

ANL/WR-79-1

DR. 244

ANL/WR-79-1

~~279  
11-6-79~~

**MASTER**

**Removal of Organic Constituents in a  
Coal Gasification Process Wastewater  
by Activated Sludge Treatment**

by

V. C. Stamoudis, R. G. Luthy, and W. Harrison

**MASTER**



EES

ANL

ENERGY AND ENVIRONMENTAL SYSTEMS DIVISION

ARGONNE NATIONAL LABORATORY

OPERATED FOR THE U. S. DEPARTMENT OF ENERGY  
UNDER CONTRACT W-31-109-ENG-38

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

## **DISCLAIMER**

**This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.**

## **DISCLAIMER**

**Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.**

The facilities of Argonne National Laboratory are owned by the United States Government. Under the terms of a contract (W-31-109-Eng-38) among the U. S. Department of Energy, Argonne Universities Association and The University of Chicago, the University employs the staff and operates the Laboratory in accordance with policies and programs formulated, approved and reviewed by the Association.

#### MEMBERS OF ARGONNE UNIVERSITIES ASSOCIATION

The University of Arizona  
Carnegie-Mellon University  
Case Western Reserve University  
The University of Chicago  
University of Cincinnati  
Illinois Institute of Technology  
University of Illinois  
Indiana University  
The University of Iowa  
Iowa State University

The University of Kansas  
Kansas State University  
Loyola University of Chicago  
Marquette University  
The University of Michigan  
Michigan State University  
University of Minnesota  
University of Missouri  
Northwestern University  
University of Notre Dame

The Ohio State University  
Ohio University  
The Pennsylvania State University  
Purdue University  
Saint Louis University  
Southern Illinois University  
The University of Texas at Austin  
Washington University  
Wayne State University  
The University of Wisconsin-Madison

#### NOTICE

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for any third party's use or the results of such use of any information, apparatus, product or process disclosed in this report, or represents that its use by such third party would not infringe privately owned rights. Mention of commercial products, their manufacturers, or their suppliers in this publication does not imply or connote approval or disapproval of the product by Argonne National Laboratory or the United States Government.

Printed in the United States of America  
Available from  
National Technical Information Service  
U. S. Department of Commerce  
5285 Port Royal Road  
Springfield, VA 22161

NTIS price codes

Printed copy: A04 03

Microfiche copy: A01

**Distribution Category:**  
Coal Conversion and Utilization--  
Coal Gasification (UC-90c)

**ANL/WR-79-1**

**ARGONNE NATIONAL LABORATORY**  
9700 South Cass Avenue  
Argonne, Illinois 60439

**WATER RESOURCES RESEARCH PROGRAM**

**REMOVAL OF ORGANIC CONSTITUENTS IN A  
COAL GASIFICATION PROCESS WASTEWATER  
BY ACTIVATED SLUDGE TREATMENT**

by

**Vassilis C. Stamoudis, Richard G. Luthy,\*  
and W. Harrison**

**Energy and Environmental Systems Division**

**June 1979**

**DISCLAIMER**

This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

**Work Sponsored by  
U. S. Department of Energy  
Office of Fossil Energy Programs**

**\*Department of Civil Engineering, Carnegie-Mellon University,  
Pittsburgh, Pa. 15213**

*fg*

THIS PAGE  
WAS INTENTIONALLY  
LEFT BLANK

## CONTENTS

|                                                                                                          | <u>Page</u> |
|----------------------------------------------------------------------------------------------------------|-------------|
| ABSTRACT. . . . .                                                                                        | 1           |
| 1 INTRODUCTION . . . . .                                                                                 | 2           |
| 1.1 Program Objective . . . . .                                                                          | 2           |
| 1.2 Research Strategy . . . . .                                                                          | 2           |
| 1.3 Review of Previous Work . . . . .                                                                    | 2           |
| 2 FIELD AND LABORATORY PROCEDURES . . . . .                                                              | 3           |
| 2.1 Wastewater Selection, Collection, and Characterization . . . . .                                     | 3           |
| 2.2 Bench-Scale Wastewater Treatment . . . . .                                                           | 4           |
| 2.3 Extraction Procedures . . . . .                                                                      | 6           |
| 2.4 Procedure for Testing Extraction Efficiency . . . . .                                                | 7           |
| 2.5 GC/MS Analysis of Sample Extracts . . . . .                                                          | 7           |
| 3 RESULTS AND DISCUSSION . . . . .                                                                       | 11          |
| 3.1 Wastewater Characterization and Biological Reactor<br>Operating Conditions . . . . .                 | 11          |
| 3.2 Chemical Characteristics and Removal Efficiencies<br>of Organic Constituents . . . . .               | 11          |
| 3.3 Factors Pertaining to Interpretation of Results . . . . .                                            | 21          |
| 3.3.1 Wastewater Sample Strength and Stability . . . . .                                                 | 21          |
| 3.3.2 Gasifier Operating Conditions . . . . .                                                            | 22          |
| 3.3.3 Biological Reactor Operating Conditions . . . . .                                                  | 23          |
| 3.4 Comparison with Other Studies . . . . .                                                              | 23          |
| 4 CONCLUSIONS . . . . .                                                                                  | 25          |
| ACKNOWLEDGMENTS . . . . .                                                                                | 26          |
| REFERENCES . . . . .                                                                                     | 26          |
| APPENDIX A: PROCEDURES EMPLOYED FOR WASTEWATER<br>PRETREATMENT AND ACTIVATED SLUDGE PROCESSING . . . . . | 27          |
| APPENDIX B: PROCESS REVIEW OF OPERATING CONDITIONS . . . . .                                             | 36          |

## LIST OF FIGURES

| <u>No.</u> | <u>Title</u>                                                                                                 | <u>Page</u> |
|------------|--------------------------------------------------------------------------------------------------------------|-------------|
| 2.1        | Extraction Scheme for HYGAS Wastewater Samples . . . . .                                                     | 6           |
| 2.2        | Plot of Total-Ion and Single-Ion (Mass 103) Areas vs Concentration for Benzonitrile . . . . .                | 9           |
| 3.1        | Total Ion Chromatograms of Acidic Fraction Extracts of HYGAS Wastewater Treated by C-MU Reactor V . . . . .  | 12          |
| 3.2        | Total Ion Chromatograms of Basic Fraction Extracts of HYGAS Wastewater Treated by C-MU Reactor V . . . . .   | 13          |
| 3.3        | Total Ion Chromatograms of Neutral Fraction Extracts of HYGAS Wastewater Treated by C-MU Reactor V . . . . . | 14          |
| A.1        | Schematic of Wastewater Pretreatment by Ammonia Stripping . . . . .                                          | 28          |
| A.2        | Experimental Design for Biological Oxidation Studies on HYGAS Pilot Plant Wastewater . . . . .               | 29          |
| A.3        | General View of Continuous Stirred-Tank Reactor for Biological Oxidation Kinetic Studies . . . . .           | 31          |
| A.4        | General Layout of Biological Oxidation Experimental Apparatus . . . . .                                      | 32          |

## LIST OF TABLES

|     |                                                                                                                                              |    |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------|----|
| 2.1 | Representative HYGAS Wastewater Sample Characteristics . . . . .                                                                             | 4  |
| 2.2 | Basic Operating and Performance Characteristics of Activated Sludge Cell during Sampling for ANL Organics Study . . . . .                    | 5  |
| 2.3 | Total-Ion and Single-Ion (Mass 103) Counts for Different Concentrations of Benzonitrile . . . . .                                            | 9  |
| 2.4 | Percent Recoveries of Organics Extracted from Spiked Distilled Water . . . . .                                                               | 10 |
| 3.1 | Relative Abundance in Influent and Percent Removal of Acidic Organics in HYGAS Plant Wastewater by Activated Sludge at Pilot Scale . . . . . | 16 |
| 3.2 | Relative Abundance in Influent and Percent Removal of Basic Organics in HYGAS Plant Wastewater by Activated Sludge at Pilot Scale . . . . .  | 17 |

### LIST OF TABLES (Contd.)

### 3.3 Relative Abundance in Reactor Influent and Percent Removal of Neutral Organics in HYGAS Plant Wastewater by Activated Sludge at Pilot Scale . . . . . 18

REMOVAL OF ORGANIC CONSTITUENTS IN A COAL GASIFICATION  
PROCESS WASTEWATER BY ACTIVATED SLUDGE TREATMENT

by

*Vassilis C. Stamoudis, Richard G. Luthy, and W. Harrison*

*ABSTRACT*

Removal of organics by activated sludge treatment of wastewater from an experimental coal gasification plant was estimated by capillary-column gas chromatography/mass spectrometry (GC/MS) of extracts of wastewater sampled before and after processing by bench-scale, activated sludge units. The wastewater sample characterized for organic constituents was obtained from a stable, representative pilot-scale HYGAS run. Wastewater was pretreated to reduce ammonia and alkalinity and was then processed in an activated sludge reactor at a hydraulic residence time of two days with a bacterial mean cell residence time of 15 days and a COD removal rate of 0.86 per day.

Organic constituents were isolated from biological reactor influent and effluent samples and separated into acidic, basic, and neutral fractions using a methylene chloride extraction procedure. Capillary-column GC/MS was used to semiquantify the organics, and analysis of the results indicates that activated sludge treatment removed the bulk of the extractable and chromatographable organic constituents. The influent acidic fraction, composed mainly of phenol and alkylated phenols, constituted 98.5% of the total organics identified; these were removed almost completely. Organics of the basic fraction, composed mainly of alkylated pyridines and anilines, were removed effectively, with the exception of certain alkylated pyridines. In the case of the organics in the neutral fraction, which constituted less than 0.75% of the total organics in the influent, certain heterocyclics and compounds containing heteroatoms were removed effectively. For aromatic hydrocarbons, the more aliphatic the substitution or alicyclic the content, the less the removal. Alicyclic hydrocarbons and alkylated benzenes generally were removed poorly or very poorly.

Wastewater sample strength, gasifier operating conditions, and biological reactor operating conditions are reviewed with reference to operation of a projected commercial-scale activated sludge plant. The study concludes by comparing the bench-scale organics removal data with data for the removal of similar organic constituents from a petroleum refinery wastewater by activated sludge at full scale.

## 1 INTRODUCTION

### 1.1 PROGRAM OBJECTIVE

The long-range objective of this study is to establish the efficiency of activated sludge treatment for the removal of various classes of organic contaminants present in raw process wastewater from coal gasification plants. Present efforts are directed toward study of removal efficiencies attained by bench-scale, activated sludge units, since there are at present no full-scale activated sludge plants treating coal gasification plant wastewaters. Results are being compared with Argonne data on the removal of organic constituents from petroleum refinery wastewater as treated by activated sludge at full scale.

### 1.2 RESEARCH STRATEGY

As one part of a cooperative program between the Institute of Gas Technology (IGT), Argonne National Laboratory (ANL), and Carnegie-Mellon University (C-MU), representative samples of pilot-scale, HYGAS process wastewater were collected by IGT, processed in bench-scale, activated sludge treatment equipment by C-MU, and delivered to ANL for extraction and analysis. Analysis was performed on acidic, basic, and neutral fractions of samples using capillary-column GC/MS techniques. Percentage removals for various organic compounds and classes of organic compounds were estimated by comparing GC/MS data for raw influent and treated effluent.

### 1.3 REVIEW OF PREVIOUS WORK

The authors are unaware of any published results for removal by activated sludge treatment of trace organic constituents from coal gasification wastewaters. Singer, and others (1978) have recently summarized the available literature on characterization of organics in coal-conversion wastewaters, and have presented preliminary biotreatability data on synthetic, coal-conversion wastewater. Characterization data for organics in HYGAS wastewaters were not among those presented in their report.

Raphaelian and Harrison (1978) recently completed a study of organic compounds across the wastewater treatment system of a Class B petroleum refinery. Their study involved estimation of the removal of organics by the refinery's full-scale, activated sludge unit and by add-on, mixed-media filtration and granular activated carbon at pilot scale. Experience gained in their study has been used in the present effort.

## 2 FIELD AND LABORATORY PROCEDURES

Coordinated efforts on the part of the three organizations involved in the program, both in the field and the laboratory, were required to generate and insure the reliability of the results presented in this report. Procedures employed in the selection, collection, processing, and analysis of an appropriate coal gasification aqueous condensate for this study are summarized below. Further details and discussions are available in the literature and/or in appendices to this report as noted.

### 2.1 WASTEWATER SELECTION, COLLECTION, AND CHARACTERIZATION

HYGAS wastewater was selected for this study for a number of reasons. Among these are: (1) the HYGAS process is a major DOE/GRI-sponsored coal gasification system in an advanced state of development, (2) it is a process that currently produces a product oil and therefore can be expected to produce an aqueous condensate containing a broad distribution of organic components, (3) it is a process presently under intensive environmental study by DOE, (4) it is currently the subject of a range of DOE-sponsored ANL investigations of the biological and chemical characteristics of coal gasification-generated organics, and (5) it has been the focus of a joint experimental investigation of the treatability characteristics of gasification wastewaters by C-MU and IGT during the past two years.

Details regarding the procedures employed by C-MU and IGT in the collection of the HYGAS wastewater sample used in the present investigation are well documented by Luthy and Tallon (1978a and b); significant aspects are noted here. Raw wastewater was collected in two batches during stable operating periods of HYGAS pilot-plant runs 62 and 64 and later were used for acclimatization and steady-state performance testing of treatment systems, respectively. Each of these batches was immediately transported by truck to C-MU (Pittsburgh) where they were blended and frozen in 5-gallon allotments for preservation, to be thawed for use as needed. Although no studies of the stability of the organics in these samples were conducted at the time of their collection, a recent ANL investigation of the stability of HYGAS quench water by Raphaelian and Harrison (1979) suggests that a high degree of sample stability could be expected (see also Sec. 3.3.1).

Bulk chemical characteristics of the raw and pretreated HYGAS wastewaters are summarized in Table 2.1\* and reflect a high pressure (1000 psig) gasification of an Illinois No. 6 bituminous coal with a steam-to-coal ratio of 1.81. Extensive discussion of bulk wastewater sample characteristics is provided in a separate report by Luthy & Tallon (1978b). Several points must be noted, however, regarding the interpretation of these data and the organic data reported later in the present report. Although the majority of organic and inorganic species observed in pilot-scale HYGAS wastewaters might be expected to exist in a subsequent commercial version of the HYGAS process, their relative quantities and concentrations are likely to be

---

\*Data cited on lime addition and ammonia stripping are discussed in Appendix A (Sec. A.1) of this report.

Table 2.1. Representative HYGAS Wastewater Sample Characteristics

| Specification                                      | Parameter, mg/L |        |                    |      |      |                 |                               |                                 |            |
|----------------------------------------------------|-----------------|--------|--------------------|------|------|-----------------|-------------------------------|---------------------------------|------------|
|                                                    | COD             | Phenol | NH <sub>3</sub> -N | CN-  | SCN- | S <sup>2-</sup> | SO <sub>4</sub> <sup>2-</sup> | Alkalinity as CaCO <sub>3</sub> | pH (units) |
| Raw Wastewater                                     | 4050            | 710    | 3690               | 0.32 | 28   | 138             | 184                           | 12,600                          | 7.8        |
| Lime Pretreatment                                  | 3830            | 660    | 3200               | 0.36 | 28   | 96              | 241                           | 1,210 <sup>a</sup>              | 10.1       |
| Ammonia Stripped                                   | 3700            | 660    | 133                | 0.45 | 24   | 15              | 236                           | 1,060 <sup>a</sup>              | 10.0       |
| Net change (%) between raw and stripped wastewater | -8.6            | -7.0   | -96                | -    | -14  | -89             | +28                           | -92                             | -          |

<sup>a</sup>Alkalinity measured after pH adjustment to 7.3.

different. Factors that contribute to this situation include: (1) different degrees of coal pretreatment in pilot-scale operations than are anticipated for commercial-scale operations (affecting both the quantity and concentrations of aqueous species); (2) different steam-to-coal ratios in the pilot-scale operation (affecting the concentrations of aqueous species); (3) different gasifier geometry and operating conditions in the pilot-scale operation (affecting both the quantity and concentrations of aqueous species); and (4) a different raw product as quench system than that anticipated for a commercial-scale operation (affecting the distribution of species between the gas and liquid phase).

Where direct scaling of pilot-scale observations to the analysis of commercial-scale characteristics is envisioned, each factor cited above must be addressed carefully and its effects accounted for. However, in the context of the present investigation, issues of scaling are intentionally less demanding. The primary objective here has been to secure a representative sample of HYGAS pilot-scale wastewater that reasonably can be expected to contain the spectrum of species that might exist in a commercial-scale plant. The fate of this spectrum of species during wastewater treatment, particularly activated-sludge processing, has then been determined. In this context, the emphasis is on the spectrum of species present and their relative changes during treatment rather than upon their absolute concentrations.

## 2.2 BENCH-SCALE WASTEWATER TREATMENT

Pilot plants (including HYGAS) do not as a rule operate scalable wastewater treatment systems. C-MU and IGT have, therefore, assembled a series of scalable wastewater pretreatment and treatment unit operations to simulate and study the treatment of HYGAS wastewaters. This bench-scale system is described briefly for the reader in Appendix A and discussed in detail in a separate report by Luthy & Tallon (1978b).

Wastewater samples used in the present organics study were subjected to two stages of pretreatment, lime addition for the removal of excess alkalinity (CaCO<sub>3</sub> precipitation), and air stripping for the removal of excess ammonia. Pretreated wastewater was then fed to a carefully acclimatized 6-L bench-scale activated sludge reactor for biological treatment.

The reactor was operated at dissolved oxygen levels greater than 3.0 mg/L and in the pH range of 7.0 to 7.5. The reactor was managed on the basis of a 15-day, mean bacterial cell residence time and approximately two-day hydraulic residence time. The attainment of steady-state operation was defined as that interval (balance period) necessary to achieve three complete solid wasting cycles. For this reactor, steady-state operation occurred 45 days after the reactor was acclimatized to HYGAS wastewater. The reactor was then run for an additional seven weeks to obtain sufficient steady-state performance data. Basic operating conditions and performance characteristics of the activated sludge reactor during influent and effluent sampling for the present organics study are presented in Table 2.2. Samples utilized in the present study represent a composite collected over a three-week period of steady-state reactor operation at the conditions cited.

Table 2.2. Basic Operating and Performance Characteristics of Activated Sludge Reactor during Sampling for ANL Organics Study

| Parameter <sup>a</sup>                                    | Average Value <sup>b</sup> |                  |
|-----------------------------------------------------------|----------------------------|------------------|
| Mean Cell Res. Time, days                                 | 15                         |                  |
| Hydraulic Res. Time, days                                 | 2.05                       |                  |
| COD Rem. Rate, day <sup>-1</sup>                          | 0.86                       |                  |
| Mixed Liquor Suspended Solids (MLSS)                      | 2000                       |                  |
| Mixed Liquor Volatile Suspended Solids (MLVSS)            | 1820                       |                  |
| O <sub>2</sub> Util. Rate, mgO <sub>2</sub> /mg MLVSS-day | 0.28                       |                  |
| Zone Set. Vel., ft/hr                                     | 24                         |                  |
| Sludge Volume Index, mL/g                                 | 54                         |                  |
|                                                           | Inf.                       | Eff.             |
| COD                                                       | 3710                       | 700              |
| Phenolics                                                 | 625                        | 0.3 <sup>c</sup> |
| NH <sub>3</sub> -N                                        | 148                        | 101              |
| Org-N                                                     | 10                         | 7                |
| CN <sup>-</sup>                                           | 0.4                        | 0.4              |
| SCN <sup>-</sup>                                          | 12                         | 2                |
| Alkalinity, mg/L as CaCO <sub>3</sub>                     | 710                        | 260              |
| Conductivity, $\mu$ hos/cm                                | 4500                       | 5900             |

<sup>a</sup>All parameters mg/L except as noted.

<sup>b</sup>Average values measured during the seven-week steady-state operating period. This period was preceded by 45 days of operation prior to onset of steady state.

<sup>c</sup>Average effluent phenolic concentration during the period of sample collection for trace organic analysis was <0.05 mg/L.

### 2.3 EXTRACTION PROCEDURES

The extraction scheme used in this study is shown in Fig. 2.1. This scheme follows generally accepted protocol and has been used previously for characterization of organics in petroleum refinery wastewater (Raphaelian and Harrison, 1978).

Influent and effluent wastewater samples were extracted concurrently and in exactly the same fashion. One liter of sample was transferred to a 2-L separatory funnel and sufficient 6N HCl was added to bring the pH of the mixture to a value of 1 to 2. The pH of the influent samples was 9-10 and that of the effluent was about 8. Approximately 125 mL of methylene chloride were added and the mixture was shaken thoroughly and left standing for 1-2 hr for the layers to separate. Severe emulsion problems were encountered. The methylene chloride layer originally consisted of tiny droplets, which later formed larger globules surrounded by debris that may have been organic material. Most of the globules coalesced to form a clear red-yellow bottom layer when the separatory funnel was carefully tilted back and forth. This layer was collected into an Erlenmeyer flask having a ground-joint glass stopper, and it was observed that its color in the influent sample was more intense. The emulsion layer that remained in the separatory funnel was minimized in volume by repeating a process of collecting the layer that formed in the funnel into a beaker,\* transferring the beaker's contents back into a separatory funnel, and after performing the tilting operation draining the clear bottom layer into an Erlenmeyer flask; the process was continued until the emulsion layer was minimized to a desired volume of a few mL.

Finally, the aqueous and the remaining emulsion layers were transferred back to the original aqueous phase (in the 2-L separatory funnel). The whole process was then repreated twice using 80 mL methylene chloride. The combined methylene chloride extract was named fraction A+N.

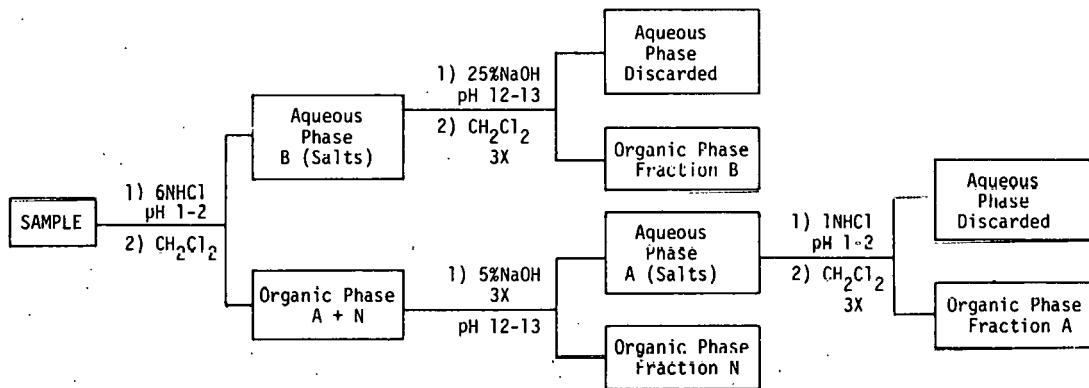



Fig. 2.1. Extraction Scheme for HYGAS Wastewater Samples

\*At this stage in each repetition, considerable further coalescence of methylene chloride globules and droplets usually occurred.

Next, the pH of the aqueous layer was adjusted to a value of 11-12 with 25% NaOH, and the mixture was extracted with methylene chloride. Since emulsions were encountered, the above described procedure was followed. The combined methylene chloride extract was named Fraction B (Fig. 2.1) and was dried overnight with ~20 g of anhydrous sodium sulfate.

Fraction A+N was transferred to a separatory funnel and then extracted three times with 60 mL of 5% NaOH. No emulsions were encountered this time. The methylene chloride layer was called Fraction N, and it was dried overnight with ~20 g of precleaned anhydrous sodium sulfate. The pH of the combined aqueous layer was adjusted to 1-2 with 1N HCl, and the mixture was extracted three times with methylene chloride (1 x 100 mL, 2 x 75 mL). The aqueous phase was discarded. The methylene chloride layer was named Fraction A, and it was dried overnight with ~20 g of anhydrous sodium sulfate.

The dried methylene chloride extract (Fractions A, B, N) was transferred into a Kuderna-Danish type concentrator using a Snyder column and Kontes tube. The column and concentrator were wrapped with aluminum foil. Each Erlenmeyer flask was rinsed twice with 10-15 mL of methylene chloride. The concentrator was placed in a steam bath and the solvent evaporated until a volume of 1-2 mL was left. The Snyder column and concentrator were rinsed with 3-4 mL of methylene chloride. The samples were then sealed in vials with Teflon-lined caps and stored in a freezer at ~20°C.

The basic fraction of the influent contained phenols in relatively high concentration levels, making the GC/MS analysis of the basic compounds difficult. The original basic fraction was worked up for the removal of phenols as follows. The influent basic fraction was diluted to 50 mL with methylene chloride, and the mixture was washed three times with 25 mL in NaOH and then with 25 mL water. The methylene chloride layer was then dried with sodium sulfate and concentrated to a 1 mL volume (new basic fraction).

#### 2.4 PROCEDURE FOR TESTING EXTRACTION EFFICIENCY

One mL of a standard solution containing a series of acidic and neutral organic standard compounds (250 µg/mL) was added to 1000 mL distilled water and the mixture was extracted as described above (Sec. 2.3). For a blank, 1000 mL of distilled water was also extracted in exactly the same way.

#### 2.5 GC/MS ANALYSIS OF SAMPLE EXTRACTS

Analysis of the organics in all fractions was performed on a Hewlett-Packard 5982A GC/MS equipped with a Hewlett-Packard 5934A Data System. The data system consisted of a 21MX Computer with 32K, 16-bit-word core memory, 7900A Dual Disc Drive with 2.5 M bytes/disc memory, 5948B Data Subsystem (A/D and D/A Converters), and a Tektronix 4012 Display Terminal. A 5830 Hewlett-Packard GC was used in place of the 5700 series Hewlett-Packard GC normally delivered with the 5982A GC/MS.

Due to the complexity of the samples, glass-capillary, wall-coated open-tubular (WCOT) columns were used. The temperature was programmed from 20°C to 240°C at 2°/min, with a 2-min hold at 20°C. The column used was a Perkin-Elmer, 0.25 mm ID, 50-m long OV-101.

The identification of the compounds was based on mass spectra and known retention times. For compounds that were not resolved, the percent removal was done by single-ion monitoring. Calculation of the recovery of the organics in the spiked water extracts was also done by single-ion monitoring.

To estimate percent removal of individual compounds the total-ion (TI) chromatograms of both the influent and effluent were plotted and the total ions of the peaks corresponding to the compounds were determined. The assumptions made for this were that

- a. Each compound found in the influent also could be present in the effluent (with the same chromatographability),
- b. The concentration levels of the compounds are in the optimum range of linearity in a total-ion (or single-ion) vs concentration plot,
- c. The extraction yields for individual compounds in the influent and effluent are the same.

The first assumption is a plausible one and a corollary to this is that, if a compound is not found in the effluent, it is 100% removed. To substantiate the second assumption one has to determine the total-ion (or single-ion) area vs concentration for each compound or for a few compounds serving as models for the others. Table 2.3 and Fig. 2.2 show the results of such a study involving benzonitrile. This compound gave surprisingly good linearity over a concentration range of 1-100 ng/ $\mu$ L. Benzonitrile was chosen as a compromise model for neutral compounds because (1) its mass spectrum is typical of an unsubstituted or singly substituted aromatic compound, (2) it has a medium polarity, and (3) it is abundant in the influent neutral fraction (see Table 3.3, Peak No. 45 in Section 3). Since it could not be assumed that what is true for benzonitrile will necessarily be true for the other compounds, any attempt to quantify the latter based on the former might involve large errors. However, for estimating percent removal (comparing total ions for the same compound), compounds with mass spectra similar to benzonitrile would possibly behave similarly.

The assumption of uniform extraction yields is probably the least substantiated. Limited ANL recovery studies on selected standard compounds in distilled water are shown in Table 2.4. These data show that extraction efficiencies even in distilled water are variable. Furthermore, it is known that concentration levels (Warner, 1976), matrix effects, and the extent of emulsion in extraction affect solvent extraction yields. Recoveries of the organics extracted from spiked water vary considerably, from 32% to 133%, with an average recovery of 61% for the 8 compounds. These results are not unexpected since variability in extraction yields is a very common phenomenon. The reported yields are based on GC/MS data (single-ion counts). Of course, recoveries of organics from distilled water solutions do not imply similar recoveries from complicated samples. However, since the scope of this study was only to estimate percent removals of organic constituents using a quick and convenient tool, the assumption of uniform extraction yield was followed.

Table 2.3. Total-Ion and Single-Ion (Mass 103) Counts for Different Concentrations of Benzonitrile

| Conc. of Benzonitrile in ng/ $\mu$ L | Total Thousand ions | Mass 103 Thousand ions |
|--------------------------------------|---------------------|------------------------|
| 1                                    | 0.93                | 0.52                   |
| 5                                    | 7.5                 | 4.0                    |
| 10                                   | 11.3                | 6.4                    |
| 25                                   | 21.9                | 12.8                   |
| 50                                   | 63.5                | 36.2                   |
| 83                                   | 98.0                | 58.0                   |
| 100                                  | 135.7               | 73.9                   |
| 500                                  | 985                 | 581                    |

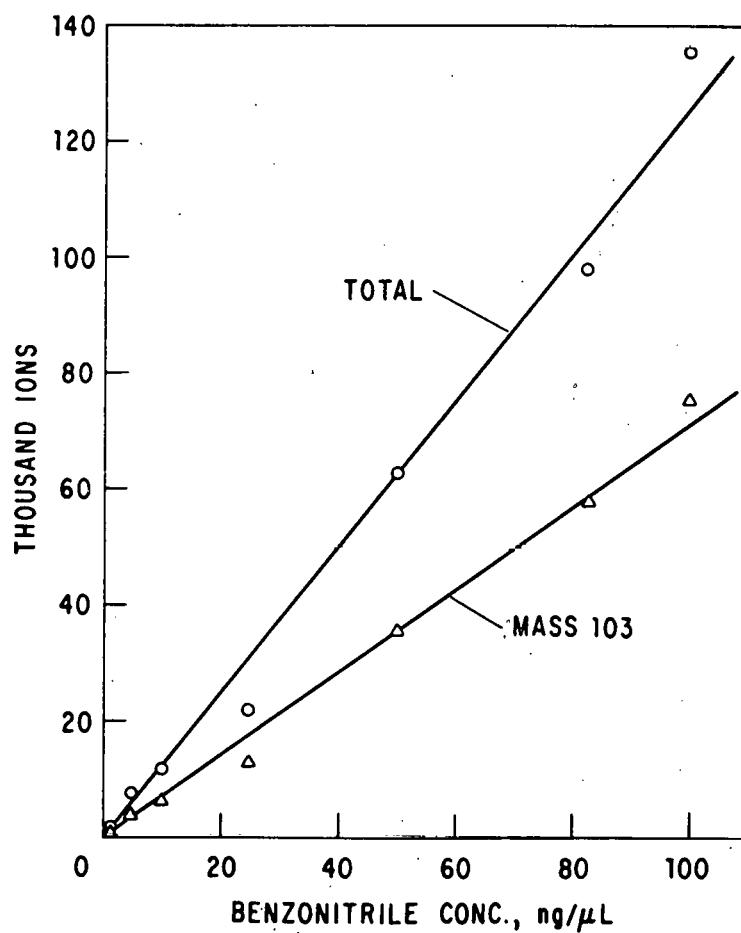



Fig. 2.2. Plot of Total-Ion and Single-Ion (Mass 103) Areas vs Concentration for Benzonitrile

Table 2.4. Percent Recoveries of  
Organics Extracted from  
Spiked Distilled Water

| Compound Name               | % Recovery |
|-----------------------------|------------|
| 0-Xylene                    | 42         |
| 3-Octanone                  | 71         |
| 1-Heptanol                  | 70         |
| n-Butylbenzene              | 32         |
| Phenol                      | 61         |
| Cresol                      | 75         |
| o-Ethylphenol               | 105        |
| d <sub>10</sub> -Anthracene | 133        |

## 3 RESULTS AND DISCUSSION

## 3.1 WASTEWATER CHARACTERIZATION AND BIOLOGICAL REACTOR OPERATING CONDITIONS

Typical analyses of the quench and cyclone condensates used in the biological treatability study are provided in Luthy and Tallon (1978b). Average concentrations of raw pilot HYGAS plant wastewater characteristics after blending and following pretreatment were presented in Table 2.1. Raw wastewater had COD values of about 4000 mg/L and phenolic constituents of approximately 700 mg/L. Gas chromatographic analysis of one sample that had a COD of 4400 mg/L showed phenol equal to 800 mg/L, o-cresol equal to 64 mg/L, and (m+p)-cresol equal to 210 mg/L. Colorimetric phenol analysis of the same sample gave phenolic concentration of 980 mg/L. The colorimetric procedure does not report para-substituted phenols if the substituted group is a methyl radical, as is the case with para-cresol; thus it is not unexpected that the colorimetric procedure reports slightly lower total phenol concentration than the gas chromatographic determination. Approximately 60% of raw wastewater COD may be accounted for as phenol and cresol. Raw wastewater after blending had approximately 3700 mg/L ammonia (0.26 m/L) and approximately 13,000 mg/L of alkalinity as  $\text{CaCO}_3$  (0.26 eqv/L). Thus, essentially all of the ammonia contained in raw HYGAS wastewater is present, in theory, as so-called free ammonia.

Table 2.2 summarized general operating parameters and performance characteristics for the reactor used in the organics study. These data are based on average values presented in Appendices V and XII of Luthy and Tallon (1978b). Data presented in Table 2.2 show that the reactor gave good removal efficiencies for COD, phenolics, and thiocyanate. The reactor possessed typical steady-state values of MLVSS and demonstrated good sludge settling properties. The reactor's operating conditions resulted in a COD removal rate of  $0.86 \text{ day}^{-1}$ . These performance factors are similar to those envisioned for a commercial activated sludge facility, although a commercial facility may be designed for a lower COD removal rate, depending on the degree of conservatism desired.

It is recognized that questions may be raised concerning sample storage in plastic containers. Out of necessity, raw wastewater samples collected at the pilot-plant facility were shipped and stored in plastic containers because of the large quantity of wastewater being handled and because it was believed that freezing offered the best alternative for long-term storage. The activated sludge effluent sample was collected in a plastic container and frozen because the biological oxidation experiments preceded the trace organic characterization studies by several months. Subsequent work performed at ANL on activated sludge treatment of wastewater from a coal gasification plant has used fresh samples of biological reactor effluent not stored in plastic containers.

## 3.2 CHEMICAL CHARACTERISTICS AND REMOVAL EFFICIENCIES OF ORGANIC CONSTITUENTS

Visual comparison of the total-ion chromatograms (Figs. 3.1-3.3) of all fractions reveals that the C-MU activated sludge process removed the

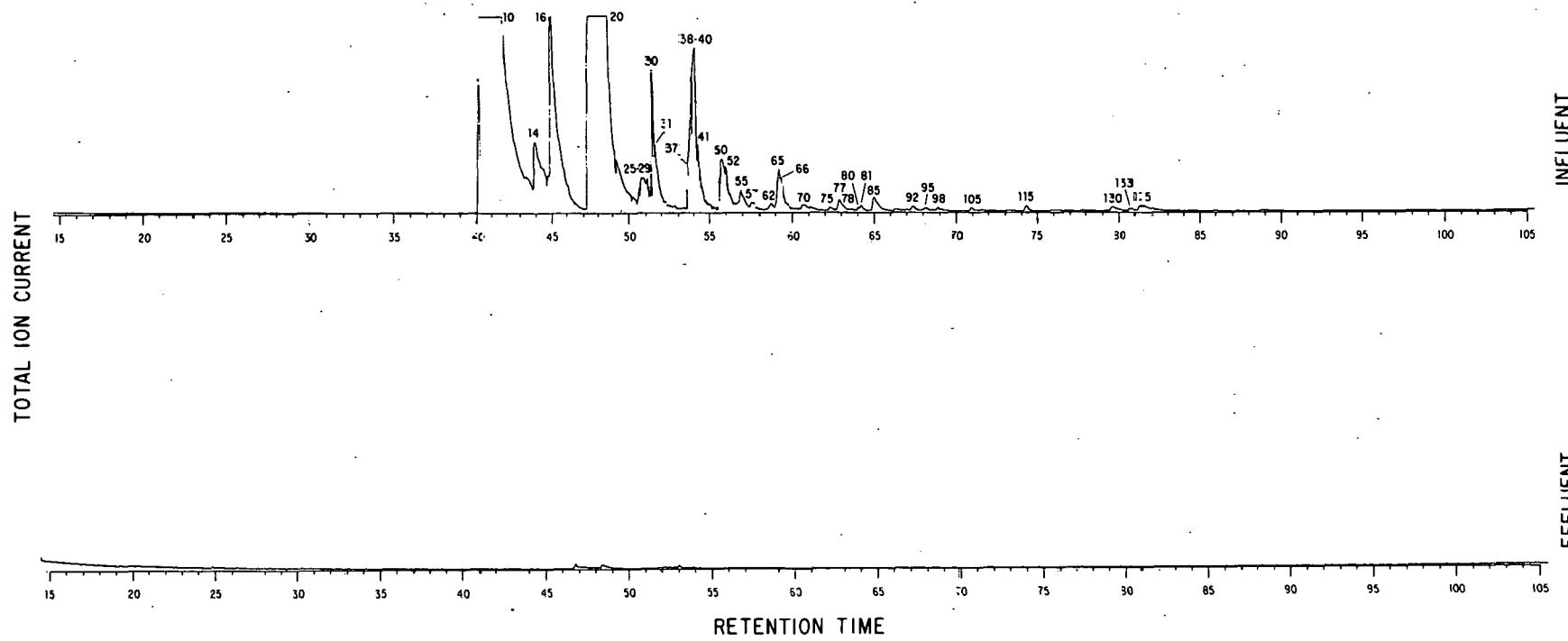



Fig. 3.1. Total Ion Chromatograms of Acidic Fraction Extracts of HYGAS Wastewater Treated by C-MU Reactor V. (The volume of the effluent extract was 20 times less than that of the influent extract.)

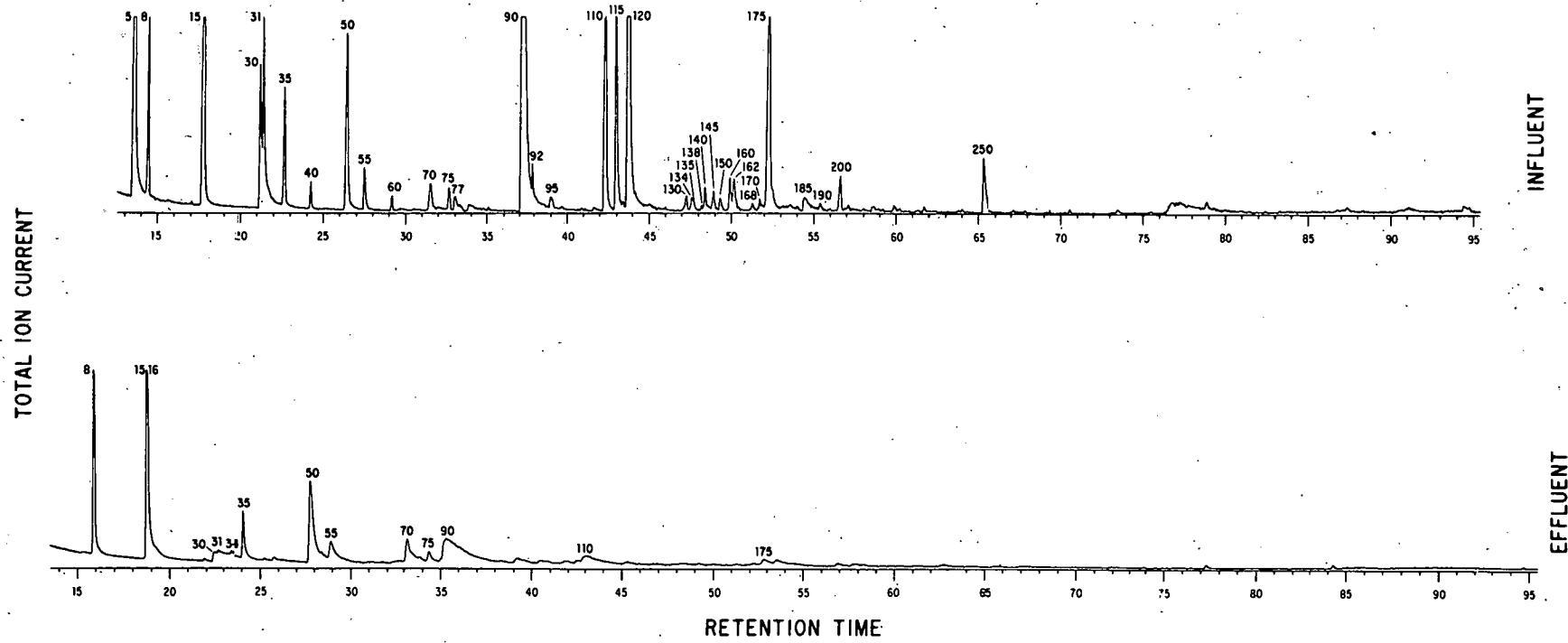



Fig. 3.2. Total Ion Chromatograms of Basic Fraction Extracts of HYGAS Wastewater Treated by C-MU Reactor V. (The volume of the effluent extract was 3 times less than that of the influent extract. Extracts were run using different columns of the same type, but different resolutions were employed.)

TOTAL ION CURRENT

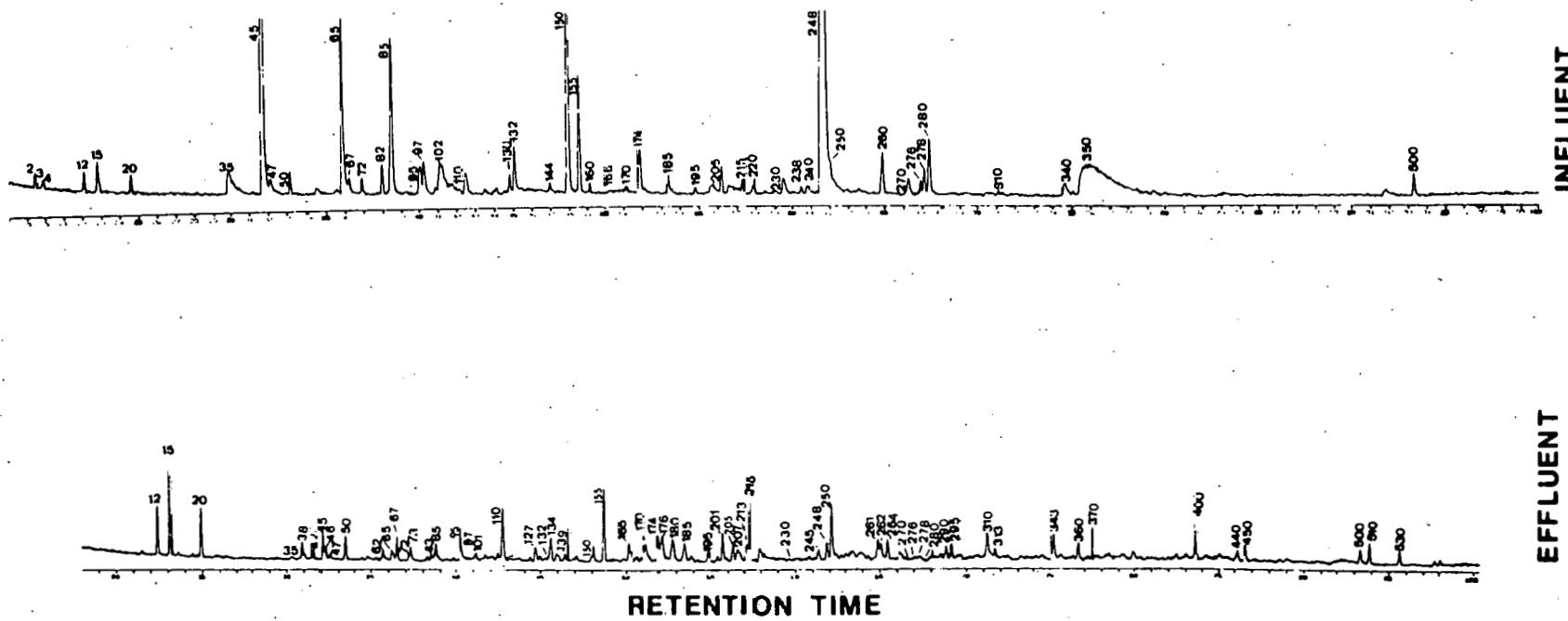



Fig. 3.3. Total Ion Chromatograms of Neutral Fraction Extracts of HYGAS Wastewater Treated by C-MU Reactor V. (The finer structure of the total ion chromatogram for the effluent extract is due to the fact that the volume of the effluent extract is 10 times less than that of the influent extract.)

bulk of the organic constituents. Results of extractable and chromatographable organics identified in the acidic, basic, and neutral fractions are presented in Tables 3.1, 3.2, and 3.3, respectively, on an estimated influent concentration basis together with an estimated percentage of activated sludge removal efficiency. Total ion peak areas served as the primary basis for the estimation of concentrations. For the neutral fraction, the concentration levels were estimated based on the benzonitrile study discussed in Section 2.5. For the acidic and basic fractions, additional information was obtained from several runs of standard compounds. Note that for practical purposes, however, reported concentration levels are only semiquantitative estimates, not only because of the nature of the GC/MS method used, but also because of possible losses due to extraction or separation procedures. Thus, instead of giving single-value concentration numbers (Tables 3.1-3.3), it was decided to assign ranges in concentration levels that allowed for a factor of variability of 2 to 3.

As shown in Table 3.1, the acidic fraction of raw wastewater influent consists almost exclusively of single-ring substituted phenolic compounds, all of which are virtually removed by activated-sludge treatment. Consistent with previous C-MU analyses (Luthy and Tallon, 1978b) and the screening studies of the Institute of Gas Technology, phenol and cresols constitute by far the largest fraction of organics observed. Despite the abundance of these compounds in the influent, no trace of phenol and only a trace of cresol was detected in the effluent.

Tables 3.2 and 3.3 present organics found in the basic and neutral fractions, respectively. The reader is cautioned to note that the total of extractable and chromatographable organics in the acidic influent fraction is two orders of magnitude larger than that reported for the basic fraction. As for the neutral organics, the total amount is slightly less than that of the basic fraction. The acidic fraction represented more than 98.5% of the identified compounds on a mass basis.

As shown in Table 3.2, organics in the basic fraction were primarily nitrogen heterocyclics (pyridine, quinoline, indole) and aniline and their alkylated derivatives. Most of the basic compounds were removed either completely or quite effectively, with the exception of certain substituted pyridines, e.g., dimethyl pyridine. In general, aliphatic substitutions resulted in lower percentage removal for derivatives of pyridine: compare pyridine versus picoline, and C<sub>2</sub>- and C<sub>3</sub>-pyridines. The results also show a certain selectivity of efficiencies of removal toward isomers of C<sub>2</sub>- and C<sub>3</sub>-pyridines. It has to be noted here that in the extraction procedure, certain basic compounds (indazole or benzimidazole, carbazole) ended up in the neutral fraction where their removal was complete (see Table 3.3, Peak Nos. 230 and 500).

As in the case of the basic fraction, organic concentrations in the neutral fraction of the influent wastewater sample are very low (Table 3.3). The extent of removal of neutral fraction organics by the bench-scale, activated-sludge process is very dependent on the chemical structure of the particular compound. The general trend is that heterocyclics and compounds containing heteroatoms are usually removed effectively. Examples are benzonitrile (peak No. 45), acetylthiophene (peak No. 97), isopropylthiophene (peak No. 101), methycyanobenzene (peak No. 132), benzothiophene (peak No. 155),

Table 3.1. Concentration in Reactor Influent and Effluent and  
Percent removal of Acidic Fraction Organics in HYGAS  
Plant Wastewater by Activated Sludge at Pilot Scale

| Peak No. | Compound Name                                      | Estimated Influent Conc.<br>( $\mu\text{g/L}$ ) | Estimated Effluent Conc.<br>( $\mu\text{g/L}$ ) | Estimated Percent Removal |
|----------|----------------------------------------------------|-------------------------------------------------|-------------------------------------------------|---------------------------|
| 10       | Phenol                                             | 250,000                                         | NT                                              | 100                       |
| 14       | Cresol                                             | 13,000                                          | NT                                              | 100                       |
| 16       | Cresol                                             | 40,000                                          | NT                                              | 100                       |
| 20       | Cresol                                             | 180,000                                         | 3                                               | 99.99+                    |
| 25 - 29  | $\text{C}_2$ -Phenols                              | 5,000                                           | NT                                              | 100                       |
| 30       | $\text{C}_2$ -Phenol                               | 15,000                                          | NT                                              | 100                       |
| 31       | $\text{C}_2$ -Phenol                               | 1,500                                           | NT                                              | 100                       |
| 37 - 41  | $\text{C}_2$ -Phenols                              | 14,000                                          | NT                                              | 100                       |
| 50       | $\text{C}_2$ -Phenol                               | 7,500                                           | NT                                              | 100                       |
| 52       | $\text{C}_3$ -Phenol                               | 5,000                                           | NT                                              | 100                       |
| 55       | $\text{C}_3$ -Phenol                               | 2,500                                           | NT                                              | 100                       |
| 57       | $\text{C}_3$ -Phenol                               | 800                                             | NT                                              | 100                       |
| 62       | $\text{C}_3$ -Phenol                               | 800                                             | NT                                              | 100                       |
| 65 + 66  | $\text{C}_3$ -Phenols                              | 7,500                                           | NT                                              | 100                       |
| 70       | $\text{C}_3$ -Phenol                               | 750                                             | NT                                              | 100                       |
| 75       | $\text{C}_4$ -Phenol                               | 350                                             | NT                                              | 100                       |
| 77       | Allylphenol or Methyl-vinylphenol or Hydroxyindan  | 1,100                                           | NT                                              | 100                       |
| 78       | Methyldihydroxy-benzene                            | 500                                             | NT                                              | 100                       |
| 80       | $\text{C}_4$ -Phenol                               | 300                                             | NT                                              | 100                       |
| 81       | $\text{C}_4$ -Phenol                               | 500                                             | NT                                              | 100                       |
| 85       | Allylphenol or Hydroxy-indan or Methyl-vinylphenol | 3,500                                           | NT                                              | 100                       |
| 92       | $\text{C}_2$ -Dihydroxybenzene                     | 500                                             | NT                                              | 100                       |
| 105      | $\text{C}_2$ -Dihydroxybenzene                     | 400                                             | NT                                              | 100                       |
| 115      | Hydroxybiphenyl                                    | 650                                             | NT                                              | 100                       |
| 130      | Naphthol                                           | 650                                             | NT                                              | 100                       |
| 133      | $\text{C}_4$ -Phenol                               | 450                                             | NT                                              | 100                       |
| 135      | $\text{C}_4$ -Phenol                               | 2,500                                           | NT                                              | 100                       |

NT, not detected

Table 3.2. Concentration in Reactor Influent and Effluent and Percent Removal of Basic Organics in HYGAS Plant Wastewater by Activated Sludge at Pilot Scale

| Peak Number | Compound Name                                      | Estimated Influent Conc. (µg/L) | Estimated Effluent Conc. (µg/L) | Estimated Percent Removal |
|-------------|----------------------------------------------------|---------------------------------|---------------------------------|---------------------------|
| 5           | Pyridine                                           | 540                             | NT                              | 100                       |
| 8           | Toluene                                            | --                              | --                              | --                        |
| 15          | Picoline                                           | 310                             | 160                             | 48                        |
| 30+31       | Picolines                                          | 290                             | 25                              | 92                        |
| 35          | Ethylpyridine                                      | 75                              | 32                              | 57                        |
| 40          | C <sub>2</sub> -Pyridine                           | 14                              | NT                              | 100                       |
| 50          | C <sub>2</sub> -Pyridine                           | 150                             | 95                              | 37                        |
| 55          | C <sub>2</sub> -Pyridine                           | 31                              | 28                              | 10                        |
| 60          | C <sub>3</sub> -Pyridine                           | 9                               | NT                              | 100                       |
| 70          | C <sub>3</sub> -Pyridine                           | 30                              | 28                              | 7                         |
| 75          | C <sub>3</sub> -Pyridine                           | 15                              | 8                               | 47                        |
| 77          | Acetylenylpyridine                                 | 14                              | NT                              | 100                       |
| 90          | Aniline                                            | 2,000                           | 105                             | 95                        |
| 92          | C <sub>4</sub> -Pyridine                           | 8                               | NT                              | 100                       |
| 110         | Methylaniline                                      | 250                             | 28                              | 89                        |
| 115         | Methylaniline                                      | 180                             | NT                              | 100                       |
| 120         | Methylaniline                                      | 510                             | NT                              | 100                       |
| 134+135     | C <sub>2</sub> -Aniline & C <sub>4</sub> -Pyridine | 15                              | NT                              | 100                       |
| 140         | C <sub>2</sub> -Aniline                            | 15                              | NT                              | 100                       |
| 145         | C <sub>2</sub> -Aniline                            | 12                              | NT                              | 100                       |
| 150         | C <sub>2</sub> -Aniline                            | 11                              | NT                              | 100                       |
| 160         | C <sub>2</sub> -Aniline                            | 28                              | NT                              | 100                       |
| 162         | C <sub>2</sub> -Aniline                            | 31                              | NT                              | 100                       |
| 168         | C <sub>2</sub> -Aniline                            | 9                               | NT                              | 100                       |
| 170         | C <sub>2</sub> -Aniline                            | 10                              | NT                              | 100                       |
| 175         | Quinoline                                          | 280                             | 9                               | 97                        |
| 185         | Isoquinoline                                       | 24                              | NT                              | 100                       |
| 200         | Methylquinoline                                    | 28                              | 3                               | 90                        |
| 205         | Indole                                             | 60                              | NT                              | 100                       |

NT, not detected.

Table 3.3. Concentration in Reactor Influent and Effluent and Percent Removal of Neutral Fraction Organics in HYGAS Plant Wastewater by Activated Sludge at Pilot Scale.

| Peak Number | Compound Name                                                                          | Estimated <sup>a</sup><br>Influent Conc.<br>( $\mu\text{g/L}$ ) | Estimated <sup>a</sup><br>Effluent Conc.<br>( $\mu\text{g/L}$ ) | Estimated<br>Percent<br>Removal |
|-------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------|
| 12          | Ethylbenzene                                                                           | 15                                                              | 18                                                              | 0.0 <sup>b</sup>                |
| 15          | m- & p-Xylene                                                                          | 30                                                              | 5                                                               | 0.0 <sup>b</sup>                |
| 20          | o- Xylene                                                                              | 14                                                              | 18                                                              | 0.0 <sup>b</sup>                |
| 35          | Cycloalkene?                                                                           | 66                                                              | 10                                                              | 85                              |
| 38          | n-Propylbenzene                                                                        | ND                                                              | 7                                                               | ND/PR <sup>c</sup>              |
| 42          | Isopropylbenzene                                                                       | ND                                                              | 4                                                               | ND/PR <sup>c</sup>              |
| 45          | Benzonitrile                                                                           | 800                                                             | 12                                                              | 98.5                            |
| 46          | Ethylmethylbenzene                                                                     | ND                                                              | 5                                                               | ND/PR <sup>c</sup>              |
| 47          | Cycloalkene                                                                            | 8                                                               | 2                                                               | 75                              |
| 50          | Trimethylbenzene                                                                       | 16                                                              | 10                                                              | 37                              |
| 62          | Trimethylbenzene                                                                       | 6                                                               | 5                                                               | 17                              |
| 65          | C <sub>2</sub> -Cyclohexene or<br>C <sub>3</sub> -Cyclopentene                         | 208                                                             | 6                                                               | 97                              |
| 67          | Indan or Methylstyrene                                                                 | 18                                                              | 8                                                               | 53                              |
| 72          | Indene                                                                                 | 12                                                              | 3                                                               | 70+ <sup>d</sup>                |
| 82          | Acetylcylohexene or<br>C <sub>3</sub> -Cyclohexene                                     | 29                                                              | 11                                                              | 62                              |
| 85          | Acetophenone                                                                           | 190                                                             | 13                                                              | 93                              |
| 95          | Acetylcylohexene or<br>C <sub>3</sub> -Cyclohexene or<br>C <sub>2</sub> -Cyclohexenone | 41                                                              | 23                                                              | 51                              |
| 97          | Acetylthiophene or<br>(C <sub>3</sub> -Thiophene)                                      | 47                                                              | trace                                                           | 99+                             |
| 99          | Methylindan                                                                            | ND                                                              | 9                                                               | ND/PR <sup>c</sup>              |
| 101         | Isopropylthiophene                                                                     | 4                                                               | NT                                                              | 100 <sup>e</sup>                |
| 105         | Methylindan or<br>C <sub>2</sub> -Styrene                                              | ND                                                              | trace                                                           | ND/PR <sup>c</sup>              |
| 109         | Methylindan or<br>C <sub>2</sub> -Styrene                                              | ND                                                              | trace                                                           | ND/PR <sup>c</sup>              |
| 110         | C <sub>3</sub> -Cyclohexenone or<br>Methylacetylcylohexene                             | 37                                                              | 17                                                              | 50+ <sup>f</sup>                |
| 118         | C <sub>4</sub> -Benzene &<br>C <sub>3</sub> -Cyclohexene                               | ND                                                              | 10                                                              | ND/PR <sup>c</sup>              |
| 125         | C <sub>4</sub> -Benzene                                                                | ND                                                              | 12                                                              | ND/PR <sup>c</sup>              |
| 127         | C <sub>3</sub> -Cyclohexane?                                                           | ND                                                              | 16                                                              | ND/PR <sup>c</sup>              |
| 130         | C <sub>4</sub> -Thiophene                                                              | 17                                                              | 8                                                               | 53                              |
| 132         | Methylcyanobenzene?                                                                    | 47                                                              | NT                                                              | 100                             |
| 134         | C <sub>4</sub> -Thiophene & Methylindan<br>or C <sub>2</sub> -Styrene                  | ND                                                              | 13                                                              | ND/PR <sup>c</sup>              |
| 135         | Methylindene                                                                           | ND                                                              | 11                                                              | ND/PR <sup>c</sup>              |

Table 3.3. (Contd.)

| Peak Number | Compound Name                                                                                | Estimated <sup>a</sup><br>Influent Conc.<br>( $\mu\text{g/L}$ ) | Estimated <sup>a</sup><br>Effluent Conc.<br>( $\mu\text{g/L}$ ) | Estimated<br>Percent<br>Removal |
|-------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------|
| 136         | Methylindene &<br>$\text{C}_4$ -Benzene                                                      | ND                                                              | 11                                                              | ND/PR <sup>c</sup>              |
| 139         | Methyl benzyl sulfide?                                                                       | ND                                                              | 12                                                              | ND/PR <sup>c</sup>              |
| 144         | $\text{C}_4$ -Benzene [1-(2-methyl-<br>propyl) benzene]                                      | ND                                                              | 11                                                              | ND/PR <sup>c</sup>              |
| 150         | Naphthalene                                                                                  | 405                                                             | 9                                                               | 98                              |
| 155         | Benzothiophene                                                                               | 111                                                             | 35                                                              | 68                              |
| 160         | $\text{C}_4$ -Cyclohexadiene<br>(terpenoid) or<br>Phenyl isopropyl ether                     | ND                                                              | 12                                                              | ND/PR <sup>c</sup>              |
| 165         | $\text{C}_4$ -Cyanobenzene                                                                   | ND                                                              | 6                                                               | ND/PR <sup>c</sup>              |
| 166         | Dimethoxybenzene                                                                             | ND                                                              | 6                                                               | ND/PR <sup>c</sup>              |
| 174         | Quinoline (80+) and<br>Ethylmethoxybenzene or<br>$\text{C}_4$ -Cyclohexadiene                | 57                                                              | 20                                                              | 65<br>(combined)                |
| 176         | $\text{C}_4$ -Cyclohexadiene                                                                 | ND                                                              | 19                                                              | ND/PR <sup>c</sup>              |
| 180         | $\text{C}_4$ -Cyclohexadiene                                                                 | ND                                                              | 15                                                              | ND/PR <sup>c</sup>              |
| 185         | $\text{C}_4$ -Benzene and<br>$\text{C}_2$ -Methoxybenzene or<br>$\text{C}_4$ -Cyclohexadiene | 24                                                              | 14                                                              | 42<br>(combined)                |
| 195         | 1-Indanone                                                                                   | ND                                                              | 7                                                               | ++ <sup>g</sup>                 |
| 201         | Methylbenzothiophene                                                                         | ND                                                              | 11                                                              | ND/PR <sup>c</sup>              |
| 205         | 2-Methylnaphthalene                                                                          | 23                                                              | 9                                                               | 61                              |
| 207         | $\text{C}_5$ -Cyclohexadiene                                                                 | ND                                                              | trace                                                           | ND/PR <sup>c</sup>              |
| 213         | Methylbenzothiophene                                                                         | ND                                                              | 22                                                              | ND/PR <sup>c</sup>              |
| 215         | 1-Methylnaphthalene                                                                          | ND                                                              | 24                                                              | ND/PR <sup>c</sup>              |
| 219         | Isopropylmethoxybenzene<br>or $\text{C}_5$ -Cyclohexadiene                                   | 16                                                              | 9                                                               | 44                              |
| 220         | $\text{C}_3$ -Methoxybenzene                                                                 | ND                                                              | trace                                                           | ND/PR <sup>c</sup>              |
| 230         | Indazole or<br>Benzimidazole                                                                 | 29                                                              | NT                                                              | 100                             |
| 238         | n-Propylmethoxybenzene<br>or $\text{C}_5$ -Cyclohexadiene                                    | 5                                                               | trace                                                           | 99+                             |
| 240         | $\text{C}_3$ -Methoxybenzene or<br>$\text{C}_5$ -Cyclohexadiene                              | trace                                                           | 6                                                               | 99+                             |
| 245         | Ethyl benzoate                                                                               | ND                                                              | 6                                                               | ++ <sup>g</sup>                 |
| 248         | Indole                                                                                       | 1,980                                                           | 10                                                              | 99.5                            |
| 250         | Biphenyl                                                                                     | 22                                                              | trace                                                           | 99+                             |
| 260         | Methylindole                                                                                 | 50                                                              | NT                                                              | 100                             |
| 261         | $\text{C}_2$ -Naphthalene                                                                    | ND                                                              | 10                                                              | ND/PR <sup>c</sup>              |
| 262         | $\text{C}_2$ -Naphthalene                                                                    | ND                                                              | 7                                                               | ND/PR <sup>c</sup>              |

Table 3.3. (Contd.)

| Peak Number | Compound Name                        | Estimated <sup>a</sup><br>Influent Conc.<br>( $\mu$ g/L) | Estimated <sup>a</sup><br>Effluent Conc.<br>( $\mu$ g/L) | Estimated<br>Percent<br>Removal |
|-------------|--------------------------------------|----------------------------------------------------------|----------------------------------------------------------|---------------------------------|
| 264         | Methylbiphenyl                       | ND                                                       | 9                                                        | ND/PR <sup>c</sup>              |
| 270         | Methylindole                         | 26                                                       | trace                                                    | 98+                             |
| 276         | Methylindole                         | 15                                                       | NT                                                       | 100                             |
| 278         | Methylindole                         | 25                                                       | NT                                                       | 100                             |
| 280         | Methylindole                         | 65                                                       | NT                                                       | 100                             |
| 290         | Acenaphthene                         | ND                                                       | 7                                                        | ND/PR <sup>c</sup>              |
| 295         | Methylbiphenyl                       | ND                                                       | 7                                                        | ND/PR <sup>c</sup>              |
| 310         | $C_6$ -Thiophene &<br>Methylbiphenyl | ND                                                       | 8                                                        | ND/PR <sup>c</sup>              |
| 311         | Bibenzyl                             | ND                                                       | 7                                                        | ND/PR <sup>c</sup>              |
| 313         | $C_6$ -Thiophene                     | ND                                                       | 4                                                        | ND/PR <sup>c</sup>              |
| 340         | n-Propylnaphthalene                  | 7                                                        | trace                                                    | 98+                             |
| 343         | Fluorene                             | ND                                                       | 17                                                       | ND/PR <sup>c</sup>              |
| 350-355     | Cyanophenyl<br>benzoate (?), & ?     | 68                                                       | NT                                                       | 100                             |
| 370         | Plasticizer                          | --                                                       | --                                                       | ++ <sup>g</sup>                 |
| 400         | Aliphatic hydrocarbon                | ND                                                       | 6                                                        | ND/PR <sup>c</sup>              |
| 450         | Anthracene or<br>Phenanthrene        | ND                                                       | 6                                                        | ND/PR <sup>c</sup>              |
| 500         | Carbazole                            | 32                                                       | 15                                                       | 53                              |
| 510         | Aliphatic hydrocarbon                | ND                                                       | 10                                                       | ND/PR <sup>c</sup>              |
| 530         | Plasticizer                          | --                                                       | --                                                       | ++ <sup>g</sup>                 |
| 550         | Plasticizer                          | --                                                       | --                                                       | ++ <sup>g</sup>                 |

<sup>a</sup>ND, not determinable; NT, not detected.<sup>b</sup>The effluent shows a larger peak. The influent extract possibly was dried when methylene chloride was evaporated, so the more volatile xylenes escaped.<sup>c</sup>ND/PR stands for not determinable/poorly removed. Due to the fact that the effluent contained fewer organics of lower concentration levels, the final extract volume had to be concentrated to a volume much smaller than that of the influent. Certain peaks, corresponding to compounds that were in very low concentration level in the influent were then easier to identify in the effluent, but were obscured or in the "noise" level in the influent. So, all told, the symbol ND/PR indicates that the percent removal for a particular compound could not be determined (ND) but is probably poorly removed (PR).<sup>d</sup>Shoulder peak in effluent.<sup>e</sup>The peak in the effluent corresponds to another compound.<sup>f</sup>A dominant part of the peak in the influent corresponds to methylindoline.<sup>g</sup>The symbol ++ means that the compound strictly appears only in the effluent.

$C_3$ -methoxybenzenes (peak Nos. 260, 270, 276, 278, 280). In the case of aromatic hydrocarbons, the more aliphatic the substitution or alicyclic the content, the less the removal. Examples are substituted benzenes (peak Nos. 12, 15, 20, 50, 62), cycloalkanes or cycloalkenes (peak Nos. 35, 47, 67). Also most of the compounds with the labels ND/PR (see Table 3.3, note C, and discussion below) fall in this category. Polynuclear aromatics were only partially removed, depending again on the amount of substitution. Examples are naphthalene (peak No. 150) vs substituted naphthalenes (peak Nos. 205, 215, 261, 262), acenaphthene (peak No. 290), fluorene (peak No. 343), bibenzyl (peak No. 311) methylbiphenyl (peak No. 295) and anthracene or phenanthrene (peak No. 450). It is noted that all of the neutral fraction organics identified in the biological reactor effluent were found to be present at very low concentrations, e.g., less than several  $\mu\text{g/L}$ .

Compounds that were at very low concentrations in the influent neutral fraction were obscured or in the "noise" level in the influent chromatogram. It was very difficult or impossible, therefore, to determine percent removal values for these compounds, even though it was easier to identify them in the effluent fraction due to the fact that the effluent fraction was concentrated to a smaller volume (0.5 mL) than that of the influent (5 mL). Such compounds are identified in Table 3.3 with the symbol ND/PR (not determinable/poorly removed) under the estimated percent removal column. The facts strongly suggest that these compounds, although in very low concentrations in the influent, were poorly removed.

Some compounds like ethyl benzoate (No. 245) and plasticizers (Nos. 370, 530, 550) in Table 3.3 show up strictly only in the effluent. Ethyl benzoate can be either a contaminant or an artifact. As for plasticizers (primarily phthalates), they are ubiquitous trace contaminants. Also, plastic containers were used during sampling and pretreatment of the wastewater.

### 3.3 FACTORS PERTAINING TO INTERPRETATION OF RESULTS

This study used wastewater from HYGAS pilot plant Run Number 64. To evaluate the utility of the study results for projecting to commercial-scale, activated sludge performance, it is necessary to comment on the representativeness of the raw wastewater used and the relevance of the bench-scale tests and pilot-plant operating conditions. Important issues are wastewater sample strength, gasifier operating conditions, and biological reactor operating conditions.

#### 3.3.1 Wastewater Sample Strength and Stability

The purpose of this study was to assess the fate of organic species in activated sludge treatment of a coal gasification wastewater. In this respect, the HYGAS wastewater contained the spectrum of organics that might be present in a commercial-plant effluent. However, for reasons discussed below little can be concluded about absolute concentration levels.

The wastewater used in the treatability study comprised a 1:1 blend of cyclone and quench condensates. This blending procedure ensured that all pilot-plant wastewater organic species were represented in the sample. However, because make-up water was introduced into the pilot plant's cyclone separator, the blend of cyclone and quench condensates may have been diluted as much as 30 to 50%. The steam-to-carbon ratio during the pilot-plant run was 1.82. Presently conceived commercial-scale designs call for a steam-to-carbon ratio approaching 1.0. This suggests that the pilot-plant product gas contained excess unreacted steam, and for this reason the effluents may have been more dilute. Other factors that may have tended to make the pilot-plant effluents of lesser strength are that organics may be adsorbed on overhead fines and may be removed by extraction from the aqueous phase and enters into the recirculating-coal-feed slurry oil.

With regard to the stability of the wastewater samples during transport, storage, and the bench-scale tests, a recent study (Raphaelian and Harrison, 1979) showed no detectable compositional changes for HYGAS quench-water samples stored at refrigerator temperatures (2-4°C) for a 60-day period or at an incubator temperature (37°C) for a 7-day period. The extractable organic constituents examined by Raphaelian and Harrison were of the same type as investigated in the present study and were isolated and analyzed in exactly the same way. Because the wastewater samples of this study were subject to conditions milder than the 37°C condition, it is probable that little or no detectable changes in the extractable and chromatographable organics took place.

### 3.3.2 Gasifier Operating Conditions

It is important to note that anticipated changes in commercial-scale gasifier operating conditions may offset the effects on sample strength described above. All of the above effects suggest that the pilot-plant wastewater used in this study may be relatively weak by comparison with predicted commercial-scale effluents. Potentially countering this aggregate effect is the fact that the low temperature reactor (LTR) in the commercial plant is designed (D.K. Fleming, IGT, written communication, 1979) to operate at higher temperatures, higher hydrogen partial pressure, and longer gas residence time than has been true at the pilot plant. Available data are contradictory as to the precise effects of gasifier operating conditions on organics production; however, it is anticipated that as the LTR temperature and the gas-phase residence time increases, decomposition reactions are possible. Decomposition reactions in a commercial facility may be enhanced further over those achieved at pilot scale by improved gas-solids contacting.

A commercial HYGAS facility is envisioned to process bituminous coal at about 90% carbon conversion. The wastewater characterized in this study was formed from pilot-plant processing of bituminous coal; however, carbon conversion was only 72%. This factor may also affect the relative strength of pilot-plant vs commercial-plant wastewater. Differences in raw product gas quench configuration between pilot plant and commercial plant would affect the distribution of organic species between gaseous and liquid effluents.

Appendix B presents additional information on the process conditions for HYGAS Run 64, including gasifier conversion and temperature data, and plant water balance.

### 3.3.3 Biological Reactor Operating Conditions

The bench-scale biological reactor was fed lime-pretreated, ammonia-stripped wastewater. Wastewater treatment in the commercial facility may incorporate phenol extraction and recovery prior to ammonia stripping if wastewater phenol loadings are sufficiently high. The addition of phenol extraction could affect the performance of a commercial biological wastewater treatment plant.

Lime pretreatment may have removed some raw wastewater organic bases and other material by precipitation. Commercial-scale wastewater treatment designs call for free and fixed-leg ammonia stripping prior to biological oxidation. Similar organic precipitation and adsorption reactions may occur in the fixed leg of an ammonia still, as in the lime pretreatment operation used in this study, if lime is added to the fixed leg. These conditions may not occur if caustic is used in fixed-leg stripping instead of lime. The extent to which bench-scale, lime-pretreatment ammonia stripping and free and fixed-leg ammonia stripping are identical with respect to the fate of organic constituents requires further evaluation.

The biological reactor selected for analysis of influent and effluent organic compounds was operated under conditions similar to those that would be expected in a commercial facility. A commercial facility may be designed for somewhat lower rates of COD removal than those that were employed with the reactor selected for the organics study; approximately  $0.50 \text{ day}^{-1}$  versus  $0.86 \text{ day}^{-1}$ , depending on the amount of conservatism desired. The reactor's performance showed good sludge settling properties and good removal efficiencies for COD, phenolics, and thiocyanate.

### 3.4 COMPARISON WITH OTHER STUDIES

It would be useful if the organics removal data obtained at bench scale in this study could be compared with data for similar kinds of organic constituents removed from an industrial process wastewater by activated sludge at full scale. One would expect that studies of organics removal by wastewater treatment systems of petroleum refineries or coking plants could provide data that would permit a rough measure of the reliability of trace organics removal estimates when going from bench scale to full scale. A careful search of the literature has been made, but the only study found that adequately treats the removal of a broad spectrum of organic constituents by activated sludge at full scale is Argonne's study of organics variation across the wastewater treatment system of a Class-B petroleum refinery. The study is described in detail in Raphaelian and Harrison (1978) and only those results that are pertinent to the present study are repeated here.

Wastewater samples were collected at SOHIO's Toledo refinery every four hours for four days. Influent to the activated sludge plant was collected from the dissolved-air-flotation (DAF) unit. Effluent from the

activated-sludge plant was collected from the final clarifier (FC). The same methods of organics extraction, GC/MS sample analysis, and compound identification and quantitation procedures were used in the present study as were used in the refinery wastewater study.

A total of 304 compounds were identified in the neutral fraction of the DAF effluent. Only a very few of these compounds could be identified directly by their mass spectra. By using massgrams, however, identification of a majority of compounds was achieved. Concentrations of specific organic compounds identified in the DAF and FC effluents must be considered to represent order-of-magnitude estimates whose main value is for evaluation of the performance of the activated-sludge process. Used in this context, these data are the best available for defining performance of a full-scale, biological treatment plant for removing a great variety of specific organic compounds.

Over 400 specific organic compounds were found in the SOHIO wastewater before biological treatment. Data collected at the SOHIO refinery disclose an extremely high removal of specific neutral-fraction organic compounds in the activated-sludge unit, with the lowest removal demonstrated being 99.3%. This finding compares well with the neutral-fraction organics removal data of the present study only for those compounds initially at high concentrations in the influent (Table 3.3). In general, however, aromatic compounds were seldom as effectively removed from the gasification wastewater as from the refinery wastewater. The data correlate much better in the case of organics in the acidic fraction where the activated sludge removal efficiencies for phenolic compounds are excellent in both the coal gasification and refinery studies. The same good correlation exists with the organics in the basic fraction, where the removal efficiencies, in both cases, are generally good with the exception of certain alkylated pyridines.

It can be speculated that much of the organic material remaining in an activated sludge effluent, for either a bench-scale, coal gasification or a full-scale, petroleum-refinery wastewater will consist of compounds that are by-products of biological processes. The concentrations of specific organic compounds that originate in coal gasification and petroleum refining processes may be expected to be extremely low (in the parts per billion range) after conventional activated sludge treatment of process wastewaters.

The above expectation will be valid only for a properly designed and operated activated-sludge plant. It will not hold for operational upsets or shock loadings to the biological system. For this reason additional treatment systems may be needed to supplement activated sludge treatment.

Harrison et al. (1979), for example, have recently recommended standby powdered activated carbon treatment systems for control of trace organics that could be emitted during subnormal operation of activated sludge systems used to treat petroleum-refinery wastewaters. The potential frequency and magnitude of upsets in activated sludge plants projected for commercial-scale, coal gasification plant will be addressed in later phases of the present program.

## 4 CONCLUSIONS

In this study it was found that over 98.5% of extractable and chromatographable organic material, on a mass basis, was represented in the acidic fraction of a coal-gasification process wastewater. The remaining material was composed largely of basic and neutral organic compounds with the latter being present at levels somewhat less than those in the basic fraction. Activated sludge processing removed most of the identifiable organic constituents. Compounds of the acidic fractions were removed almost completely. High removal efficiencies were also observed for compounds in the basic fraction, with the exception of certain substituted pyridines. The extent of removal of compounds in the neutral fraction was dependent on chemical structure. Aromatic hydrocarbons containing aliphatic substitutions and polynuclear aromatic compounds were only partially or poorly removed. Basic and neutral fraction organics in the biological reactor effluent were found in concentration levels of only several  $\mu\text{g/L}$ , with an overall removal of about 90%. Considering all the organics, the overall removal was 99.8%.

Analytical data presented in this study for organic characterizations are at best semiquantitative estimates. In future studies, it is planned to address some of the unresolved questions regarding quantification of organic compounds in complex wastewater. This work will include evaluation of extraction efficiencies for selected organic compounds from coal-gasification process effluents.

## ACKNOWLEDGMENTS

Louis Anastasia, IGT, assisted in collection of wastewater samples, Leo Raphaelian gave advice relative to analysis of organic constituents in the wastewater samples, and Sidney Bourne and Carol Chow assisted with the workup of the influent basic fraction and GC/MS runs, respectively. Philip Singer, University of North Carolina, is thanked for his careful review of the entire manuscript. Michael Massey, Environmental Research and Technology, made several comments on the script. Thomas Atkins and Harry Tkach, Mittelhauser Corporation, also reviewed parts of this report.

## REFERENCES

Fleming, 1979, Institute of Gas Technology, written communication.

Harrison, W., R.D. Flotard, and D.L. Ford, 1979, *Assessment of Activated Carbon for Environmental Control of Trace Organics in Petroleum Refinery Wastewater*, Argonne National Laboratory Report ANL/WR-79-3, 83 p.

Institute of Gas Technology, 1978, *Pipeline Gas from Coal Hydrogenation (IGT Hygasification Process)*: Quarterly Report No. 5 to U.S. Dept. Energy, July 1-Sept. 30, 1977.

Luthy, R.G., and J.T. Tallon, 1978a, *Experimental Analysis of Biological Oxidation Characteristics of HYGAS Coal Gasification Wastewater*, Carnegie-Mellon University report to U.S. Dept. of Energy, FE-2496-27, May, 1978.

\_\_\_\_\_, 1978b, *Biological Treatment of HYGAS Coal Gasification Wastewater*, Carnegie-Mellon University report to U.S. Dept. of Energy, FE-2496-43, Dec., 1978.

Luthy, R.G., R.W. Walters, and J.T. Tallon, 1978, *A Synopsis of Wastewater Treatability Studies Performed on HYGAS Pilot Plant Quench Condensate*, Carnegie-Mellon University report to U.S. Dept. of Energy, (in preparation).

Raphaelian, L., and W. Harrison, 1978, *Trace Organics Variation Across the Wastewater Treatment System of a Class-B Refinery and Estimate of Removal of Refractory Organics by Add-On Mixed-Media Filtration and Granular Activated Carbon at Pilot Scale*: DOE/EPA Interagency Energy/Environment R&D Program Report EPA-600/7-78-125, 105 p.

\_\_\_\_\_, 1979, *Stability of Extractable Constituents in Stored Samples of Gasification Condensates Inferred from Comparisons of Total Ion Chromatograms*: Argonne National Laboratory Report ANL/EMR-3, 32 p.

Singer, P.C., et al., 1978, *Assessment of Coal Conversion Wastewaters: Characterization and Preliminary Biotreatability*: U.S. EPA report EPA-600/7-78-181, Washington, DC 20460.

Warner, J.S., 1976, *Determination of Aliphatic and Aromatic Hydrocarbons in Marine Organisms*, Anal. Chem., V. 48, 578 p.

## APPENDIX A

*PROCEDURES EMPLOYED FOR WASTEWATER  
PRETREATMENT AND ACTIVATED-SLUDGE PROCESSING*

*A.1 WASTEWATER PRETREATMENT PROCEDURES*

Wastewater pretreatment consisted of:

- a. Blending cyclone and quench condensates,
- b. Removing excess alkalinity by treatment with lime, and
- c. Removing excess ammonia by air stripping.

As shown in Fig. A.1, not all of the wastewater was subjected to ammonia removal because it was desired to reserve some for studies of biological oxidation at high ammonia levels. All wastewater was pretreated with lime because it was found that the excessively high values of alkalinity caused biological reactor pH to fluctuate upward uncontrollably. This activity was a result of carbon dioxide being stripped from solution during aeration at a rate greater than that which acid was being produced by the biological degradation reactions.

Alkalinity removal was achieved in this study by adding lime to the raw wastewater, which precipitated alkalinity as a calcium carbonate sludge. Lime addition was carefully controlled by experimental design so as to leave approximately 1000 mg/L residual alkalinity in the ammonia stripped wastewater after adjustment to a pH value of 7.3. It was found that this value of alkalinity provided sufficient buffering capacity to prevent downward pH changes as a result of the acid-producing reactions accompanying biological oxidation. This strategy eliminated the need for automatic pH control units on the biological reactors, and it permitted biological reactor pH to be monitored only on a daily basis. It was found that small additions of acid or base were required to prevent pH drift, and that pH value could be maintained within desired limits by daily chemical additions.

The purpose of the ammonia stripping process was to prepare influent to the biological reactors by reducing raw wastewater ammonia concentration to acceptable level. These levels were achieved by air stripping lime-pretreated wastewater at a pH of approximately 10. At this pH, ammonia equilibrium shifts to favor ammonia over ammonium ion and permits dissolved ammonia to be liberated from solution by contacting with air. The stripping process reduced raw wastewater ammonia concentration from an average level of 3200 mg/L to between 100 and 150 mg/L. A diagram of the ammonia stripping column is shown in Fig. A.2. Average characteristics for raw, lime treated, and ammonia stripped wastewater, and percentage change through ammonia stripping are presented in Table 2.1.

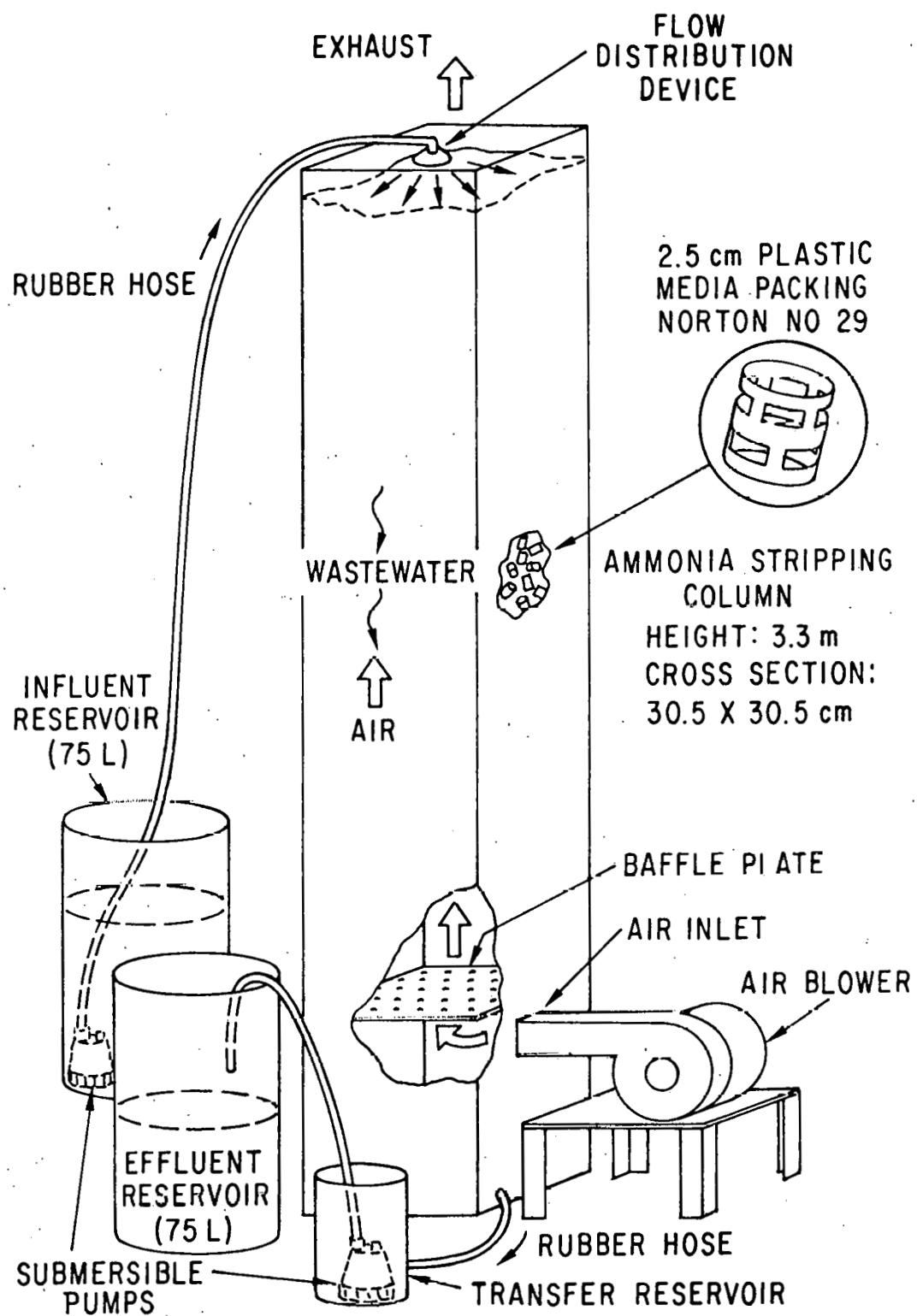



Fig. A.1. Schematic of Wastewater Pretreatment by Ammonia Stripping

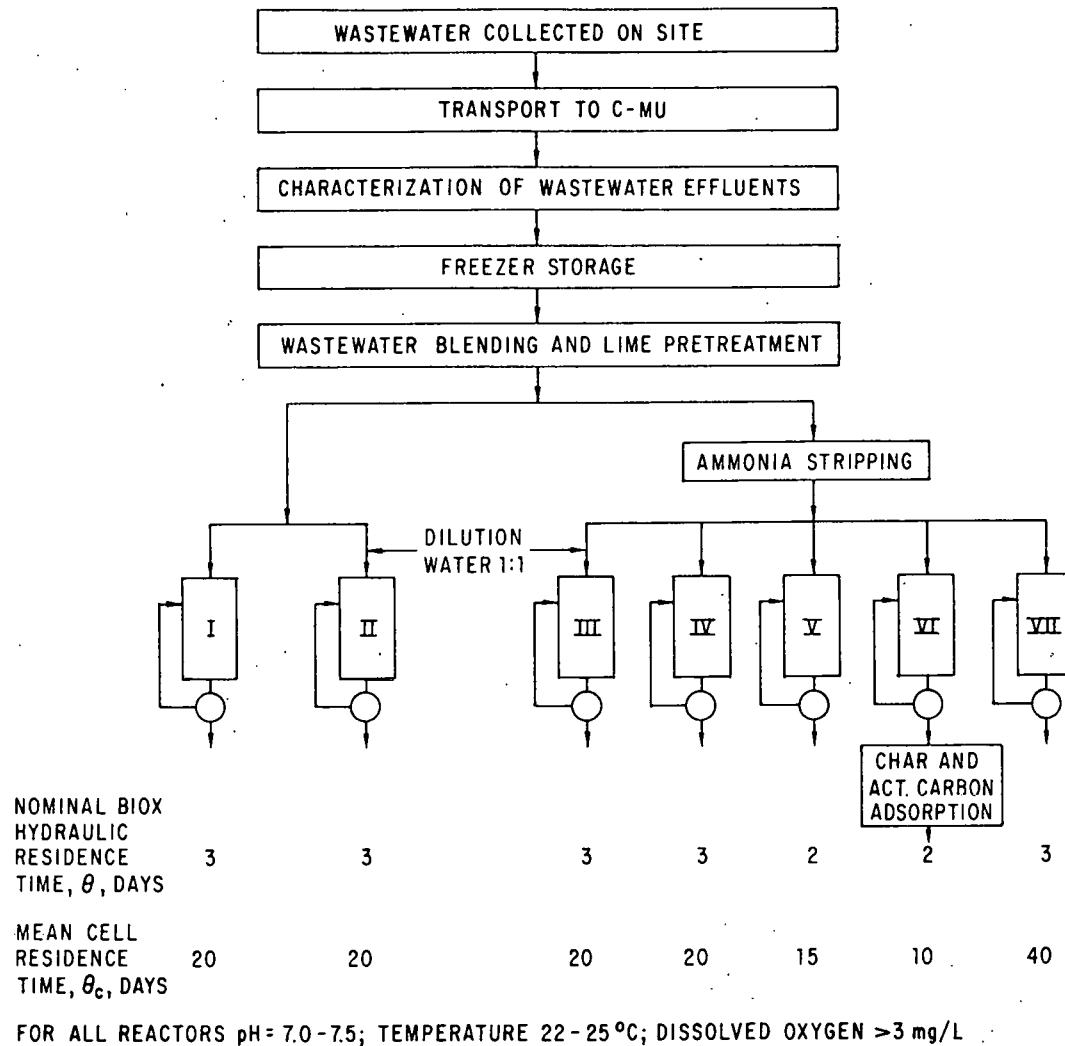



Fig. A.2. Experimental Design for Biological Oxidation Studies on HYGAS Pilot Plant Wastewater

### A.2 EXPERIMENTAL DESIGN

The purpose of the biological treatability study was to define activated sludge performance characteristics with HYGAS wastewater and to address some of the basic questions identified with regard to biological treatment of coal conversion effluents. Figure A.2 shows a schematic of the general experimental design to meet the objectives of the treatability study. Results from that study are presented in a report by Luthy and Tallon (1978b).

The present report presents results of identification and removal of trace organic compounds. For the purpose of this study, GC/MS analysis of organic constituents was performed only on samples of influent and effluent from Reactor V (Fig. A.2). This reactor was selected for analysis of influent and effluent organic compounds because it was representative of the midrange of processing conditions employed in the biological oxidation study.

### A.3 BIOLOGICAL OXIDATION EXPERIMENTAL PROCEDURES

#### A.3.1 EXPERIMENTAL APPARATUS

The biological oxidation unit consisted of complete-mix, continuous-flow, stirred-tank reactors. Figure A.3 shows a side view of the reactor used for the biological treatment studies. Each reactor was made of glass; the body was cylindrical with the bottom of the reactor being cone-shaped. Each reactor had a total volume of 6 liters. The reactors were equipped with semicircular plexiglass internal clarifiers; these were secured to the side of the reactors with silicone glue. The remaining portion of the reactor volume (5.15-5.40 L) served as the aeration chamber. The lower part of the clarifier was cut diagonally and partially covered with plexiglass to prevent air bubbles from entering the clarifier. This modification permitted treated effluent to rise and mixed-liquor suspended solids to settle back into the aeration chamber. Outlet taps were constructed through the side of the reactors at the supernate levels of the clarifiers, thereby allowing the effluent to gravity drain into collection reservoirs. Aquarium pumps provided air to the units; the air was evenly dispersed by use of diffusing stones located at the base of the aeration chambers. The conical design of the base of the aeration chamber prevented incomplete mixing. Though biological floc-mixing was satisfied by aeration, aeration alone was found ineffective in handling problems arising from bacterial floc-clumping. Aeration also caused the wastewater to foam. Electric stirrers were mounted above the reactors and set at 60 rpm. This setup remedied problems associated with bacterial floc-clumping and controlled foaming problems to a certain extent by helping to reentrain solids that tended to accumulate on the surface of the reactor. Stirring did not effectively solve foaming problems, and so it was necessary to apply antifoaming agent (Calgon C-37) sparingly to the surface of the aerator on a daily basis during most of the study.

The general layout of the experimental apparatus is shown in Fig. A.4. Influent flow rate was controlled with variable speed peristaltic finger pumps. The influent flowed from refrigerated storage tanks kept at a height of about 20 cm above the reactors. The height differential provided a positive pressure head to the finger pumps and reduced flow fluctuations caused by influent line clogging owing to the relatively low flows that were

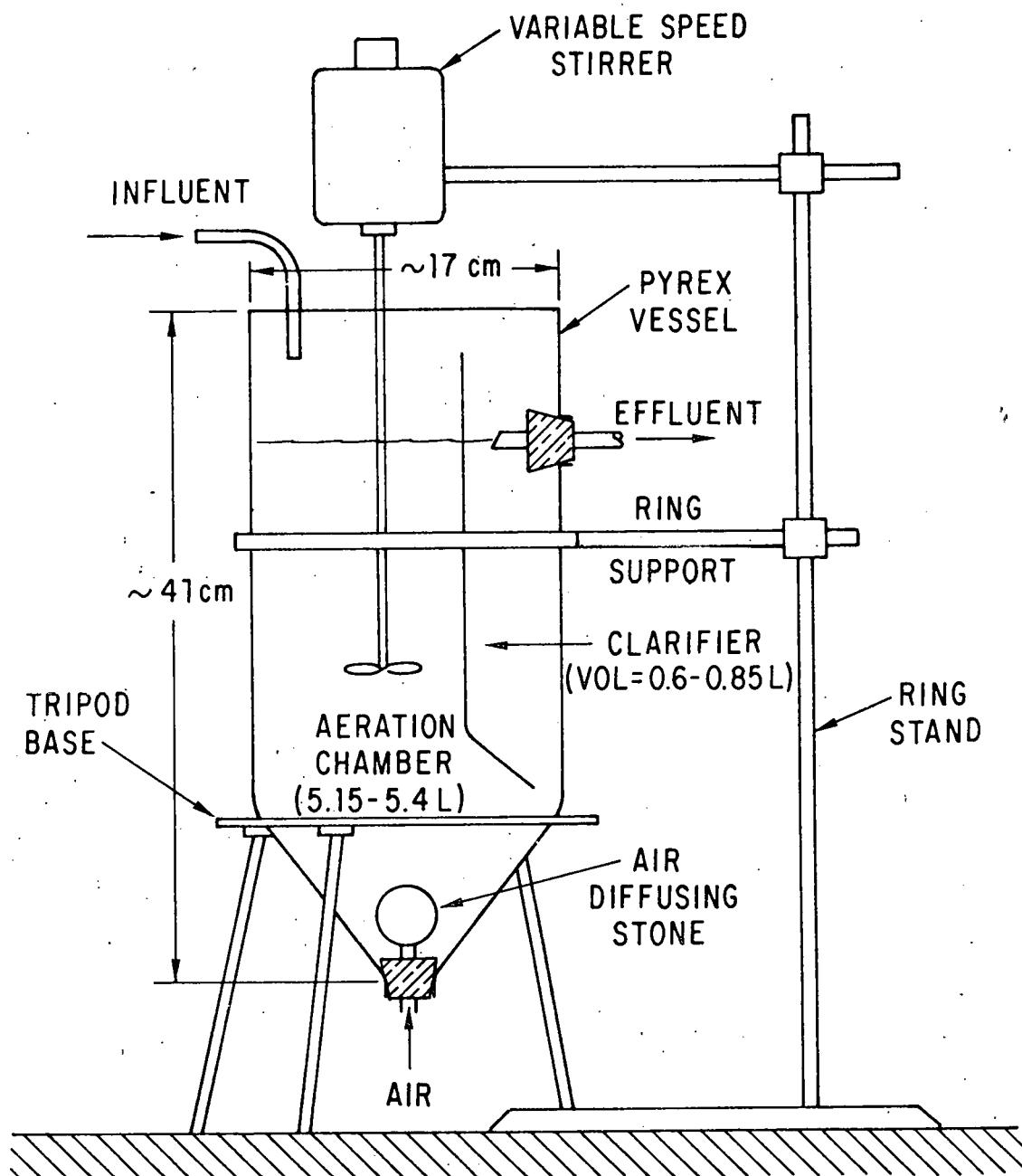



Fig. A.3. General View of Continuous Stirred-Tank Reactor for Biological Oxidation Kinetic Studies

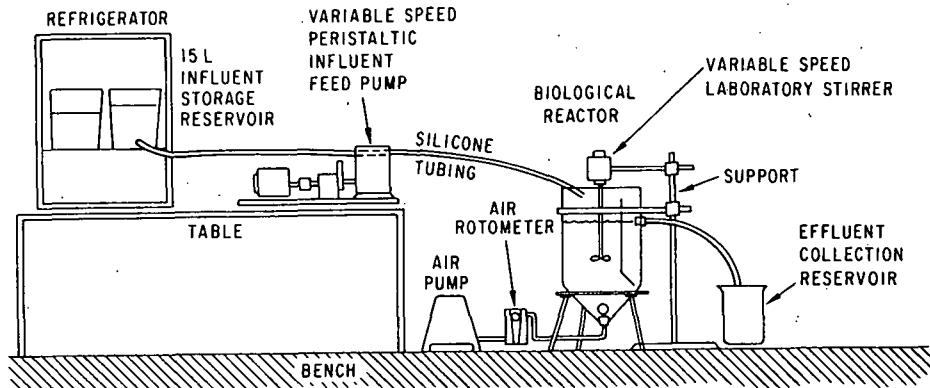



Fig. A.4. General Layout of Biological Oxidation Experimental Apparatus

maintained. Reactor temperature was not controlled and varied in the range of 22 to 25°C. Influent to the biological units was refrigerated in order to minimize sample degradation. Effluent samples were analyzed and/or composited daily. Composite samples were preserved and stored in a refrigerator.

#### A.3.2 SAMPLING, ANALYSIS, AND OPERATING SCHEDULE

The biological reactors were monitored daily for flow, pH, MLSS, and sludge wasting. The following parameters were held as experimental constants: influent COD, D.O., pH, hydraulic residence time, and mean cell residence time. Reactor D.O. was maintained greater than 3 mg/L. Reactor pH was maintained in the range of 7.0-7.5 by the residual alkalinity in the pretreated wastewater and by small daily pH adjustments to the influent and/or to the mixed liquor. Consistency of influent COD was assured as well as may be achieved by the wastewater storage and blending procedures.

The reactor was managed on the basis of mean cell residence time. It was therefore necessary to compute the quantity of sludge to be wasted daily. This computation was made according to the following formula:

$$\text{mL of sludge wasted per day} = \frac{\left( \frac{1}{\theta_c} V X_1 - F X_2 \right) 1000}{X_1}$$

where:

$\theta_c$  = desired mean cell residence time, days

V = reactor volume, L

$X_1$  = MLVSS, mg/L

$X_2$  = effluent VSS, mg/L

F = daily flow, L/d

The procedure ensured that cell wasting calculations took into account the amount of volatile suspended solids carried out with the effluent.

Sludge was wasted by syphoning off the desired volume of mixed liquor, dewatering the sludge on a vacuum filter, and returning the filtrate to the reactor. This methodology allowed independent control of hydraulic and mean cell residence times. Hydraulic residence time was calculated by dividing reactor volume minus clarifier volume by effluent flow volume collected over twenty-four hours.

An abbreviated sampling schedule was employed during acclimatization and the balance period. The balance period, the time required for the reactor to attain steady-state operation, was defined as being equal to three complete solid wasting cycles, i.e., three times  $\theta$ . During steady-state operation, the reactor performance was characterized according to a set of standard wastewater parameters and sludge properties.

#### A.3.3 ACCLIMATIZATION

Activated sludge was obtained from a local coke plant treating weak ammonia liquor. The sludge was used to seed the biological reactors. Prior to receipt of HYGAS wastewater, the reactors were fed weak ammonia liquor for several weeks. Upon arrival, the HYGAS wastewater was blended, pretreated, and diluted to 50% strength; feed strength was gradually increased to 100% strength over a period of three weeks.

Reactor performance and stability during acclimatization were evaluated on the basis of COD, thiocyanate, and phenol removal. Oxygen uptake, sludge volume index, and microbial activity were used as indicators of sludge viability. During startup, feed strength was increased by 10-25% whenever COD and phenol removals approached 75 and 99%, respectively.

An estimate of nutrient requirements showed that phosphorus was the only apparent serious nutrient deficiency. Hence the wastewater was supplemented with phosphorus.

Boron was present at approximately 100 mg/L in HYGAS wastewater. This concentration of boron may not be severely toxic to the acclimatized bacteria that removes carbonaceous substrates. However, nitrification was inhibited in these studies, and one of the suspected causes was high boron levels. Boron was also suspected of inhibiting bacterial growth.

### A.4 BIOLOGICAL OXIDATION STUDIES

#### A.4.1 REACTOR OPERATING CONDITIONS

The biological reactors were operated at dissolved oxygen (DO) levels greater than 3 mg/L, and dissolved oxygen generally fluctuated in the range of 4 to 6 mg/L. At this concentration DO is not limiting to bacterial stabilization reactions, including nitrification.

Reactor pH was maintained in the range of 7.0-7.5. That pH range represented a compromise between selection of appropriate pH conditions for minimizing potential  $\text{HNO}_2$  and  $\text{NH}_3$  toxicity to nitrifying bacteria while encompassing the pH range recommended as being suitable for thiocyanate oxidizing organisms.

Reactor mean cell residence time was selected on the basis of literature review recommendations and on laboratory experimentation. The literature review indicated that a sludge wastage rate of about 5% per day may be suitable for treatment of related wastewaters. This wastage rate corresponds to a mean cell residence time of 20 days, a value that was selected as a point from which to perform parametric studies to determine a range of suitable mean cell residence times. When one of the reactors was operated with a sludge age of approximately 60 days, the sludge demonstrated very poor settling characteristics. When managed on a sludge age of 40 days, settling characteristics improved to the point where effluent suspended solids were not excessive. It was concluded that a sludge age of 40 days represented an upper bound beyond which operational problems may be encountered. It was also found in this study that a sludge age of about 10 days was the lowest permissible mean cell residence time that could be sustained during prolonged steady-state testing. For these reasons the biological kinetic study employed mean cell residence times varying from 10-40 days.

Hydraulic residence time was selected initially on the basis of conservative estimates of kinetic growth constants. Assumed values of yield coefficient and organism decay coefficient were used to correlate estimates of COD removal efficiency, mixed liquor volatile suspended solids (MLVSS), and mean cell residence time. Hydraulic residence times were then selected that gave flexibility in steady-state MLVSS values. It was desired that under steady-state conditions reactor MLVSS should fall within a normal operating range of 1000-8000 mg/L. Experimental results showed in fact that MLVSS varied from 1000-3000 mg/L for the test conditions shown in Fig. A.1.

The attainment of steady-state operation was defined as that interval (balance period) necessary to achieve three complete solid wasting cycles. The reactors were then run from 7-14 weeks to obtain sufficient steady-state performance data.

#### *A.4.2 BIOLOGICAL OXIDATION OF UNDILUTED STRIPPED WASTEWATER*

The main series of biological oxidation experiments consisted of a study to determine biological oxidation kinetics with undiluted stripped wastewater as represented by Reactors IV, V, VI, and VII on Fig. A.1. In these experiments, mean cell residence time, hydraulic residence time, and influent COD were maintained as experimental constants, while effluent COD and MLVSS were system variables. There was no variability in mean cell residence time, which was imposed by the solids wasting schedule. Held reasonably stable by the wastewater storage procedure, influent COD had a coefficient of variation of 11-16% during the time that the reactors were at steady-state operation. Hydraulic residence time was maintained as constant as was feasible by use of peristaltic feed pumps.

Table 2.2 in the main body of this report showed general operating parameters and performance characteristics for Reactor number V, and these are based on average values presented in Appendices V and XII of Luthy and Tallon (1979b). Influent and effluent samples were collected from the reactor for characterization of trace organic species. The samples were composited over a three-week period during steady state and were preserved prior to shipment to Argonne by freezing in plastic containers. The samples were thawed and one-gallon aliquots of influent and effluent were shipped by air on June 7, 1978 from C-MU to Argonne, where they were stored at 2-4°C until prepared for GC/MS analysis.

## APPENDIX B

## PROCESS REVIEW OF OPERATING CONDITIONS

The wastewater samples analyzed in this report consisted of a composite of condensates from Runs 62 and 64 at the HYGAS pilot plant. C-MU's biological-reactor system was acclimated on Run 62 wastewater. The biological-system treatability data, however, were obtained from Run 64 wastewater. The coal for both runs was Illinois No. 6 bituminous coal from the Peabody No. 10 mine.

Pilot plant operating conditions were reviewed with respect to comparable conditions given in Revision No. 2 of the commercial concept design prepared by PROCON Inc. for the HYGAS process. Operating variables evaluated were gasifier conversion, gasifier temperatures, and plant water balance.

## B.1 GASIFIER CONVERSION

Gasifier conversion is a measure of the relative amount of coal or carbon gasified and is based on the amount of coal fed down into the gasifier. This feed rate is called the net feed rate and is equal to the total feed less the overhead dust. Net feed rate is a better measure of gasifier performance, since the overhead dust does not have an opportunity to be gasified. Because the level of pretreatment in the pilot plant is comparable to that of the commercial-plant design, the amount of volatile materials able to be gasified is comparable.

Conversion can be calculated either by an ash balance method or by weight balance. The ash balance assumes that the overhead dust has the same ash content as the feed coal. The weight balance method makes no such assumptions and uses an overall weight balance. The following equations are used in the ash-balance method of computation:

$$\% \text{ carbon gasified} = 100 \times 1 - \frac{A_F C_{SC}}{A_{SC} C_F} \quad (B.1)$$

$$\% \text{ coal gasified} = 100 \times 1 - \frac{A_F (1-A_{SC})}{A_{SC} (1-A_F)} \quad (B.2)$$

where:

$A_F$  = ash content of feed

$A_{SC}$  = ash content of spent char

$C_F$  = carbon content of feed

$C_{SC}$  = carbon content of spent char.

The equations used in the weight balance method are as follows:

$$\% \text{ carbon gasified} = 100 \times 1 - \frac{W_{SC} C_{SC}}{W_F C_F - W_D C_D} \quad (B.3)$$

$$\% \text{ coal gasified} = 100 \times \frac{W_F (1-A_F) - W_D (1-A_D) - W_{SC} (1-A_{SC})}{W_F (1-A_F) - W_D (1-A_D)} \quad (B.4)$$

where:

$W_F$  = lb/hr coal feed

$W_{SC}$  = lb/hr spent char

$W_D$  = lb/hr overhead dust

$A_D$  = ash content of overhead dust

$C_D$  = carbon content of overhead dust.

The relative values for these conversions compared to the commercial plant design are shown below. The values were calculated from a report by the Institute of Gas Technology (1978). The commercial-plant design values were calculated from flows shown on PROCON process flow diagram 2174-02.00-12.10-D, dated 3/31/78. The overall values are based on the total coal feed, not the net feed.

|                         | % Carbon Gasified |             |         | % Coal Gasified |             |         |
|-------------------------|-------------------|-------------|---------|-----------------|-------------|---------|
|                         | Ash Balance       | Wt. Balance | Overall | Ash Balance     | Wt. Balance | Overall |
| <b>HYGAS</b>            |                   |             |         |                 |             |         |
| Run 64                  | 72.8              | 74.6        | 59.5    | 77.4            | 79.4        | 64.7    |
| <b>Commercial Plant</b> |                   |             |         |                 |             |         |
|                         | 90.1              | 90.1        | 83.3    | 91.1            | 91.1        | 84.3    |

During the period of Run 64, the ash content of the overhead dust (12.29%) was near that for the feed (12.63%). Thus, the close agreement between ash and weight-balance conversion for the pilot plant. The commercial-plant conversions are close because ash contents are nearly equal (21.9 for dust, 20.9 for pretreated char), conversion is high, and the rate of overhead dust loss is low.

It is important to note that the lower gasifier conversions do not necessarily mean that the process is incapable of higher conversions. Each pilot-plant run is planned to demonstrate the interrelationships among specific process variables, like feed rate, conversion, bed temperatures, steam rate, etc. In this particular run, lower conversions were noted as a result of run-specific goals. The effects of the lower conversions on gasifier yields are not totally clear and can best be discussed as they are related to gasifier temperatures.

## B.2 GASIFIER TEMPERATURES

A comparison of gasifier temperatures for Run 64 is given below. Note that the low temperature reactor (LTR) and high temperature reactor (HTR) are cooler than called for in the commercial-plant design. Steam-Oxygen Gasifier (SOG) bed temperature is up to design. Again, these temperatures as tabulated here are specific to the goals of the run and do not directly reflect upon process capabilities.

|                   | Commercial | Temperatures of Run 64 |
|-------------------|------------|------------------------|
|                   | Design     | 8/23/77 to 8/24/77     |
| Slurry Drying Bed | 609        | 639                    |
| LTR               | 1432       | 1148                   |
| HTR               | 1700       | 1468                   |
| SOG               | 1800       | 1819                   |

The main effect of these lower temperatures is to decrease reactor conversion. The resulting effect on gasifier product composition requires a more complicated evaluation. In addition to the synthetic gas components, oils, phenols, and other heavy organics are produced during coal devolatilization and gasification in the LTR. Some of these condensable organics are soluble in water and are eventually present in the plant wastewater. The quantity of chemically oxidizable components in the wastewater is the Chemical Oxygen Demand, or COD.

Only gaseous components are produced in the HTR and SOG because of the high temperatures and configuration of these reactors. Therefore, changes in conversion and gasifier temperature can affect only the production of heavy organics as they occur in the LTR.

The real question of the effect on product gas composition of raising LTR temperatures from this pilot-plant run to the commercial-design level cannot be fully determined at this time. First, no hard data exist for bituminous gasification from the IGT bench-scale reactor that simulates the LTR. Second, the data available for lignite and sub-bituminous devolatilization and gasification, as reported in Johnson (1973-1975), are somewhat contradictory. Some results indicate that the LTR would continue to produce a slightly increasing quantity of COD components as temperature increased from 1100-1500°F. Other data indicate that no such increase could be expected. At most, the increased production would only be about 10-15%.

Another interesting, and as yet unquantified, occurrence in the LTR that could affect the composition of the organics produced is dealkylation and dehydroxylation of the more complex components in the LTR. Dealkylation and dehydroxylation reactions remove respectively alkyl and hydroxyl groups from aromatic compounds. The resulting effects are a decrease in compounds such as alkylbenzenes and higher phenolics and an increase in the quantity of benzene that is produced.

Data on peat gasification in an LTR type unit, and other kinetic studies conducted by IGT and others, reportedly indicate that higher LTR temperatures greatly promote dealkylation. A similar relationship is expected for dehydroxylation. Depending on the reactions involved, dealkylation conversions as high as 90% have been reported. These results cannot as yet be applied to coal gasification in the pilot plant, but they do indicate that higher commercial-plant design temperatures could change treatability requirements; a shift from phenol recovery to biological, or to other forms of chemical treatment, could become cost effective because of the presence of fewer refractory organics in the wastewater.

#### B.3 PLANT WATER BALANCE

In both the pilot-plant and the commercial design, water is required to remove entrained char and to quench the raw gas from the gasifier. In the pilot plant it is discharged directly and is not treated for reuse. Additional make-up water is required to replace the higher blowdown, which results in dilution of the organics that are present relative to those expected in a commercial plant.

Also, as shown below, steam use in the pilot plant is higher than that expected in the commercial-plant design. The additional steam required is used to maintain fluidization velocities and to reduce the relative quantity of oxygen in the SOG to inhibit clinkering. In the commercial plant, the SOG would be resized to achieve the desired velocities without the higher steam requirements. The feasibility of this possibility has been demonstrated during recent runs at lower gasifier pressures, as indicated below.

|                      | # Steam/# Coal Feed | # Steam/# Carbon (net) |
|----------------------|---------------------|------------------------|
| HYGAS<br>Run 64      | 1.73                | 3.12                   |
| Commercial<br>Design | 1.13                | 1.94                   |

#### B.4 RESULTS

Based on the process review, it is felt that the pilot-plant wastewater should, in general, be comparable to untreated commercial-plant wastewater. That is, the same general types of compounds should be present in both streams. The review also indicates that pilot-plant effluent water should be more dilute in wastes requiring treatment than would be the wastewater from a commercial plant. If the LTR temperature is increased to the level specified in the commercial design, the quantity of COD-producing organics will probably remain constant, within  $\pm 10\%$ . There may, however, be a shift from substituted aromatics to benzene, as a result of dealkylation and dehydroxylation. This effect could be significant and should be confirmed by laboratory testing. Final confirmation will not occur until a demonstration plant is constructed.

**B.5 REFERENCES**

Institute of Gas Technology, 1978, *Pipeline Gas from Coal Hydrogenation (IGT Hygasification Process)*, Quarterly Report No. 5 to U.S. Dept. of Energy, for the period October 1 through December 31, 1977, 135 p.

Johnson, J.L., 1973-1975, *Kinetics of Devolatilization and Rapid-Rate Methane Functions*, Inst. Gas Tech., Internal Reports to U.S. DOE.

Distribution for ANL/WR-79-1Internal:

|               |                  |                      |
|---------------|------------------|----------------------|
| S. Bourne     | W. Harrison (10) | J. J. Roberts        |
| R. P. Carter  | B. Hass          | D. M. Rote           |
| E. J. Croke   | L. J. Hoover     | W. K. Sinclair       |
| P. Cunningham | D. O. Johnson    | V. C. Stamoudis (10) |
| S. Danyluk    | A. B. Krisciunas | S. Vargo             |
| J. D. Ditmars | K. S. Macal      | K. Wilzbach          |
| R. D. Flotard | D. L. McCown     | ANL Contract Copy    |
| D. Grahn      | W. Norris        | ANL Libraries (5)    |
| L. Habegger   | E. G. Pewitt     | TIS Files (6)        |
| J. Harkness   | L. A. Raphaelian |                      |

External:

DOE-TIC, for distribution per UC-90c (299)  
 Manager, Chicago Operations and Regional Office, DOE  
 Chief, Office of Patent Counsel, DOE-CH  
 President, Argonne Universities Association  
 Energy and Environmental Systems Division Review Committee:

E. E. Angino, U. Kansas  
 J. H. Gibbons, U. Tennessee  
 R. E. Gordon, U. Notre Dame  
 W. W. Hogan, Harvard U.  
 W. Hynan, National Coal Association  
 D. E. Kash, U. S. Geological Survey, Reston  
 D. M. McAllister, U. California, Los Angeles  
 L. H. Roddis, Jr., Charleston, S. C.  
 G. A. Rohlich, U. Texas at Austin  
 R. A. Schmidt, Electric Power Research Inst.  
 John Abrahams, Fossil Energy Program, USDOE (3)  
 Mayo Carrington, Fossil Energy Program, USDOE (3)  
 Paul Duhamel, OHER, USDOE  
 George Stapleton, OHER, USDOE  
 Michael Massey, Environmental Research and Technology, Pittsburgh (2)  
 John Craun, Environmental Research and Technology, Pittsburgh  
 Louis Anastasia, Inst. Gas Technology, Chicago  
 Richard Biljetina, Inst. Gas Technology, Chicago  
 Fred Witmer, ECTD/USDOE  
 Thomas Atkins, Mittelhauser, Inc., Downers Grove, Ill. (3)  
 Armand Thomas, A. F. Meyer Assoc., McLean, Va.  
 Richard Luthy, Carnegie-Mellon University, Pittsburgh (10)  
 Philip Singer, U. North Carolina, Chapel Hill  
 D. L. Ford, Engineering Science, Austin  
 G. Stout, U. Illinois, Urbana  
 V. Snoeyink, U. Illinois, Urbana