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ABSTRACT: In order to study effects of constraint on fracture toughness, it is important to
select the right location within the crack-tip field for investigation. It is reasonable to study the
region of large strains close to the crack tip within which the microscopic separations that lead to
fracture actually take place. The first step in this direction was taken in 1950 by Hill, who
postulated that close to a circular notch tip the principal stress directions would be radial and
circumferential, so that the plastic slip lines (maximum shear stress trajectories) would be
logarithmic spirals. The resulting equation for stress normal to the notch symmetry plane,
- neglecting strain hardening, was identical to that for the circumferential stress near the bore of an
ideally plastic thick-walled hollow cylinder under external radial tension, because the relevant
geometries are identical. Hill’s analysis did not consider strain hardening and did not attempt to
relate the notch root radius to the remotely applied load. In 1969, Rice and Johnson developed a
near crack-tip, plane strain, large-strain rigid-plastic analysis considering strain hardening and
assuming an infinitely sharp initial crack tip. Shortly afterwards, Merkle, following Hill’s
suggestion, proposed an approximate analysis of the stresses and strains ahead of a blunted crack
tip on the plane of symmetry, based on a circular blunted crack tip. The analysis amounted to a
hollow cylinder analogy, including the effects of strain hardening. The original hollow cylinder
analogy was based on small strain theory, and the calculated strain distributions did not agree well
with the Rice and Johnson results very near the blunted crack tip. Therefore, the hollow cylinder
analogy equations have been rederived, based on large strain theory, and the agreement with the
Rice and Johnson results and other more recent numerical results is good. Calculations illustrate
the effects of transverse strain on the principal stresses very close to a blunting crack tip and show

that, theoretically, a singularity stll exists at the tip of a blunting crack.

KEY WORDS: fracture mechanics, crack tip blunting, transverse strain, constraint effects, large

strains



NOMENCLATURE
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€1, €2, &3

€9, €1, €,

Crack tip opening, current and initial, respectively, mm

Radial displacement of point located at initial infinitely sharp crack tip, mm
Elastic modulus, MPa

Engineering strain in axial direction, dimensionless

Function of strain which is linear in distance from crack tip, dimensionless
Constraint factor, dimensionless

Height of ring element, mm

Strain hardening exponent, dimensionless

Original distance from crack tip, mm

Radial distance from coordinate origin, current and initial, respectively, mm
Stress parameter defined by Eq. (46), MPa

Radial displacement, mm

Circumferential displacement, mm

Displacement defined by Eq. (57), mm

Axial displacement, mm

Undeformed horizontal coordinate, mm

Horizontal offset of hollow cylinder analogy coordinate origin from original crack
tip, mm

Deformed coordinates, mm
Crack tip opening displacement, mm

Principal strains, dimensionless

Circumferential, radial and axial strains, respectively, true strain unless otherwise
noted, dimensionless

Shear strain between characteristic directions at apex of large strain region,
dimensionless

Power law reference strain, dimensionless



Effective plastic strain, dimensionless

True crack opening strain, dimensionless
Maximum shear strain, dimensionless

Angle measured from the crack plane, radians
Strain function defined by Eq. (6), dimensionless
Poisson’s Ratio, dimensionless

Blunted crack or notch root radius, mm
Stress, MPa

Principal stresses, MPa .

Circumferential, radial and axial stresses, MPa
Yield stress, MPa

Power law reference stress, MPa

Effective stress, MPa

Mean (hydrostatic) stress, MPa

Distance from blunted crack tip, mm



Introduction

Fracture mechanics is a collection of material testing and analysis procedures applied for the
purpose of preventing fracture due to cracks in structures. It is recognized that yielding can and
does occur near the tips of cracks, the result being lower stresses and higher strains perpendicular
to the crack plane than would otherwise exist. However, yielding does not necessarily prevent the
buildup of hydrostatic stresses relative to shear stresses in the crack-tip plastic zone but, in fact,
can amplify this buildup. This is because of the restraint of attempted transverse contractions
resulting from enforced compatibility with the adjacent regions subjected to lower stresses.

Existing fracture mechanics procedures are based on the premise that, by following prescribed
methods, precracked laboratory specimens can be tested under conditions of effective maximum
constraint and the results transferred conservatively to structures in terms of a material property
called “fracture toughness.” It has been demonstrated repeatedly that below the upper shelf,
fracture toughness values measured with small laboratory specimens tend to develop increased
upward scatter as specimen size decreases. In the smallest specimens, dimples are visible on the
specimen surfaces at the crack ends, thus demonstrating the powerful tendency for transverse
contraction to occur along a crack front. This is the inevitable consequence of the constant plastic
volume condition, which is one of the physical conditions governing yielding. Realizing that
cracks oriented circumferentially in a pressure vessel are subjected to a nominal transverse strain
condition more severe than plane strain, it is prudent to consider the possibility that a positive out-
of-plane strain condition can have an effect on toughness opposite to that of transverse contraction,
namely lowering the toughness.

To study the effects of constraint on fracture toughness, it is important to select the right
location within the crack-tip stress and strain field for investigation. Despite the success achieved
by treating K and J as single parameters that can be conveniently determined away from the crack-
tip region but still assumed to control near-crack-tip behavior, understanding constraint effects has
thus far not become amenable to this approach. Thus, it seems beneficial to select as a location for

study the region of large strains close to the crack tip within which the microscopic separations that



lead to fracture actually take place. This approach is not a new one. In fact, it predates linear-
elastic fracture mechanics. However, without a mathematical or a computational connection with
global structural behavior, there is no obvious way to transfer information from laboratory
specimens to structures. Nevertheless, important information about the basic physical parameters
governing fracture, including the nominal stress state at the flaw location, can be developed by this
approach.

The first step applicable to studying the stress and strain distributions in the plastic zone
immediately bordering a blunting crack tip was taken by Hill {1] in 1950. Considering a notch
with a circular tip, Hill postulated that close to the notch tip the principal stress directions would be
radial and circumferential and that the plastic slip-lines (maximum shear stress trajectories) would
therefore be logarithmic spirals. The resulting equation for stress normal to the notch symmetry

plane, neglecting strain hardening, is

GY[1+ln (1+%)], (1)

where 7 is distance from the notch tip, p is root radius, and Ov is yield stress. Equation (1) is
identical to the expression for the circumferential stress near the bore of an ideally plastic thick-
walled hollow cylinder under external radial tension because the relevant geometries are identical.
Hill’s analysis did not consider strain hardening nor attempt to relate the notch root radius to
the remotely applied load. In 1969, Rice and Johnson [2] developed a near-crack-tip, plane strain,
large-strain, rigid-plastic analysis considering strain hardening and assuming an infinitely sharp
initial crack. Although the geometry analyzed was approximately a field of logarithmic spirals, the
boundary displacement loading based on a singular shear strain distribution did not produce a
perfectly circular blunted crack tip, so the slip-lines were not exactly log spirals [3]. One strain
distribution on the plane of symmetry was determined for ideally plastic conditions, and the

stresses were then determined for various strain-hardening exponents by integrating the equation of



equilibrium and applying the flow rule. The strain at the apex of the slip-line field was assumed to
be zero [3] and, for strain hardening, a stress singularity occurred very close to the tip of the
blunting crack. Because the calculated stresses at the apex of the slip-line field were finite, but the
plastic strains were assumed zero and the elastic strains neglected, a state of pure hydrostatic
tension was implied at that location. This result is not physically realistic enough to use in
evaluating constraint effects, but the results are easily improved by assuming a finite strain at the
apex, as explained in Ref. 3.

Assuming that the conditions of stress and strain near the apex of the near-tip slip-line field are
only mildly sensitive to the exact shape of the blunted crack tip, Merkle, [4] following Hill’s
suggestion, [1] proposed an analysis of the stresses and strains ahead of a blunted crack tip on the
plane of symmetry based on a circular blunted crack tip. It was reasoned that, on the plane of
symmetry, the equilibrium and strain-displacement equations should be identical to those for an
axisymmetrically loaded thick-walled hollow cylinder. Actually, this is only true if dug/dg = 0,
because ug changes sign at 6 = 0. However, as will be discussed later, numerical calculations
show that this condition is approximately satisfied close to the plane of symmetry. Consequently,
the hollow-cylinder analogy has the potential for illustrating details of near-crack-tip behavior
without requiring complex or expensive analytical procedures. This is especially true with regard
to the effects of transverse strain, because stress analysis solutions for thick-walled hollow
cylinders under conditions of generalized plane strain include explicitly the effect of €;. The
original hollow-cylinder analogy calculations [4] were based on small strain theory and therefore
gave strain distributions that did not agree well with the Rice and Johnson results near the blunted
crack tip. However, the original hollow-cylinder analogy did include the elastic strains, which the
Rice and Johnson analysis neglected, and these strains may turn out to be important, especially the

transverse (out-of-plane) elastic strain near the point of peak stress.



Basis For The Hollow-Cylinder Analogy

The basis for the hollow-cylinder analogy is Hill’s approximation [1] that immediately ahead
of a round-tipped notch, the slip-lines are orthogonal logarithmic spirals. Because these lines cross
every radial and circumferential line at 45°, the principal directions of stress (and implicitly also of
strain) are radial and circumferential, just as they are in an axisymmetrically loaded thick-walled
hollow cylinder. The basic concept is thus illustrated in Fig. 1, showing that within the overall
plastic zone there is a much smaller flame-shaped zone immediately ahead of the blunting crack tip
within which the slip-lines are approximately logarithmic spirals. Hill's model of the region
immediately ahead of a circular notch tip did not consider strain hardening, and thus nothing was
said explicitly about strains. Merkle [4] extended Hill’s hypothesis to include strain hardening,
reasoning that stress analysis solutions for axisymmetrically loaded thick-walled hollow cylinders
should be applicable on the plane of symmetry ahead of a blunting crack tip as long as the through-
thickness stress remains the intermediate principal stress. Using cylindrical coordinates and
recognizing that the principal directions of stress and strain in the logarithmic spiral slip-line region
are radial and circumferential, it follows that all the equilibrium and conventional strain-
displacement equations reduce to those for an axisymmetrically loaded thick-walled hollow

cylinder except the circumferential strain-displacement equation, which for small strains is
u
gg=——+—+. )

For the hollow cylinder analogy to hold, dug/dg must be shown to be negligible or zero on the
plane of symmetry. In Ref. 4, symmetry was used as an argument for setting dug/dg = 0 on
0 = 0°. However, because ug changes sign while passing through zero at 8 = 0°, dug/dg
theoretically does not have to be zero on the plane of symmetry. Thus, additional information must
be used to determine if dug/dg is actually small enough to neglect on the plane of symmetry.

Two separate studies of the stresses and strains very close to a blunting crack tip by the finite-

element method have produced results that support the hollow-cylinder analogy. As indicated in



Fig. 2, McMeeking [5] performed near-crack-tip, elastic-plastic large-strain calculations showing
that the variation of effective plastic strain with polar angle 6 near the plane of symmetry is very
small. Needleman and Tvergaard [6] performed similar calculations, observing the details of
deformation immediately surrounding the blunting crack tip. Figure 3 shows the existence of a
wedge of finite elements bisected by the plane of symmetry that continues to subtend the same 22°
angle as deformation proceeds. Together, Figs. 2 and 3 imply that, within a finite angular sector
ahead of a blunting crack tip, material points displace only in the radial direction and circular arcs
remain approximately circular. Consequently, within a finite angular sector ahead of a blunting

crack tip, ug = 0. For these conditions, Eq. (2) reduces to

€y ==, (3)
T

thus providing an empirical basis for the hollow-cylinder analogy.

Derivation of Strain-Displacement Equations For Large Strains

The original hollow-cylinder analogy [4] was developed using the conventional small-strain,
elastic-plastic stress and strain equations for a thick-walled hollow cylinder. However, comparing
the calculated near-crack-tip strain distribution with the results obtained by Rice and Johnson {2]
showed a discrepancy, the most likely cause of which appeared to be the existence of large strains
very close to the blunted crack tip. The Rice and Johnson analysis [2] was based on large strain
theory, so a large strain version of the hollow-cylinder analogy is necessary for a valid comparison
between the two analytical models.

Consider a ring element within a thick-walled hollow cylinder with original inside radius rj,
thickness drj, and height £. Let the radial displacements corresponding to rj and rj + drj be u and
u + du, and the uniform increase in height of the ring element be w. Neglecting elastic strains, the

volume of the ring must remain constant. Thus

27 1j drj £ = 2n)(rj + u)(drj + du)(€ +w) . 4)
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Then

d(rju) +udu +Arjdr;=0 , 7
so that

uZ+2rju—(c2—- Ar2)=0 , @®

where c2 is a constant of integration. From Eq. (8), it follows that

u=+/(1-r’+c’ -1 )

Setting r; = 0 gives u = ¢, so ¢ is the radial displacement of a point originally located atrj = 0. In

terms of the CTOD,
c= (10)
2

For large strains, the circumferential strain is defined by

g, = ln[1+£j : 11)

T,

1

so that, using Eq. (9),

1 2
&= [(14){7} : (12)

1

Note that a singularity in strain occurs for rj = 0. For large strains, the axial strain is defined by
ez =In(1 +ez) , (13)
so that, from Eq. (6),
€z =—In(1-2) . (14)

For large strains, the radial strain is defined by
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e =In|1+3% (15)
T dr,

i

so that, by using Egs. (9) and (14),

1 2
€, =—51nl:(1—7»)+§—2-j|—ez (16)

The foregoing equations agree with those published by McGregor, Coffin, and Fisher [7] in 1948.
For applications, it is useful to have the strain-displacement equations also expressed in terms
of the deformed radius r defined by
r=r1;+u . a7n

Combining Egs. (17) and (9) gives

2 _ 2
r?=rl ; (18)

and by using Eq. (14),
2 =(r* —c?)e™ (19)

1

From Eqgs. (11) and (17), it follows that

g, = h{i) , (20)
T.

1

so that, by using Egs. (19) and (20),

2
€ =—%1n(1—°—2j-%2 . 1)
T

In Eq. (21), €g becomes singular at r = ¢. By substituting Eq. (18) into Eq. (16) and using
Eq. (14),

2
e, =lln(1—c—2)——82i . 22)



Note that the above strain-displacement equations do not include the elastic strains, which are
assumed small, and also that their algebraic forms are independent of the shape of the stress-strain
curve. This observation agrees with the finite-difference results obtained by Rice and Johnson [2]
wherein, for plane strain, the same near-tip strain distribution was found to exist independent of
the yield strain and the strain-hardening exponent.

The form of Egs. (21) and (22) can be examined by using Mohr's Circle of Strain. For
generalized plane strain and constant plastic volume, if the maximum shear strain is denoted by 1
and

€ =¢, , _ (23)

then €1 and €3 must be given by

£
g =N—--% (24)
and

€
g, =-N—-= (25)

Comparisons With Numerical Calculations

Because the basis for the hollow-cylinder analogy is partly empirical and direct experimental
verification is not possible, it is important to establish its accuracy by means of comparisons with
other independently performed analyses. The quantity of most interest is the maximum principal
tensile strain €g acting normal to the plane of symmetry. Because the near-crack-tip strain
distribution is highly nonlinear, it is convenient to construct a function of &g that is linear with
distance from the crack tip. This is possible because there is only one term containing r; in
Eq. (12). Thus, by rearranging Eq. (12), for plane strain,

1 L.

2% 1 ;1= F(&) - @)

//
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Figure 4 shows the near-crack-tip strain distribution for 8 = 0° based on undeformed positions X
for small-scale yielding and fully plastic conditions, as calculated by Rice and Johnson [2] using
the finite-difference method. Figure 4 also shows the plots of F(ey“), constructed for each case by
scaling values from the strain curves and calculating F(g,). Substantial linearity is observed. An
added advantage of the linear plot is that no distance origin has to be assumed. While Fig. 4
shows that the calculated values of F(g,™) plot close to a straight line, the distance origin is not at
the original crack tip, but slightly ahead of it. This is qualitatively confirmed by Fig. 5 from Rice
and Johnson, [2] which shows that the curved portion of the blunted crack profile meets a
horizontal segment of the crack profile slightly ahead of the original crack tip. Thus, in this case,
the coordinate origin of the approximately logarithmic spiral slip-line region lies ahead of the
original crack tip. A second comparison is shown in Fig. 6 using the effective plastic strain values
for © = 0° from Fig. 2 as calculated by McMeeking [5] using the finite-element method. Again
F(gg) is nearly linear over a substantial range of R/b, where R is original distance from the crack
tip and b is CTOD. Again, the curve intercept is slightly ahead of the original crack tip. Thus, two
near-crack-tip analyses, the first being Rice's and Johnson's finite-difference analysis [2] and the
second being McMeeking's finite-element analysis, [4] have both produced near-crack-tip strain
distributions having forms close to that predicted by the hollow-cylinder analogy based on large
strains.

Two other available strain distributions, calculated by the finite-element method by
Needleman and Tvergaard [6] and by Goldthorpe, [8] produce plots of F(gg) (not shown) that are
linear until very close to X = 0 but then seem to approach a finite value of strain at X = 0. Both the
latter analyses were begun with finite initial notch radii, as were McMeeking's, so the reason for
the difference in result is not obvious. Because both Rice and Johnson [2] and McMeeking [5]
clearly recognized and demonstrated the existence of a strain singularity for sharp cracks,
preference is given here to their results because they are believed to be more accurate very close to

the blunting crack tip.



/3

Because a real material cannot stand infinite strain and the blunting crack surface is free of
normal stress, and therefore under low triaxial constraint, shear fracture should tend to occur very
close to the blunting crack tip. This is a possible explanation for the occurrence of stretch zones.

An additional comparison can be made between the strain distributions calculated by the Rice
and Johnson slip-line analysis method and the hollow-cylinder analogy discussed in this chapter.
In Ref. 3, two modifications were made to the Rice and Johnson slip-line analysis method to make
it more useful and more realistic. The analysis was rederived for generalized plane strain, and the
maximum principal tensile strain at the apex of the slip-line field was made nonzero. It is easily
shown that for a nearly plane strain degree of constraint and v = 0.3, the elastically calculated
maximum principal tensile strain at a distance of two times the CTOD from the crack tip is ~1%.
Thus, the total tensile strain at this location must equal or exceed this value. Assuming a total shear
strain at the apex of 1%, the comparison between the modified slip-line analysis method results of
Ref. 3 and the hollow-cylinder analogy results are as shown in Fig. 7. Overall, the hollow-
cylinder analogy is a good approximation. The assumed horizontal offset X, for the hollow-
cylinder analogy governs the accuracy of the strain approximation near the blunting crack tip but
has no effect near the apex of the log spiral slip-line zone. The closeness of the hollow-cylinder
approximation near the apex of the slip-line zone depends on the assumed value of the shear strain
at that location in the modified slip-line analysis model. Because the hollow-cylinder analogy

provides a satisfactory strain estimate, the next step is to calculate the stresses on the plane of

symmetry.

Stress Calculations
For radial and circumferential principal stress directions, the equation of radial equilibrium,
written in terms of current radii, has the familiar form

do, 0,—0,
dr T

27)
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In this analysis the elastic strains are neglected. Thus, the usual superscript “p” on strain
symbols indicating plastic strain is not used. The general equation for the Von Mises effective

plastic strain is

E=-—?J(el —£,) +(g, —&,)* + (g, —¢,)* (28)

Using Egs. (21) through (25),

N=g,+ -82—’ (29)
and

- 2 3(e, Y |

£=—ﬁn 1+Z(F‘) . (30)
Eliminating 1 from Eq. (30) gives

- 2 3 € ’

E=ﬁ8°\/l+;+(éJ . (31)

The general equation for the Von Mises effective stress is

1
o, =ﬁ\/(c1 ~0,)+(0,~0,)* +(0, - ,)* . (32)
For deformation theory, the principal plastic strains are given by the flow rule, which can be
written in the form

_ledo

.= . 33
' 20, do; ©3)

Using Egs. (32) and (33),

2
(oe—c,)=%o,,f1-(%z-) , (34)

as found by McGregor et al {7]. From Eq. (31),

/4



2
3(e
82)2_ 4(86)

— - 2 (35)
€ g, (EZJ
I+ 2+ =
€ \&
so that substituting Eq. (35) into Eq. (34) gives
1 2
7 1+&+Zz)
2 € £
(Ge_or):'T Ce . S (36)
3 e, (e
1+-%+ (—Z]
ee 86
From Eq. (27),
do, = (o, — cs,)EE (37)
r

Therefore, the radial stress can be calculated incrementally, starting at the free surface of the
blunted crack tip and using Eq. (36) and the effective stress-strain relation, which is general. In
this analysis, the effective stress-strain relation is assumed to be a pure power law, according to

which

- \N
ce=0°(£) . (38)
80

Thus, substituting Eq. (31) into Eq. (38), the result into Eq. (36), and then using Eq. (37) gives

( 1
L
e, 1{e )|
Y e e
=2 | | Jeb b LS (39)
o, 3(43% L (vl T
1+ Z+(-lj
| e &) |

Also, by again using Eq. (37),
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e 1
- 27
g, 1[¢
N 1+—Z+Z[——’—
2 2 & € )
Ge =9y 2 fent b (40)
o, O, 3(+f3¢g, i 272
3 €,
I+=%+—%
€ \ &

The stresses are calculated for the deformed radii. For calculating do, from Eq. (39), the strain at
the average radius over an increment of distance is used. For calculating og from Eq. (40), the

strain at the point of interest is used.

An equation for the transverse stress G, can be obtained by using the flow rule, Eq. (33), and

the effective stress-strain relation. The result is
-~ \N 1
gi:(ij (E_L)+—(—O—’+&). (41)
o, £, € 2\o, o,
A constraint factor [9] h, defined by
h=Sn (42)
Gc

where oy, is the hydrostatic stress, is sometimes used for comparing the severity of different stress

states with regard to the possibility of fracture. The quantity h can be calculated from
AN
(ez ) 1{c, o, ). (43)
)2

Effects of The Strain Singularity
The strain singularity that exists at the surface of the blunting crack tip, in the case of an

infinitely sharp initial crack, has an effect on the stresses for strain-hardening material. The effect
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is to cause a singularity in the crack-opening stress, which in turn can cause a minimum to occur in
that stress as a function of r, as the effects of the singularity decrease and the effects of triaxial
constraint begin to dominate. Because the in-plane strains are large compared with the out-of-plane
strain very close to the blunting crack tip, an analysis of the effects of the singularity for the case of
plane strain should be adequatély descriptive.

Solving the equation of radial equilibrium, Eq. (27), for 0g and differentiating gives

do,
do do d( dr )
8§ =0T 4r . (44)
dr dr dr

For plane strain, Eq. (39) gives

N
do 20 2 N
L= el | e} . 45
ar 3 r (\/g 80) ® (*2)
Let
2 2 )
S=-—0o,|—1 . 46
\/§ 0(\/3—80] ( )
Then substituting Eq. (46) into Eq. (45) gives
do, S
—e = —&5 > 47
dr r° “7
and substituting Eq. (47) into Eq. (44) leads to
N
99 _ 58 , gNet1dEe 48)
r dr
For dog/dr = 0, eithereg =0 or
dlng, __ 1 (49)
dinr N

Thus, stationary values of 6 occur at infinity and when Eq. (49) is satisfied. If there are two
stationary points and the curve of G is positive singular at r = ¢, then the first stationary point
must be a local minimum because a Jocal maximum would require three stationary values between

r=c and r = o, Itis also possible to show that the first stationary value is a local minimum by

/7
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using Eqs. (48) and (49) to develop the expression for d20'3/d(1n r)2 at the first stationary point.

The result is
2 2
d0‘92= E:d lneg , (50)
d(Inr) d(Inr)

which gives a positive quantity.
For plane strain, the location of the local minimum can be calculated by applying Eq. (49) to

Eq. (21), which gives
N

Y '
()

c
Using Eq. (19) for plane strain,

2 2
-
c c

so that substituting Egs. (21) and (52) into Eq. (51) gives

€y = 1)

LN, 3

The limit of the left side of Eq. (53) as (c/r;) approaches zero is unity. Thus, there is no local
minimum for values of N exceedings 0.5. Equation (53) is plotted in Fig. 8, from which locations
of the local minimum can be determined graphically.

Calculating the first increment of the radial stress very close to the blunting crack tip requires

an approximation because of the singularity in the circumferential strain. For plane strain, Eq. (39)

reduces to
do. 2( 2 Y .dr
o N
S eN— | (54)
o, @(\/3 o) ®r



Also, for plane strain, Eq. (21) can be written in the form

e, =——;—1n[(1+—:—)(1—§)]. (55)

Near the singularity, r ~ ¢ so that

€4 ~ —lln[g- (r— c)] (56)
2 Lc
Let
r-c=v. (57)
Then noting that
dr _ ld(zl) , (58)
r 2 C
substituting Eq. (57) into Eq. (56) and the result, plus Eq. (58) into Eq. (54), gives
N
ln—lv
o 2= v
r | — C

Integrating by parts, neglecting the second term as small, and using Eq. (57) gives, for the first

increment of radial stress,

2(1, 1) N S
S
S ¢ (2 -V-) . (60)

c 3(1+N)/2€N

o o

Effects Of Transverse Strain
The foregoing equations were used to calculate the in-plane and transverse stresses for
three example problems. The example problems were identical except for the values of transverse

plastic strain, which were -1, 0, and +1%, respectively. The other parameters used were
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€, =0.0025, N=0.2, and ¢ = 0.5 §;. The results are plotted in Fig. 9, which shows that the
effect of a given amount of transverse plastic strain of either algebraic sign is to reduce the
circumferential stress from its plane strain value by the same relatively small amount. The same is
true for the radial stress. This result was not anticipated because the elastic-plastic, small-strain,
hollow-cylinder analogy equations [4] implied that positive transverse strain would increase the in-
plane stresses and that negative transverse strain would do the opposite. Nevertheless, on
hindsight it is clear that the results obtained here are a direct consequence of Egs. (21), (29), (30),
(34), and (37), because, from Egs. (21) and (29), 1 is independent of €,, only the square of €,
appears in Egs. (30) and (34), and €, does not appear in Eq. (37). Furthermore, the present
results agree qualitatively with the more exact results obtained in Ref. 3. In the case of the
transverse stress, also plotted in Fig. 9, positive transverse strain increases the transverse stress,
and negative transverse strain does the opposite. Furthermore, the transverse stress is more
affected by the transverse strain than are the in-plane stresses. The effect of increasing transverse
strain is to increase the constraint factor h because of the increase in transverse stress, thereby

potentially decreasing the fracture toughness.

Discussion

In comparing analyses, those presented here and in Ref. 3 neglect elastic strains, therefore
assuming that all the transverse strains are plastic strains. In contrast, the small-strain, hollow-
cylinder analogy equations from Ref. 4 were based on the Tresca yield criterion, which predicts no
plastic strain in the direction of the intermediate principal stress, thus forcing the total strain in that
direction to be completely elastic. It appears that transverse elastic and plastic strains may have
opposite effects on the in-plane stresses, and therefore including the elastic strains in a near-tip
analysis would be beneficial. It has also been estimated recently [10] that somewhat beyond the
near-crack-tip, large-strain region, positive and negative total transverse strains do not necessarily
have either opposite or identical effects because the total strains are partitioned differently into

elastic and plastic parts in the two cases. Despite their approximations, the analyses developed
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here and in Ref. 3 have provided valuable new information about near-crack-tip stresses and
strains, especially about their magnitudes at both ends of the large strain region and the effects of

transverse strain, and further developments appear feasible.

Conclusions

Large strain finite element analyses have shown that a wedge shaped zone ahead of a blunting
crack tip deforms like a cylinder. Therefore, a hollow cylinder stress analysis analogy is valid in
this region. Applications of this analogy based on large strain theory have produced results in
good agreement with those of Rice and Johnson, and McMeeking. Furthermore, they reveal that
the stresses in the large strain region ahead of a blunting crack tip are only mildly sensitive to
transverse constraint, if elastic strains are neglected. Therefore, constraint effects on fracture
toughness are likely to be caused by some combination of elastic strain effects in the large strain

region and constraint induced stress variations just beyond the large strain region.



22

References

(1]
(2]

(3]

(4]

(5]

(6]

[7]

(8]

[9]

R. Hill, “The Mathematical Theory of Plasticity,” Oxford Press, 1950.

J. R. Rice and M. A. Johnson, Brown University, Providence, R.I1.,, “The Role of Large
Crack Tip Geometry Changes in Plane Strain Fracture,” Report NY0-2394-38, September
1969. (See also “Inelastic Behavior of Solids,” M. F. Kanninen et al., eds., McGraw-Hill,
1970.)

D.K.M. Shum, “Crack Initiation Under Generalized Plane-Strain Conditions” 23rd National

Symposium on Fracture Mechanics, June 18-20, 1991, College Station, Texas.

J. G. Merkle, “An Elastic-Plastic Thick-Walled Hollow Cylinder Analogy for Analyzing the
Strains in the Plastic Zone Just Ahead of a Notch Tip,” ORNL-TM-4071, Oak Ridge

National Laboratory, Oak Ridge, Tenn., January 1973.

R. M. McMeeking, “Finite Deformation Analysis of Crack-Tip Opening in Elastic-Plastic
Materials and Implications for Fracture,” J. Mech. Phys. Solids 25, 357-381, 1977.

A. Needleman and V. Tvergaard, “Crack-Tip Stress and Deformation Fields in a Solid with a
Vertex on Its Yield Surface,” ASTM STP 803, 1, 80-115, 1983.

C. W. MacGregor, L. F. Coffin, and J. C. Fisher, “The Plastic Flow of Thick-Walled Tubes

with Large Strains,” J. Appl. Phys. 19, 291-297, March 1946.

M. R. Goldthorpe, “An Investigation of Size Effects in Compact Tension and Centre-
Cracked Tension Specimens of an Austenitic Steel Using Elastic-Plastic Finite Element
Analysis,” Report under SERC Grant No. GR/E/79088, Structural Integrity Research
Institute, University of Sheffield, April 1989.

H. Kordische, E. Sommer, and W. Schmidt, “The Influence of Triaxiality on Stable Crack
Growth,” Nucl. Eng. Des. 112, 27-35, 1989.




[10] D. K. M. Shum, J. G. Merkle, J. Keenecy-Walker, and B. R. Bass, “Analytical Studies of
Transverse Strain Effects on Fracture Toughness for Circumferentially Oriented Cracks,”
NUREG/CR-5592 (ORNL/TM-11581), Oak Ridge National Laboratory, Oak Ridge, Tenn.

(In press).

'23_



24

Figure Captions

FIG. 1--Schematic diagram of plastic zones near tip of blunting crack (Source: Ref. 4).

FIG. 2--Effective plastic strain near a blunting crack tip (Source: Ref. 5).

FIG. 3--Deformed finite-element mesh diagrams for blunting crack tip (based on Ref. 6).

FIG. 4--Near-crack-tip strain and linearized strain function plots for finite-difference analysis
results of Rice and Johnson (based on Ref. 2).

FIG. 5--Deformed crack-tip and slip-line zone boundury results obtained by Rice and Johnson
(Source: Ref. 2).

FIG. 6--Linearized strain function plot for finite-element analysis results of McMeeking (based on
Ref. 5).

FIG. 7--Comparison of near-crack-tip strain distribution curves obtained by Rice and Johnson
method, as described in Ref. 3, assuming g, = 0.01, and by hollow-cylinder analogy based on
large-strain theory, assuming X /6, = 0.15.

FIG. 8--Curve for determining location of local minimum in crack-opening stress as a function of
the strain-hardening exponent N.

FIG. 9--Stresses near a blunting crack tip, with transverse plastic strain as a parameter, as
calculated by the hollow-cylinder analogy tor large strains for N = 0.2 and neglecting elastic

strains.
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