue #n

new and unpredictable directions.

- [Py VR )
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FIGURE CAPTIONS

Fig. 1 - The effective ioterquark force at various separations. The

precise definition of X(I,J) is in Ref. 6.

Fig. 2. The phase diagram resuleing from the action ia Eq. (60).
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