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A Monte Carlo simulation was conducted to evaluate the response of ridge
regression solutions to increasing collinearity. Specifically, thekmagnitude
of the ridge constant was sensitive to variability in the response vector
while appearing insensitive to collinearity. The ihsensitivity to
collinearity was especially apparent when the response vector was oriented
toward a minor dimension in the strubture_of the prédictor‘variables. Limit
arguments indicated that, in the minor dimension case, the increasing
. magnitude of the inner product of the least squares coefficient vector in the
denominator of the optimum estimate for the ridge constant was fesponsib]e for
the insensitivity to coT1inearity. Since ridge regression wés proposed to
deal with collinearity, this behavior suggests a defect in the generally used
estimate for the optimum ridge constant. To solve this problem, we propose a
condition index estimate for the ridge constant based on thé eigenvalues of
the augmented X'X matrix; this approach ensures sens%?ivity to collinearity

and insensitivity to the behavior of the response vector.



The problem of variance inflation in ordinary least squares (OLS)
regrassicn coefficients when linear dependencies {(collinearity) exist in the
data structure is well known (Silvey, 1969; Marquardt, 1976; McCallum, 1970;
Greenberg, 1975; Mason et al., 1975; Gunst and Mason, 1977). Ridge regression
(Hoerl et al., 1962, 1964, 1970a, 1970b, 1975) is one of the best known and
most™ often used procedures for dealing with this difficulty. Ihdeed,
simulation results (Lawless and Wang, 1976; Dempster et al., 1977) Suggest
that ridge-type estimators are superior wifhin the class of biased
estimators. It has been suggésted that the orientation of 8, the magnitude of
B relative to o and the'strength of the collinearities (Gunst and Masoﬁ, |
1976a, 1976b) are importént factors affecting the performance of biased
estimators. |
Sfmu]ation

A Monte Cérlo simulation was designed to observe the response of ridge
solutions to changes in the orientation and variability of,the response vector
(Y). A simple two predictor variable data structure was employed. Regressibn
algorithms to solve for ridge coefficients

B = (X'X + kI)Ix'y (1)
followed the format of Gunst and Mason (1977). Estimation of the ridge
~ constant |

k = po?/Bl ¢8| ' (2)
where p (number of predictor variables) = 2, and 32, éLS are OLS estimators
was consistent with previous studies (Hoerl and Kennard, 1975; Hoerl et al.,
1975; Gunst and Mason, 1977).

The first step in the simulation was the generation ofv30 bivariate
random normal data points (Xl, XZ) with means zero, unit variance, and zero

correlation. This (30x2) matrix was then obliquely rotated such that the



-4 -

resulting (2x2) correlation matrix of predictér variables could have any
desired correlation structure. Eigenvalues an: i .2nvectors were extfacted
from the correlation mgtrix and used to generate two vectors of principal
components (PC) scores (major and minor dimensions).

The response vector (Y) was taken as.the PC scores on either the major or
minor dimension. The PC scores were standardized to unit variance and scaled
by the addition of a 30xl random vector with mean zero and variance C (C=0,
0.1, 0.2, 0.5, 1.0, 2.0). Thus the R2 of the full regression model ranged
from 1.0 to about 0.4. For all simulations |riyl = [r,yl; that is, the
correlation of the predictors with Y was equal but differed\in‘sign for the
case of Y equal to a major dimension.

Eight settings of correlation between predictor variables were selected
(r=-.5, -.6, -.7, -.8, -.9, -.95, -.975, -.99). One hundred simulations were:
generated for each correlation settihg and each orientation of the respoﬁse
vector with a minor or major dimension of the data structure. Within each
simulation regression, solutions were generated for each of the six
variability settings of the response vector. Summary statistics were
generated for each set of 100 simulations.

Simulation Results

The criticism§ that have been leveled at ridge regression involve the
dependence of the ridge constaﬁt (k) on the predictor variables (Conniffe and
Stone, 1973). However, the most striking behaviors of k emerging from our
simulations were (1) the sensitivity of k to increasing variability in the
response vector and (2) the nonsensitivity of k to increasing collinearity,
especially when the response variabie was associated with a minor dimension of

thé data structure.
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As seen from the ridgé solution for é (equation 1), k is added to the
main diagonal of the X'X matrix. The eigenvalues, which are diagnostics of
collinearity (Silvey, 1969; Greenberg, 1975; Chatterjeé and Price, 1977Y,
extracted from the .augmented matrix are related to those extracted from the

original X'X matrix (Hawkiné, 1975; Green and Carroll, 1976).

The ridge constant should increase as collinearity becomes more severe A min
tends toyard zero). The condition index, Amax/Amin’ from thevaugmented ridge-

eigenvalues should become smaller as k becomes 1arger resulting in an
improvement in the condition of X'X and a reduction in the variance inflation
of the estimated regression coefficients (Marquardt, 1970). It is not
apparent that the response vector should Have an impact on the determination
of k. However, for any fixed level of collinearity, the variability of the
ridge constant was direct]y proportional to increasing variability in the
response variable (Table 1). It was further noted'that for a fixed level of
variability in the response vector, the magnitude of k was remarkab]y similar
~across levels of collinearity, indicating that k responds'more to variability
in the response variable than to‘c011inearity within the data structure of
predictor variables responsible for the variance inflation of regression
coefficients (Table 1). Finally, it was noted that the magnitude of k was
consistently smaller at all levels of variability in the response variable and
levels of collinearity in the minor dimension case when compared with the
counterpart in the major dimension (Tab]e 1).

Limit Arguments

The discrepancies in the behavior of k in the simulations from the

expected behavior led to a closer look at the estimation of k (equation 2).



Attention was focused on the OLS coefficient vectors in the denominator. When
unit vectrrs are . inyed (as in our simulation) the solution for the

coefficient vecuci- can be expressed in terms of correlations.

>

. 2
(rlY - r12r2Y)/(1-r12)

: 2
"2ty F ray/t - rp,)

Sastry. (1970), consistent with other reports (Fox and Cooney, 1954; Klein and

Nakamura, 1965), using L'Hopitals rule concluded that
hm81=-2—=—-2— (5)

as ryp > 1 or r12 * -1. This limit is consistent with our results when the
response vector was associated with a major dimension; however, this limit
conflicts with our results when Y was associatede1th a minor dimension
(Table 2).

When the response variable is set equal to.the major dimensfoh {c = 0 in
our simulation) riy = -rpy. This allows a simp]ification‘in the solution for
§, A
rlY/(l - r12)

= ﬁ . » (6)
“riy/il - r,) |

™m >

At this stage, a limit cannot be determined because the numerator does not
‘remain constant as rip approaches -1. However, all the correlations and,
therefore, é can be expressed as a function of a single angle (Figure 1)

ry = cos(elY)



r cos(6,,) = cos(180 - 6,,)

2Y 2Y 1Y

cos(180 - 26

r

12 lY)

Substituting into (6) gives .

cos (8,,)/(1 - cos(180 - 28,

- cos(ely)/(l - cos(180 - 261Y))

As r, approaches -1, 6,y approaches zero; therefore,

CVim 8y = 1/2

lim 8y = -1/2 .

However, when Y is set equal to a minor dimension, riy = Yoy =

é = Y‘.iY/(l + 7‘12) .

.

(7)

(8)

- (9)

riY[a"d

(10)

Again, B and the correlations can be expressed'as a funciton of a single angle

(Figure 2)

r.
1y

ro = cos(206)

which upon substitution yields

é = cos(8)/(1 + cos20) .

=tcos(6) ' .

(11)

(12)

. As ry, approaches -1, 6 approaches 90 resulting in no limit for é when

expressed in this form. Applying L'Hopital's rule, we have a limit that does

exist as 8 » 90,



~

. . in 0
lim 8 = 1im 310

2 sin 26 (13)

This limit, while conf]icting with Sastry'é (1970) results, is consistent with
the.observed outcome from our simulation (Table 2).

Further, these results have a major impact on the estjmation of i
(equation 2) when the response vector is associated with a minor dimension of
the data structure. As X; and X, become more negatively correlated (rlz
approaches -1), the denominator of E, (éLSéLS)’ becomes larger thus fércing.ﬁ
to become smaller. This is precisely the opposite behavior one would hope for
Q in a ridge solution when collinearity is increasing.

An Alternative Estimate of k

The aberrant behavior of k demonstrated in our simu]atidn might be

circumvented by using the condition index ¢ which is defined as
¢ = Amax/imin ‘ . (14)

(Belsley et al., 1980). When the main diagonal of X'X is augmented, as in

equation (1), the resulting condition index c' {is given by

c¢' = (xmax + k)/{(Amin + k). (15)
It would §eem reasonable to choose ﬁ such that a relatively well conditioned
problem results. [Matrices with condition indices less than 10 (Belsley et

-~

al., 1980)]. Once an arbitrary value for c' is chosen one can solve for k

Q = (xmax - ¢'amin)/(c'-1). (16)



No augmentation would be necessary when the condition index is less than or
equal to c. - .ling the ridge constant directly to the eigenstructure
ensures sensitivity to collinearity. It wguld bé interesting to compare the
ridge solutions thus generated to those from a principal component (PC)
regression which is also directly linked to the eigenstructure of the
predictor variables. Implementing our proposed decision rule would create a
dilemma similar to that found in PC regression. In PC regression, the primary
explanatory power of the predictors may be in deleted minor dimensions of the
data structure resulting in a much reduced RZ° In this case, the modified
ridge solution would likely require a rather large k and would also show a
great reduction in R2.4 However, when the exp]anatory‘power is in minor
dimensions where precise estimation is not possible (Silvey, 1969) it seems
reasonable that this imprecision should be reflected in poor model |
performance.
Conclusions

The constant used to augmént the main diagona]vof the X'X matrix in ridge
regression is sensitive to the variability and orientation of the response
vector. The smaller k in the minor dimension relative to the major dimension
reflects the different limits for éLS in the two cases. A modified ridge
estimate based on phe condition index should eliminate the aberrant behaviors
of k observed in this simulatidn. Association of the respohée variable with
minor dimensions of the data structure indicates deficiencies in the data and

should be reflected in the performance of the regression model.
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TABLE 1

Summary of the simulation results on the behavior of the
ridge constant (k), the standard error of the ridge
constant (S;), the condition index (C.I1.) for eight

correlation settings between predictor variables (r
six levels of variability in the response vector (Y|,
ces Ye)’ and two orientations of the response

Yz, .
vector (major and minor dimension).

AN LW = YO W N OO BLWrN

NP LN

Major Dimension

.
.0000
.0201
.0505
.1016

. 2068
.6497

.0000
.0213
.0530
.1053
.2102
.6335

.0000
.0224
.0549
.1072
.2090
.5966

.0000

.0232.

.0557
.1057
.1996
.5283

Sk

.0000
.0034
.0132
.0392
.1270

1.3867

.0000
.0036
.0141
0414
.1323
1.3287

.0000
.0040
.0152
.0439
.1378
1.2149

.0000
.0044
.0166
.0469
.1431
1.0257

N PO,

NN NW

NN W W W

WOy~

c.Il.

.000
.923
.816
.662
.595
.870

.000
.848
.649
.375

.966 .

.161

.665
.342
.945
.438
.750
.561

.000
. 168
.130
.234
.004
.197

12)’

Minor Dimension

>

.0000
.0069
.0178
.0385

.0966

.4405

.0000
.0055
.0143
.0309
.0780
.3673

.0000
.0041
L0107
.0232
.0589
.2869

.0000
.0027
.0072
.0155
.039¢6
.1992

S

.0000
.0011
.0050
.0177
.1122
1.1238

.0000
.0009
.0040
.0142
.0907
.9482

.0000
.0007
.0030
.0107
.0687
7479

.0000
.0005
.u020
.0072
.0462
.5231

C.I.

.000
.973
.931
.857
.676
.063

NN W

.000
.959
.896
.785
.510
.564

N wd

.666
.604
.506
.332
.901
.385

WhArOOMTONOOM

.000
.893
722
.424
.678
.008

[S 23 Neale olioogNe)

(contd.)



12

-.90

-.975

[oaN S BE - IOV I R o ot AsE W S HWN

AN H W

- 14 -

Major Dimension

k

.0000
.0232
.0530
.0959
.1720
.4039

.0000
.0218
.0471
.0813
.1388
-.2967 -

.0000
.0195
.0396
.0653
.1066
.2137

.0000
.0156
.0292
.0457
.0712
.147

Sk

.0000

.0052
.0191
.0512
.1451
.7424

.0000
.0062

.0215 -

.0537
.1387
.5682

.0000
.0073
.0231
.0535
.1264
.4643

.0000
.0064
.0234
.0496
.1069
.3503

C.Il.

19.000

15.610

12.765 -

10.188
7.618
4.572

40.000
27.462
20.567
15.471
11.064

6.480 -

79.000
44.820
31.186
22.595
15.818
© 9.169

199.000
78.344
51.510
36.548
25.384
14.683

Minor Dimension

k

.0000
.0014
.0036
.0078
.0199
.1038

.0000
.0007
.0018
.0039
.0100
.0530

.0000
.0003
.009

.0019
.0050
.0268

.0000
.0001
.0004
0008
.0020
-0108

S

.0000

.0002
.0010
.0036

.0233

.2739

.0000

.0001
.0005
.0018
.0117

.1401.

.0000
.0001
.002

.0009
.0059
.0708

.0000

.0000
.0001 -

.0004
.0023
.0285

c.l.

199
197.
191.
184
166

96.

.000
.751
374
.698

.012
.832

.000
475
.680
.250
666
.447

.000
.075
.290
.491
.000
3.645

.000

040
385

337
.000

192
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TABLE 2

Summary of ihe corviéiaiions (”iY) between the response

vector and the predictor yariables and the resulting

regression coefficients (8) when the response vector (Y)

is associated with a minor dimension (r

81 = Bp = By) or major dimension for each of the eight

=r

_r‘i

3

correlation (ry,) settings between predictor variables.

Minor Major

rie iy B "1y ra2y B Bp
-.5 -.5 -1.000 -.866 .866 -.5773 .5773
-.6 -.447  -1.118  -.8944  .8944  -.5590 .5590
-7 .387  -1.291  -.9219  .9219  -.5423 .5423
-.8 316 -1.581  -.9487 9487 L5270 5270
-.9 -.224  -2.236  -.9747  .9747  -.5130 .5130
-.95 -.158  -3.162  -.9874  .9874  -.5064 .5064-
-.975  -.112  -4.472  -.9937  .9937  -.5031 .5031

-.071 -7, -.9975  .9975  -.5012 .5012

!
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Figure Legends

Figure 1. Simulation geometry of the predictor and response vectors when Y is

associated with a major dimension.

Figure 2. Simulation geometry of the predictor and response vectors when Y is

- associated with a minor dimension.
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