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1 INTRODUCTION

The simulation of three-dimensional interface mechanics between
reactor components and structures during static contact or dynamic
impact is necessary to realistically evaluate thelr structural
integrity to off-normal loads. In our studies of postulated core
energy release events, we have found that significant structure-
structure interactions occur 1in 8some reactor vessel head closure
designs and that fluid-structure interactions occur within the reactor
vessel. Other examples 1in which three-dimensional interface mechanlcs
play an important role are: (1) impact response of shipping casks
contalning spent fuel, (2) whipping pipe impact on reinfecrced concrete
panels or pipe—to-plpe impart afiter a pipe break, (3) alrcraft crash
on secondary containment structures, (4) missiles generated by turbine
failures or tornados, and (5) drops of heavy components due to
lifting accidents. The above 1s a partial 1ist of reactor safety
problems that require adequate treatment of interface mechanics.
Contact/impact problems are also vnresent in the automotive, aircrafr,
rail, and weapons industries.

Contact/impact methodology 1s an area that has recelved increased
attention in the past decade. A large number of the methods reported,
however, are limited to infinitesimal motion, node-to-node contact,
and/or two-dimensional geometries. However, many of our problems are

three-dimensional and involve large motions. Essentially, at an
interface between two bodies compatibility and conservation of
momentum should be satisfied. An attempt to satisfy these two

conditions, in varying degrees, is made by the methods that have been
proposed in the literature. For example, with the Lagrange Multiplicr
approach (e.g. Hughes et al. (1976)) compatiblility 1is exactly
enforced, but conservation of momentum 1s accounted for with discrete
impact and release conditicns. Also, the contact stresses are treated
as unknowns and thus increase the size of the problem. For problems
in which 30 to 50 percent of the nodes are on the contacting surface,
the -fze 1Increase Is significant. PRegularization methods have been
used by Nichols and Hirt (1978) and also by Belytschko and Hullen
{1981) to smooth the discontinuous transition between pre- and prat-
impact veloclties. Momentum 1is conserved by regularization, and the
compatibility condition is only approximated. Another approach fis the
penalty method (e.g. Key et al. (1978), Hallquisr (1978), Marrci
(1983), and Kulak (1985a)) which essentlally inserts interface springs



between the Impacting surfaces. This approach conserves momeutum
ithout the need for impact and release conditions; however, the
compatibility condition 1is approximately satisfied. A perturbed
Lagrangian formulation was developed by Simo et al. (1985) in which
the contact constraint 1is enforced in an “averape” sense on ecach
contact segment.

lere we present a method that may be used to model three-dlmensionai
contact/impact mechanics 1in which large sliding can occur. A family
of finite elements based upon the penalty method are developed. ‘he
contact elements consists of a base, which 1s affixed to one body and
an apex node which is affixed to another. Explicit forms for nodal
contact forces are developed for a tetrahedral element with a
triangular base, a triangular element with a line base, and a line

element with a point base. An adaptive connectivity algorithm s
developed to handle problems with finite sliding 1in which the contact
nodes travel across element boundaries. An adjacency table, which
contains all the contact elements and thelir contiguous neighbors, lIs
used to monltor the location of each apex node as {t travels {rom one

element base to another during impact and/or sliding between the two

bodies. This methodology has been incorporated into the NEPTUNE code
(Kulak (1980)).

2 CONTACT MECHANICS

Consider two bodies Bl and BZ (Figure 1) that are in contact along a

cgmmon surface Sc' which can vary in size during the interaction. let
SC be the part of the surface of body B® (a=1,2) that belons to S .
Define a triad of unit vectors (Q, 5, m) along the contact surfnc;,
Se- Let n be normal to the surface, let s lie in the direction of
relative sliding, and let m be orthogonal to n and s. For each hody
we define the vectors as follows: - -

(1) n = gl = - n? and s = sI = 52 .

=]

The normal component of the Cauchy traction vector, oﬂ, on Srl Is given
c

by ~
a a a
O =g +n ,
n ~ ~
(2)
a 53 a
g = a n
~n n ~

(3) o = -



Figure 1. Contacting Bodies.

and when the surfaces are not 1n contact, the tractions are zero, that
is

(4) g =g =0.

tnly negative normal tractlons are permltted along the Interface
because adhesion 1s not permitted; thus

(5) g <0 on S

when the two bodles are 1in contact, their normal veloclties are equal
along 5., thus

(6) vo= v

Bacause penetration of one hody Into the other is not permitted, the
following unilateral contact conditions applies;



> S
(7) g“ 0 on e

where g~ 1s the gap normal to the interface.
The rate-of-change in normal traction ls computed from

(8) g =

0 if h>h
c

where E 1is a reslistance modulus, h 1s the curient helght of the
contact element, which 1s the distance between S, and S, and hC is
the height at which contact occurs. Thus, 1f the height of the
element 1s greater than the contact height, the traction 1s zero;
otherwise, a normal traction is generated. Since the traction, o, 1s
corotational, it 1is updated as follows

(9) o (t +At) = o (t) + g At ,
n n

where t is the time, and At is the time step.

By employing the principal of virtual power we can obtaln an
equivalent nodal forces from the normal traction distributions over
the contact surface; thus

(10) ] o g ds = £ v

in which fTI 1s the nodal force due to the normal tractions at node
I in the 1th global coordinate direction, vy are the veloclty
components, and g 1is the rate-of-change 1in gap. If we assume that

g, is given by thé linear form

1 s = B
(1) 8, = Byp Vip o

and then 1invoke the arbitrariness of the nodal velocities, we have
(12) £, =] o B, _dS_ .

In the following section we will obtaln explicit forms of the nodal
forces for a pyramidal element with a quadrilateral base, a triangular
element, and a line element. Note, 1n the remalnder of our work, we
assume that the normal tractlons are uniform over the base of each
contact element.
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Figure 2. Generic Interface Element with a Base and Apex

3 CONTACT ELEMENTS

The elements that are used at the interface have certain common
attributes, which we will now describe. Each element consists of aun
apex node and a base (Figure 2). The base may consist of one or more
nodes. The base 1s formed from nodes belonging to one body, and the
apex 1s a node from the other body. Note, this 1s a nonsummetric or
master—-slave treatment. A symmetric interaction 1is achieved by
defining element bases and apexes on both contacting surfaces; this
would require twice as many contact elements. At this polnt we polnt
out that the same nodes always form the base of each element, but
because of the adaptive nature of this method different nodes can be
the apex. The element height, h, is the normal distance from the base
to the apex node. The rate-of-change in clement height, ﬂ, is given
by

(13) h =B

11 V11

Kennedy and Belytschko (1983) used this form for two-dimensional
geometries, and Kulak (1985a, 1985b) applied it in three-dimensions.
A comparison of equations 1l and 13 show that the rate-of-change 1n
gap is equal to the rate-of-change in element height: én = h.

3.1 Tetrahedral eiement

In this subsection we present the derivation of a tetrahedral contact
element that has a trlangular base.

We position nodes 1-2-3 on the base and let node 4 form the apex
(Figure 3). We will assume that the height is given by



Figure 3. Tetrahedral Interface Element with a Triangular Base

3V

A = Z__
(14) h X
where V {s the volume of a tetrahedron and A is the area of the
base.

Our task now 1s to compute the B 1 coefficients of equation 13 for

the element. The rate-of-change In element height 1s given by the
relation

- L] 3v L
(15) h = V-—A-=8B v ,
A i1 11

W

The volume for a pyramid is obtained from the volume formula which is
given by

(16) 6v

where x;, y;, and z; are the global coordinates for node [. ‘The area
of the triangular base 1is given by

i
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Figure 4. (a) Triangular Interface Element and
(b) Line Interface Element.
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U7 A= lg gy zg =9y 20)" 5 (Bgy gy = 23y %))

1 2,0.5
3 by xgp = ygp %)) '
which can be rewritten as

2

2 2,0.5
(18) A = [Ax + Ay + Az] ,

where Ax' A, AZ are projected areas defined 1iun equation i/. ‘The BII
coefficients are obtained by substituting the temporal derivatives of
the volume and area into equation 15. The internal force expression

for the tetrahedron is obtained by evaluating equation 12, which gives
the following simple form
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and the constants are given by
3
(20) ¢, = 0.5//\123 s c, = —1.5V/(A123) . f = on/\123 .

A123 is the area of face 1--2-3.

3.2 Triangular and line elements

In order to treat problems in which finite sliding occurs over cnrved
surfaces, we found 1t necessary to use two additional contact
elements: a triangular element (Figure 4a) and a line element (Figure
4b). These elements were previously derived by Kulak (1985a) using
the approach outline in tlte previous section. Here we will only give
the forms for the nodal contact forces.



The explicit form for the global nodal contact forces of our
triangular contact element 1s given by

() - )
A + A +

fl vz T T
£ Az +Ax +cy

yl x23 z32 Y12
£ A + A + c_2

21 32 o y23 T 3T
f Az + Ay + c.x

x2 y 13 z" 31 3 21

(21) < f L t < A + A +
= z C ’
y2 2AL %31 23 T %72
21

f Ay + A x + c_z

z2 x 13 y 31 3 21
£ Az + Ay

x3 y 21 z" 12

£ Az + A x

v3 x 12 "z 21

f Ay + A x

23 L_ 21 yT1 ,

where the constant cq 1s given by

(22) c, = -2(A/L

3 21J ’

and Ax, Ay, Az are projected areas.
The global nodal contact forces for our line element are gliven by

X
21
3
(23) i1 11
v4
21

where b {s the distance between the two nodes.

4 ADAPTIVE CONNECTIVITY

For the purpose of treating problems with finite sliding, it 1is
necessary to allow the apex node the freedom to be connected to
different bases at different times during the simulation. 7here is no



unique method to determine this adaptive connectivity. The method we
propose is simple, efficient, and capable of handling the problem that
we had to deal with to—date. Other more encempassing algorithms could
be developed, 1f needed, but would probably be more complicated and
cowmputationally expensive.

buring the discretization of a problem, potential contact elements
are defined. Each of thesc elements consists of a base and an apex
node. The specific node(s) that form the base of the element are
defined by the wuser and remain fixed throughout the numericeal
simulation. In contrast, the apex node of the element can change
during the simulation. In fact, it is possible that during some polat
in the simulation an element will not have an apex node and would be
considered a null element, that 1s an element which does not partici-
pate in the calculations. It 1is also possible for an element to have
more than one node assoclated with 1is utasc. fhus, .. see c¢hat a
specific apex node can be assoclated with different contact elewmeuts
at dlfferent times during the simulation.

In order to reduce the computational time required when a search is
performed to identify the element that an apex node 1s assoclated
with, we wutilized a contact element adjacency table. For each
pyramidal contact element, the table contains the element numbers of
all the contiguous pyramidal contact elements. Thus, when a specific
apex node falls to project itself onto the base that it was previously
identified with, the adjacency table contains the information needed
to reconnect the apex node to another base.

Now we address the task of dynamically adapting the connectivity of
the contact elements. At this point, it is worth emphasizing the fact
that an element's connectivity only changes during a small percentage
of the computational steps. At the end of each computational cycle,
the connectivity of each tetrahedral contact eiement is checked to see
if 1+s apex node (l) continues to project onto 1its current base,
(2) projects onto an adjacent base, or (3) does not project onto any
base. The determination of node projection 1is performed in the
following manner. When an apex node projects inslde 1its currently
defined base (Figure 5) then the natural coordinates of the
projection, Ll' LZ' and L3 should satisfy the relation

(24) 0 < LI < 1 (r =1,3) .

The values of the natural coordinates are obtained from the following
procedure. First, the largest component of the nodal force of the
apex node, fmﬁ' is identified from

(25) f = max (f

mh £

f

xer Tyar £54)

where the subscript m indicates the coordinate direction with the

largest force component. Then the value of the shape functions for
the base nodes are ralculated as

(26) No= - b (I =1,3)



Figure 5. Triangular Base of Tetrahedral Element

Note, the shape functions, NI' for the triangular base are identical
to thz natural caordinates, LI' If the computed values for LI satisfy
equation 24 then the apex projects onto 1its current base. In
addition, 1f the natural coordinates satisfy the relation

(27) § < LI <1-3 (I =1,3)

then the apex projects onto the interior region of the base and the
previously calculated nodal forces (i.e. equation 19) are valid.

1f the natural coordinates satisfy only equation 24, then the apex
projects onto the boarder region of the base, which is near the sides
and corners of the base. We have elected to give this situation
speclal treatment, similar to tlie approach of Marti (1983), to provide
a smoother transition between bases. When the following conditions
hold,

2 1 - -
(28) L <8, L,< §, L, <1 -8,

then the apex 1s projecting onto a boarder region next to the side
opposite node I. When the following condition is true,

(29) LI >1 -3,

the apex node 1s projecting into the corner at node I.

We use the following procedure to treat the above two cases. When
the apex node projects 1nto the side reglon of the boarder, we
generate a so-called phantom triangular contact element along that
side. The line base of the triangular e%ement is defined by the two



nodes of the side, and the apex node for the triangular element is the
apex node of the pyramidal element. For this situation, we can think
of the pyramidal contact element as belng replaced by a temporary
triangular element, and in this localized regilon of 5, the contact
between the two bodles 1s a node-to-line contact. Since this element
does not exist in the problem's connectivity array, it is thought of
as a phantom element. It becomes visible only when the above loglc
path 1s transversed.

When the apex node projects 1nto the corner reglon of the boarder,
we activai. a phantom line contact element with the corner node as the
base node. For this condition the localized contact between the two
bodies 1s a node-to-node contact.

For the case when equation 24 is not satisfied, then the apex does
not project onto the current base, and we must determine (1) 1f the
apex does project onto another base, and (2) if it does wilch base is

it. An element adjacency table 1is used to 1identify the contact
elements adjacent to the sides and corners of the current contact
element. Note, we used an element adjacency table in the quasi-
Eulerian methodology (Kulak (1984)}), which 1s embedded in NEPTUNE, and
have borrowed those data structures for our contact algorithm, To
briefly {illustrate, 1f JE is a contact element, St (I = 1,3) is a
contact element adjacent to side I, and C; (I = 1,12) is a contact

element adjacent to corner I, then the entries in the adjacency table
would be as follows: IADJT (1,JE; = Sl' ..« IADJT (5,JE) = Cl' e
IADJT (12,JE) = ClZ' The current values of LI are used to determine
which side or corner that the apex node had possibly passed through.
The values for L; are now recalculated relative to the potential new
base, to see 1f they satisfy equation 24, If equation 24 ig
satisfied, then the apex node 1s removed from the connectivity array
of the original base and added to the connectivity of the new base.
Nodal contact forces are calculated in the next step, as described
above, wusing the rew base. All adjacent bases are eventually
searched.

Wher the mesh configuration 1s such that the bases lie on a convex
surface, then 1t is possible for the apex node to lie in regions that
do not belong to any element projections. For example, there is a
“"trough” shaped region, as shown in Figure 6a, that lies along the
common line connecting the trilangular bases of adjacent tetrahedral
contact elements. In addition, a “pyramid” shaped region (Filgure 6b)
exists at the vertices of adjacent elements. When the bases lie on a
concave surface, the opposite problem occurs; the apex node may
project onto wmore than one base. For this situation, we activate
either a phantom triangular contact element or a phantom line element,
depzuding upon the current value of the natural coordinates. ‘The apex
node 1a considered to belong to the current base, awd phantom elements
are 1invoked until the apex prcjects onto a base, either 1its current
base or a new base.

5 NUMERICAL EXAMFLES

The following exampler are presented to verify our newly developed
numerical formulation for treating the interface mechanics between two
bodies and to illustrate 1ts use in modeling reactor structural safety

probiems in which impact, contact, and/or sliding take place between
components.



ELEMENT "I"

Figure 6. (a) Trough Region Along Common Side of Adjacent Bases and
(b) Pyramidal Region at Corner of Adjacent Bases

5.1 Two impacting bars

Qur first example 13 the longitudinal impact of two identical elastic
bars. Although this problem is relatively simple, it proved to be
very useful in checking out the interface element. The analytical
solution which is available 1is wused to benchmark our numerical
results. We assume that bar 1 (Figure 7a) had an initial velocity of
C.1 and that bar 2 1ie 1initially at rest. The area of each bhar is
10.0, length 1is 100.0, Young's modulus is 100.0 and the density is
0.0l. Note that we used dimenslonless quantities. Our finite element
mesh is shown in Figure 7b, and it consists of 20 axial elements per
bar with a tetrahedral gap—contact element between them. The
interface force, Figure 8, was in good agreement with the analytical
solution.

5.2 JSME shipping cask benchmark calculatious

Recently, the Subcommittee on Structural Analysis of Nuclear Shipping
Casks of the Japan Soclety of Mechanical Engineers (JSME) conducted a
benchmark study to 1identify methods that were suitable for modeling
the 1impact response of spent nuclear fuel shipping casks. Some of
these results were reported by Yagawa et al. (1984), and we declded to
compare them with NEPTUNE calculations to help verify the interface
element.

One of the problems in the JSME study was the impact response of an
assembly of a thin—wall stailnless steel cylindrical shell that
contained a lead cylinder. The assembly is dropped from a height of
9.0 m onto a rigid floor. It should be noted that large relative
motions (sliding) occurred betwean the steel shell and the lead
cylinder. Therefore, this problem provided a check on the abhility of
out newly developed interface element to model sliding between two
bodies. Ige materg?l properties of the lead are as follows: density =
1.13 x 10 7 kg-s/mm', Young's modulus = 19.5 kg/mm, Poisson's ratio =
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Figure 7. (a) Two Impacting Bars and (b) Finite Element
Model of Impacting Bars
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Figure 9. (a) Finite Element Model for Impacting Cladded
Cylinder and (b) Deformed Shape at 5 ms Atter Impact

0.42, yield stress = 3.02 kg/mm, and tangent modulus = 1.85 kg/mm,
The material properties for the steel are density = 8.0 x 10710
kg-s/mm, Young's modulus = 1.96 x 10" kg/mm, Poisson's ratio = 0.33,
yleld stress = 31.6 kg/mm, and tangent modulus = 195.0 kg/mm.

Figure 9a 1is a view of our model. A 15-degree circumferential

sector model was developed. The lead cylinder consists of 50
hexahedral continuum elements: 5 elements In the radial direction and
10 elements 1in the vertical direction. The cylirdrical shell was

modeled with NEPTUNE's three-node triangular plate element. 1Interface
elements were 1nserted between the lead cylinder and steel shell in
otder to allow sliding and possible separation at the iInterface. The
interface was assumed to be frictionless.
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Figure 10. History of Head Settlement

Figure 10 shows the history of the head settlement, which is the
displacement of the top of the 1lead cylinder. The cask 1mpacts
agalnst the floor at 0.5 ms. The maximum calculated value for had
settlem2nt was 6.5 cm and occurred at 5.5 m. Yagzwa et al. (1984)
reported on the .esults from several organlzations which used
different computer ©programs, and Key (1985) reported on his
simulations of this problem.

Table 1. Comparison of numerlcal results from several codes
for impact response of a cladding cylinder

Maximum Head Time
Code Settlement (Cm) (msec)
ABAQUS 7.25 6.25
ANSYS 5.80 4,30
HONDOIII 6.27 5..0
MARC 6.35 5.70
NEPTUNE 6.50 5.50

Table 1 showed the results for maximum head settlement and the time at
which {1t occurred for numerical calculations performed by five
different computer programs, including NEPTUNE. The range for maximum
head settlement and the time at which 1t occurred was 5.8 to 7.25 cm
and 4.3 to 6.25 m, respectively. Our results dompare favorahly wlth
the above ranges. Figure 9b shows the deformed configuration of the
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Figure 11. Schematic View of a Cylindrical Tank with a Spherical
Bottom Impacting Vertically onto a Rigid Floor

cask at 5 ms; the large sliding between the thin shell and lead is
clearly visibie.

5.3 Vertical impact of a spherical~bottomed cylindrical tank

The following problem was designed to check the performance of the
element in a fairly complex impact situation. Since we constructed
this problem, we have no other solution at this time with which to
compare our results. Flgure lI 13 a schematic view of the problem. A
0.25 in. thick ecylindrical tank with a spherical bcttom was impacted
against a rigid floor. For simplicity, gravitational effects were
neglected. The cylinder was 12,4 in. long with a diameter of 2

inches. The material properties are as follows: density = 2.45 x 107"
lb-see/in’, Young's modulus_= 0.5 x 10% lb/inz, Poisson's ratio =
0.3, Xield stress = 24 x 107 1b/in“, and tangent modulus = U.21 x 10

1b/in”,

The tank was assumed to impact the floor head-on with a veloclty of
600 4in/sec. By prescribing the impact in this way, only one-quarter
of the cylinder needed to be modeled. Also, the head-on impact
orientation provided a good check for evaluating the degree to which
the symmetry of the response is maintained during the simulation. The
finite element model is depicted in Figure 12a, and it consists of 175
quadrilateral plate elements and 47 tetrahedral impact elements. ‘The
impact elements are 1infused between the floor and tank bottom;
however, for clarity, the impact elements are not shown. The bases of
the tetrahedral elements are located at the %urface of the floor, and
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the apexes are the nodes of the spherical cap. The rectangle at the
bottom of the figure represents the rigid floor. The simulation was
started (time = 0.0 s) with the tank bottom being 0.10 in. above the
floor in order to see if the contact criterla properly detects contact
when the tank reaches the floor. Figure 12b shows the configuration
of the impacting cylinder at 2 ms after the beginning of the simu-
lation. Note, the center of the bottom of the tauk, which was the
first area to make contact with the floor, has rebounded, and the
outer part of the tank bottom 1is now in contact with the floor. ' In
Figure 12c, it 1is seen that the entire tank has rebounded off the
floor. Figure 13 showed the evolution of the total energy, kinetic
energy, and strain energy during impact. It was seen that the initial
kinetic energy was converted into strain energy as the cylinder comes
to rest at 2.16 ms. Most of this strain energy was in the form of
plastic strain energy as indicsted by the small amount of strain
energy that was converted back into kinetic energy during the
rebound. The total energy remained nearly constant throughout the
calculations, as it should. This checkout problem verified that the
previcusly developed contact and release conditions are satisfactorily
treating the mechanics at the impact interface. Although we do not
have other results to compare with, we felt that the dynamic respounse

was reasonable, especially in view of the excelilent conservation of
total energy.
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