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1 Introduction

The objective of the proposed research is to develop a theoretical framework
for amalyzing various two-phase flows, with special emphasis on fthe flows
of gas-liquid dispersions. The macroscopic behavior of these flows depends
on the details of the microstructure of the dispersiom, and these details, in
turn, depend om the nature of the flow. Given the very diverse mature of the
flows: and their complex dependence on the microstructure of the dispersion,
it is unlikely that. a single set of equations, similar to the Navier-Stokes.
equations: for homogeneous fluids, will apply to all the different situations.
What is possible, however, is to develop general methodologies. that can
be used to examine specific sitwations and a general understanding about
different kinds of macroscopic flows. The aim of the proposed research is to
develop efficient numerical techniques for carrying out dynamic simulations of
flows: of dispersions and to apply them to a carefully selected problems whose
solutions would reveal important qualitative as well as quantitative msights
into the complex interdependence of the microstructure and macroscopic
properties of the flows. These numerical techniques are to be supplemented
with the techmiques of ensemble averaging and statistical physics to obtain
results that could be used in modelling more complicated flows througl a set
of relatively simple equations.

2 Work accomplished during July 1990-Jan.
1992

Two classes. of macroscopic flows were analyzed in detail during the current
funding period. The first is the oscillatory flows, as in the case of acoustic
or pressure wave propagation through bubbly liquids, and the second is con-
vective flows as in bubbles rising through a liquid. Two articles based on the
study of oscillatory flows have appeared in print (Sangani 1991 and Sangani,
Zhang, and Prosperetti [991). One manuscript based on a convective flow
study has been submitted for publication, and the other is in preparation. In
addition, a study on simulations of escillatory flows. is nearly completed, and
a manuscipt based on this will be prepared over the next few weeks. The
Pl and his collaborator, Professor Prosperetiti at The Johns Hopkins Uni-
versity, has also contributed a chapter on the simulations of bubbly flows in
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an wpcoming book edited by Dr. Roco at the Nabiomal Science Foundation
(Prosperetti and Sangani 1992). A summary of the important findings is
given below.

2.1 Oscillatory flows

The primary motivation for studying these flows was its simplicity. Since the

hubbles are simply executing a simple harmonic motion around their mean

positions, the determimation of the microstructure is rather trivial. In the

limit of small-amplitude motions, the only aspect of the microstructure that

remains to be determined is the shape of the bubbles, and, consequently, the
Moute-Carlo simulations are adequate for such flows. The problem is also

of comsiderable practical significance because a number of non-invasive tecl-
niques employ acoustic probes to gain insight into the flows of suspensions.
2.1.1 Pairwise interactions in dilute bubbly liquids

The first. study (Sangani 1991) was a theoretical analysis of the acoustic
wave propagation through dilute bubbly liquids, i.e., dispersions in which

#, the volume fraction of gas bubbles, is small. The initial motivation for

examining this problem was simply the need to familiarize with the ensemble
averaging techniques for deriving equations that govern the behavior of the
dispersion at the macroscale. It turned out, however, that in the process
we discovered a number of important effects that arise due to interactions
among bubbles. The earlier theories, correct to O(/F), examined only the
interaction of a single bubble with the incident planar wave. We found that
the correction to this is O(4%?) and this causes the acoustic damping of
waves. Thus, the waves are damped at finite volume fractions even in the
absence of nonadiabatic thermal effects, finite compressibility or the finite
viscosity of the liquid. This effect alone turned out to be quite significant in
explaining the discrepancy between the predicted values of attenuation based
on: the O(F) theories and its measured values for frequencies comparable
to or smaller than the resonance frequency of bubbles. For example, the
attenuation of sound at # = 0.01 near the resonance frequency of bublbles

of radii 0.27 cm. predicted from the earlier theory was about a factor of

5 lower than its measured value, whereas the new theory gives values that
are in excellent agreement with the experiments The next corrections, of
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O(A% log ) amnd O(B*), were also determined. [n particular, we discovered
a number of secondary resomances that arise due to the interaction among
pairs of bubbles. A detailed account of vartous physical effects that hecome
important may be found in Section 1.1 of Sangami (1991).

2.1.2 Added mass and viscous effects in non-dilute bubbly liquids

In Samgani, Zhang, and Prosperetti (1991), we presented the results of mu-
merical simulation of oscillatory flows for bubbly liquids obtained by solving

Voa=0, iwpl=—VE+pVii. (1)

Here, we have assumed that the velocity and pressure are proportiomal to
¢! f being the time. @& and P are the amplitudes of velocity and pressure
variations, w is the frequency, and p and w are, respectively, the density
and viscosity of the liquid. An efficient numerical technique was developed
for solving the above equations by rigorously accounting for the interactions
among all the bubbles in the limit of small viscosity and frequency. In this
limit, the radial oscillations of the bubbles are negligible and the effect of vis-
cosity of the liquid is essentially confined to thin Stokes layer near the surface
of each bubble. The leading order effect in the limit of vanishingly small vis-
cosity is the added mass effect and the correction to this is the Basset force
effect for bubbles contaminated with surface-active impurities and a simple
visceus: force effect for bubbles free of impurities. Thus, these calculations
provide, in addition to the estimates of speed of sound and its attenwation
in the low frequency limit, the coefficients of added mass, Basset. force, and
viscous drag. This turns out to be one of the sirnplest formulation one can
consider for determining these coefficients. In particular, it clarified some of
the issues regarding what the proper definition of the added mass coefficient
is, and how to recocile the two different resulis for that coefficient. that were
derived earlier by other investigators (van Wijngaarden 1976, Biesheuvel and
Spoelstra 1989) in the limit of small 3. We carried out numerical analysis
tor both spatially pertodic and random dispersions and for different velocity
distributions of the bubbles (or particles) by varying their density from 0 to
co. [nterestingly, we found that the added mass and viscous drag coeffcients
were both relatively insensitive to the details of the spatial and velocity dis-
tribubions of the bubbles. Thus, we expect that these results may also be
wseful in other flows provided thab the spatial distribution of the bubhbles.



is nearly uwniform. We also presented sumple formulas for estimating these
coefficients.

2.1.3  Attenuation of sound waves at. large frequencies

As mentioned im Sec. 2.1.1, the agreement. between the O(F?) theory of
Sangant (1991) and the experimental data on the attenuwation of sound waves
as reported by Silberman (1957) is excellent at frequencies comparable to
and below the resonance frequency of the bubbles. At higher frequencies,
however, there is a considerable discrepancy between the theory and the
experiments. For example, the attenuation predicted by the theory is abowt
50 to 100 percemt higler than the experimental values at frequencies two
to five times the resomance frequency, even for 4 as small as 0.00. This
difference was somewhat puzzling, and therefore we undertook a separate
study to evaluate attenuatiom via numerical simulations without invoking
the assumptions regarding the magnitude of the volume fractiom, the ratio
of radius of the bubbles to the effective wavelengtl, or the compressibility
of the liquid phase. The results of such amalysis serve as an independent
check on the theory and allow ws to account for other effects, such as that
of size and spatial distributions of the bubbles or the nomadiabatic thermal
effiects. Moreover, it was suggested in Sangani (1991) that the out-of-phase
mode resonance effects between the pair of bubbles could be responsible for
this large discrepamcy. This mode occurs only at frequencies greater than
the resomance and were not imcluded in the theory as it contributes to the
attenuation only at O(B%?), and the resulting analysis for determining it
amalytically was quite involved.

We developed a scheme for rigorously solving the multiple scattering prob-

lem via direct numerical simulations. In this, we combine the use of planar

periodic singular solutions, developed earlier by Sangani and Behl (1989)
for solving nonlocal problems in which the avesaged quantities vary over the
lengthscale comparable to the size of the dispersed phase, with a scheme of
multiple scattering calculations developed earlier by Rayleigh (1898), Ewald
(1916), and Twersky (1962). This leads to an eigenvalue problem for de-
termining the effective wavenumber I' and, hence, the attenuation of the

acoustic waves. We found that this formulation, which directly determines

I'in the bulk of the dispersion, actually has multiple solutions, especially
at. frequencies above the resonance frequemcy, and thijs poses some numeri-



cal difficulties in detecting the smallest eignevalue, which is the one that is
likely to be observed in experiments. We may note here that, at finite 4, the
pressure variations in the bubbles are approximately 180 degree out-of-phase
with the pressure variations in the mixture for frequencies greater than the
resonance lrequency of the bubbles, and thus the bubbles hehave as if they
have a megative compressibility. As a consequence, the bubbly liquid be-
haves as an acoustically opague medium with the intensity of sound simply
decreasing exponentially with the distance into the bubbly mediuwm. Thuws,
it is not aphysical to have multiple eigenvalues for this problem at higher
frequencies. Because of the numerical difficulties involved in determining the
smallest eigenvalue of the resulting equations, we subsequently used a differ-
ent. formulation in whicl we considered propagation of sound waves throwgh
a fimite layer of bubbly liguids. The solution of this problem is given by

o o N 9.
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[ere we have assumed that there is a periodicity in arrangement of the
bubbles in the zq — z3 plane, 7 being the area of the unit cell. The incident
wave 13 in the ry direction with the corresponding wavenumber in pure liguid
equal to &, and ¢ is the amplitude of the velocity potential. x is the center
of a representative bubble @ and H is the planar periodic singular solution of
the Helmholtz equation. Y, is the differential operator related to the solid
spherical harmonics, i.e., Yo (zy, 4, 23) is the solid harmonic of degree m and
order m. There are 2m 4 | independent harmonics for each m. N is the total
number of bubbles used in the simulation and A% is the strength of a 2™-
multipole associated with the bubble e. It turns out. that at larger frequencies
and for § = 0.01, the above solution can be truncated to just monopoles,
i.e., terms with m = 0 in (2), with a reasomable degree of accuracy. This
allowed us to carry out simulatioms with as many as 100 bubbles without
much difficulty. Once the monopoles are determined for the given frequency
and size and spatial distributions of the bubbles, we plot. the legarithm of
the magnitude of the monopole versus its z; coordinate and determine the
attenuation from the slope of the line drawn by best fitting the results with
a straight line after discarding the results for the bubbles that were near the
edige of the bubbly region. The scatter of the magnitude of the monopole from
the straight. line was quite small in all cases we examined, and hence, this
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method allowed us to estimate the attenwation to a high degree of accuracy.

Owy numerical results are in very good agreement with the dilute theery
off Samgamni (1991) and, thus, substantially higher than the experimetal values.
We also carried out. calculations in which the bubbles” size distribution was 50
percent. polydispersed amd found that. this actually results in even higher val-
wes of attenuwation. Similarly, we carried out simulations in which the spatial
distribution was not uniform, and this too resulted in higher valwes. Thus,
none of these factors can comtribute to the discrepancy between the theory
and experiments. We now believe that the measurement. of attenwation at
higher frequencies by Silberman (1957) may not. be very accurate.

This work is nearly completed and a manuscript will be submitted for
publication shortly.

2.2 Convective flows

2.2.1 Dynamic simulations

In Sangani and Didwania (1991), we have presented the results of dynamic
simulations of bubbles rising throuwgh a liguid. This situation is representa-

tive of the flows in whicl the mean of the relative motion between the two

phases is not zero. The Reynolds number of the flow, based on the radius
and the terminal rise velocity of the bubbles, is assumed to be large com-
pared to unity. As shown by Moore (1963), the effect of viscosity in large
Reynolds number flows past a single bubble is essentially confined to a small
region near the surface of the bubbles. The velocity field determined from
the potential or the irrotational flow approximation is accurate to the lead-
ing order, i.e., O(Re®), everywhere in the liquid. The correction to this is at
most of O(Re~"?) and confined to a thin boundary layer of nondimensional
thickness O( Re™'/?) near the surface of the bubble. Unlike the flow past rigid
bluff ob jects, for which a boundary layer separation leads to an O(1) devia-
tion in the velocity from the potential flow over the region that in width is
comparable to the size of the object, the width of the wake behind the bubble
is small, of O(Re~'/*), and the velocity correction in the wake is also small.
It is possible that a bubble rising ia the non-dilute dispersion, that we were
interested in studying, may leave behind it a nonvanishing vorticity wlich,
in turn, may affect the motion of the bubbles following it. Since it is quite
difficult to determine this vorticity distribution and its effect on the motion

w ' LU
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of the bubbles, we decided to carry out simulaticns in which we ignore this:
effect, leaving the examination of this effect to o future work. Thus, the
simulations we have carried out solves for the potential flow around many
bubbles and then estimates the viscous forces on the bubbles wsing two dif-
ferent. methods. The first is based on computing the gradient of the total
viscous dissipation with respect to the velocity of the individual bubbles -
a method wsed by Biesheuvel and van Wijngaardew (1982) and Kok (1989)
who determined the viscous drag on pair of bubbles, and the other is based
on exact amalysis of the viscous effects in small amplitude oscillatory fiows
by Sangani (1991) and Sangani, Zhang, and Prosperetti (1991). Both meth-
ods yield identical values for the drag on individwal bubbles in non-dilute
dispersions. The second method, however, turned out bhe computationally
far more efficient, and hence all the dynamic simulations were subsequently
carried out. using, that method.

To keep the analysis simple, we assumed further that the Weber number,
which is the ratio of imertial to surface tension forces, is small compared to
unity so that the bubbles may be assumed to remain spherical. We further
asswmed that the bubbles do not coalesce. The conditions of large Reynolds
number and small weber number are satisfied by bubbles approximately |
mmy. in diameter. Careful experimental observations of the dynamics of pairs

“of bubbles: approximately 1 mm. in size are veported by Kok (1989). He re-
ported that, while bubbles in pure water generally coalesce, an addition of a
small amount of surface-active impurity prevented bubbles from coalescing,
He further noted that, in the latter sitwatiom, the bubbles bounced away
from each other rather instantaneously. He also compared the observed tra-
jectories of the pairs of bublbles with the corresponding trajectories evaluated
using the potential flow approximation and the viscous forces estimated from
the dissipation method mentioned earlier and found an excellent agreement
between the two. Finally, he also carried out experiments in which the con-
centration of the surface-active impurities was high, and found that a wake
of finite size forms behind the bubbles and that the potential fow approx-
imation broke down for such high comcentrations. Thus, the calculations
we cartied out are likely to apply to systems in which a slight amount of
surface-active impurities is present.

In accordance with the above experimental observations, we assume that
whenever any two bubbles collide, they bounce back almost instantaneously.
At large Reynolds numbers, the viscous effects are negligible and, therefore,

7



we assume that the momentuwm and the kinetic energy of the entire dispersion
is comserved during the collision. We show that the normal component of the
relative motion of the colliding pair of bubbles reverses its direction wpon
collision, just as in the case of two elastic spheres colliding in vacuurm; but
unlike the latter case, we find that the velocity of all the bubbles in the
dispersion also undergo a change in their velocities during the collision. Since
the bubbles: are essentially massless, they collide in such a manner so as to
comserve the total momentum and kinetic energy of the liquid, and this is
possible only if the other bubbles adjust their speeds so as to accomodate
the changes in the liquid velocity.

We developed a numerical method for simulations of the motion of bub-
bles undes the conditions described above. Considerable attention was de-
voted to making the computer code for solving the interactions among the
bubbles: as efficient as possible. With careful programming and the wse of
vectorization, we were able to reduce the computational time by two orders
of magnitude over a period of one year. As a result, the CPU time on the
supercomputer at the Cornell Theory Center (IBM 3090) for solving for the
interaction among 30 bubbles placed randomly within a unit cell is now less
than 2s. A typical dynamic simulation was carried out for 5 to 10 thowsand
bime steps.

Our dynamic simulations showed that. the random state of bubbly liquids:
under the aforementioned conditions is unstable and that the bubbles form
large aggregates by arranging themselves in the plane transverse to the direc-
tiom of the mean relative motion. These aggregates form even when the size
distribution of the bubbles is nonuniform. The instability results primarily
from the nature of inertial interaction among pairs of bubbles which cause
them to attract toward each other when they aligned in the plame perpen-
dicular to their velocities and to repel when aligned in the same direction as
tlheir velocities. Interestingly though, we find that the presence of viscous
forces further facilitates in the forrnation of plamar aggregates. In fact, if
the imitial velocity distribution of the bubbles is sufficiently nonuniform (50
petcent. variance), we find that there is no significant. evidence of aggregate
formation if the viscous forces are absent.

We found that the averaged properties of the dispersions are profoundly
affected by the formation of these aggregates, particularly at smaller values
of #. For example, the added mass coefficient for an initially uniform and
random spatial distribution of the bubbles is approximately 1.3 for # = 0.1,

8



in agreement. with what we found in the study of oscillatory flows described
in Sec. 2.1. After a non-dimensional time of abouwt 100 wnits, when the
aggregate formation was nearly complete, we found that the added mass
coefficient. had increased to about. 4. Similarly, high values were also observed
for the viscous drag coefficients.

2.2.2 Dispersed phase stress tensor in bubbly liquids

Iy this study we comsidered the problem of deriving a set of averaged equa-
tions for the flows of bubbly liquids. The novel feature of this work is the
derivaticn of the expressiom for the stress tensor to be used ir the force
balance cquation for the dispesed phase. This equation reads

7"'" L g . g 4! 1@ >
%} + U%¢.vI = —%\7 - BT+ l\?’vﬂ/;ﬂ@/@,{/@U - U~ ) — 7;”1 P, (3)

where a is the radius of the bubbles, Cy the drag coefficient, g the gravita-
tional acceleration, U the ensemble-averaged velocity of the gas-liquid mix-
ture, UZ the ensemble-averaged velocity of the gas phase, and I the average
impulse defined by ‘

I =< —p'/@‘ﬂidgl >, 64‘)’

the integral being carried over the surface of a representative bubble in the
dispersion and n the unit outward normal on such a surface. The angular
brackets denote the operation of averaging. Finally, v is the stress tensor.
The goal of the analysis is to determine the force acting om a represen-
tative bubble which is in the midst of a dispersion when there are spatial
and temporal variations in the volume fraction and the velocities of the two
phases. The term on the left-hand side of (3) is the uswal added mass force
and can be expressed in terms of the added mass coefficient C, by means of

C.(US —U) - U]; . (5)

dma® 1
I=p H

3 12
The second and third terms on the right-hand side of (3) are the usual viscous
and buoyancy forces. The existence of a term corresponding to the dispersed
phase stress temsor, as represented by the first term on the right-hand side of
(3) has been postulated for many years and is believed to play an important
role in stabilizing the void fraction waves. A term similar to this has been

9



used in the fludization literature for ove- thirty years, and recently there has
been a number of studies which discuss tue origin of such a force in disper-
sions. For example, in a recent study of void fraction waves in fluidized beds,
Batchelor (1988) noted that such a term would arise from the transport of
momentum by the random translational motion of the particles (or bubbles),
the collision of the particles, and the fluid dynamic stresses. However, he did
not. specify the means of evaluating this stress tensor from a detailed study of
particle interactions. For rapid granular flows, Jenkins and Richman (1983)
were able to derive an expression for the dispersed phase stress tensor which
included the translational and collisional contributions. For dilute bublbly liy-
uids, van Wijngaarden and Kapteyn (1990} have obtained an expression for
the stress temsor which includes only the tramslational contribution. Finally,
Biesheuvel and Gorissen (1990) developed a kinetic theory for the bubbly
liguids and obtained an expression for the stress tensor asswming that the
interaction among the bubbles can be decomposed into a sum of pair poten-
tials. They, however, did not. specify exactly how such a pair decompeosition
can be accomplished from the details of the flow.

Determination of the exact expression for this stress temsor turned out to
a quite difficult problem, and a significant. portion of our efforts during the
past year was spent in solving it. We have now derived the expression for
the stress temsor in terms of multipoles associated with each bubble. These
quantities can be evaluated directly from the dynamic simulations, and thus
it is possible for the first time to determine the stress temsor directly for
different flow situwations. This work will be submitted for publication in the
near fiiture.

3 Future work

The oscillatory flows are now reasonably well understood and, hemnce, the
research will focus mostly on the convective flows. The approach will be
to combine the theoretical ideas from statistical mechnics and dynamics of
granular media to dynamic simulations of flows of bubbly liguids. At the
same time, attention will be given to improving further the efficiency of the
computer code for simulations and to modifying it so that it can allow us to
gain insights into the flows of bubbly liquids that are more complicated.
The results of our dynamic simulations described in Sec.2.2.1 showed

10



that the random state of bubbly liquids is unstable and that large planar
aggregates form as a result. An obvious question that arises is how realistic
are the conditions and approximations that were made in these simulations?
This is particularly important since such aggregates are not vepervted by
any experimental investigations on dispersions. Kok (1989) did observe tihat
pairs of bubbles align themselves wn the plane perpendicular to the gravity,
but that is the only study that we are aware of which reports this tendency.
Matuszkiewicz, Flamand and Boure™ (1987) have reported an extensive data
on the void fraction waves. They found stable void fraction waves for 3 less
than abeut 0.25. and unstable ones, or transition from a bubbly te a shag
flow, for lugher volume fractions. Howev: . they report that the flow was
turbulent (superficial velocity of the flows were greater than I m/s). Most
of the assumptions we have made appear quite reasonable, but there are two
effects that warrent further study. The first is the effect of nonzero vorticity
distribution. and the second is the effect of turbulence.

In non-dilute dispersiens at finite Reynolds number, the low may not
be regarded as irrotational since the vorticity distribution may be significant
evern though the mean vorticity may be zero. One possibility for modelling
this effect is to allow for random forces acting on each bubble during simula-
tion. This is similar to Brownian dynamic simulations of collidal suspensions,
except that it is unclear how to relate the magnitude of the random forces to
the vorticity generated at the surface of the bubbles. At any rate, before do-
ing any simulations of this kind. it appears that first understanding in detail
some simple calculations regarding the vorticity distribution for fow past a
single bubble is essential. Therefore, we are currently studying the rigorous
analysis of Kang and Leal (1988) on the viscous effects at large Reynolds
number fHows past a single bubble. These investigators have obtained a for-
mal solution for the vorticity and the viscous corrections to the velocity and
pressure. They showed that although, the actual expression for the viscous
correction to the pressure is very complicated and involves a detailed knowl-
edge of the vorticity distribution for its determination, it is not necessary
to evaluate this distribution if one is interested only in evaluating the drag
on a single bubble. This is because of symmetry in the flow around a single
bubble. In fact, the drag evaluated using the dissipation method described
in Sec. 2.2 is exact to O(Re™!) in this case. We have extended this solution
to the case of many bubbles and found that it is now necessary to evaluate
the vorticity distribution. Thus, it is not clear how, if at all, this method

11



willl reconcile witly the dissipation method that we used in the simulation of
the motion of many interacting bubbles. The formal solution of Kang and
Leal (198%) involves decomposing the vorticity into poloidal fields. We have
been able to integrate this veorticity equation to obtain a set of ordinary dif-
ferential equations in time for the integrals of these poloidal decomposition
over the boundary layer regions of each flow. At present, we are examining
these equations for the special case of two bubbles to better understand the
relation between this exact analysis of the viscous effects to the dissipation
method. It is hoped that with, a better understanding of the nature of vortic-
ity distribution, it may become possible to extend it to simulations inveolving
many bubbles.

We shall also examine the effect of liquid turbulence. At this point, it
seems that a rigorous approach is not possible. However, since fairly exten-
sive data are available on the bubbly flows in this regime (see, for example,
Matuszkiewicz, Flamand and Boure’ 1987), it may We worthwhile to test
some simple ideas through simulations. Thus, for example, we may carry
out simulations in the absence of viscous and gravitational forces. Fer this
situation, the kinetic energy and momentum are invariant throughout the
simulations and depend on the initial velocity distribution of the hubbles.
Corresponding to different velocity distributions, it is possible to estimate
various average propertfies of the dispersion, and in particular, it is easy to
evaluate the Reynolds stress in the liquid. Thus, one possibility is to relate
various properties to the Reynolds stress and then to solve the averaged equa-
tions for the stability of the void fraction waves for which experimental data
are available. The stability analysis for void fraction waves should be carvied
out by including the energy equation for the dispersed phase in addition to
the usual continuity and mementum equations. Such an energy equation has
been derived by us, and all the quantities that appear in it can be determined

term in the energy equation corresponding to turbulent energy production
so that at steady state, with no gradients in 3 or velocity, the rate of viscous
energy dissipation must equal the turbulent energy production.
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