SANDIA REPORT saND86—0403 « Unlimited Release

Printed March 1986

Derivation of Kane’s Equations
of Motion and the Formulation of
an Initial Value Problem for the
Polaris A3 Missile

J. R. Etter

Prepared by

Sandia National Laboratories

Albuquerque, New Mexico 87185 and Livermore. California 94550
for the United States Department of Energy

under Contract DE-AC04-76DP00789

SF2900Q(8-81)



DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image
products. Images are produced from the best available
original document.



Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Govern-
ment nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any warranty, ex-
press or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, prod-
uct, or process disclosed, or represents that its use wou}i)é) not infringe
privately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government, any agency thereof or any of
their contractors or subcontractors. The views and opinions expressed here-
in do not necessarily state or reflect those of the United States Government,
any agency thereof or any of their contractors or subcontractors.

Printed in the United States of America
Available from

National Technical Information Service
U.S. Department of Commerce

5285 Port Royal Road

Springfield, VA 22161

NTIS price codes
Printed copy: AOS
Microfiche copy: A0l



DERIVATION OF KANE'S EQUATIONS OF MOTION AND THE FORMULATION OF AN
INITIAL-VALUE PROBLEM FOR THE POLARIS A3 MISSILE

Jerry R. Etter
Division 1622
Sandia National Laboratories

Albuquerque, New Mexico 87185
SAND—86-0403

DE86 009784

ABSTRACT

Kane's Equations of Motion for the Polaris A3 missile are derived, and an
initial-value problem which can be used in a time simulation of the
missile's flight is developed. A brief overview of Kane's method for
dynamical analysis is included to assist readers who may not be familiar
with the techniques employed. The model assumes rigid body dynamics, and
accommodates the earth's geometry and gravity field, the aerodynamic

forces, and the missile's thrust vector control.
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I. Introduction

This report comnsists primarily of the derivation of the equations of
motion for the Polaris A3 missile. The derivation of the dynamical
equations 1is based on the method developed by T. R. Kane of Stanford
University, and employs the wvarious elements which characterize the
method, such as generalized coordinates, generalized speeds, partial
velocities, and finally, Kane's equations of motion. A brief overview of
the method is included to assist readers who are not familiar with the

technique.

In addition to the equations of motion, an initial wvalue problem is
developed which can be incorporated in a simulation of the missile's
flight to provide velocity and position predictions as a function of

time.

This analysis deals with a specific application; however, the approach
was intentionally made as general as possible to enhance its application

to similar problems.



II. Definition of Reference Frames and Generalized Coordinates
A. Reference Frame Orientations

The reference frame geometries used in this analysis are shown in Figures
la and 1b. Reference frame 1 is assumed to be an inertial reference
frame and is represented by the set of mutually perpendicular unit

vectors i*, i, and - that are fixed in I with their origin at C, the

geometric center of the earth, E. The earth is represented by the unit

vectors ¢*, e, and ¢ , fixed in E, whose origin is also located at C.

The mass center of the missile M is located at O. Point 0 is also the

origin of the unit vector sets c¢*, ¢® c¢” and N, E, D which represent the

Geocentric and Geographic frames, respectively. The ¢* vector of the

Geocentric frame lies in the direction opposite to the geocentric

position vector, r. The ¢* vector points east, and the ¢* wvector, which

lies in the local meridian plane, completes the right-handed orthogonal

vector set. Vector E of the Geographic frame coincides with c”, but as
seen in Figure 1b, D is defined to be normal to the reference ellipsoid

|
which represents the earth's shape . The reference ellipsoid is a solid
of revolution that is symmetrical about the polar axis. Vector N

completes the right-handed orthogonal set.
B. Generalized Coordinates

Specification of the configuration of the system is accomplished through
the use of generalized coordinates. By choosing a set of independent
coordinates, the derivation of the equations of motion is usually
simplified. One such set for this problem, which would completely and
independently specify the missile's six degrees of freedom, would be the

polar coordinates X, Lc’ and v, and the three Euler angles of the body

relative to the Geocentric frame. Unfortunately, practical navigation
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FIGURE 1a. Coordinate Frame Geometry.

FIGURE 1b. Coordinate Relationships.



problems commonly utilize the geographic latitude angle L  rather than

Lc’ and the geographic altitude hg rather than the geocentric radius r.

If L and h are used as coordinates, it is no longer apparent that the

missile's six degrees of freedom can be specified with six independent
generalized coordinates. Referring again to Figures la and 1b, one

possible set of coordinates would be the angles 4 and L _, the lengths A ,
R and h , and finally, the three Euler angles of roll, pitch, and yaw of

the missile relative to the Geographic frame N, E, D. However, only six
of these eight generalized coordinates can be independent. As will be

seen later, AC and Rg can be eleressed in terms of Lg’ and as a result,

the final dynamical equations will not involve Ac or R™

C. Missile Orientation

Figure 2 shows the wvector sets which represent the missile and its
nozzles. The missile's vector set is located at 0, with X pointed
forward along the longitudinal, or roll axis of the missile. Vector Y
coincides with the pitch axis, and Z coincides with the yaw axis. The

orientation of M is determined using a "body-three, 3-2-1" rotation

sequenceO. That is, M is brought into general orientation by first
aligning X, Y, and Z with N, E, and D, respectively, and then performing
successive right-handed rotations of * about Z (0 about Y, and ¢ about X
Other rotation sequences can be chosen, but this particular sequence is
perhaps the most intuitive since the first rotation brings X into its
final azimuth; the second rotation brings X into its final elevation; and
the final rotation brings the missile into its final roll position. If
the rotations are performed in a different sequence, or about only two

axes, their effects on heading, elevation, and roll are not independent.



X (roll)

FIGURE 2. Missile Frame and Nozzle Locations.



D. Nozzle Orientation

Four nozzles are located at the base of the missile in such a way that
the direction of their thrust wvectors can be changed by rotating each
nozzle on a bearing whose axis is not parallel to the axis of symmetry of
the nozzle. In Figure 2, points a, b, c, and d represent the points
where the four bearing axes and the four nozzle axes are presumed to
coincide, and where each nozzle thrust vector is assumed to be acting.
These points lie on a circle of radius 1 whose origin O' is on the
missile centerline. The distance between 0 and O' is represented by k.
The azimuthal locations of a, b, ¢, and d are at 0, 90, 180, and 270
degrees respectively, measured clockwise, looking forward, and starting
at the positive pitch axis. Nozzles 1, 2, 3, and 4 are mounted at a, b,

¢, and d, respectively.

Four unit vector vector sets, which are fixed with respect to the

nozzles, have their origins at a, b, ¢, and d. Each nozzle is brought

into a general orientation using a "body-two" rotation sequence”. Figure

3 shows the wvector system used to determine the orientation of the

centerline of Nozzle 1. The wvectors a”, a®, and a” are fixed relative to
the nozzle mounted at point a, with a* coinciding with the nozzle's

centerline and 1its assumed thrust axis. The orientation of the nozzle is

determined by first aligning a”™, 1 = 1,2,3, with X, Y, and Z

respectively, and then performing successive right-handed rotations of

the nozzle, of -g, the bearing cant angle, about a”, and then of 6", the

nozzle rotation angle, about a”, and finally of Y, the nozzle cant angle,

again about a® . Likewise, the orientations of nozzles 2, 3, and 4 are
determined by first aligning vector sets biic. and dl-, i = 1,2,3, with

X, Y, and Z, and performing successive right-handed rotations in a manner
similar to that for Nozzle 1. Control of the net thrust vector is

achieved by adjusting the nozzle rotation angles 6., i = 1-4. For the



FIGURE 3. Nozzle Frame.

FIGURE 4. Body Forces.



Polaris system, positive control system commands produce positive

rotations of nozzles | and 2, and negative rotations of nozzles 3 and 4.

The thrust vector control for the second stage motor can be handled in a
manner similar to that of the first stage motor by using the same vector
system, but with different angles and rotations. The second stage motor
nozzles do not physically move, but instead, their exhaust is deflected
by injecting freon into the sides of the nozzles. The thrust deflection
can be represented by setting the bearing and nozzle cant angles, g and

Y, to zero and performing nozzle 'rotations" 67, i = 1-4, about the

vectors which point in the radial directions, a”, b", ¢, and d”™.

E. Body Forces

In addition to the motor thrust, the missile also experiences wind and
gravity body forces during its flight. These distributed forces can be
replaced with forces acting as shown in Figure 4. The aerodynamic forces
are replaced with an equivalent force located at the missile's center of
pressure, and the gravity forces are replaced with the weight of the
missile located at it's center of gravity. The locations of the center
of pressure and the center of gravity, as well as the orientations and
magnitudes of the forces are all assumed to be variable during the flight

of the missile.

F. Rotation Matrices

The reference frames and vector systems described above and shown in
Figures 1-4 define the position, orientation, and dimensions of the
missile as well as the points of application and directions of the
various forces used in deriving the equations of motion. Throughout the
analysis, it will be necessary to express certain quantities in terms of
a set of vectors that are oriented differently from those in which the
quantities are currently written. Rotation matrices will be used to

describe the orientation of one set of vectors relative to another. For



example, suppose a vector has been expressed in terms of the vectors e’

g
®2' —3 anc' 'S “enote as — *+ The same vector expressed in terms of i’
— b

2> or vl, is given by:

Also note that the columns of each matrix are the components of the unit
vector shown above the column written in terms of the unit vectors shown
to the left the matrix. Similarly, the rows are the components of the
unit vector shown to the left of the row written in terms of the unit

vectors shown above the columns.

Inertial-Earth

-2
i .1
ii cos ot - sin ()t
Eé = sin ‘0%t cos 't )
Inertial-Geocentric 1
] 3
1 - ssnL cos ¥ - sin X - cos L cos A
-T C C
Rl 12 - sin L sin X cos A - cos L sin A )
—C - c c
it cos L 0 - sin L
-3 c c



I
Inertial-Geographic

N E D
iI -sinL cos |\ -smJX - cos Ll cos X
- g g
i2 - sin L sin X cos X - cos L sin X
- g g
1 cos L 0 - sin L
-3 g g

Geographic-Geocentricl

-2 -3
N cos D 0 sin D
Rn = E 0 1 0 )]
D - sin D 0 cos D
Earth-Geographicl
N E D
- sin L cos Al - sin Al - cos L cos Al
g g
_ - sin L sin Al cos Al - cos L sin Al
—n =2 g g
cos L 0 - sin L
-3 g g

10



Geographic-Body” (Body 3: 3-2~1)

This rotation matrix is based on the following rotation sequence:

| =<

X7|

Figure 5. Rotation Sequence: ~Z', eY1l', X

(Abbreviate "sin jp cos 0" as "s"cG", etc.)

cijjcG ctjjses<() - c<NS4| c"s0c<}) + s<j)Sii;
Rn = E sifice s”sGs™ + ctfic SASOC(() - SHfCtf:

) C08<}> coc(})

Redefine (6) as C, the direction cosine matrix:

X y 7
11 %12 “q3
C~E
1 22 %23
32 (33

31

11

©)

«7)



£
Nozzle-Body (Refer to Sec II.D)

Define: B = bearing cant angle

6i: nozzle rotation for nozzle i, 1 = 1-4

Y = nozzle cant angle

Nozzle 1: 6" - nozzle rotation

Rotation sequence: Body 2, 3~1 3; ~

A ) 3
X cBcY + sBsYceS® - ¢BsY + sBcYeBY - sBs6
Y - sBecY + cBsYcol sBsY + cBcYc6l - cBs6
Z sYsSl cYs6! 6l
Similarly,
Nozzle 2: = nozzle rotation

Rotation sequence: Body 2, 2-1-2; Bb2, 6,,bl, - Yb2

A ) 3
X cBcY + SBSYc62 sBs5 - ¢BsY + sBcYc6
Y - SYs62 (<52 - CYSS2

Z - sBcY + CBSYc62 CBs62 sfisY + cBcYcb



For nozzles 3 and », positive control system commands produce counter-

clockwise rotations of the nozzles, viewed looking forward.

Nozzle 3: 6" = nozzle rotation

Rotation sequence: Body 2, 3-1~3; Bc?, - 63—1" ~ "£3

) %

X cgcY + sSsYce? c¢BsY - sBcYceSh - s3s6
EI(I:I =Y sBeY - cBsYcS® sgsY + cBcYcet cBs5
Z SYS63 - CYS53 C63
Nozzle = nozzle rotation
Rotation sequence: Body 2, 2-1 -2; - Bf2, - , Yd2
A
G S 4
X cBcY + sBsYc6” sBs6” cgsY - sgcYcS
Ry = Y - SYs6" C64 CYS64
Z sgcY - cgsYeS* - cBs6” sBsY + cBcYco

13



Since the angles Y and { remain constant, define:

KI = cgcY

K2 = sgsY
= sgcY
= CBsY

Using (12), Egs.

Nozzle | :
-1
KI + K7cos 6l
Efg =Y K* + K”cos 6l
I%’\sin 5.
Nozzle 2:
X Kl + K2cos 62
Rm _ Agi
Y KB sin 62
Y/ - Kg + K*cos 62

(8)-(11) become:

D = sY
=cY
12)
= SB
Kg = ¢B
-2 %
K* + K”cos 6/ - K”sin 6l
K2 + K*cos 6] - KgSin 6l (13)
K,sin 6, cos 6l
K”sin 62 K* + KgCOS 62
cos 52 - Ko,sin 62 an)

KgSin 62 K2 + K*cos 62

14



Nozzle 3-

Nozzle 4:

Rm _

Kl + K~cos 6"
~ K”cos 6"

K”sin ¢
0

9

Kl t+ K2cos 6"
- K sin 6

k3 - K*cos 6"

- K2CO0S
K2 + Klcos

- K,sin

&Y

K”sin 67
cos 6"

- KgSin 64

15

"2 K~”sin 62

62 KgSin 62

cos 62

k4 - K2C08 6

KgSin 64

K2 + K'cos 64

(15)

cl16)



I11. Overview of Kane's Dynamical Equations

A. Equations of Motion

The Polaris missile M possesses six degrees of freedom in I, all motions

of which are governed by the equations

Fr + Frit = 0 (= Ll 6) (17)

These equations are called Kane’s dynamical equations.
B. Derivation
Briefly, the derivation of Kane's equations begins with D'Alembert's

principle, which in effect reduces a dynamics problem to a statics

problem by writing Newton's second law of motion for a particle P in the

4
form

F - ma=20 (18)

If the term -ma is viewed as another force, specifically an inertial

force defined as

F = -m (19)

F+F =0 0y

Eq. (20) now has the appearance of a statics problem which states that

the vector sum of all forces, both applied and inertial, is zero.

16



Now, dot-multiplying (20) with the velocity v of the particle P,

v e F+v +F =0 (21)

*

and defining two scalars A and A as

leads to the scalar equation

A+ A* =0 (23)

*

The terms A and A are referred to as the activity of the force F and the

*

activity of the force F , respectively, and (23) 1is a statement of the

activity principle”™.

If P has more than one degree of freedom, (23) does not provide
sufficient information for the solution of the problem. In this sense,
(20) provides more information, because it is equivalent to three scalar
equations. However, there is a potential advantage of (23) over (20)
which 1is important, and it forms the basis of one of the major strengths
of Kane's equations. If F contains any contributions from unknown
constraint forces, they will certainly affect (20), but the dot
multiplication which led to (23) will frequently eliminate these unknown

forces.

To arrive at a formulation which contains sufficient information for a
multiple degree of freedom problem, yet still automatically eliminates

unknown constraint forces, Kane's method replaces (21) with

X'E+X'F:O (r = 1. n) (21))

17



where n is equal to the number of degrees of freedom for P and is the
r™ partial velocity of P. These partial velocities will be defined in

Sec. IV.B.

Now, 1if Fr and Fr are defined in a manner similar to (22) as

Fr = V £ (r=1,....,n)
* A *
Fr gA + F (r= 1,...,n) (25)
then (24) becomes
Fr + Fr =0 (r = 1. n) 26)

Thus, (26) is like a "generalized" form of the activity principle, but

now there are a sufficient number of equations to solve the problem.

*

The scalar terms F* and F* are referred to as the generalized active

force and the generalized inertia force, respectively. These generalized
forces, and the generalized coordinates that are associated with them,

are analogous to those employed in the derivation of Lagrange's

equations4, and as a matter of fact, Lagrange's equations of motion can
ecasily be derived from Kane's equations. However, Kane's equations offer
an important advantage over Lagrange's equations when a system is
subjected to motion constraints. In these cases, Lagrange's equations

require the use of Lagrange multipliers to solve for the constraint

forces4. The effort required to derive the equations of motion when
Lagrange multipliers are needed is often increased significantly, yet
ironically, neither the Lagrange multipliers or the constraint forces
appear in the final equations of motion. Kane's method uses constraint

equations to define the position or motion constraints which are applied

18



to the system. The need for multipliers and the determination of

constraint forces is eliminated.

The derivation of (26) above was for a single particle P. More

generally, for a system of N particles P™,..._PW, the generalized active

forces and the generalized inertia forces are defined as:

and 27

i1l (= 1. n)

rigid body B can be replaced with a couple of torque T together with a
force F applied at a point Q such that

|

Fooin

and 28

1 = iE r.x F.

—1 —i

where T is the position vector of Pi relative to Q. The generalized

active force for B can then be written in terms of F and T as

F = ~_F + w)*T (29)
r -r~>- -1 —

where v» is the partial velocity of point Q, and is the partial
angular velocity of B. If the point Q is chosen to be the mass center of

*
B, denoted as B , then in a manner similar to (29), the generalized

19



inertia force for B is given by

Foo=v e F +aT (30)

*

F 1s called the inertia force for B, and is defined as the product of

*

the mass m of B and the acceleration a of the mass center of B:

* *

F = - ma (31)

*

T 1is called the inertia torque for B and is defined as

T iSi m.r;X a (32)
where 1K 1is the mass of particle of B, N is the number of particles,

r. is the position vector of Pi relative to the mass center of B, and a.

is the acceleration of Pi'

For a body such as a missile, (32) has little use except for deriving

*

more practical (and more familiar) expressions for T . For example, if
121> H2> —3 are mutually perpendicular unit wvectors, each parallel to a

*

principal axis of inertia of B for B ; are the associated

*

principal moments of inertia of B for B ; and the angular velocity and

angular acceleration of B are expressed as

B
w = wh\nt + "N2—-2 + N33

and (33)

a Vi a2-2 + a3-3

20



then the inertia torque is given as

T = - A3
¥ ) ~ 021272
+ [0)l2(Xl - I2) - o3I3]n3 (34)

The three right hand components of (34) are commonly known as Euler's

. . 4 . .
equations of motion and are used frequently in solving for the

rotational motion of a rigid body.
C. Nomenclature

Now that a brief discussion of Kane's method has been completed, the
derivation of the Polaris equations of motion can be initiated. The

previous equations show that the derivation will require expressions for

* *

the velocity v and the acceleration a of the missile's mass center; the
angular velocity w and angular acceleration a; and the applied forces

acting on the missile.

The nomenclature used in the following analysis is consistent with that

used in Kane's textbooks on dynamics5’6’7. The following equation
provides an example:

1 . ¢

to = A cosLN-LE - A sinLD

In this equation, luyn is read as '"the angular velocity of reference frame

n relative to reference frame 1'". A dot above a variable represents it's

n_mn

time derivative. The numbers written under the sign are references
to equations which are used in the derivation of the current expression.

Unless needed, the superscript "i" may be omitted to simplify notation.

21



IV. Derivation of the Equations of Motion

A. Kinematics

. Angular Velocity,

m
to
From Figure 1:
tOn
n
to
or,
0" (@A
7
+ (A
+ (A
From Figure 5:
n m
to =
or,
m =

n n m
= to + to
= A0 - L E
-3 -

= I(cos LN - sin L D) - LE
8- g~

' cos LN -LE -4 sinLD
7 g~ - g~

cos Leer r LgC% - A sin

- L A si
cos LgC}g I gCQQ r A sin L

g 31

g 32

)X

)Y

L i i z
cos Lgcl,g I gCQ§ r A sin Lgng)

itD + 0Y'  +5X

C

; sin 0+ <)X + (4)cos 0 sin ¢

+ (4 cos 0Ocos b- 0 sin 8)/

Finally, combining (39) and (41) gives:

+ 0 cos <)Y

m =(-41 sin 0 + & + A cosLgCij =- LgC2l - j sin LgC3l )X

+ 4 cos 0 sin ¢ + 0 cos¢ + A C°S LgCl2 *

(35

(36)

37)

(38)

(39)

(40)

(41)

P22 ' 5 31" LgC32)-

+ (ip cos 0 cos 4 - 0 sind + A cos LgCI3 - LgC23 - J sin LgC33)Z

22

A2



In certain situations, it may be useful to have an expression for the
angular wvelocity of the missile relative to the earth, rather than

inertial space:
) = "w + w 43)
Similar to (38),

NV =1lcos LN-LE-1sinLD 44)
- g~ g-
Thus,

O
-+

- 4 sin e + cos L - N2 - 1sinL C )X
-9 e el S

+ () cos e sin 4 + (0 cos 4 * 1 cos LgCI'Z -Lec - 1 sin [EC32>»

g 22
+ 4) cos 0 cos & - ¢ sin 4 * 1 cos LgC1’3 - LgC23 - 1 sin LgC33~
(45)
2. Velocity, v
" dr
v dt (46)
From Figure |b:
= - = - i, - R + h )D 47
r r(_:3 AC}3 ( o g)— “47)
= -A (cosLN-sinLD) - R + h )D 48
7 - A (cos LN D) - R+ hD (48)
= - A ILN-(R +h -A sin L )D 4
Lgg 08 o C o o Ssin g_ 49)

From the Law of Sines and Figure 1b:

R R

g
sin(L - L ) sin(LL + 11/2) cos L 0)
g cg cg eg

23



Thus,
R sin(L -L )
g g

cos L
e

R (sin L cos L - cos L sinL )
g g eg g cg

cos L G1)

Ao g Rgsin Lol - oot sin 1 (52)
§t
tan L
= i cg
A Rgs1n Lg(l tan L (53)
From Figure 1b:
tan L = y/x 54)
eg

The tangent of L is the slope of the normal to the ellipse at point A,
g

which is given by the negative reciprocal of the slope of the ellipse at

A. The equation of the ellipse,

2.2 2.2

xﬂ{eer/Rp—l (55)
can be used to obtain the derivative, or slope of the ellipse at A:

dy

- (x/y)(Rp/R"
& xy (x/y)(Rp/R™) (56)

Thus,

! (y/x)(RNR2)

tan L dy/dx)  xy e p

(57)



From (53), (SI*), and (57):

A =R sin L (1 - R2/R2) (58)
g = g p ¢

If the eccentricity of the reference ellipsoid is defined as

? 2 1/2
e = (1 - RP/Re) (59)
then (58) becomes
A =¢ R sin L 60)
— == ==

Thus, r can now be expressed as

r= -e2Rsinl cosLN- R +h - £R sin2 L )D (61 )
H9 =SS g == g g

Eq. (46) can be expanded as follows:

. dr ndr
= _F = —TT n 62)
Vo ¥ T &Y X ¢
d- 2 2
— = -¢ [RsinL cosL +LR( -2 sin L )N
dol == === =—
0 0 0
- R +h -Resin L -2LResinL cosL )D (63)
==== === g =-

From (38) and (61)

a/ll Xr=L @R + h - £R sin2 L )N

(33

— === == g £
+ [Xe2R sin2 L cos L + A cos L R +h - e2R sin2 L )]E
g g g === g g -
- LERsinL cos LD (64)

<

= === g

o

25



Egs. (63) and (64) can now be combined and simplified to obtain:

v =L R +h -Re2cos2 L ) -R e2R sin L cos L |N

=== == == == -
+ XR + h )cos L E
g g g~
+(-R - h +LR £2sin L cos L + R e2sin2 L )D
=== == g == -

An expression for R as a function of L can now be obtained by

from Figure 1b that

cos L = x/R
Thus,

R = x/cos L
g 66 £

Now, by squaring (67),

and since

then

2 2 - 2 2
Rg %6 Re(l -y /Rp)/cos Lg

However, from Figure 1b:
'sin L_ = + A )/R
sin g (y C) g
If (71) is solved for y and and combined with (60), then

y=RsinL (1 - e2)
8 6
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noting

66)

(67)

68)

(69)

(70)

(7D

(72)



Eq. (72) can then be squared and substituted into (70):

2
R
R 2 © (73)
g cos2 L [1 + (R /R )2tan2 L (1 - e2)2]
g e p g
Now, (73) is simplified using
I - e2 = R 2/R 2 (74)
s9 P ®
to obtain
2 Re2
Rg = 2 .2 (75)
§ 73 1 - e sin L
g
Thus,
B 2 .2 -1/2
Rg s Re(l - e sin Lg) (76)
The derivative of (76) gives
R =LR ezsin L cos L (I - ezsi% L )_%/2 a7
g g e g g g

Finally, R and R are substituted into (65) and simplified to obtain
g g

vl +R( -eTr —=sm L )N
g g

+ AcosL [h +R (1 - e2sin2 L ) 1/2]E - h D (73)
g g e g - g-

Eq. (78) gives the velocity of the center of mass of the missile in terms
of geographical coordinates. Since it is frequently more useful to

express velocity in body coordinates, the rotation matrix given by (7)
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can be used to obtain:

x ? 2 . 9 V2.
Vi L [h_+R (I -e)I - e sin Lg)Y ic,,

+ Xcos L[h +R (1 - e2sin2 L )~1/2]C01 - h Cb }X
g g e g 21 g3l -

+ {L[h +R (1 - e2)1 - e2sin2 LT)~3/2]Cl,
g 8 e g 12

+ Xcos L[h +R (1 - e2sin2 L )"1/2]CO, - h C.,,}Y
g g e g 22 g32 -

+ {LTh +R (1 - e2)(1 - e2sin2 L )"3/2]C
g g e g 13

+ X cos L [h + R\ - e2sin2 L™M"1/2]C,,. - h C_}Z (79)
g g e g 23 g33 -

And if needed, an expression for the velocity of the missile relative to

s

the earth, “v , can be obtained by replacing A with 1 in (78) and (79).
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3. Generalized Speeds

If "generalized speeds" are defined as follows

(80)

then the expressions derived earlier for the angular velocity and the

velocity of the mass center of the missile are simplified:

UIX + U211 + g,3_ 81
42
+ ys— + u™Z (82)
79 o—
There are two reasons for taking this step. First, in analyzing the

motion of a system, there is often more interest in the velocity
components of the body, rather than the coordinates which measure its
position. In this problem, all of the quantities are of interest since
it is also a navigation problem; but the wvelocities are still the primary
variables from which the secondary quantities of longitude, latitude and

altitude will be computed.

The second reason is another important aspect of Kane's method. The
introduction of generalized speeds can dramatically simplify the
kinematics (as can be seen by comparing the different expressions for the
velocities earlier), and lead to particularly effective formulations for
the generalized forces which enable the analyst, with a minimum amount of
effort, to construct the simplest possible form of the equations of

motion.
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It should be noted that if there were no requirement to solve for L*, A,
or hS, then the lengthy derivations of (*2) and (79) can be omitted. The

motion of the vehicle is then determined by starting with (81) and (82),
thus saving all the effort leading up to them. In effect, that is what
will be done now by continuing the analysis with (81 ) and (82), while

setting (79) aside to be used later in solutions for L , A, and h .

g g
H. Angular Acceleration, a
m
a (83)
Since X, Y and Z are fixed in M, (81) and (83) give
al = iitX + U2Y + uZ (84)
5. Acceleration, a
*
. dv "y
a sam Xy
dt a TV RV (85)
*
Ty
dt a1 M T usL T oug (86)
From (81) and (82):
*
WX vo= (W2u6~ wUj X + (urut- uwjUAY + Y/ (87)

Thus, (86) and (87) combine to give

a = (Cy u2u6- u3us5)X + (u5S+ u3ud4d- u™Y + (u6+ UlusS- u2ud)Z (88)
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B. Partial Velocities

The partial angular velocities and

used in (29) and (30) to derive the

m
m A 90—J r
- 9u
and
« 4
- 9u (r

*

partial velocities of M in I that are

generalized forces are defined as:

=1.....,6) (89)

= Lo, 6) (90)

respectively. Since ™ and v appear in (81) and (82) in the forms

6
E, a u
= “rr
and
6 *
[ AT

O1)

(92)

they can be determined by inspection. Table | gives their values.

TABLE 1. Partial Velocities

N —

S W

wn
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S O © N o~

<

(93)

N o< <o o o



C. Generalized Active Forces

As shown earlier, the generalized active forces for a rigid body are

given by

F 4 v.* F+uy T (94)

F and T are, respectively, the vector sums of the applied contact and
body forces, and the moments of those forces about a chosen point on the
body. The point chosen for computing the sum of the torques will be O,
the mass center of the missile, because it simplifies the computation of

the generalized inertia forces later.

The forces that contribute to F and T are the gravitational and
aecrodynamic body forces, and the four nozzle thrusts which are shown

schematically in Figure 4.
1. Gravitational

Gravitational forces will normally be determined by an analytical
gravitational potential model of the type described by Brittingl. Such a

model will not be detailed here since the model chosen depends on the
accuracy required in the solution of the problem. For the purpose of
this analysis, the general case is assumed where three components of the

gravity field vector g are provided by an appropriate gravity model, such

that

g - gnN * g<IE » 8dD (95)
Thus, if m is the mass of the missile,

o os

F = mg= mgN + mgOE + mgQD (96)
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or

F =m(g C + ghC0l + g,C )X
m(gnCI12 + geC22 + gdC32»>-

m(gnC13 + geC23 + SdC33"- (97)

Since F acts at the mass center,
-g

0 98)

2. Aerodynamic

For reasons analogous to the gravitational model discussed above, it is
assumed for this analysis that an aerodynamic model will be used to
provide the lift, drag and sideforce components of the aerodynamic force

F , such that
-a

F, =—DX+LY-LZ (99)
—). Xi yi Zi

This force is further assumed to act at the center of pressure as shown

in Figure 4. The moment about point 0 is given by

T hX) X F_ (100)

a?e

Thus,

hL Y + hL Z (101 )
z- y-

ol
=

3. Nozzle Thrust
It is assumed that the thrust from each nozzle is equal to one-fourth of

the total motor thrust, T, and that the thrust vectors are parallel to

the nozzle centerlines and act at points a, b, ¢ and d shown in Figure 2.
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Nozzle |:

Nozzle 2:

Nozzle 3=

I

Tl

T2

T2

F3

T3

—

(TAY = (T/H[K + K2cos 61)X

+ (- K3 + K4cos 61)Y + K’sin 6]
(- RX + iY) X FI

(T/4){IKpsin 6.X + kKisin

+ k(K3 - cos 61) - L(KI + K2cos 612

(T/Hb = (T/D[K + K,cos 6,)X - K_sin 60Y

+ (- K3 + K*cos 62)Z]
(- kKX + 12) x E2

(T/4) {IKj_sin «2X + [K”™ + K2cos »?)

+ k(- K. + K,cos 60)]Y + kK sin 60Z}

(T/4) £l = (T/H[(K + K2cos 63)X

+ - K + i
(KO K,cos &5.)Y Kbs1n 692]
(- KX - 1Y) X F3

(T/4) {- IK sin <X + kKcsin 6 Y
S o——0

+ [- k(K3 - K~cos 53) + KKI + K2cos 63)]Z}
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(104)

(105)

(106)

(107)

(108)

(109)
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Nozzle 4:

= + - NGl
(T/Myd = (T/HLK * K cos 6. )X - Kisin 6,¥

+ (K3 - K4cos 64)Z] (111)

T4 = (- kX - 1Z) X F4 112

14

(T/4){- IK”sin 64X + [- 1(KI + K2cos 64)

+ k(K" - K4cos 54)]Y + kK’ sin 647} (113)

The nozzle thrusts and torques are now summed:

in F, (114)

(T/4)[4K1+ K2(cos 6] + cos 62 + cos 6" + cos 64)]X

+ (T/4)[K4(cos 6! - cos 63) - Kbr(mn c + sin 6H)]¥
+ (T/4)[K4(cos 62 - cos SM]Ig:(mn 6I + sin 66)]27 (115)
4
i T 116

T, = (T/4)IK: (sin 6. + sin 62 _ sin 6" - sin 64)X
+ (T/H[(1K2 + kK4)(cos 6, - cos ?{,.) + ka)tr(sin ? + sin
+ (T/H[(1K2 + kK4)(cos 68 - cos ?.) + kI%r(sin 6d’ + sin

(117)
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The net force and torque acting on the missile is determined using,

and

Thus,

= + +
F=F, +F Ry aze

I:-Tg+Ia+:W (119)

+

{(TAOE"K" K2(cos 6) + cos S2 + cos 6 + cos 6M)]

* 7 (gnCll * geC2l * gdW ¢ Dx>*

{(T/iD)[KJ4(cos 6l - cos 67) “ K"Csin 62 + sin 67)]

4 m(gnCl2 4 geC22 4 gdC32) * Ly’-
{(T/M[Kl4(cos 62 - cos 67) + (sin 61 + sin
4 "(gnCl13 4 geC23 4 ' Lz 120
. i o o
(T/4)1K,_ s1n{. sin 6() sin 6U sin 6/)X

{hLZ + (T/4)[(IK2 + kK.4)(cos 6% - cos 64.)
+ kl&(‘S{l]ﬁ_ + sin 6jL)]}¥

{hLy + (T/4[(1K2 + kK4)(cos 6" - cos 6™

+ kK™sin 52 + sin 64)]}Z (121)
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*1. Generalized Active Forces, F

—

F3

F4

F/\

Fg

= (T/i])le:(sin 6I + sin 6,, - sin - sin 6,.)

= hLZ + (T/4)[(IK2 + kI%,)(cos - cos 6'A)

2
+ kKLr(sin 611 + sin 6(()))]

= hLy + (T/4)[(1K2 + kK4)(cos &3 - cos 67

+ kKai(sin 6f + sin 64.)]

= (T/4)[4Kl + K2(cos 6] + cos 62 + cos 63 UUS O.yU

ra(gnCll + ggC% + S(fi%l) 'D

= (T/4)[K™cos 6l - cos 6") - K”sin &2

+

sin 6M)]

m(gnC12 + geC22 + gdC32) + Ly

+

= (T/4)[K*(cos &2 - cos 67) + Kg(sin 6l sin 6M)]

* m(BnC13 * seC23 * " Lz
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(123)

(124)

(125)

(126)

(127)



*
D. Generalized Inertia Forces, IF

The generalized inertia forces for a rigid body are given by:

F *= v ¢« F* + w o T* (128)
r 30 -r - -r -

* *
F and T are called the Inertia Force and the Inertia Torque,

respectively.

*
1. Inertia Force, F

b £
F = - ma (129)
31
Eolg mmly Tyt mug QX mug gy - updy
- m(Ug + - 020M)2 (130)
2. Imertia Torque, T
T = - I atINIX + - 1) ¢ X282
+ _ I2) ¢ cthINZ. (131)
From (81) and (8l!)
T = [v2u32 - 1I3) - II'X + [u3uld3 - - U2I12]Y
+ [ulv2zdl - I2) - (132)

38



3. Generalized Inertia Forces, F

r

Form F ; v o F +u T using (93), (130) and (132):

o

FI = 020312 ~ I3) Vi (133)
* -

F2 = U3U1(13 _ 1I1) uU2I2 034)
*

F3 = UI1U2l ~ I2) U313 (135)
*

Fri = - m(u2u6 - u3dus + (136)
*

F5 = - mCu”® - Ulu6 * \/ (137)
*

F6 = ' m(uiu5 * U2Ul + "e) (138)
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E. Kane's Equations of Motion

The equations of motion of the missile M are given by:

F +F = 0 (xr =1.....,6) 039)

Combine Eqgs. (122)-(127) and (133)-(138), for r =

(T/4)IKb (sin 6I + sin , - sin - sin 6,.)
+ u2u3d2 - 1) - ulll = 0 (140)

hLz + (T/4)[(1K2 + kK"Kcos 62 - cos 6")

+ kK”(sin 61 + sin S?)] + - Il) - u2I2 = 0 (141)
hLy + (T/4)[(1K2 + kK2))(cos 63 - cos 6™

+ kKA(sin 62 + sin 67)] + ulu2(dl - I2) - u3l3 = 0 (142)
(T/4)[4K" + K5(cos 61 + cos 62 + cos + cos 67)] - Dx

+ m(gnCll + geC2l + gdC31 " U2U6 + U3US “ ji4) = 0 (u3)
(T/4)[K.4 (cos 61 - cos 6?) - Iir(sm 62 + sin 64.)] + Ly

+ m(gnCl12 + gec22 + gdC32 " U3U4 + V6 " ('5) = ° (u4)

- N 1 1 -

(T/4 )[Kzl (cos 62 cos 54,) + 5(snl 6[ + sin 63_)] LZ

* m(gnC13 * 6eC23 * gdC33 ¢ ulus + U203 ~ 7 ~ 0 <1,5>



V. Imitial Value Problem Formulation

A. Solution for u.1

Equations (140)-(1"5) represent a system of first-order

differential equations of the form:

Ui = fl(ul....,Ug) a =
where
. ~2 - 1I3) TIPC
1 1 w2u3 * 31 -(sin 6! + sin 6" - sin 6" _ sin
do - V hL T
2 = Jmmmmen + j— + [(1K2 + kKl1[)(cos 62 - cos
+ kKJB(sin ? + sin
(q - 12) hi T
3 = - J-mmmmm- ulu2 + vy ~ + YJ- [(1K2 + kK") (cos <3 - cos
3 3

+

kKj. (sin &2 + sin

3 ¢ U3US " U206 * gnCll " seC2l * gdC31 " S-

+ :IEjy [4Kl + K2(cos 6! + cos 62 + cos 6" + cos

5 UIU6 U3U4 + gnCI2 + geC22 + gdC32 + m

+ [KJd(cos 61 - cos 6 - K”™sin 62 + sin

f5 = U2U4 ' UIUS + gnCl3 + geC23 + gdC33 _ i"

+ [Ki|(cos S2 - cos 6%) + K”™sin 6/ + sin
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nonlinear
(146)
6™) (14?)
6")
69)] (148)
6/\
6M)] (149)
6M)] (150)
6M)] (151)
6M)] (152)



When the wvalues of and 6°, (1 = and the elements of the
direction cosine matrix ~j)» (G =1, 2, 3; j =1, 2, 3), are known for

one instant of time, the problem formulation given by (146) is
particularly convenient for a numerical integration, and thus, a time

simulation of the missile.

1
Time updates of the direction cosine matrix can be done by integrating

CcC = C nnm (153)

where npm is defined to be the skew-symmetric form of fom. From (35),

n_m .
to can be computed using:

to to - to (154)

w |
»

Now, using (39) and (81), (154) can be written as

n m .
o = cg)g_( + oyO_Y+(oZZ_ (155)
where
w =" - A cos L + A sin &
X ! g 11 g 21 g 31
o - U, - A fLC.f i
ty Y cos LgC{g ) A sin g 32 156
w =N, - AcosL clot L C t A sin
z 3 g 13 g 23 g 33

. nm . .
The skew-symmetric form of to is now given by

0 - 10
n
g™ = to 0 (157)
VA
to to 0
y X
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Thus, from (7), (153), and (157),

Si Cl2wz  Cl13Wy (158)
£12 = C13*x " Cllwz (159)
S3 = Cray " Cl2wx 160y
Si  =(C22U)z " C23Uy (161 ]
£22 =(C23Wx ' C21Wz 162
£23 = C21Wy " (C22Wx (163)
C31 =(C32%z " C33Wy I6it)
£32  =C33Wx " C31la)z (165)
£33 =C31“y " C32ax 166

B. Solution for L , A h
g g

As mentioned in Section IV.A.3, there may be a requirement to solve for

the geographic parameters of latitude L , longitude A, and altitude h

Also, as seen in the previous section, L , L , and A are needed to update
g g

the direction cosine matrix. By substituting (82) into (79) and equating

the coefficients of X, Y, and Z, three simultanecous equations are

~3



obtained which can be expressed in the matrix form:

Ax=o5>» (167)
where

~ -t Lg, fe: 168
and

b =] ud us> u6 ] (169)

The matrix A is determined by first defining:

a =h +R ({1 -e2)1 - e2sin2 L ) 3/2 (170)
1 g e g
A B 2.2 -1/2
a,, = cos L FRM - e sim L 171
. Gy 7 R ;) (171)

Then,

aiCll a2C21 C31
alC21 a2C22 ” C32 172
alCl13 a2C23 ~ (C33

The solution for A, L , and h is obtained by inverting (172)
g g

(173)

Eq. (173) is a first-order nonlinear matrix differential equation which

can be integrated in conjunction with (146) and (153) to solve for L , A,
g

and h as a function of time,
g
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V1. Conclusion

The equations of motion and the initial-value problem which were derived
are for a specific application; however, the approach used was general in

form and can be applied to other near-earth flight vehicle analyses.

Specifically, the only changes that are likely to be needed to model
another missile would be the expressions for the thrust vector control.
In the case of a winged flight vehicle, expressions for the roll, pitch
and yaw moments generated by the control surfaces would also be required.
Once the correct system of forces and torques has been determined, they
can be combined with exactly the same partial wvelocities, in precisely
the same manner as before, to formulate the equations of motion and the

associated initial-value problem.
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