’ { ,'v,»/‘/ !:, l\ :‘ "\:/ h/l, L/,/ C —_ - //

CONF-920540--11

DE92 000433
Engincering Physics and Mathematics Division

A System for Simulating Shared Memory in Heterogeneous Distributed-Memory
Networks with Specialization for Robotics Applications*

J. P. Jones, A. Bangs, P. L. Butler

“The submitted manuscript has been
authored by a contractor of the U.S5.

Government under contract DE-
AC05-840R21400 Accordingly, the US.
Government retaing a nonexclusive,

royalty-free licen=e to pubhish or reproduce
the published form of this contribution, o
allow others to do so, for U S Government
purposes.”

Paper submitted to the 1992 IEEE International Conference on Robotics and Automation,
May 10-15, 1992, Nice, France

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

* Research sponsored by the Office of Nuclear Energy, Office of Advanced Reactor Pro-
grams, U.S. Department of Energy, under contract No. DE-AC05-840R21400 with Martin

Marietta Energy Systems, Inc. Aﬂn oTEN
mnoiLn b

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

Abstract

A System for Simulating Shared Memory in Heterogeneous Distributed-
Memory Networks with Specializations for Robotics Applications

Judson P. Jones Alex L. Bangs
Center for Engineering Systems Advanced Research
Engineering Physics and Mathematics Division
Oak Ridge National Laboratory
P.O. Box 2008, Oak Ridge, TN 37831-6364 USA

Philip L. Butier
Telerobctics Systems Section
Robotics and Process Systems Division
Oak Ridge National Laboratory
P.O. Box 2008, Oak Ridge, TN 37831-6364 USA

Traditionally, work on robot system

Hetero Helix is a programming environment
which simulates shared memory on a heterogeneous
network of distributed-memory computers. The
machines in the network may vary with respect to
their native operating systems and internal
representation of numbers. Hetero Helix presents a
simple programming model to developers, and also
considers the needs of designers, system integrators,
and maintainers. The key software technology
underlying Hetero Helix is the use of a "compiler”
which analyzes the data structures in shared
memory and automatically generates code which
translates data representations from the format
native to each machine into a common format, and
vice versa. The design of Hetero Helix was
motivated in particular by the requirements of
robotics applications. Hetero Helix has been used
successfully in an integration effort involving 27
CPUs in a heterogeneous network and a body of
software totalling roughly 100,000 lines of code.

1. Introduction

Robot system architectures tend to be complex.
They combine multiple sensor systems with effector
control systems having many degrees of freedom,
frequently using some intermediate form of higher-
level "reasoning”. They must integrate hard real-
time systems with systems which cannot meet hard
real-time deadlines. This complexity leads to an
explosion in the amount of software necessary to
perform what must seem to a casual observer to be
trivial tasks.

architectures has concentrated on principles for
decomposing complex behavior into simpler
behaviors, and has led to specific recommendations
on the identity and functionality of the components
in a finished system [1-4].

However, it is desirable to separate the issue of
the precise identity of the components from the
issue of how the components, regardless of their
identities, are to communicate with one another.
Previous work on communications systems for
robotics [5,6] has generally used some concept of a
centralized data structure for simplicity. In other
cases [7,8], several different models of interprocess
communication are supported, at the price of some
complexity.

In this paper, we regard as arbitrary the
identity and functionality of the components of a
complex control system, and consider specifically
interprocess communications mechanisms for
integrating relatively large bodies of software into
complete robotic systems. Our objectives are
twofold: first, to provide an infrastructure suitable
for interprocess and intersystem communications in
a heterogencous distributed-memory computing
environment, and second, to make the properties of
the communications system such that it is suitable
for use in relatively large system integration
efforts. To accomplish the second goal, we strive for
simplicity.

Hetero Helix is a programming environment
which supports interprocess communication in -
heterogeneous network using a minimal suite of
mechanisms. Specifically, Hetero Helix was
developed to satisfy the software systems
integration and interprocess/interprocessor

Simulating Shared Memory in Heterogeneous Distributed-Memory Networks 1

communications requirements of the uU.S.
Department of Energy’'s University Program in
Robotics for Advanced Reactors [9].

This program has to date conducted three
integrated technology demonstrations [10,11]. These
demonstrations have required approximately
25,000, 50,000, and 100,000 lines of code
respectively, and up to about 30 people (part-time)
for development. Components include ultrason -
sensing and interpretation, computer vision (12},
parallel processing, range image analysis [13],
control of a 7-DOF redundant manipulator [14],
control of an omnidirectional mobile platform [15],
obstacle avoidance [16,17], path p]anning and path
following, graphical user interfaces [18], and
sensor-based force-reflecting teleoperation [19],
among others. These demonstrations have made use
of a relatively complex heterogencous network of
computers, including a Silicon Graphics IRIS
4D/70GT, a DEC Microvax, several VME-based
common-bus multiprocessors, an Apple Macintosh,
and an IBM-PC/AT based NCUBE hypercube
multicomputer.

2. Motivation

The properties of Hetero Helix are motivated by
three considerations. The first is the observation
that complex control systems are of sufficient
complexity to require a team for their development;
they are too complicated to be developed by a
single individual, or even a small team of closely
interacting individuals. The second is the
architectural requirements of various kinds of
robotic control systems. The third is the
communications technology required by
heterogeneous distributed-memory systems.

Teamwork. Just as it is useful to adopt a
simplified model of a complex computer system, it
is useful to adopt a simplified model of the system
development process [20]. A simple "project model”,
illustrated in Figure 1, provides a convenient
mechanism for identifying the various activities in
system development and the needs associated with
each activity.

« Design details the method by which a desired
complex behavior is to be generated by
decomposing the whole behavior into
components, each simple enough to be
implemented by an individual or small team.
Designers typically prefer to use abstract system
models to avoid restricting developments to
specific implementation idiosyncrasies.

Simulating Shared Memory in Heterogeneous Distributed-Memory Networks

+ Development typically requires quite a bit of
effort, and a correspondingly large staff.
Information which must be shared by all parties
in the development is therefore expensive.
Furthermore, if the information is difficult to
understand there is a high potential for error.
Developers require a system which is
conceptually straightforward and easy to use.

+ System integration cONsists of testing each
component independently and gradually
assembling and testing the complete system. The
output of each component must be accessible for
inspection, it is necessary to be able to control
each component individually, and it is necessary
to be able to simulate a component's input in the
absence of a completed input module.

+ Maintenance includes not only finding and fixing
bugs, but also extending and improving the
system by adding capability to existing
components and by adding new components.

Preliminary Staff
Design o

Detailed) Time
Design

Y

Development | @ \.\ :&: }./ @
Y

Maintenance .

Integration

Figure 1. A simple model of the system
development process. Staffing requirements are
greatest during development, so the properties of
the information which must be known to all parties
in this stage is particularly crucial.

Architectural Requirements. A simplified
requirements specification from a proof-of-concept
demonstration for autonomous radiation
surveillance {11} is illustrated in Figure 2. The
scenario calls for a robot [21] initially at position
(1) to navigate through a collection of a priori
unknown obstacles until it reaches a position near
(2). Once there, it uses a laser range camera to find
55-gallon drums. It selects a drum, moves to the

(]

neighborhood of the drum, and re-acquires the drum
using a CCD camera mounted on its manipulator
arm. It then moves to a kinematically acceptatlc
position (3) rclative to the drum and uses a
radiation sensor mounted on the end-effector to
determine if there is radiation leaking from the

o
\/
@Drum

H 2]
False
Target

Robot

~1

®
- Obstacle

Figure 2. A simplified application scenario. A
robot initially in position 1 is given a goal at
position 2. Between positions 1 and 2 lie an unknown
number of obstacles with unknown positions. At
position 2, the robot uses a laser range camera to
identify all of the 55-gallon drums in its field of
view. It then chooses one of the drums for radiation
surveillance using a detector mounted on its arm.

There are three distinct types of behavior
which the robot must exhibit to accomplish this
task.

The first type is exemplified by the sequence of
events required to take the robot from position (2) to
position (3). First it acquires a range image. Then it
analyzes the image and chooses a drum. Then it
travels to an appropriate position, and so forth.
Each task must be accomplished in sequence, and
consequently requires synchronization, but the exact
time that it takes to execute each task is not
critical.

The second type is exemplified by the process of
travelling from one position to another. In this case,
a collection of asynchronous processes consume and
produce data essentially continuously. Figure 3
illustrates a diagram from the preliminary design
of a navigation system which includes map-based
obstacle avoidance based on ultrasonic data [16,17).

A "sonar_server" process continuously actuates
sonars mounted on a ring encircling the robot
chassis. A "sonar_mapper" process produces a bit-
map of the robot's immediate neighborhood. An
obstacle avoidance process examines this map, the
robot's current position, and the goal position to
produce a target for the low-level
"wheel_controller”. Each of these processes runs
continuously and asynchronously. No interprocess
synchronization is required.

The third type of behavior is exemplified by
the process of scanning the drums for radioactivity.
In this case we must coordinate the control of a
relatively large number of joints and perform
control calculations based on sampled data from
optical encoders on the motors. All sensor input,
servo controllers, and actuator drive outputs must be
synchronized with a common clock [22].

Sonars Sonar user interface
Mapper
+ Goal
Sonar Floor Obstacle
Server Map Avoidance
T Odometry Target
Wheel
Robot jett—|
Controller

Figure 3. Simplified preliminary design of a
navigation control system. Range data acquired by
sonars are processed to create a map of the space
surrounding the robot. The map is analyzed by an
obstacle avoidance routine, which compares the
current position of the robot to a user-specified goal
and sends a target command to a wheel controller.
The sonar server, sonar mapper, obstacle aveidance,
wheel controller, and user interface in this design
run concurrently, without interprocess
synchronization.

These observations suggest that the
programming environment must support interprocess
and intersystem communication with or without
synchronization and that mechanisms must be
available to integrate hard real-time subsystems

Simuiating Shared Mewniory i Heterogencous Distributed-Memory Networks 3
v

with subsystems having less critical time
constraints.

Heterogeneous systems. It is sometimes desirable
to take advantage of the strengths of different
computer systems to optimize performance of
certain subsystems. For example, a graphical user
interface usually requires special-purpose
hardware for three-dimensional graphics but does
not require a real-time operating system. In
contrast, manipulator control requires real-iime
capabilities but has no particular need for graphics
hardware.

The principal problems associated with
communication in heterogeneous systems are two-
fold: first, different computers run different
operating systems which have different system
calls, and second, different computers use different
internal representations of data. It is desirable to
insulate developer's code from the parochialism of
particular operating systems and from the necessity
to explicitly translate data from the internal
format of one machine to another’s.

3. Developer's Interface

Hetero Helix uses a modified biackboard
metaphor for interprocess and intersystem
communication. In this metaphor, we imagine that
all of the data to be shared between processes,
regardless of which processes produce or consume
them, are posted on a single large blackboard
covered with little yellow "Post-Its". Related data
are collected together onto individual Post-Its. The
Post-Its are concurrent read/exclusive write - any
process can read the data on any Post-It, but only
one process can write to a Post-It.

"Control”

Event_Manager

Developer's
Processes

il "HQ“”"

Blackboard "Post-Its”

Figure 4. A simple abstraction of the system. Real-
time and non-real-time subsystems (P) communicate
asynchronous data through a blackboard and
synchronous control by sending events.

Data on the blackboard are regarded as
asynchronous -- any process may change the data on
any of the Post-Its it owns without alerting any
other process. Interprocess synchronization is
accomplished by sending events. Events are small
messages having a stereotyped format. Unlike
data, which are written by one process but read by
potentially many, events are process-to-process:
any process sending an event specifies the identity
of the process which is to receive it.

Figure 4 illustrates an abstraction of the system
uscful to designers and developers. Developer's
processes, indicated with a "P", communicate data
asynchronously by placing it into Post-It data
structures on a blackboard. Control information,
such as commands, are communicated by an
event_manager. The event_manager has the
responsibility of delivering the event to its proper
destination.

The developer's interface to the communication
system was designed to be as simple as possible. It
consists of 10 functions, only two of which have
more than one argument.

« mem_attach() returns a pointer to a list of Post-
It addresses.

« get_read_ok(Post-It) increments a counting
semaphore which records that the indicated
Post-1t is being read.

e read_done(Post-I1t) decrements the semaphore.

 get_write_ok(Post-It) waits until the read
semaphore is clear, then sets a write semaphore
blocking further reads.

 write_done(Post-It) clears the write semaphore.
As a "side-effect” it sends an interrupt to a
process which manages intersystem
communications.

. regisier_event(Process_Name) identifies a
process to the event manager.

* resign_event() notifies the event manager that
a process is about to quit.

. get_next__event(Event_Record*, Mode) returns
an event code, and optionally, its associated
event record. The calling process may decide
whether or not to suspend execution until an
event is received by specifying blocking or non-
blocking read in the Mode argument.

« post_event(Code, Destination, Priority,
Event_Record*) sends an event to a process.

o helix_broadcast(On/Off) enables or disables
intersystem communication by the calling
process.

Simulating Shared Memory in Heterogeneous Distributed-Memory Networks 4

4. Systems View

Hetero Helix presents a simple blackboard-style
interface to a heterogencous distributec.-memory
network of workstations by simulating a shared
memory [23]. In brief, this is accomplished by
replicating the contents of the blackboard into each
separate address space in the system and creating
messages from individual Post-Its. The messages
are broadcast to each address space in the network
when the contents of a Post-It are updated; this is
handled by interrupt-driven translation and
message-passing routines hidden behind the call to

"write_done()".
Developer’s
Processes

Blackboard

Blackboard
Helix
110
Processes

Communications Network

Figure 4. Mapping of the blackboard system onto a
distributed heterogeneous system. The blackboard
is replicated into each distinct address space.
Communications processes (R and W) manage the
translation of data into and out of the local
representation employed on each machine. These
processes are activated whenever a developer’s
process (P) updates the data in any of its Post-Its
and calls "write_done()”.

Figure 4 illustrates how the blackboard
architecture is mapped onto a system consisting of
two machines (additional machines replicate the
structure). A copy of the entire blackboard is
resident in the memory of each machine.
Developers' processes communicate with each other
through this blackboard. Whenever one of these
processes executes a "write_done", an interrupt
awakens a sleeping "write" process (W), which
communicates with "read" processes (R) on the
other machines in the network. These "read"
processes recognize the incoming data and store it

on the appropriate Post-It in the local copy of the
blackboard.

There is an intimate relationship between
events and the distributed blackboard system. If it
is necessary for an event to travel from one system to
another, it is placed in a Tost-It reserved
specifically for that purpose and broadcast to all
the systems in the network. Upon reccipt, each
system may determine if the destination process is
running on that system by referencing an event
registry. If the destination process exists, the event
is delivered normally, otherwise it is discarded. At
the cost of sorne efficiency, this simple mechanism
guarantces that all events are delivered to their
proper destination.

The Hetero Helix "Compiler". The main
problem with heterogeneous systems lies in the
difterent internal representation of numbers which
are used by different machines. The disastrous
consequence of this inconsistency is that the actions
associated with communicating a message are not
independent of the contents of the message. For
example, to communicate a floating-point variable
it is not sufficient to know only the number of bytes
it occupies -- one must translate the datum from the
format recognized by the source machine into the
format recognized by the destination. For complex
data structures the creation and maintenance of the
software necessary to translate each data structure
can become a terrible burden.

Our approach to this problem is to use a
"compiler" to automatically generate translation
software given a description of the format of the
data on the blackboard. That is, we imagine a
machine which has an instruction set consisting of
atomic instructions for translating variables from
the internal representation of any particular
machine into and out of a "lingua franca" common to
all machines (we use IEEE 754 [24] for this purpose).
The "compiler” inspects a file which describes the
Post-Its on the blackboard and generates code in
this instruction set which translates the data on
the Post-Its into and out of this common
representation.

Figure 5 illustrates the data structure Hetero
Helix uses to represent the blackboard, a linked-
list of linked-lists. The outermost list contains one
link for each Post-It definition . Fields in each link
record the name of the Post-It, its size, whether or
not it is instantiated on the blackboard, and a
pointer to another list. This innermost list contains
a link for each variable in the Post-It definition.
The variable name and it's storage class are
recorded. In the event that the variable is an

Simulating Shared Memory in Heterogeneous Distributed-Memory Networks 5

array, its dimensionality and index limits are
recorded as well. In the event that the variable is a
complex data structure Hetero Helix stores a
pointer to a list containing the details of its
definition.

Post-Its

A
Y

Backwards Reference

1

—

BEBRER

Variables

<l L IT

TTTTO
7'

1
4TfTTO

<L LT

Figure 5. Illustration of the "linked-list of
linked-lists" data structure employed by the
Hetero Helix "compiler” for representing data on
the blackboard. The outer list contains a link for
each Post-It on the blackboard. The inner list
contains a link for each variable on the Post-It. If
one of these wvariables is a previously defined
structure, a backwards reference is made to its
definition.

The list-of-lists data structure is traversed
several times to gencrate programs which (1)
determine the appropriate placement for each
Post-It on the blackboard and perform the
appropriate initialization, (2) generate a data
structure which provides to developers a
mechanism for referencing data on the blackboard
by name rather than by some difficult-to remember
and easy-to-get-wrong index, and (3) translate
Post-Its from the local data representation on each
machine into a common representation and vice-
versa.

Automatic code generation is useful in the
development, integration, and maintenance phases
of a project. For example, if the detailed design of
the blackboard is in error for one reason or another
(perhaps the designer forgot a variable), it is
possible to fix all of the communications code in the
system simply by running the code generator. The
code which is produced is guaranteed to be correct
the first time. This eliminates manual maintenance
for a large body of what would otherwise be very
expensive code. Other attractive benefits of
automatic code generation include the automatic

creation of a number of auxiliary routines for
system diagnosis and maintenance.

5. Software Engineering Considerations

Hetero Helix addresses some (but certainly not
all) of the differing needs of system designers,
developers, integrators, and maintainers using
either simple, but flexible, conceptual models or
concrete delivered capability. In this section we
make explicit the impact of various properties of
Helix in cach stage of the development process.

Design. Hetero Helix "flaitens out" a
heterogeneous, distributed memory environment by
creating a fiction of a homogeneous system
communicating via shared memory. Thus, to a first
approximation, designer need not worry about the
number of processors in the system, their
relationship to one another, or the operating
system software running on cach. Hetero Helix
makes no assumptions about master/slave
relationships betwcen hardware or software
components. Hetero Helix assists in the detailed
design by providing a simple, uniform protocol for
the exchange of data. One must only specify the
format of the data on each Post-It.

Development. Hetero Helix provides a small
and simple function ensemble which executes all
interproccss and intersystem communication
services and a simple, uniform, casy-to-use syntax
for referencing data. Conscquently, error-prone
communication between people is minimized.
Developers are freed to concentrate on delivering
capability in their component, rather than being
distracted by complex interprocess communication
protocols.

Integration. Hetero Helix provides a method by
which system integrators can easily inspect the
output of particular processes, simulate input to
processes, and control individual processes for the
purpose of assembling and testing subsystems. Data
written to the blackboard stays there until it is
overwritten. The data are available to any process,
including in particular diagnostic scaffolding. A
system integrator who understands what the correct
results should be for a given situation can easily
create diagnostic monitors which inform him of
what the data actually are. Thus incorrect results
are easy to detect. Furthermore, since all 1/0 in
modules not tied directly to hardware is done
through the blackboard, Hetero Helix makes it
possible to move processes around in a

Simulating Shared Memory in Heterogeneous Distributed-Memory Networks 6

heterogencous system without making changes to
the source code.

Maintenance. Our policy of allowing only one
process to write to any given location on the
blackboard means that when incorrect data are
detected, the offending process is identified
immediately. Thus, errors can be isolated rapidly,
and we can concentrate effort on a single process
consisting of a few hundred to a few thousand lines
of code, rather than having to scarch through the
whole system for every bug.

Extending the system takes threce forms: adding
events to an existing process, extending the output of
an existing process, and adding new processes.
Adding events to a process involves no changes
outside of that process except for a change to an
event definitions file. Enhancing the output of a
process or adding a new process involves changes to
a blackboard definitions file. Helix imposes an
implicit ordering of the Post-Its on the blackboard,
and an implicit ordering of the data on each Post-
It. Therefore, changes to the hlackboard definitions
file does not interfere with the operation of any
existing program. Any process which wants to

communicate using the new data elements has to be
recompiled, but not other processes.

Additions to the blackboard definitions file
requires that Hetero Helix genecrate a new
communication system. Since Hetero Helix
automatically generates all codes which depend on
the definitions file, updating the communications
system is quick, easy, and correct.

6. Specific Example

Figure 6 illustrates a specific hardware
configuration to which Hetero Helix has been
applied. The system consists of 27 processors in a
heterogeneous network. The core of the system is a
local area network based on ethernet. The
blackboard is replicated in the address spaces of
all of the machinus directly connected to it. Events
propogate to all the systems in the network,
including those integrated wusing other
communications technologies (e.g. bus adaptor,
serial link). Mechanisms for distributing the
blackboard using communications media other than
ethernet are currently under study.

16 node Hypercube
ype Wheels & Arm &
Cameras Sonars
A
iségsug Bus VMEbus Bus VMEbus Seria)
(Host) Adaptor (four 68020s) Adapior (three 68020s) Link
Ethernet Apple
Macintosh
Silicon Graphics
VMEbus DEC MicroVax IRIS 4D/70GT
one 68020
(User Interface)

Figure 6. A system on which Hetero Helix has been implemented. Processes running on any CPU in this system
(except the i80286) may communicate with one another using events. The blackboard is replicated in the
address spaces of the Silicon Graphics, the VMEbus system with four 68020s, and eithcr the DEC MicroVax or
the VMEbus systems with one 68020.

Simulating Shared Memory in Heterogeneous Distributed-Memory Networks 7

O 010 001 N LA A)0 R N3

7. Specializations for Robotics

Hetero Helix was designed for robotics
applications, which are very often time sensitive.
Perhaps the most objectionable property of the
system from the perfomance perspective is the
mandatory broadcast associated with each
"write_done()", which may involve a substantial
amount of overhead. There are three mechanisms
by which this overhead may be avoided.

* The "helix_broadcast()" routine selectively
turns broadcasting on and off on a process-by-
process basis. Thus, a process may decide on its
own how frequently to update local and global
replicas of the blackboard.

* Alternatively, one may write an entirely
separate process which periodically issues a
"get_write_ok()/ write_done()" pair without
changing the data on the Post-It. In this case,
the process generating the data is never blocked.

* It is possible to ignore the communications
protocol completely. Since Hetero Helix
blackboard ieferences use a direct addressing
scheme (rather than going through intermediate
software, as is done for example in Linda [25]), it
is possible to "cheat" the system by referencing
the blackboard without asking for read and
write permission. This avoids even the
relatively low overhead associated with the
semaphore operations, and can be used to gain
substantial time savings in instances where it is
known that all consumers of certain data reside
on the same system as their producer.

8. Discussion

Hetero Helix is a programming environment in
which the identity and functionality of the various
components in a complex control architecture are
arbitrary. Hetero Helix supports synchronous and
asynchronous distributed control systems by
simulating shared memory on a heterogencous
network of computers. The key software technology
in Helix is a "compiler” which analyzes the data
structures in shared memory and automatically
generates code which translates data
representations from the internal format native to
each machine into a format understood by all
machines, and vice versa. Automatically
generating the communications system for a
heterogeneous network with the consequent increase
in its reliability and maintainability is probably
the system's most important property. Further

developments will concentrate on providing support
for a wider variety of communications hardware
and for network reconfiguration.

The blackboard metaphor was chosen for this
communications system not because the concept is
new, but rather because it is not. Its familiarity
makes it easy for designers to work with and for
developers to understand. The simplicity of the
Hetero Helix interface reduces the number of
possible development-time errors.

One advantage of the Hetero Helix
implemcntation of the blackboard is that it is not a
physically centralized data structure. Replication
makes it possible to develop subsystems which
communicate through local address spaces only, in
order to avoid saturating the intersystem
communications hardware.

But one may legitimately wonder if the concept
of a centralized data structure is a good long-term
strategy. Modern scalable parallel computers
almost always use some sort of message-passing
hardware in order to avoid performance
bottlenecks. Developing integration strategies
which enable large teams to collaborate
successfully in these kinds of computing
environments promises to be challenging.

Acknowledgements

We would like to thank Wayne Manges for his
constructive and insightful commentary at the
outset of this effort, Reinhold Mann and Frank
Sweeney for their support and encouragement, and
Steve Johnston and Tom Heywood for their early
work on the system. We would also like to thank
the members of the DOE University Program in
Robotics for Advanced Reactors for their patience
and persistence. The submitted manuscript has been
authored by a contractor of the U.S. Government
under contract DE-AC05-840R21400. Accordingly,
the U.S. Government retains a nonexclusive,
royalty-free license to publish or reproduce the
published form of this contribution, or allow others
to do so, for U.S. Government purposes. The authors
gratefully acknowledge the support of the U.S
Department of Energy Office of Technology Support
Programs and Office of Basic Energy Sciences.

Simulating Shared Memory in Heterogeneous Distributed-Memory Networks 8

References

1.

10.

11.

12,

R. A. Brooks, "A Robust Layered Control System for
a Mobile Robot," IEEE Journal of Robotics and
Automation, (RA-2) 14-23, 1986.

J. S. Albus, H. G. McCain, R. Lumia, "NASA /NBS
Standard Reference Model Telerobot Control
System Architecture (NASREM),” NIST Technical
Note 1235, NIST, Gaithersburg, MD, July, 1987.

T.L. Anderson, M. Donath, "Animal Behavior as a
paradigm for developing robot autonomy." Robotics
and Autonomous Systems (6) 145-168, 1990.

R.C. Arkin, "Motor schema based navigation for a
mobile robot: an approach to programming by
behavior.” Proc. 1987 IEEE International Conference
on Robotics and Automation, pp. 264-271.

S.Y. Harmon, "The ground surveillance robot (GSR):
An autonomous vehicle designed to transit unknown
terrain,” IEEE Journal of Robotics and Automation
(RA-3) 266-279, 1987,

C. Thorpe, M. H. Herbert, T. Kanade, S. A. Shafer,
"Vision and navigation for the Carnegie-Mellon
Navlab,” IEEE Transactions on Pattern Analysis and
Machine Intelligence (PAMI-10) 362-373, 1988.

D.B. Stewart, D.E. Schmitz, P.K. Koshla,
“Implementing real-time robotics systems using
CHIMERA 11", Proc. 1990 IEEE International
Conference on Robotics and Automation, pp. 598-
603.

R. Chatila, R.F. Camargo, "Open architecture design
and inter-task/inter-module communications for an
autonomous mobile robot,” IEEE International
Workshop on Intelligent Robots and Systems, pp.
717-721, 1990.

F. J. Sweeney, "ORNL Research in the DOE
University Program in Robotics for Advanced
Reactors," American Nuclear Society Annual
Meeting, Nashville, Tenn., June 10-14, 1990.

D.B. Reister, J.P. Jones, P.L. Butler, M. Beckerman,
F.J. Sweeney, "Demo 89 - The initial experiment with
the Hermies-III robot.” Proc. 1991 IEEE International
Conference on Robotics and Automation, pp. 2562-
2567.

F.J. Sweeney, M. Beckerman, P.L. Butler,]J.P. Jones,
D.B. Reister (1991) "Application of autonomous
robotics to surveillance of waste storage containers
for radioactive surface contamination." Proc. Al '91:
Frontiers in Innovative Computing for the Nuclear
Industry, Jackson, Wyoming, September 15-18, 1991.

C. Chen, M. M. Trivedi, C. R. Bidlack, "Design and
implementation of an autonomous spill-cleaning
robot," Proc. Applications of Artificial Intelligence
X111, 1990.

13.

14.

15.

16.

17.

18.

20.

21.

24.

J. C. Sluder, C. R. Bidlack, M. A. Abidi, M. M. Trivedi,
J. P. Jones, F.]. Sweeney, "Range image-based object
detection and localization for the HERMIES-III
mobile robot,” Proc. Applications of Artificial
Intelligence IX, pp. 642-652, 1991.

R. V. Dubey, J. A. Euler, S. M. Babcock, and R. L.
Classell, "Real Time Implementation of a Kinematic
Optimization Scheme for Seven-Degree-of-
Frecedom Redundant Robots with Spherical Wrists,"
The American Control Conference, Atlanta, Ga.,
June 15-17, 1988.

D.B. Reister, "A new wheel control system for the
omnidirectional Hermies-11I robot." Proc. 1991 IEEE
International Conference on Robotics and
Automation, pp. 2322-2327.

J. Borenstein, Y. Koren "The Vector-Field Histogram
- Fast Obstacle Avoidance for Mobile Robots,"” IEEE
Transactions on Robotics and Automation (RA-7),
278-288, 1991.

J. Borenstein, Y. Koren "Histogrammic in-motion
mapping for mobile robot obstacle avoidance.” JEEE
Transactions on Robotics and Automation (RA-7),
535-539, 1991.

C. Crane, R. Vora, J. Tulenko, G. Dalton, "Model
Simulation for robotic control and intelligence."

American Nuclear Society Third Topical Meeting on
Robotics and Remote Systems, Charleston, SC, 1989.

. J.T. Lovett, P. Bevill, "A universal bilateral manual

controller utilizing a unique parallel architecture,”
Transactions of the American Nuclear Society (61)
409, 1990.

F. McGarry,]. Page, S. Eslinger, V. Church, P.
Merwarth, "Recommended approach to software
development.” NASA Software Engineering
Laboratory Technical Memorandum SEL-81-205,
1983.

C. R. Weisbin, B. L. Burks, J. R. Einstein, R. R.
Feezell, W. W. Manges, D. H. Thompson,
"HERMIES-III: A step toward autonomous mobility,
manipulation and perception,” Robotica (8) 7-12,
1990.

P.L. Butler, "An integrated architecture for modular
control systems,” Robotics and Autonomous
Systems, 1991, in press.

B. Nitzberg, V. Lo, "Distributed shared memory: A
survey of issues and algorithms.” IEEE Computer
(24) 8, 52-60, 1991.

IEEE. "IEEE standard 754-1985 for binary floating-
point arithmetic.” Reprinted in SIGPLAN 22, 2, 9-25,
1987.

N. Carriero, D. Gelernter, "How to Write Parallel
Programs: A Guide to the Perplexed,” ACM
Computing Surveys (21) 323-357, 1989.

Simulating Shared Memory in Heterogeneous Distributed-Memory Networks 9

F ILMED

