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ABSTRACT

Kane's Equations of Motion for the Polaris A3 missile are derived, and an 

initial-value problem which can be used in a time simulation of the 

missile's flight is developed. A brief overview of Kane's method for 

dynamical analysis is included to assist readers who may not be familiar 

with the techniques employed. The model assumes rigid body dynamics, and 

accommodates the earth's geometry and gravity field, the aerodynamic 

forces, and the missile's thrust vector control.
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I. Introduction

This report consists primarily of the derivation of the equations of 

motion for the Polaris A3 missile. The derivation of the dynamical 

equations is based on the method developed by T. R. Kane of Stanford 

University, and employs the various elements which characterize the 

method, such as generalized coordinates, generalized speeds, partial 

velocities, and finally, Kane's equations of motion. A brief overview of 

the method is included to assist readers who are not familiar with the 

technique.

In addition to the equations of motion, an initial value problem is 

developed which can be incorporated in a simulation of the missile's 

flight to provide velocity and position predictions as a function of 

time.

This analysis deals with a specific application; however, the approach 

was intentionally made as general as possible to enhance its application 

to similar problems.
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II. Definition of Reference Frames and Generalized Coordinates

A. Reference Frame Orientations

The reference frame geometries used in this analysis are shown in Figures 

la and 1b. Reference frame I is assumed to be an inertial reference 

frame and is represented by the set of mutually perpendicular unit 

vectors _i^ , iL^, and ^ that are fixed in I with their origin at C, the

geometric center of the earth, E. The earth is represented by the unit 

vectors e^ , e^, and e^ , fixed in E, whose origin is also located at C.

The mass center of the missile M is located at 0. Point 0 is also the 

origin of the unit vector sets _c^, c^, c^ and N, E, D which represent the

Geocentric and Geographic frames, respectively. The _c^ vector of the

Geocentric frame lies in the direction opposite to the geocentric 

position vector, r. The c^ vector points east, and the c^ vector, which

lies in the local meridian plane, completes the right-handed orthogonal 

vector set. Vector E of the Geographic frame coincides with c^, but as

seen in Figure 1b, D is defined to be normal to the reference ellipsoid
1

which represents the earth's shape . The reference ellipsoid is a solid 

of revolution that is symmetrical about the polar axis. Vector N 

completes the right-handed orthogonal set.

B. Generalized Coordinates

Specification of the configuration of the system is accomplished through

the use of generalized coordinates. By choosing a set of independent

coordinates, the derivation of the equations of motion is usually

simplified. One such set for this problem, which would completely and

independently specify the missile's six degrees of freedom, would be the

polar coordinates X, L , and r, and the three Euler angles of the bodyc

relative to the Geocentric frame. Unfortunately, practical navigation
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FIGURE 1a. Coordinate Frame Geometry.

FIGURE 1b. Coordinate Relationships.
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problems commonly utilize the geographic latitude angle L rather than
§

L , and the geographic altitude h rather than the geocentric radius r. c g

If L and h are used as coordinates, it is no longer apparent that the

missile's six degrees of freedom can be specified with six independent

generalized coordinates. Referring again to Figures la and 1b, one

possible set of coordinates would be the angles A and L , the lengths A ,
S ^

R and h , and finally, the three Euler angles of roll, pitch, and yaw of

the missile relative to the Geographic frame N, E, D. However,

of these eight generalized coordinates can be independent.

seen later, A and R can be expressed in terms of L , and as c g K g

the final dynamical equations will not involve Ac or R^.

only six 

As will be 

a result,

C. Missile Orientation

Figure 2 shows the vector sets which represent the missile and its 

nozzles. The missile's vector set is located at 0, with X pointed 

forward along the longitudinal, or roll axis of the missile. Vector Y 

coincides with the pitch axis, and Z coincides with the yaw axis. The 

orientation of M is determined using a "body-three, 3-2-1" rotation

sequence0. That is, M is brought into general orientation by first 

aligning X, Y, and Z with N, E, and D, respectively, and then performing 

successive right-handed rotations of ^ about Z, 0 about Y, and <j> about X. 

Other rotation sequences can be chosen, but this particular sequence is 

perhaps the most intuitive since the first rotation brings X into its 

final azimuth; the second rotation brings X into its final elevation; and 

the final rotation brings the missile into its final roll position. If 

the rotations are performed in a different sequence, or about only two 

axes, their effects on heading, elevation, and roll are not independent.
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M

X (roll)

FIGURE 2. Missile Frame and Nozzle Locations.
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D. Nozzle Orientation

Four nozzles are located at the base of the missile in such a way that 

the direction of their thrust vectors can be changed by rotating each 

nozzle on a bearing whose axis is not parallel to the axis of symmetry of 

the nozzle. In Figure 2, points a, b, c, and d represent the points 

where the four bearing axes and the four nozzle axes are presumed to 

coincide, and where each nozzle thrust vector is assumed to be acting. 

These points lie on a circle of radius 1 whose origin O' is on the 

missile centerline. The distance between 0 and O' is represented by k. 

The azimuthal locations of a, b, c, and d are at 0, 90, 1 80, and 270 

degrees respectively, measured clockwise, looking forward, and starting 

at the positive pitch axis. Nozzles 1, 2, 3, and 4 are mounted at a, b, 

c, and d, respectively.

Four unit vector vector sets, which are fixed with respect to the 

nozzles, have their origins at a, b, c, and d. Each nozzle is brought

into a general orientation using a "body-two" rotation sequence^. Figure 

3 shows the vector system used to determine the orientation of the 

centerline of Nozzle 1. The vectors a^, a^, and a^ are fixed relative to

the nozzle mounted at point a, with a^ coinciding with the nozzle's

centerline and its assumed thrust axis. The orientation of the nozzle is 

determined by first aligning a^, i = 1,2,3, with X, Y, and Z

respectively, and then performing successive right-handed rotations of 

the nozzle, of -g, the bearing cant angle, about a^, and then of 6^, the

nozzle rotation angle, about a^, and finally of Y, the nozzle cant angle,

again about a^ . Likewise, the orientations of nozzles 2, 3, and 4 are

determined by first aligning vector sets b., c. and d., i = 1,2,3, withii, i

X, Y, and Z, and performing successive right-handed rotations in a manner 

similar to that for Nozzle 1. Control of the net thrust vector is 

achieved by adjusting the nozzle rotation angles 6. , i = 1-4. For the

6



FIGURE 3. Nozzle Frame.

FIGURE 4. Body Forces.
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Polaris system, positive control system commands produce positive 

rotations of nozzles 1 and 2, and negative rotations of nozzles 3 and 4.

The thrust vector control for the second stage motor can be handled in a 

manner similar to that of the first stage motor by using the same vector 

system, but with different angles and rotations. The second stage motor 

nozzles do not physically move, but instead, their exhaust is deflected 

by injecting freon into the sides of the nozzles. The thrust deflection 

can be represented by setting the bearing and nozzle cant angles, g and 

Y, to zero and performing nozzle "rotations" 6^, i = 1-4, about the

vectors which point in the radial directions, a^, b^, c^, and d^.

E. Body Forces

In addition to the motor thrust, the missile also experiences wind and 

gravity body forces during its flight. These distributed forces can be 

replaced with forces acting as shown in Figure 4. The aerodynamic forces 

are replaced with an equivalent force located at the missile's center of 

pressure, and the gravity forces are replaced with the weight of the 

missile located at it's center of gravity. The locations of the center 

of pressure and the center of gravity, as well as the orientations and 

magnitudes of the forces are all assumed to be variable during the flight 

of the missile.

F. Rotation Matrices

The reference frames and vector systems described above and shown in 

Figures 1-4 define the position, orientation, and dimensions of the 

missile as well as the points of application and directions of the 

various forces used in deriving the equations of motion. Throughout the 

analysis, it will be necessary to express certain quantities in terms of 

a set of vectors that are oriented differently from those in which the 

quantities are currently written. Rotation matrices will be used to 

describe the orientation of one set of vectors relative to another. For

8



example, suppose a vector has been expressed in terms of the vectors e^,

g
®2’ —3 anc* :’'S ^enote^ as — • The same vector expressed in terms of i_^ , 

_i2> or v1, is given by:

1 o1 ev = R v
— —e —

Also note that the columns of each matrix are the components of the unit 

vector shown above the column written in terms of the unit vectors shown 

to the left the matrix. Similarly, the rows are the components of the 

unit vector shown to the left of the row written in terms of the unit 

vectors shown above the columns.

Inertial-Earth

—2

R1 =
—e

i i
ii cos co t - sin 0) t

i e. i e.sin co t cos co t (1)

. 1Inertial-Geocentric

—2 -3

R1
—c

i. - sin L cos X - sin X - cos L cos A-1 c c

i„ - sin L sin X cos A - cos L sin A-2 c c

i^ cos L 0 - sin L
-3 c c

(2)

9



1Inertial-Geographic

N E D

i. - sin L cos \ - sin X - cos L cos X-1 g g

i„ - sin L sin X cos X - cos L sin X-2 g g

i_ cos L 0 - sin L
-3 g g

Geographic-Geocentric1

—2 —3

N cos D 0 sin D

Rn = E
—c — 0 1 0

D - sin D 0 cos D

Earth-Geographic1

N E

- sin L
g

cos A1 - sin

—n = —2 - sin L
g

sin A1 cos

-3
cos L

g
0

(4)

D

A1 - cos L cos A1
g

A1 - cos L sin A1
g

- sin L
g

10



Geographic-Body^ (Body 3: 3-2~1 )

This rotation matrix is based on the following rotation sequence:

Y 'X’ ' -

Figure 5. Rotation Sequence: ^Z', eY1', cf>X

(Abbreviate "sin ip cos 0" as "s^cG", etc.)

Rn = E 
—m —

cijjcG

si|ice

- S0

ctjjses<() - c<f)S4) 

s^sGs^ + ctfic^i 

C0S<}>

c^s0c<}) + s<j)Sii; 

S^S0C(() - StfiCtf; 

C0C(})

(6)

Redefine (6) as C, the direction cosine matrix:

C ^ E

X Y Z

c c'11 12 13

c c'21 22 23

’31 C32 C33

(7)
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£
Nozzle-Body (Refer to Sec II.D)

Define: B = bearing cant angle

6.= nozzle rotation for nozzle i, i = 1-4i

Y = nozzle cant angle

Nozzle 1: 6^ - nozzle rotation

Rotation sequence: Body 2, 3~1_3; ~

^1 —2 -3

X cBcY + sBsYcS^ - cBsY + sBcYcB^ - sBs6

Y - sBcY + cBsYc61 sBsY + cBcYc61 - cBs6

Z sYs51 cYs61 C61

Similarly,

Nozzle 2: = nozzle rotation

Rotation sequence: Body 2, 2-1-2; Bb2, 6„b1, - Yb2

^1 —2 —3

X cBcY + sBsYc62 sBs5 - cBsY + sBcYc6

Y - sYs62 C<52 - cYs<$2

Z - sBcY + cBsYc62 cBs62 sfisY + cBcYc6



For nozzles 3 and ^, positive control system commands produce counter­

clockwise rotations of the nozzles, viewed looking forward.

Nozzle 3: 6^ = nozzle rotation

Rotation sequence: Body 2, 3-1~3; Bc^, - 63—1’ ~ ^£3

—2 %

X cgcY + sSsYce^ cBsY - sBcYcS^ - s3s6

Rm = Y 
—c — sBcY - cBsYcS^ sgsY + cBcYce^ cBs5

Z SYS63 - CYS53 C63

Nozzle = nozzle rotation

Rotation sequence: Body 2, 2-1 -2; - B£2, - , Yd2

d. d^ d„-1 -2 -3

X cBcY + sBsYc6^ sBs6^ cgsY - sgcYcS

Rm - ^d “ Y - SYs6^ c64 cYs64

Z sgcY - cgsYcS^ - cBs6^ sBsY + cBcYc6

13



Since the angles Y and (3 remain constant, define:

K. = cgcY = sYI D

K2 = sgsY = cY

= sgcY = SB

= CBsY Kg = cB

Using (12), Eqs. (8)-(11) become:

Nozzle 1 :

-1

Rm = Y
—a —

K1 + K^cos 61

K^ + K^cos 61

K^sin 5.D

—2 %

K^ + K^cos 61 

K2 + K^ cos 61 

K,sin 6,

- K^sin 61

- KgSin 61

cos 61

(12)

(13)

Nozzle 2:

Rm

X

Y

Z

K1 + K2cos 62

- K^sin 6„ b 2

- Kg + K^cos 62

K^sin 62 

cos 52 

KgSin 62

K^ + KgCOS 62

- K,sin 6 o 2

K2 + K^ cos 62

(1^)

14



Nozzle 3-

Rm
c

X

Y

Z

K1 + K^cos 6^

~ K^cos 6^

K^sin & 
o 3

- K2COS ^2

K2 + K1cos 62 

- K,sin

K^sin 62 

KgSin 62 

cos 62

(15)

Nozzle 4:

d d„ d.-1 -2 -3

X K1 + K2cos 6^ K^sin 6^ K4 - K2COS 6^

Rm = Y - K_sin 6 cos 6^ KgSin 64

Z K3 - K^cos 6^ - KgSin 64 K2 + K^ cos 64

(16)
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Ill. Overview of Kane's Dynamical Equations

A. Equations of Motion

The Polaris missile M possesses six degrees of freedom in I, all motions 

of which are governed by the equations

Fr + Fr)t = 0 (r = 1..........6) (17)

These equations are called Kane’s dynamical equations.

B. Derivation

Briefly, the derivation of Kane's equations begins with D'Alembert's 

principle, which in effect reduces a dynamics problem to a statics 

problem by writing Newton's second law of motion for a particle P in the 
4

form

F - ma = 0 (18)

If the term -ma is viewed as another force, specifically an inertial 

force defined as

*
F = - ma

then (18) can be written as

(19)

*
F + F = 0 (20)

Eq. (20) now has the appearance of a statics problem which states that 

the vector sum of all forces, both applied and inertial, is zero.

16



Now, dot-multiplying (20) with the velocity v of the particle P,

*
v • F + v • F = 0 (21 )

*
and defining two scalars A and A as

A = v • F

leads to the scalar equation

A + A* = 0 (23)

*
The terms A and A are referred to as the activity of the force F and the

*
activity of the force F , respectively, and (23) is a statement of the 

activity principle^.

If P has more than one degree of freedom, (23) does not provide 

sufficient information for the solution of the problem. In this sense, 

(20) provides more information, because it is equivalent to three scalar 

equations. However, there is a potential advantage of (23) over (20) 

which is important, and it forms the basis of one of the major strengths 

of Kane's equations. If F contains any contributions from unknown 

constraint forces, they will certainly affect (20), but the dot 

multiplication which led to (23) will frequently eliminate these unknown 

forces.

To arrive at a formulation which contains sufficient information for a 

multiple degree of freedom problem, yet still automatically eliminates 

unknown constraint forces, Kane's method replaces (21) with

v • F + 
—r —

*
v • F =0 
—r -

(r = 1..........n) (2i))

17



where n is equal to the number of degrees of freedom for P and is the

r^ partial velocity of P. These partial velocities will be defined in 

Sec. IV.B.

*
Now, if F and F are defined in a manner similar to (22) as r r

Fr = V £ (r = 1 , . . . ,n)

* A *F = v • F (r = 1,...,n)r —r —

then (24) becomes
*

F + F = 0 r r (r = 1..........n)

(25)

(26)

Thus, (26) is like a "generalized" form of the activity principle, but 

now there are a sufficient number of equations to solve the problem.

*
The scalar terms F^ and F^ are referred to as the generalized active

force and the generalized inertia force, respectively. These generalized 

forces, and the generalized coordinates that are associated with them, 

are analogous to those employed in the derivation of Lagrange's 
4equations , and as a matter of fact, Lagrange's equations of motion can 

easily be derived from Kane's equations. However, Kane's equations offer 

an important advantage over Lagrange's equations when a system is 

subjected to motion constraints. In these cases, Lagrange's equations 

require the use of Lagrange multipliers to solve for the constraint 
4

forces . The effort required to derive the equations of motion when 

Lagrange multipliers are needed is often increased significantly, yet 

ironically, neither the Lagrange multipliers or the constraint forces 

appear in the final equations of motion. Kane's method uses constraint 

equations to define the position or motion constraints which are applied

18



to the system. The need for multipliers and the determination of 

constraint forces is eliminated.

The derivation of (26) above was for a single particle P. More 

generally, for a system of N particles P^,...,PW, the generalized active

forces and the generalized inertia forces are defined as:

and

(r = 1,...,n)

ill (r = 1......... n)

(27)

Also, when a dynamics problem involves the motion of rigid bodies, the 

set of contact and/or body forces acting on particles P^.......... P^, of a

rigid body B can be replaced with a couple of torque T together with a 

force F applied at a point Q such that

and

F ill F. —1

N
1 = i=E1 r. x F .

—i —i

(28)

where r. is the position vector of P. relative to Q. The generalized—i i

active force for B can then be written in terms of F and T as

F = v,F + u)*T r —r - —r — (29)

where v^ is the partial velocity of point Q, and is the partial

angular velocity of B. If the point Q is chosen to be the mass center of 
*

B, denoted as B , then in a manner similar to (29), the generalized

19



inertia force for B is given by

# *
F = v • F + gj • T r —r — —r — (30)

*
F is called the inertia force for B, and is defined as the product of

*
the mass m of B and the acceleration a of the mass center of B:

* *
F = - ma

*
T is called the inertia torque for B and is defined as

*
T iSi m.r.X a.i—i —i

(31 )

(32)

where iik is the mass of particle of B, N is the number of particles, 

r. is the position vector of P. relative to the mass center of B, and a.—i i ’ —i

is the acceleration of P..i

For a body such as a missile, (32) has little use except for deriving
*

more practical (and more familiar) expressions for T . For example, if 

J2-I > H2> —3 are mutually perpendicular unit vectors, each parallel to a

*
principal axis of inertia of B for B ; are the associated

*
principal moments of inertia of B for B ; and the angular velocity and 

angular acceleration of B are expressed as

B
w = w^n^ + 1^2—2 + ^3—3

and (33)
Ba Vi a2-2 + a3-3

20



then the inertia torque is given as

*
T = - •* *■3^ “

+ ) ~ 0l2I2^—2

+ [o)1a)2(I1 - I2) - ct3I3]n3 (34)

The three right hand components of (34) are commonly known as Euler' s
4

equations of motion and are used frequently in solving for the

rotational motion of a rigid body.

C. Nomenclature

Now that a brief discussion of Kane's method has been completed, the 

derivation of the Polaris equations of motion can be initiated. The 

previous equations show that the derivation will require expressions for
* *

the velocity v and the acceleration a of the missile's mass center; the 

angular velocity w and angular acceleration a; and the applied forces 

acting on the missile.

The nomenclature used in the following analysis is consistent with that

5 6 7used in Kane's textbooks on dynamics ’ ’ . The following equation

provides an example:

in* • •to = A cos L N - LE - A sin L D 
- 3 7 g“ - g-

In this equation, 1ujn is read as "the angular velocity of reference frame 

n relative to reference frame i". A dot above a variable represents it's 

time derivative. The numbers written under the "=" sign are references 

to equations which are used in the derivation of the current expression. 

Unless needed, the superscript "i" may be omitted to simplify notation.

21



IV. Derivation of the Equations of Motion

A. Kinematics

1 . Angular Velocity, to

m n n m
to = to + to

From Figure 1:

n • •to = Ai0 - L E
-3 g-

= I(cos L N - sin L D) - L E 
3 8- g“ g~

n • • •to = A cos L N - L E - A sin L D 
- 3 7 g~ g- g~

or,

n0) (A cos L Cn ■- L C01 ■- A sin )X
7 g 11 g 21 g 31

+ (A cos L C10 ■- L Coo ■
•

- A sin L ) Yg 12 g 22 g 32

+ (A cos L c-,o ■- L Coo ■- A sin L Coo )Z
g 13 g 23 g 33

(35)

(36)

(37)

(38)

(39)

From Figure 5:

or,

Finally,

n m • • •to = ijtD + 0Y' + 4>X

m = (_ tj; sin 0 + <j))X + (4) cos 0 sin <}> + 0 cos <{))Y

+ (4j cos 0 cos 4> - 0 sin $)!

combining (39) and (41) gives:

(40)

(41 )

m =(-41 sin 0 + 4> + A cos LgCi-j

+ (41 cos 0 sin <() + 0 cos <f> + A

+ (ip cos 0 cos 4> - 0 sin 4> + A

- LgC21 - j sin LgC31 )X

C°S LgC12 “ V22 ' 5 3l" LgC32)- 

cos LgC13 - LgC23 - J sin LgC33)Z

(12)

22



In certain situations, it may be useful to have an expression for the 

angular velocity of the missile relative to the earth, rather than 

inertial space:

Similar to (38),

e m e n n m U) = w + w (43)

Thus,

V = 1 cos L N - L E - 1 sin L D 
g- g~ g-

(44)

e m = (- 4) sin e +

•r—
1

+• -e- cos L
g C11 - V21 - i sin L C_.)X 

g 31 -

+ (ij) cos e sin 4 + 0 cos 41
•

+ 1 cos L C._ g 12
- L c - i sin

g 22 LEC32»

+ (4) cos 0 cos

• CD1

-e- sin 4 + i cos L C,_ 
g 13

- L C - 1 sin
g 23 LgC33^

2. Velocity, v

*
v

dr

dt

From Figure 1 b:

(45)

(46)

r = - rc_ = - A i_ - (R + h )D - -3 c-3 g g - (47)

= - A (cos L N - sin L D) - (R + h )D 3 c g- g- g g - (48)

r = - A cos LN-(R +h -A sin L )D“48 c g- g g c g- (49)

From the Law of Sines and Figure 1b:

sin(L - L ) g eg

R

sin(L + tt/2 )eg

R
g

cos Leg
(50)
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Thus,

R sin(L - L ) 
g g eg

cos Leg

R (sin L cos L - cos L sin L ) g g eg g cg
cos L eg

(51 )

sin L cos L
A = R sin L (1 - ------- )c c, g g cos L sin L 51 eg g

(52)

tan L
A = R sin L (1 eg

g g tan L (53)

From Figure 1b:

tan L = y/x eg
(54)

The tangent of L is the slope of the normal to the ellipse at point A, 
g

which is given by the negative reciprocal of the slope of the ellipse at 

A. The equation of the ellipse,

2 2 2 2 x /R + y /R = 1 e p (55)

can be used to obtain the derivative, or slope of the ellipse at A:

dy
dx x,y

- (x/y)(Rp/R^) (56)

Thus,

tan L
g

1
(dy/dx) x,y

(y/x)(R^/R2) 
e p (57)



From (53), (S1*), and (57):

A = R sin L (1 - R2/R2) 
eg g p e (58)

If the eccentricity of the reference ellipsoid is defined as

? 2 1/2 e = (1 - R /R )P e
then (58) becomes

(59)

A = e R sin Legg (60)

Thus, r can now be expressed as

r = - e2R sin L cos L N - (R + h - £2R sin2 L )D
H9 §§ g gg g g

(61 )

Eq. (46) can be expanded as follows:

„ dr ndr
* — — n

v = -rr = —tt + oj X r— uc ut dt — — (62)

d- 2 2 
— = - e [R sin L cos L + L R (1 - 2 sin L )]N
dt61 gg ggg g-

0 0 o
- (R + h - R e sin L - 2L R e sin L cos L )D 

ggg ggg g g-
(63)

From (38) and (61)

a/1 X r = L (R + h - £2R sin2 L )N 
--ggg g g“

+ [Xe2R sin2 L cos L + A cos L (R + h 
g g g ggg

- e2R sin2 L )]E 
g g “

- L e R sin L cos L D 
ggg g“

(64)
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Eqs. (63) and (64) can now be combined and simplified to obtain:

v* = [L (R + h - R e2cos2 L ) - R e2R sin L cos L ]N 
gggg gggg g-

+ X(R + h )cos L E 
g g g~

+(-R - h +LR £2sin L cos L + R e2sin2 L )D (65)
gggg g gg g-

An expression for R 

from Figure 1b that

as a function of L can now be obtained by noting

cos L = x/R 
g g

(66)

Thus,

R = x/cos L 
g 6 6 £ (67)

Now, by squaring (67),

2-2 R = x /cos L (68)

and since

then

2 /n2 2/d2x/R + y /R = 1
e P 55 (69)

2 2 - 2 2 R = R (1 - y /R )/cos L g 66 e J p g (70)

However, from Figure 1b:

'sin L = (y + A )/R (71)
8 c 8

If (71) is solved for y and and combined with (60), then

y = R sin L (1 - e2) (72)
8 6
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Eq. (72) can then be squared and substituted into (70):

R 2
g

R 2
e

cos2 L [1 + (R /R )2tan2 L (1 - e2)2] 
g e p g

(73)

Now, (73) is simplified using

2 2 21 - e = R /R
5 9 P ®

(74)

to obtain

2 Re2

Rg = 2 2
S 73 1 - e sin L

g

(75)

Thus,
2 2 -1/2R = R (1 - e sin L )g 75 e g (76)

The derivative of (76) gives

• • 2 22 -2/2 R = L R e sin L cos L (1 - e sin L ) 0 (77)
g g e g g g

Finally, R and R are substituted into (65) and simplified to obtain 
g g

* • 222 -2/2 v = L [h + R (1 - e )(1 - e sin L ) ^ ]N
g g

+ A cos L [h + R (1 - e2sin2 L ) 1/2]E - h D (73)
g g e g - g-

Eq. (78) gives the velocity of the center of mass of the missile in terms 

of geographical coordinates. Since it is frequently more useful to 

express velocity in body coordinates, the rotation matrix given by (7)
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can be used to obtain:

* . ? ? ? -V2v = {L [h + R (1 - e )(1 - e sin L ) 5 jC,.
- 78 S S e g 11

+ X cos L [h + R (1 - e2sin2 L )~1/2]C01 - h Cb }X 
g g e g 21 g 31 -

+ {L [h + R (1 - e2)(1 - e2sin2 LrT)~3/2]C1„ 
g g e g 12

+ X cos L [h + R (1 - e2sin2 L )"1/2]C0„ - h C.„}Y 
g g e g 22 g 32 -

+ {L [h + R (1 - e2)(1 - e2sin2 L )"3/2]C 
g g e g 13

+ X cos L [h + R(-\ - e2sin2 L^)"1/2]C„_ - h C__}Z (79)
g g e g 23 g 33 -

And if needed, an expression for the velocity of the missile relative to
e * • •

the earth, v , can be obtained by replacing A with 1 in (78) and (79).
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3. Generalized Speeds

If "generalized speeds" are defined as follows

(80)

then the expressions derived earlier for the angular velocity and the 

velocity of the mass center of the missile are simplified:

4 2

UlX + U2l + u3-

7 9

+ U5— + u^Z
o—

(81)

(82)

There are two reasons for taking this step. First, in analyzing the 

motion of a system, there is often more interest in the velocity 

components of the body, rather than the coordinates which measure its 

position. In this problem, all of the quantities are of interest since 

it is also a navigation problem; but the velocities are still the primary 

variables from which the secondary quantities of longitude, latitude and 

altitude will be computed.

The second reason is another important aspect of Kane's method. The 

introduction of generalized speeds can dramatically simplify the 

kinematics (as can be seen by comparing the different expressions for the 

velocities earlier), and lead to particularly effective formulations for 

the generalized forces which enable the analyst, with a minimum amount of 

effort, to construct the simplest possible form of the equations of 

motion.
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It should be noted that if there were no requirement to solve for L^, A,

or h , then the lengthy derivations of (^2) and (79) can be omitted. The 
S

motion of the vehicle is then determined by starting with (81) and (82),

thus saving all the effort leading up to them. In effect, that is what

will be done now by continuing the analysis with (81 ) and (82), while

setting (79) aside to be used later in solutions for L , A, and h .
g g

H. Angular Acceleration, a

ma (83)

Since X, Y and Z are fixed in M, (81) and (83) give

ma = ii^X + u2Y + u^Z (84)

5. Acceleration, a

*
a

* m dv dv

dt dt
m v * + a) X v (85)

m , * dv

dt = u„X + u Y + u,Z a 2 4- 5- 6- (86)

From (81) and (82):

m *w X v = (u2u6~ u^Uj. )X + (u^u^- u.jU^Y + u2u^)Z (87)

Thus, (86) and (87) combine to give

a = (Cy u2u6- u3u5)X + (u5+ u3u4- u^Y + (u6+ Ulu5- u2u4 )Z (88)
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B. Partial Velocities

The partial angular velocities and partial velocities of M in I that are 

used in (29) and (30) to derive the generalized forces are defined as:

. 9oj m A -
m

-r 9u (r = 1 .... ,6) (89)

and

« 4

-r 9u (r = 1..........6) (90)

m *respectively. Since and v^ appear in (81) and (82) in the forms

6
E. a) u r=1 -r r (91 )

and

v
6 *
E. v u r=1 -r r (92)

they can be determined by inspection. Table 1 gives their values.

TABLE 1. Partial Velocities

r

E 
U

31

*
V—r

1 X 0

2 Y 0

3 Z 0
4 0 X

5 0 Y

6 0 Z

(93)
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C. Generalized Active Forces

As shown earlier, the generalized active forces for a rigid body are 

given by

F = v • F + uj • T (94)r 29 -r - -r -

F and T are, respectively, the vector sums of the applied contact and 

body forces, and the moments of those forces about a chosen point on the 

body. The point chosen for computing the sum of the torques will be 0, 

the mass center of the missile, because it simplifies the computation of 

the generalized inertia forces later.

The forces that contribute to F and T are the gravitational and 

aerodynamic body forces, and the four nozzle thrusts which are shown 

schematically in Figure 4.

1. Gravitational

Gravitational forces will normally be determined by an analytical

gravitational potential model of the type described by Britting1. Such a 

model will not be detailed here since the model chosen depends on the 

accuracy required in the solution of the problem. For the purpose of 

this analysis, the general case is assumed where three components of the 

gravity field vector g are provided by an appropriate gravity model, such

that

g - gnN * g<!E » 8dD

Thus, if m is the mass of the missile,

F = mg = mg N + mg E + mg D
o 95 n 0 Q

(95)

(96)
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or
F = m(g C + g^C01 + g,C_.)X

m(gnC12 + geC22 + gdC32:>- 

m(gnC13 + geC23 + SdC33^-

Since F acts at the mass center, 
-g

T = 0
S 2 8

(97)

(98)

2. Aerodynamic

For reasons analogous to the gravitational model discussed above, it is 

assumed for this analysis that an aerodynamic model will be used to 

provide the lift, drag and sideforce components of the aerodynamic force

F , such that-a

F =-DX+LY-LZ (99)—3. x— y— z—

This force is further assumed to act at the center of pressure as shown 

in Figure 4. The moment about point 0 is given by

T = (hX) X F (100)a 2 e a

Thus,

T = hL Y + hL Z (101 )-a 9 9 z- y-

3. Nozzle Thrust

It is assumed that the thrust from each nozzle is equal to one-fourth of 

the total motor thrust, T, and that the thrust vectors are parallel to 

the nozzle centerlines and act at points a, b, c and d shown in Figure 2.
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Nozzle 1 :

It = (TA)^ = (T/4)[(K1 + K2cos 61 )X

+ (- K3 + K4cos 61 )Y + K^sin 6^]

Tl = (- RX + iY) X F1

T. = (T/4){IK^sin 6.X + kK^sinI D D I-

+ [k(K3 - cos 61 ) - 1(K1 + K2cos 6^12}

Nozzle 2:

F = (T/4)b = (T/4)[(K + K„cos 6„)X - K_sin 60Y

+ (- K3 + K^cos 62)Z]

t2 = (- kX + 1Z) x f2

T2 = (T/4) {lKj_sin «2X + [K^ + K2cos ?>?)

+ k(- K. + K,cos 60)]Y + kK sin 60Z}

Nozzle 3=

F3 = (T/4)_£1 = (T/4)[(K1 + K2cos 63)X

+ (K - K. cos <5_) Y + K sin 60Z]
o ^ i — b i—

T3 = (- KX - !Y) X F3

T = (T/4) {- IK sin <5_X + kKcsin 6_Y—o oo—o
+ [- k(K3 - K^cos 53) + KK1 + K2cos 63)]Z}

(102)

(103)

(104)

(105)

(106)

(107)

(108)

(109)

(110)
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Nozzle 4:

(T/M)d = (T/4)[ (K + K cos 6. )X - K^sin 6,.Y
-lie 12 4-5 4-

+ (K3 - K4cos 64)Z]

T4 = (- kX - 1Z) X F4

14 = (T/4){- IK^sin 64X + [- 1(K1 + K2cos 64) 

+ k(K^ - K4cos 54)]Y + kK^sin 64Z}

The nozzle thrusts and torques are now summed:

ill F. —1

+

+

(T/4)[4K1+ K2(cos 

(T/4)[K4(cos 61 - 

(T/4)[K4(cos 62 -

61 + cos 62 + cos 6^ + cos 64)]X 

cos 6.) - Kir(sin + sin 6„)]Y3 D C- H —

cos 5,,) + Kc(sin 6. + sin 6_)]Z Mb 1 o —

T-N

4
i?1 T. —1

T., = (T/4 )lKr_ (sin 6. + sin 

+ (T/4)[(1K2 + kK4)(cos 

+ (T/4)[(1K2 + kK4)(cos

62 _ sin 6^ - sin 64)X

6_ - cos 6,.) + kKtr(sin 6. + sin^ H t) I

6_, - cos 6.) + kKtr(sin 6„ + sin3 \ D d

(111)

(112)

(113)

(114)

(115)

(116)

(117)
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The net force and torque acting on the missile is determined using,

and

Thus,

F = F + F + Fm - -g -a -N

T = T + T + Tm - -g -a -N

F = {(T/iOE^K^ + K2(cos 6.j + cos S2 + cos 6^ + cos 6^)]

* ”,(gnC11 * geC21 * gdV ‘ Dx>*

+ {(T/il)[KJ4(cos 61 - cos 6^) “ K^Csin 62 + sin 6^)]

4 m(gnC12 4 geC22 4 gdC32) * Ly’-

+ {(T/^)[Kl4(cos 62 - cos 6^) + (sin 61 + sin

4 "(gnC13 4 geC23 4 ' Lz^

T = (T/4 )1K,_ (sin 6. + sin 60 - sin 6_ - sin 6|.)X — hi ^ o ^ —

+ {hL + (T/4 ) [ (IK + kK. ) (cos 6_ - cos 6,.) z 2 4 2 4

+ kK_(sin 6 + sin 6_)]}Y
hi 3 —

+ {hLy + (T/4)[(1K2 + kK4)(cos 6^ - cos 6^

+ kK^tsin 52 + sin 64)]}Z

(119)

(118)

(120)

(121 )
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*1. Generalized Active Forces, F------------------------------------ r

Form F = v • F + co • T using (93), (120) and (121): r 2 9 r r

F. = (T/i])lKc(sin 6. + sin 6„ - sin - sin 6,.)I D I ^

F = hL + (T/4)[(IK + kK,)(cos - cos 6.)2 z 2 A 2 A

+ kK[r(sin 61 + sin 60)] o i o

F3 = hLy + (T/4)[(1K2 + kK4)(cos &3 - cos 6^

+ kK,_(sin 6„ + sin 6,.)]0 £ ^4

F4 = (T/4)[4Kl + K2(cos 6l + cos 62 + cos 63 UUS O.-yU

ra(gnC11 + geC?1 + SdSl) ' D^e 21 d 31

F^ = (T/4)[K^(cos 61 - cos 6^) - K^sin &2 + sin 6^)]

m(gnC12 + geC22 + gdC32) + Ly

Fg = (T/4)[K^(cos &2 - cos 6^) + Kg(sin 61 + sin 6^)]

* m(BnC13 * seC23 * " Lz

(122)

(123)

(124)

(125)

(126)

(127)
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*
D. Generalized Inertia Forces, F   r

The generalized inertia forces for a rigid body are given by:

F * = v • F* + w • T* (128)
r 30 -r - -r -

* *
F and T are called the Inertia Force and the Inertia Torque, 

respectively.

*
1. Inertia Force, F

-X- £
F = - ma (129)

3 1

*
F = - m(u. + u„u, - u u )X - m(u + U-U., - u.u,)Y
~ e8 24 2 b 35- 5 314 16-

- m(Ug + - 020^)2 (130)

2. Inertia Torque, T

T = - I^) _ a^I^JX + - 1^) “ (x2^2^—

+ _ I2) “ ct^I^Z. (131 )

From (81) and (81!)

T = [u2u3(I2 - I3) - I1 ]X + [u3u1(I3 - - u2I2]Y

+ [u1u2d1 - I2) - (132)
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*
3. Generalized Inertia Forces, F --------------------------------------------- r

Form F = v • F + ui • T using (93) , (130) and (132):
U
I o 1 1 1

*
F1 = U2U3(I2 ~ I3) Vi (133)

* •

F2 = U3U1(I3 _ I1) U2I2 034)

*
F3 = U1U2(I1 ~ I2) U3I3 (135)

*
F^i = - m(u2u6 - u3u5 + V (136)

*
F5 = - mCu^ - Ulu6 * V (137)

*
F6 = ' m(uiu5 ' U2Ull + "e) (138)
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E. Kane's Equations of Motion

The equations of motion of the missile M are given by:

F + F = 0 (r = 1 .... ,6)r r
039)

Combine Eqs. (122)-(127) and (133)-(138), for r =

(T/4) IK (sin 6. + sin - sin - sin 6,.) b 1 2 d ^

+ u2u3(I2 - I^) - u1Il = 0 (140)

hLz + (T/4)[(1K2 + kK^Kcos 62 - cos 6^)

+ kK^(sin 61 + sin S^)] + - I1 ) - u2I2 = 0 (141)

hLy + (T/4)[(1K2 + kK2|)(cos 63 - cos 6^

+ kK^(sin 62 + sin 6^)] + ulu2(I1 - I2) - u3I3 = 0 (142)

(T/4)[4K^ + K5(cos 61 + cos 62 + cos + cos 6^)] - Dx

+ m(gnC11 + geC21 + gdC31 ' U2U6 + U3U5 “ ,:i4) = 0 (U3)

(T/4)[K.. (cos 6. - cos 60) - K_(sin 6_ + sin 6,.)] + L 4 I 3 b 2 4 y

+ m(gnC12 + gec22 + gdC32 " U3U4 + V6 " C‘5) = ° (U4)

(T/4 )[K.I (cos 6. - cos 5,,) + ^(sin 6. + sin 6_)] - L 4 2 4 5 1 3 z

* m(gnC13 * 6eC23 * gdC33 ‘ ulu5 + U2U3 ~ V ~ 0 <,1,5>



V. Initial Value Problem Formulation

A. Solution for u.i

Equations (1 40 ) - (1 ^45 ) represent a system of first-order, nonlinear 

differential equations of the form:

Ui = fl(u1,...,Ug) (i = (146)

where

TIPC, ^2 - I3)
fl I1 u2u3 * 31 -(sin 61 + sin 6^ - sin 6^ _ sin 6^) (14?)

do - V hL T
f2 = ------- j------- + j— + [(1K2 + kK1|)(cos 62 - cos 6^)

+ kKI.(sin 6. + sin 60)] (148)b 1 i

(q - i2) hi T
f3 = ------- j------- u1u2 + y ~ + Yj- [(1K2 + kK^) (cos <53 - cos 6^

3 3
+ kKj. (sin &2 + sin 6^)] (149)

f3 ‘ U3U5 ' U2U6 * gnC11 " seC2l * gdC31 " S- 

T+ Tjy [4K1 + K2(cos 61 + cos 62 + cos 6^ + cos 6^)] (150)

f5 U1U6 U3U4 + gnC12 + geC22 + gdC32 + m

+ [KJ4(cos 61 - cos 6^) - K^sin 62 + sin 6^)] (151)

f6 = U2U4 ' U1U5 + gnC13 + geC23 + gdC33 _ i"

+ [Ki|(cos S2 - cos 6^) + K^sin 61 + sin 6^)] (152)
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When the values of and 6^, (i = and the elements of the

direction cosine matrix ^j » (i = 1 , 2, 3; j = 1 , 2, 3), are known for

one instant of time, the problem formulation given by (146) is 

particularly convenient for a numerical integration, and thus, a time 

simulation of the missile.

1
Time updates of the direction cosine matrix can be done by integrating :

c = c nnm (153)

where n_pm is defined to be the skew-symmetric form of r\om. From (35),

n mto can be computed using:

n m m n to = to - to
3 s

(154)

Now, using (39) and (81), (154) can be written as

n m .. ..to = coX + ooY+(oZ - x- y- z- (155)

where

1

pII3 A cos + L + A sin dJ

X 1 g 11 g 21 g 31

to = U. -
•

A cos L C10 + L C + A siny 2 g 12 g 22 g 32

1

(
pII3 A cos L C10 + L C + A sin

Z 3 g 13 g 23 g 33

(156)

n mThe skew-symmetric form of to is now given by

n m ft =

0 - to

to 0 z

to to 0
y x

(157)
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Thus, from (7), (153), and (157),

Si C12wz C13Wy 

£12 = C13“x " C11 wz

S3 = Cna)y " C12wx

Si = C22U)z " C23UJy

£22 = C23Wx ' C21Wz

£23 = C21Wy " C22Wx 

C31 = C32“z " C33Wy

£32 = C33Wx " C31a)z

£33 = C31 “y " C32a)x

(159)

(160)

(161 )

(162)

(163)

(I6it)

(165)

(166)

(158)

B. Solution for L , A, h
g g

As mentioned in Section IV.A.3, there may be a requirement to solve for 

the geographic parameters of latitude L , longitude A, and altitude h .

Also, as seen in the previous section, L , L , and A are needed to update
g g

the direction cosine matrix. By substituting (82) into (79) and equating 

the coefficients of X, Y, and Z, three simultaneous equations are

^3



obtained which can be expressed in the matrix form:

where

and

A x = b

/ - t Lg, f,g:

b = [ u4> u5> u6 ]

(167)

(168)

(169)

The matrix A is determined by first defining:

Then,

a = h + R (1 - e2)(1 - e2sin2 L ) 3/2 
1 g e g (170)

A r rv, a n /■ i 2.2. .-1/2 a„ = cos L [h + R (1 - e sin L )2 g g e g (171 )

aiC11 a2C21 C31

alC21 a2C22 ” C32

alC13 a2C23 ~ C33

(172)

• •

The solution for A, L , and h is obtained by inverting (172)
g g

x = A ^ b (173)

Eq. (173) is a first-order nonlinear matrix differential equation which

can be integrated in conjunction with (146) and (153) to solve for L , A,
g

and h as a function of time, 
g
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VI. Conclusion

The equations of motion and the initial-value problem which were derived 

are for a specific application; however, the approach used was general in 

form and can be applied to other near-earth flight vehicle analyses.

Specifically, the only changes that are likely to be needed to model 

another missile would be the expressions for the thrust vector control. 

In the case of a winged flight vehicle, expressions for the roll, pitch 

and yaw moments generated by the control surfaces would also be required. 

Once the correct system of forces and torques has been determined, they 

can be combined with exactly the same partial velocities, in precisely 

the same manner as before, to formulate the equations of motion and the 

associated initial-value problem.
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