
CONF-920540--II

DE92 000433

Engineering Physics and _Iathematics Division

A System for Simulating Shared Memory iii Heterogeneous Distributed-Menaory
Networks with Specialization for Robotics Applications*

J. P. Jones, A. Bangs, P. L. Butler

"The submitted rn_nuscript has been

authored by _ contractor of the US

Govern rrlent under contr;_ct DE-

AC05-_,4OR21400 Accordingly, the U S

Soverr, rnent retains a rlone×clus|ve,

royMty-fr*e license to publigh or reprodiac.'e

the published form of thts contribution, o"

_.llow others to do so, for U S Government

pu rpc,ses."

Paper submitted to the 1992 IEEE International Conference on Robotics and Automation,
May 10-15, 1992, Nice, France

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States

Government. Neither the United States Government nor any agency thereof, nor any of their

employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or

process disclosed, or represents that its use would not infringe privately owned rights. Refer-

ence herein to any specific commercial product, process, or service by trade name. trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

* Research sponsored by the OMce of Nuclear Energy, Office of Advanced Reactor Pro-
grams, U.S. Department of Energy, under contract No. DE-AC05-84OR01400 with Martin

Marietta Energy Systems, Inc. l_J_ ti _ '1['1",'1_

.Ino I[.II
IIiITIilBUTrOllOFTHISOOCLIMEtlT"la LINLIMIT_

' - mlII III



A System for Simulating Shared Memory in Heterogeneous Distributed-
Memory Networks with Specializations for Robotics Applications

Judson P. Jones Alex L. Bangs

Center for Engineering Systems Advanced Research
Engineering Physics and Mathematics Division

Oak Ridge National Laboratory
P.O. Box 2008, Oak Ridge, TN 37831-6364 USA

Philip L. Butier
Telerobotics Systems Section

Robotics and Process Systems Division
Oak Ridge National Laboratory

P.O. Box 2008, Oak Ridge, TN 37831-6364 USA

Abstract Traditionally, work on robot system
architectures has concentrated on principles for

Hetero Helix is a programming environment decomposing complex behavior into simpler
which simulates shared memory on a heterogeneous behaviors, and has led to specific recommendations
network of distributed-memory computers. The on the identity and functionality of the components
machines in the network may vary with respect to in a finished system [1-4].
their native operating systems and internal However, it is desirable to separate the issue of
representation of numbers. Hetero Helix presents a the precise identity of the components from the
simple programming model to developers, and also issue of how the components, regardless of their
considers the needs of designers, system integrators, identities, are to communicate with one another.
and maintainers. The key software technology Previous work on communications systems for
underlying Hetero Helix is the use of a "compiler" robotics [5,6] has generally used some concept of a
which analyzes the data structures in shared centralized data structure for simplicity. In other
memory and automatically generates code which cases [7,8], several different models of interprocess
translates data representations from the format communication are supported, at the price of some
native to each machine into a common format, and complexity.
vice versa. The design of Hetero Helix was In this paper, we regard as arbitrary the
motivated in particular by the requirements of identity and functionality of the components of a
robotics applications. Hetero Helix has been used complex control system, and consider specifically
successfully in an integration effort involving 27 interprocess communications mechanisms for
CPUs in a heterogeneous network and a body of integrating relatively large bodies of software into
software totalling roughly 100,000 lines of code. complete robotic systems. Our objectives are

twofold: first, to provide an infrastructure suitable
for interprocess and intersysten_ communications in

1. Introduction a heterogeneous distributed-memory computing
environment, and second, to make t_e properties of

Robot system architectures tend to be complex, the communications system such that it is suitable
They combine multiple sensor systems with effector for use in relatively large system integration
control systems having many degrees of freedom, efforts. To accomplish the second goal, we strive for

frequently using some intermediate form of higher- simplicity.
level "reasoning". They must integrate hard real- Hetero Helix is a programming environment
time systems with systems which cannot meet hard which supports interprocess communication in
real-time deadlines. This complexity leads to an heterogeneous network using a minimal suite of
explosion in the amount of software necessary to mechanisms. Specifically, Hetero Helix was
perform what must seem to a casual observer to be developed to satisfy the software systems
trivial tasks, integration and interprocess/interprocessor

Simulating Shared Memory in Heterogeneous Distributed-Memory Networks 1



communications requirements of the U.S. • Development typically requires quite a bit of

Department of Energy's University Program in effort, and a correspondingly large staff.
Robotics for Advanced Reactors [9]. Information which must be shared by all parties

This program has to date conducted three in the development is therefore expensive.
integrated technology demonstrations [10,11]. These Furthermore, if the information is difficult to
demonstrations have required approximately understand there is a high potential for error.

i 25,000, 50,000, and 100,000 lines of code Developers require a system which is

respectively, and up to about 30 people (part-time) conceptually straightforward and easy to use.
for development. Components include ultrasom • System integration consists of testing each

t sensing and interpretation, computer vision [12], component independently and gradually
parallel processing, range image analysis [13], assembling and testing the complete system. The

I control of a 7-DOF redundant manipulator [14], output of each component must be accessible for

i control of an omnidirectional mobile platform [15], inspection, it is necessary to be able to controlobstacle avoidance [16,17], path planning and path each component individually, and it is necessary

following, graphical user interfaces [18], and to be able to simulate a component's input in the
sensor-based force-reflecting teleoperation [19], absence of a completed input module.

among others. These demonstrations have made use • Maintenance includes not only finding and fixing
of a relatively complex heterogeneous network of bugs, but also extending and improving the

computers, including a Silicon Graphics IRIS system by adding capability to existing
4D/70GT, a DEC Microvax, se,veral VME-based components and by adding new components.
common-bus multiprocessors, an Apple Macintosh,
and an IBM-PC/AT based NCUBE hypercube Preliminary _ Staff

coypu
Detailed Time

2. Motivation Design

The properties of Hetero Helix are motivated by ]three considerations. The first is the observation Development [ _ _ _ _ _ _

that complex control systems are of sufficient _ _ /complexity to require a team for their development;

they are too complicated to be developed by a [ [single individual, or even a small team of closely Integration _

interacting individuals. The second is the

architectural requirements of various kinds of
robotic control systems. The third is the
communications technology required by Maintenance

heterogeneous distributed-memory systems.
Teamwork. Just as it is useful to adopt a

simplified model of a complex computer system, it Figure 1. A simple model of the system
is useful to adopt a simplified model of the system development process. Staffing requirements are

development process [20]. A simple "project rnoder', greatest during development, so the properties of
illustrated in Figure 1, provides a convenient the information which must be known to ali parties
mechanism for identifying the various activities in in this stage is particularly crucial.

system development and the needs associated with
each activity. Architectural Requirements. A simplified
• Design details the method by which a desired requirements specification from a proof-of-concept

complex behavior is to be generated by demonstration for autonomous radiation
decomposing the whole behavior into surveillance [11] is illustrated in Figure 2. The
components, each simple enough to be scenario calls for a robot [21] initially at position
implemented by an individual or small team. (1) to navigate through a collection of a priori
Designers typically prefer _.ouse abstract system unknown obstacles until it reaches a position near

i models to avoid restricting developments to (2). Once there, it uses a laser range camera to find

specific implementation idiosyncrasies. 55-gallon drums, lt selects a drum, moves to the

Simulating Shared Memory in Heterogeneous Distributed-Memory Networks 2

i RI , | i i ,
V



neighborhood of the drum, and re-acquires the drum A "sonar_server" process continuously actuates
t using a CCD camera mounted on its manipulator sonars mounted on a ring encircling the robot

arm. lt then moves to a kinematically acceptable chassis. A "sonar_mapper" process produces a bit-
position (3) relative to the drum and uses a map of the robot's immediate neighborhood. An
radiation sensor mounted on the end-effector to obstacle avoidance process examines this map, the
determine if there is radiation leaking from the robot's current position, and the goal position to
drum. produce a target for the low-level

"wheel_controller". Each of these processes runs
........ continuously and asynchronously. No interprocess

synchronization is required.

/_ ,__ ['__ The third type of behavior is exemplified by

Robot the process of scanning the drums for radioactivity.

In this case we must coordinate the control of arelatively large number of joints and perform

_ e _ control calculations based on sampled data from
(_ Drum optical encoders on the motors. All sensor input,

g] ]_] servo controllers, and actuator drive outputs must be

@_N_ @ False synchronized with a common clock [22].

Target

[ Sonars ] Sonar [ user interface ]

Mapper 1_Obstacle _ Goa

Figure 2. A simplifiedapplicationscenario. A [Floor _ Obstacle
robot initially in position 1 is given a goal at _ | Map | v Avoidance
position 2. Between positions 1 and 2 lie an unknown [ J

number of obstacles with unknown positions. At _ t @

position 2, the robot uses a laser range camera to Odometry Targe
identify all of the 55-gallon drums in its field of
view. lt then chooses one of the drums for radiation ", ,,

surveillance using a detector mounted on its arm. ! I ] Wheel

J Robot

There are three distinct types of behavior Controller
which the robot must exhibit to accomplish this
task.

Figure 3. Simplified preliminary design of a
The first type is exemplified by the sequence of navigation control system. Range data acquired by

events required to take the robot from position (2) to sonars are processed to create a map of the space
position (3). First it acquires a range image. Then it surrounding the robot. The map is analyzed by an
analyzes the image and chooses a drum. Then it obstacle avoidance routine, which compares the
travels to an appropriate position, and so forth, current position of the robot to a user-specified goal
Each task must be accomplished in sequence, and and sends a target command to a wheel controller.

consequently requires synchronization, but the exact The sonar server, sonar mapper, obstacle avoidance,
time that it takes to execute each task is not wheel controller, and user interface in this designcritical.

run concurrently, without interprocess
The second type is exemplified by the process of

synch ronization.
travelling from one position to another. In this case,

a collection of asynchronous processes consume and These observations suggest that the
produce data essentially continuously. Figure 3 programming environment must support interprocess
illustrates a diagram from the preliminary design and intersystem communication with or without
of a navigation system which includes map-based synchronization and that mechanisms must be
obstacle avoidance based on ultrasonic data [16,17]. available to integrate hard real-time subsystems

Simuiating Shared .... " _'_ ........... r_;_,qh,,_pd-_d,,mnry Networks 3

lvle_iory iii -,_, v3,.,,,.,. ....................
._I

_, ,



with subsystems having less critical time Data on the blackboard are regarded as
constraints, asynchronous -- any process may change the data on

Heterogeneous systems. It is sometimes desirable any of the Post-Its it owns without alerting any
i' to take advantage of the strengths of different other process. |nterprocess synchronization is

computer systems to optimize performance of accomplished by sending events. Events are small
certain subsystems. For example, a graphical user messages having a stereotyped format. Unlike
interface usually requires special-purpose data, which are written by one process but read by
hardware for three-dimensional graphics but does potentially many, events are process-to-process:

not require a real-time operating system. In any process sending an event specifies the identity
contrast, manipulator control requires real-time of the process which is to receive it.

capabilities but has no particular need for graphics Figure 4 illustrates an abstraction of the system
hardware, useful to designers and developers. Developer's

The principal problems associated with processes, indicated with a "P", communicate data
communication in heterogeneous systems are two- asynchronously by placing it into Post-lt data
fold: first, different computers run different structures on a blackboard. Control information,

operating systems which have different system such as commands, are communicated by an
calls, and second, different computers use different event_manager. The event_manager has the

internal representations of data. It is desirable to responsibility of delivering the event to its proper
insulate developer's code from the parochialism of destination.

particular operating systems and from the necessity The developer's interface to the communication
to explicitly translate data from the internal system was designed to be as simple as possible, lt
format of one machine to another's, consists of 10 functions, only two of which have

more than one argument.
• mem_attachO returns a pointer to a list of Post-

3. Developer's Interface It addresses.

• get_read_ok(Post-lt) increments a counting
Hetero Helix uses a modified biackboard semaphore which records that the indicated

metaphor for interprocess and intersystem Post-lt is being read.
communication. In this metaphor, we imagine that • read_done(Post-lt) decrements the semaphore.
all of the data to be shared between processes, • get_write_ok(Post-It) waits until the read

regardless of which processes produce or consume semaphore is clear, then sets a write semaphore
them, are posted on a single large blackboard blocking further reads.
covered with little yellow "Post-Its". Related data • write_done(Post-lt) clears the write semaphore.
are collected together onto individual Post-Its. The As a "side-effect" it sends an interrupt to a

Post-Its are concurrent read/exclusi_,e write -- any process which manages intersystem
process can read the data on any Post-It, but only communications.
one process can write to a Post-It. • register_event(Process_Name) identifies a

process to the event manager.
• resign_eventO notifies the event manager that

"Control" a process is about to quit.

• get_next_event(Event_Record*, Mode) returns
an event code, and optionally, its associated

Developer's event record. The calling process may decide
Processes whether or not to suspend execution until an

event is received by specifying blocking or non-

i| | | | | _,. "Data" blocking read in the Mode argument.
i • post_event(Code, Destination, Priority,

Blackboard "Post-Its" Event_Record*) sends an event to a process.
• helix_broadcast(OnOff) enables or disables

Figure 4. A simple abstraction of the system. Real- intersystem communication by the calling
time and non-real-time subsystems (P) communicate process.

asynchronous data through a blackboard and
synchronous control by sending events.

Simulating Shared Memory in Heterogeneous Distributed-Memory Networks 4

I



_ _- _ _:_.- _. ,, _ ...__ _.;_, , ................ . . _, l

4. Systems View on the appropriate Post-lt in the local copy of the
blackboard.

Hetero Helix presents a simple blackboard-style There is an intimate relationship between
interface to a heterogeneous distributed-memory events and the distributed blackboard system. If it
network of workstations by simulating a shared is necessary for an event to travel from one system to
memory [23]. In brief, this is accomplished by another, it is placed in a Post-lt reserved
replicating the contents of the blackboard into each specifically for that purpose and broadcast to all
separate address space in the system and creating the systems in the network. Upon receipt, each
messages from individual Post-Its. The messages system may determine if the destination process is
are broadcast to each address space in the network running on that system by referencing an event
when the contents of a Post-lt are updated; this is registry. If the destination process exists, the event
handled by interrupt-driven translation and is delivered normally, otherwise it is discarded. At
message-passing routines hidden behind the call to the cost of some efficiency, this simple mechanism
"write_done()". guarantees that ali events are delivered to their

proper destination.

_ _ The Hetero Helix "Compiler". The main
problem with heterogeneous systems lies in the
difterent internal representation of numbers which

('_ ('_ -[ Developer's ('_ (_ -[ are used by different machines. The disastrous

y y _ Processes yy _ consequenceofthisinconsistencyisthattheactions
associated with communicating a message are not

! ] [ Bl [ independent of the contentsofthemessage. ForBlackboard ackboard example, to communicate a floating-point variable

i ouie o  owo   e u  roby
Helix it occupies -- one must translate the datum from the
IlO format recognized by the source machine into the

Processes format recognized by the destination. For complex
data structures the creation and maintenance of the

' i software necessary to translate each data structure
Communica t-ions Network I can become a terrible burden.I

Our approach to this problem is to use a

Figure 4. Mapping of the blackboard system onto a "compiler" to automatically generate translation
distributed heterogeneous system. The blackboard software given a description of the format of the

data on the blackboard. That is, we imagine a
is replicated into each distinct address space, machine which has an instruction set consisting of
Communications processes (R and W) manage the
translation of data into and out of the local atomic instructions for translating variables from
representation employed on each machine. These the internal representation of any particular

machine into and out of a "lingua franca" common to
processes are activated whenever a developer's all machines (we use IEEE 754 [241 for this purpose).
process (P) updates the data in any of its Post-Its The "compiler" inspects a file which describes the
and calls "write_done()" Post-Its on the blackboard and generates code in

this instruction set which translates the data on
Figure 4 illustrates how the blackboard the Post-Its into and out of this common

architecture is mapped onto a system consisting of representation.
two machines (additional machines replicate the

Figure 5 illustrates the data structure Hetero
structure). A copy of the entire blackboard is Helix uses to represent the blackboard, a linked-
resident in the memory of each machine, list of linked-lists. The outermost list contains one
Developers' processes communicate with each other link for each Post-lt definition. Fields in each link

through this blackboard. Whenever one of these record the name of the Post-It, its size, whether or
processes executes a "write_done", an interrupt not it is ins_antiated on the blackboard, and a

awakens a sleeping "write" process (W), which pointer to another list. This innermost list contains
communicates with "read" processes (R) on the a link for each variable in the Post-lt definition.
other machines in the network. These "read"

The variable name and it's storage class are
processes recognize the incoming data anti store it recorded. In the event that the variable is an

Simulating Shared Memory in Heterogeneous Distributed-Memory Networks 5



array, its dimensionality and index limits are creation of a number of auxiliary routines for
recorded as well. In the event that the variable is a system diagnosis and maintenance.
complex data structure Hetero Helix stores a
pointer to a list containing the details of its
d efini tion. 5. Software Engineering Considerations

Post-lts
_.... ,,.__ Hetero Helix addresses some (but certainly not

Backwards Reference all) of the differing needs of system designers,iii

F'_"_C C developers, integrators, and maintainers usingG _ either simple, but flexible, conceptual models orconcrete delivered capability. In this section we
make explicit the impact of various properties of

['" ]'-" _ _ _ Helix in each stage of the development process.

.._ [...... ]--- _ _--.[--'--_-- Design. Hetero Helix "flactens out" a
"_ r-----_ ] heterogeneous, distributed memory environment by

:> _ creating a fiction of a homogeneous system

[ _ _ _ communicating via shared memory. Thus, to a first

_ _ approximation, designer need not worry about the
number of processors in the system, their
relationship to one another, or the operating

Figure 5. Illustration of the "linked-list of system software running on each. Hetero Helix
linked-lists" data structure employed by the makes no assumptions about master/slave
Hetero Helix "compiler" for representing data on relationships between hardware or software
the blackboard. The outer list contains a link for components. Hetero Helix assists in the detailed
each Post-lt on the blackboard. The inner list design by providing a simple, uniform protocol for
contains a link for each variable on the Post-lt. If the exchange of data. One must only specify the
one of these variables is a previously defined format of thedata on each Post-lt.

structure, a backwards reference is made to its Development. Hetero Helix provides a small
definition, and simple function ensemble which executes all

interproccss and intersystem communication
The list-of-lists data structure is traversed services and a simple, uniform, easy-to-use syntax

several times to generate programs which (1) for referencing data. Consequently, error-prone
determine the appropriate placement for each communication between people is minimized.

Post-It on the blackboard and perform the Developers are freed to concentrate on delivering
appropriate initialization, (2) generate a data capability in their component, rather than being
structure which provides to developers a distracted by complex interprocess communication
mechanism for referencing data on the blackboard protocols.
by name rather than by some difficult-to remember Integration. Hetero Helix provides a method by
and easy-to-get-wrong index, and (3) translate which system integrators can easily inspect the
Post-Its from the local data representation on each output of particular processes, simulate input to
machine into a common representation and vice- processes, and control individual processes for the
versa, purpose of assembling and testing subsystems. Data

Automatic code generation is useful in the written to the blackboard stays there until it is
development, integration, and maintenance phases overwritten. The data are available to any process,
of a project. For example, if the detailed design of including in particular diagnostic scaffolding. A
the blackboard is in error for one reason or another system integrator who understands what the correct

(perhaps the designer forgot a variable), it is results should be for a given situation can easily
possible to fix ali of the communications code in the create diagnostic monitors which inform him of

system simply by running the code generator. The what the data actually are. Thus incorrect results
code which is produced is guaranteed to be correct are easy to detect. Furthermore, since ali I/O in

the first time. This eliminates manual maintenance modules not tied directly to hardware is done
for a large body of what would otherwise be very through the blackboard, Hetero Helix makes it

expensive code. Other attractive benefits of possible to move processes around in a
automatic code generation include the automatic

Sfmulating Shared Memory in Heterogeneous Distributed-Memory Networks 6



heterogeneous system without making changes to communicate using the new data elements has to be.
the source code. recompiled, but not other processes.

Maintenance. Our policy of allowing only one Additions to the blackboard definitions file
process to write to any given location on the requires that Hetero Helix generate a new
blackboard means that when incorrect data are communication system. Since Hetero Helix
detected, the offending process is identified automatically generatcsall codes which depend on
immediately. Thus, errors can be isolated rapidly, the definitions file, updating the communications
and we can concentrate effort on a single process system is quick, easy, and correct.
consisting of a few hundred to a few thousand lines
of code, rather than having to search through the
whole system for every bug. 6. Specific Example

Extending the system takes three forms: adding
events to an existing process, extending the output of Figure 6 illustrates a specific hardware
an existing process, and adding new processes, configuration to which Hereto Helix has been
Adding events to a process involves no changes applied. The system consists of 27 processors in a
outside of that process except for a change to an heterogeneous network. The core of the system is a
event definitions file. Enhancing the output of a local area network based on ethernet. The
process or adding a new process involves changes to blackboard is replicated in the address spaces of

all of the machines directly connected to it. Eventsa blackboard definitions file. Helix imposes an
implicit ordering of the Post-Its on the blackboard, propogate to all the systems in the network,
and an implicit ordering of the data on each Post- including those integrated using other
It. Therefore, changes to the tqackboard definitions communications technologies (e.g. bus adaptor,

serial link). Mechanisms for distributing thefile does not interfere with the operation of any
blackboard using communications media other thanexisting program. Any process which wants to
ethernet are currently under study.

16 node Hypercube ( _ ( )

Wheels & Arm &

Camiras Soniars

iH_o2s_t_ Bus VMEbus Bus VMEbus Serial

Adaptor (four 68020s) Adaptor (three 68020s) Link

Ethernet

l 1 1 1
VMEbus Silicon Graphics

one 68020 DEC MicroVax IRIS 4D/70GT
(User Interface)

Figure 6. A system on which Hetero Helix has been implemented. Processes running on any CPU in this system
(except the i80286) may communicate with one another using events. The blackboard is replicated in the
address spaces of the Silicon Graphics, the VMEbus system with four 68020s, and either the DEC MicroVax or
the VMEbus systems with one 68020.

Simulating Shared Memory in Heterogeneous Distributed-Memory Networks 7



7. Specializations for Robotics developments will concentrate on providing support
for a wider variety of communications hardware

Hetero Helix was designed for robotics and fornetworkreconfiguration.
applications, which are very often time sensitive. The blackboard metaphor was chosen for this
Perhaps the most objectionable property of the communications system not because the concept is
system from the perfomance perspective is the new, but rather because it is not. Its familiarity
mandatory broadcast associated with each makes it easy for designers to work with and for
"write_done()", which may involve a substantial developers to understand. The simplicity of the
amount of overhead. There are three mechanisms Hetero Helix interface reduces the number of

by which this overhead may be avoided, possible development-time errors.
• The "helix_broadcast()" routine selectively One advantage of the Hetero Helix

turns broadcasting on and off on a process-by- implementation of the blackboard is that it is not a
process basis. Thus, a process may decide on its physically centralized data structure. Replication
own how frequently to update local and global makes it possible to develop subsystems which
replicas of the blackboard, communicate through local address spaces only, in

• Alternatively, one may write an entirely order to avoid saturating the intersystem
separate process which periodically issues a communications hardware.
"get_write_ok()/ write_done()" pair without But one may legitimately wonder if the concept
changing the data on the Post-It. In this case, of a centralized data structure is a good long-term
the process generating the data is never blocked, strategy. Modern scalable parallel computers

• It is possible to ignore the communications almost always use some sort of message-passing
protocol completely. Since Hetero Helix hardware in order to avoid performance
blackboard _eferences use a direct addressing bottlenecks. Developing integration strategies
scheme (rather than going through intermediate which enable large teams to collaborate
software, as is done for example in Linda [25]), it successfully in these kinds of computing
is possible to "cheat" the system by referencing environments promises to be challenging.
the blackboard without asking for read and

write permission. This avoids even the Acknowledgements
relatively low overhead associated with the

semaphore operations, and can be used to gain We would like to thank Wayne Manges for hissubstantial time savings in instances where it is
constructive and insightful commentary at theknown that all consumers of certain data reside

on the same system as their producer, outset of this effort, Reinhold Mann and Frank
Sweeney for their support and encouragement, and
Steve Johnston and Tom Heywood for their early

8. Discussion work on the system. We would also like to thank

the members of the DOE University Program in
Hetero Helix is a programming environment in Robotics for Advanced Reactors for their patience

which the identity and functionality of the various and persistence. The submitted manuscript has been
components in a complex control architecture are authored by a contractor of the U.S. Government
arbitrary. Hete_'o Helix supports synchronous and under contract DE-AC05-84OR21400. Accordingly,
asynchronous distributed control systems by the U.S. Government retains a nonexclusive,
simulating shared memory on a heterogeneous royalty-free license to publish or reproduce the
network of computers. The key software technology published form of this contribution, or allow others
in Helix is a "compiler" which analyzes the data to do so, for U.S. Government purposes. The authors
structures in shared memory and automatically gratefully acknowledge the support of the U.S
generates code which translates data Department of Energy Office of Technology Support
representations from the internal format native to Programs and Office of Basic Energy Sciences.

each machine _nto a format understood by ali
machines, and vice versa. Automatically
generating the communications system for a
heterogeneous network with the consequent increase
in its reliability and maintainability is probably
the system's most important property. Further

Simulating Shared Memory in Heterogeneous Distributed-Memory Networks 8



References 13. J.C. Sluder, C. R. Bidlack, M. A. Abidi, M. M. Trivedi,

J. P. Jones, F. J. Sweeney, "Range image-based object

1. R.A. Brooks, "A Robust Layered Control System for detection and localization for the HERMIES-III
a Mobile Robot," IEEE Journal of Robotics and mobile robot," Proc. Applications of Artificial
Automation, (RA-2) 14-23, 1986. Intelligence IX, pp. 642-652, 1991.

2. J.S. Albus, H. G. McCain, R. Lumia, "NASA/NBS 14. R. V. Dubey, J. A. Euler, S. M. Babcock, and R. L.
Standard Reference Model Telerobot Control Glassell, "Real Time Implementation of a Kinematic

System Architecture (NASREM)," N1ST Technical Optimization Scheme for Seven-Degree-of-
Note 1235, NIST, Gaithersburg, MD, July, 1987. Freedom Redundant Robots with Spherical Wrists,"

The American Control Conference, Atlanta, Ga.,
3. T.L. Anderson, M. Donath, "Animal Behavior as a June 15-17, 1988.

paradigm for developing robot autonomy." Robotics
and Autonomous Systems (6) 145-168, 1990. 15. D.B. Reister, "A new wheel control system for the

omnidirectional Hermies-III robot." Proc. 1991 IEEE
4. R.C. Arkin, "Motor schema based navigation for a International Conference on Robotics and

mobile robot: an approach to programming by Automation, pp. 2322-2327.
behavior." Proc. 1987 IEEE International Conference

on Robotics and Automation, pp. 264-271. 16. J. Borenstein, Y. Koren '_he Vector-Field Histogram
- Fast Obstacle Avoidance for Mobile Robots," IEEE

5. S.Y. Harmon, "['he ground surveillance robot (GSR): Transactions on Robotics and Automation (RA-7),
An autonomous vehicle designed to transit unknown 278-288, 1991.
terrain," IEEE Journal of Robotics and Automation
(RA-3) 266-279, 1987. 17. J. Borenstein, Y. Koren "Histogrammic in-motion

mapping for mobile robot obstacle avoidance." IEEE
6. C. Thorpe, M. H. Herbert, T. Kanade, S. A. Shafer, Transactions on Robotics and Automation (RA-7),

"Vision and navigation for the Carnegie-Mellon 535-539, 1991.
Navlab," IEEE Transactions on Pattern Analysis and
Machine Intelligence (PAMI-10) 362-373, 1988. 18. C. Crane, R. Vora, J. Tulenko, G. Dalton, "Model

Simulation for robotic control and intelligence."
7. D.B. Stewart, D.E. Schmitz, P.K. Koshla, American Nuclear Society Third Topical Meeting on

"Implementing real-time robotics systems using Robotics and Remote Systems, Charleston, SC, 1989.
CHIMERA II", Proc. 1990 IEEE International

Conference on Robotics and Automation, pp. 598- 19. J.T. Lovett, P. Bevill, "A universal bilateral manual
603. controller utilizing a unique parallel architecture,"

Transactions of the American Nuclear Society (61)
8. R. Chatila, R.F. Camargo, "Open architecture design 409,1990.

and inter-task/inter-module communications for an
autonomous mobile robot," IEEE International 20. F. McGarry, J. Page, S. Eslinger, V. Church, P.

Merwarth, "Recommended approach to softwareWorkshop on Intelligent Robots and Systems, pp.
717-721, 1990. development." NASA Software Engineering

Laboratory Technical Memorandum SEL-81-205,
9. F. J. Sweeney, "ORNL Research in the DOE 1983.

University Program in Robotics for Advanced
Reactors," American Nuclear Society Annual 21. C. R. Weisbin, B. L. Burks, J. R. Einstein, R. R.
Meeting, Nashville, Tenn.,June10-14,1990. Feezell, W. W. Manges, D. H. Thompson,

"HERMIES-IIh A step toward autonomous mobility,
10. D.B° Reister, J.P. Jones, P.L. Butler, M. Beckerman, manipulation and perception," Robotica (8) 7-12,

F.J. Sweeney, "Demo 89 -The initial experiment with 1990.
the Hermies-lll robot." Proc. 1991 IEEE International

Conference on Robotics and Automation, pp. 2562- 22. P.L. Butler, "An integrated architecture for modular
2567. control systems," Robotics and Autonomous

Systems, 1991, in press.
11. F.J. Sweeney, M. Beckerman, P.L. Butler, J.P. Jones,

23. B. Nitzberg, V. Lo, "Distributed shared memory: AD.B. Reister (1991) "Application of autonomous
robotics to surveillance of waste storage containers survey of issues and algorithms." IEEE Computer
for radioactive surface contamination." Proc. AI '91: (24) 8, 52-60, 1991.

Frontiers in Innovative Computing for the Nuclear 24. IEEE. "IEEE standard 754-1985 for binary floating-
Industry, Jackson, Wyoming, September 15-18, 1991. point arithmetic." Reprinted in SIGPLAN 22, 2, 9-25,

12. C. Chen, M. M. Trivedi, C. R. Bidlack, "Design and 1987.
implementation of an autonomous spill-cleaning 25. N. Carriero, D. Gelernter, "How to Write Parallel
robot," Proc. Applications of Artificial Intelligence Programs: A Guide to the Perplexed," A C M
XIII, 1990. Computing Surveys (21) 323-357, 1989.

Simulating Shared Memory in Heterogeneous Distributed-Memory Networks 9

II | ....



i




