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1 INTRODUCTION

The simulation of three-dimensional interface mechanics between
reactor components and structures during static contact or dynamic
impact is necessary to realistically evaluate their structural
integrity to off-normal loads. In our studies of postulated core
energy release events, we have found that significant structure-
structure interactions occur In some reactor vessel liend closure
designs and that fluid-structure interactions occur within the reactor
vessel. Other examples in which three-dimensional Interface mechanics
play an important role are: (1) impact response of shipping casks
containing spent fuel, (2) whipping pipe impact on reinforced concrete
panels or pipe-to-pipe impart alter a pipe break, (3) aircraft crash
on secondary containment structures, (4) missiles generated by turbine
failures or tornados, and (5) drops of heavy components due to
lifting accidents. The above Is a partial list of reactor safety
problems that require adequate treatment of interface mechanics.
Contact/impact problems are also present in the automotive, aircraft,
rail, and weapons industries.

Contact/Impact methodology is an area that has received incrensecl
attention in the past decade. A large number of the methods reported,
however, are limited to infinitesimal motion, node-to-node contact,
and/or two-dimensional geometries. However, many of our problems are
three-dimensional and involve large motions. Essentially, at an
interface between two bodies compatibility and conservation of
momentum should be satisfied. An attempt to satisfy these two
conditions, In varying degrees, is made by the methods that have been
proposed In the literature. For example, with the Lagrange Multiplier
approach (e.g. Hughes et al. (1976)) compatibility is exactly
enforced, but conservation of momentum Is accounted for with discrete
impact and release conditions. Also, the contact stresses nre trnated
as unknowns and thus Increase the size of the problem. Kor problems
In which 30 to 50 percent of the nodes are on the contacting surface,
the '-.'ze Increase is significant. Regularization methods have boon
used by Nichols and Hlrt (1978) and also by Belytschko and Mullen
(1981) to smooth the discontinuous transition between pre- and prst-
impact velocities. Momentum is conserved by regular!zation, and the
compatibility condition is only approximated. Another approach is the
penalty method (e.g. Key et al. (1978), Hallnuist (1978), Marti
(1983), and Kulak (1985a)) which essentially inserts interface sjirincr!



between the Impacting surfaces. This approach conserves momentum
without the need for impact and release conditions; however, Llio
compatibility condition is approximately satisfied. A perturbed
Lagrangian formulation was developed by Simo et al. (1985) In which
the contact constraint is enforced in an "average" sense on ench
contact segment.

Here we present a method that may be used to model three-dimensional
contact/impact mechanics In which large sliding can occur. A family
of finite elements based upon the penalty method are developed. Hie
contact elements consists of a base, which Is affixed to one body nnil
an npex node which is affixed to another. Explicit forms for nodal
contact forces are developed for a tetrahedral element with a
triangular base, a triangular element with a line base, and a line
element with a point base. An adaptive connectivity algorithm Is
developed to handle problems with finite sliding in which the contact
nodes travel across element boundaries. An adjacency table, which
contains all the contact eLements and their contiguous neighbors, Is
used to monitor the location of eac'1 apex node as It travels from one
element base to another during impact and/or sliding between the two
bodies. This methodology has been incorporated into the NEPTUNE code
(Kulak (1980)).

2 CONTACT MECHANICS

1 7
Consider two bodies B and D (Figure 1) that are in contact along a
common surface Sc, which can vary in size during the interaction. Let
S be the part of the surface of body Ba (a=l,2) that belous to S,.
Define a triad of unit vectors (n, s, m) along the contact surface,
Sc< Let n be normal to the surface, let s lie in the direction of
relative sliding, and let m be orthogonal to n and s. For each body
we define the vectors as follows: ~ ~

n ^ l 2 1 2
U ; n = n = - n and s = s = s .

The normal component of the Cauchy traction vector, o on S Is piven
by ~

(2)

a a a

n - £ -a

a a a
0 = o n
~n n ~

During con tac t the normal t r a c t i o n s s a t i s f y the r e l a t i o n

n , 1 2(3) o = - a ,-*n ~n



Figure 1. Contacting Bodies.

and when the surfaces are not in contact, the tractions are zero, that
is

a = a = 0 .~n ~n

(July negative normal tractions are permitted along the interface
because adhesion is not permitted; thus

(5) a < 0 on S
n c

when the two bodies are in c o n t a c t , t h e i r normal v e l o c i t i e s a r e equal
along S , thus

(6 )
1 2

v = v
~n ~n

p e n e t r a t i o n of one body Into thn o the r i s not pe rmi t t ed , thr-
following u n i l a t e r a l contact condi t ions a p p l i e s ;



(7 ) g > 0 on

where g i s the gap normal to the i n t e r f a c e .
The ra te -of -change in normal t r a c t i o n is computed from

(8)

Eh i f h < hc

i f h > h

where E is a resistance modulus, h is the current height of the
contact element, which is the distance between Sc and Sc, and hc is
the height at which contact occurs. Thus , if the height of the
element is greater than the contact height, the traction is zero;
otherwise, a normal traction is generated. Since the traction, o , is
corotational, it is updated as follows

(9) a (t + At) = a (t) + a At
n n

where t is the time, and At is the time step.
By employing the principal of virtual power we can obtain an

equivalent nodal forces from the normal traction distributions over
the contact surface; thus

(10) a g dS
n n c

f" v
II II

in which f"j is the nodal force due to the normal tractions at node
I in the ith global coordinate direction, v^j are the velocity
components, and g is the rate-of-change in gap.

g is given by the linear form
If we assume that

mid then invoke the arbitrariness of the nodnl velocities, we h;ivo

(12) " = /
II ; il

dS

In the following section we will obtain explicit forms of the nodal
forces for a pyramidal element with a quadrilateral base, a triangular
element, and a line element. Note, in the remainder of our work, we
assume that the normal tractions are uniform over the bass of each
contact element.
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Figure 2. Generic Interface Element with a Base and Apex

3 CONTACT ELEMENTS

The elements that are used at the interface have certain common
attributes, which we will now describe. Each element consists of an
apex node and a base (Figure 2). The base may consist of one or more
nodes. The base is formed from nodes belonging to one body, and the
apex is a node from the other body. Note, this is a nonsummetric or
master-slave treatment. A symmetric interaction is achieved by
defining element bases and apexes on both contacting surfaces; thLs
would require twice as many contact elements. At this point we point
out that the same nodes always form the base of each element, but
because of the adaptive nature of this method different nodes can be
the apex. The element height, h, is the normal distance from the base
to the apex node. The rate-of-change in element height, h, is given
by

(13) h =

Kennedy and BelytschUo (1983) used this form for two-dimensional
geometries, and Kulak. (1985a, 1985b) applied it in three-dimensions.
A comparison of equations 11 and 13 show that the rate-of-change in
gap is equal to the rate-of-change in element height: g = h.

3. 1 Tetrahedral element

In this subsection we present the derivation of a tetrahedral contact
elpment that has a triangular base.
We position nodes 1-2-3 on the base and let node 4 form the apex

(Figure 3). We will assume that the height is given by



Figure 3 . Tet rahedra l I n t e r f a c e Element wi th a Triangular Base

(14) h =
3 V

where V is the volume of a tetrahedron and A is the area of the
base.

Our task now is to compute the B., coefficients of equation 13 for
the element. The rate-of-change fn element height Is given by the
relation

3 • 3V •
(15) h = - V A = B v

A A II il

The volume for a pyramid Is obtained from the volume formula which is
given by

(16) 6V

where Xj, y^, and z-. are the global coordinates for node I. The area
of the triangular base is given by
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Figure A. (a) Triangular Interface Element and
(b) Line Interface Element.
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which can be rewritten as

(18) A 2 ] 0 " 5

zJ

where A^, A , k^ are projected areas defined in equation 17. The B^ j
coefficients are obtained by substituting the temporal derivatives of
the volume and area into equation 15. The internal force expression
for the tetrahedron is obtained by evaluating equation 12, which gives
the following simple form
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(19) <

f

i n t %
f >• = f

z2

int
Ex3

int

y3
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c f x v + x y + x
T 3 y 4 1 4 r l 3

+ c [A y + A x 1 >•

c f v z - y z - y z ) + c ( A z + A y
P y 4 2 1 y I 2 4 y 2 4 1 ; 2 V y 2 1 z •

c l z x - 2 x - 7 . x ) + c ( A z + A X )
P 4 2 1 1 2 4 2 4 1 ; 2 L x 12 r. IV

c f x y - x y - x y 1 + c ( f t y + A x )
P 4 ^ 2 1 1 2 4 2 y 4 1 ; 1K x * 2 1 y 1 2 ;

c f y z + y z + y z )
r y i 2 3 y 3 1 2 y2 3lJ

c f z x + z x + z x )
I 1 1 23 3 12 2 3 1 ;

c f x y + x y + x y 1 ,
T T 2 3 3 12 2 ' 3 1 ;

and the constants are given by

(20) cl - °-5/A123 • = °nA123

A j 2 3 is the area of face 1-2-3.

3.2 Triangular and line elements

In order to treat problems in which finite sliding occurs over curved
surfaces, we found it necessary to use two additional contact
elements: a triangular element (Figure 4a) and a line element (Figure
4b). These elements were previously derived by Kulak (1985a) using
the approach outline in the previous section. Here we will only ^ive
the forms for the nodal contact forces.



The explicit form for the global nodal contact forces of our

triangular contact element 19 given by

( 2 1 )
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A z + A y + c x
y 32 z 23 3 12

A z t - A x + c y
x 2 3 z 32 3 12

A y + A x + c z
x 32 y 23 3 12

A z + A y + c x
y 13 z 31 3 21

A z + A x + c y
x 31 z 13 3 21

A y + A x + c z
x 13 y 31 3 21

A z + A y
y 21 z ' 1 2

A z + A x
x 12 z 21

A y + A x
x 21 y 12

where the constant C3 is given by

(22) c3 =
 2

and Ax, Ay, Az are projected areas.
The global nodal contact forces for our line element are given by

(23) il h

X

Y

Z

21

21

21>
where li is the distance between the two nodes.

4 ADAPTIVE CONNECTIVITY

For the purpose of treating problems wLth finite .sliding, it is
necessary to allow the apex node the freedom to be connected to
different bases at different times during the simulation. There is no



unique method to determine this adaptive connectivity. The method we
propose is simple, efficient, and capable of handling the problem that
we had to deal with to-date. Other more encompassing algorithms could
be developed, if needed, but would probably be more complicated and
computationally expensive.

During the discretization of a problem, potential contact elements
are defined. Each of these elements consists of a base and an apex
node. The specific node(s) that form the base of the element are
defined by the user and remain fixed throughout the numerical
simulation. In contrast, the apex node of the element can change
during the simulation. In fact, i t is possible that during some point
in the simulation an element will not have an apex node and would be
considered a null element, that is an element which does not par t ic i -
pate in the calculations. It is also possible for an pigment •"o have
more than one node associated with i ts base. l'tius, "..- see ciiat a
specific apex node can be associated with different contact elements
at different times during the simulation.

In order to reduce the computational time required when a search Is
performed to identify the element that an apex node Is associated
with, we utilized a contact element adjacency table. For encli
pyramidal contact element, the table contains the element numbers of
all the contiguous pyramidal contact elements. Thus, when a specific
apex node fails to project i tself onto the base that it was previously
identified with, the adjacency table contains the information needed
to reconnect the apex node to another base.

Now we address the task of dynamically adapting the connectivity of
the contact elements. At this point, i t is worth emphasizing the fact
that an element's connectivity only changes during a small percentage
of the computational steps. At the end of each computational cycle,
the connectivity of each tetrahedral contact element is checked to see
if i ts apex node (1) continues to project onto i t s current base,
(2) projects onto an adjacent base, or (3) does not project onto any
base. The determination of node projection is performed in the
following manner. When an apex node projects inside i ts currently
defined base (Figure 5) then the natural coordinates, of the
projection, L ,̂ L2, and L-j should satisfy the relation

(24) 0 < L < 1 (I = 1,3) .

The values of the natural coordinates are obtained from the following
procedure. First, the largest component of the nodal force of the
apex node, f^, is identified from

(25) f . = max (f ., f , , f .) ,
m4 xA' y V zh' '

where the subscript m indicates the coordinate direction with the
largest force component. Then the value of the shape functions for
the base nodes are calculated as

f ,

( 2 6 ) N]. = - f ± . ( I = 1 , 3 )



Figure 5. Triangular Base of Tetrahedral Element

Note, the shape functions, Nj-, for the triangular base are Identical
to tha natural coordinates, L». If the computed values for L» satisfy
equation 24 then the apex projects onto its current base. In
addition, if the natural coordinates satisfy the relation

(27) 5 <. L1 < 1 - 5 (I = 1,3)

then the apex projects onto the interior region of the base and the
previously calculated nodal forces (i.e. equation 19) are valid.

If the natural coordinates satisfy only equation 24, then the apex
projects onto the boarder region of the base, which is near the sides
and corners of the base. We have elected to give this situation
special treatment, similar to the approach of Marti (1983), to provide
a smoother transition between bases. When the following conditions
hold,

(28) Lj. < 6, Lj < 1 - 6, LR < 1 - 6,

then the apex is projecting onto a boarder region next to the side
opposite node I. When the following condition is true,

(29) Lx > 1 - 6,

the apex node is projecting Into the corner at node I.
We use the following procedure to treat the above two cases. When

the apex node projects into the side region of the boarder, we
generate a so-called phantom triangular contact element along that
side. The Line base of the triangular element is defined by the two



nodes of the side, and the apex node for the triangular element is the
apex node of the pyramidal element. For this situation, we can think
of the pyramidal contact element a9 being replaced by a temporary
triangular element, and in this localized region of Sc the contact
between the two bodies is a node-to-line contact. Since this element
does not exist in the problem's connectivity array, it is thought of
as a phantom element. It becomes visible only when the above logic
path is transverseJ.
When the apex node projects into the corner region of the boarder,

we activat a phantom line contact element with the corner node as the
base node. For this condition the localized contact between the two
bodies is a node-to-node contact.

For the case when equation 24 is not satisfied, then the apex does
not project onto the current base, and we must determine (I) Lf the
apex does project onto another base, and (2) if it does which base Is
it. An element adjacency table is used to identify the contact
elements adjacent to the sides and corners of the current contact
element. Note, we used an element adjacency table in the quasi-
Eulerian methodology (Kulak (1984)), which is embedded in NEPTUNE, and
have borrowed those data structures for our contact algorithm. To
briefly illustrate, If JE is a contact element, Sj (I = 1,3) is a
contact element adjacent to side I, and C, (I = 1,12) is a contact
element adjacent to corner I, then the entries in the adjacency table
would be as follows: 1ADJT (1, JE) = Sj, ... IADJT (5,JE) = Cj, ...
1ADJT (12,JE) = Cj2« The current values of Lj- are used to determine
which side or corner that the apex node had possibly passed through.
Thr values for Lj- are now recalculated relative to the potential new
base, to see if they satisfy equation 24. If equation 24 is
satisfied, then the apex node is removed from the connectivity array
of the original base and added to the connectivity of the new base.
Nodal contact forces are calculated in the next step, as described
above, using the new base. All adjacent bases are eventually
searched.

When tiie mesh configuration is such that the bases lie on a convex
surface, then it is possible for the apex node to lie In regions that
do not belong to any element projections. For example, there is a
"trough" shaped region, as shown in Figure 6a, that lies along the
common line connecting the triangular bases of adjacent tetrahedral
contact elements. In addition, a "pyramid" shaped region (Figure 6b)
exists at the vertices of adjacent elements. When the bases lie on a
concave surface, the opposite problem occurs; the apex node may
project onto more than one base. For this situation, we activate
either a phantom triangular contact element or a phantom line element,
depending upon the current value of the natural coordinates. The apex
node Is considered to belong to the current bnno, ami pliiuitoin cli'inc-uto
are invoked until the apex projects onto a base, either its current
base or a new base.

5 NUMERICAL EXAMPLES

The following examples are presented to verify our newly developed
numerical formulation for treating the interface mechanics between two
bodies and to illustrate its use in modeling reactor structural safety
problems in which impact, contact, and/or sliding take place between
components.
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Figure 6. (a) Trough Region Along Common Side of Adjacent Bases and
(b) Pyramidal Region at Corner of Adjacent Bases

5. 1 Two impacting bars

Our f i r s t example is the longitudinal impact of two identical e las t i c
bars. Although this problem is re la t ively simple, i t proved to be
very useful in checking out the Interface element. The analyt ical
solution which is available is used to benchmark our numerical
resu l t s . We assume that bar 1 (Figure 7a) had an i n i t i a l velocity of
C.I and that bar 2 i°. i n i t i a l l y at r e s t . The area of each bar is
iO.O, length i s 100.0, Young's modulus i s 100.0 and the density is
0.. 01. Note that we used dimer.sionless quan t i t i e s . Our f in i te element
mesh is shown in Figure 7b, and i t consists of 20 axial elements per
bar with a tetrahedral gap-contact element between them. The
interface force, Figure 8, was in good agreement with the analyt ical
solution.

5.2 JSME shipping cask benchmark calculations

Recently, the Subcommittee on Structural Analysis of Nuclear Shipping
Casks of the Japan Society of Mechanical Engineers (JSME) conducted a
benchmark study to identify methods that were suitable for modeling
the impact response of spent nuclear fuel shipping casks. SomR of
these resul t s wore reported by Y.igawa et a l . (1984), and wn decided to
compare them with NEPTUNE calculations to help verify the interface
element.

One of the problems in the JSME study was the impact response of an
assembly of a thin-wall s ta inless s teel cylindrical shel l that
contained a lead cylinder. The assembly is dropped from a height of
9.0 m onto a rigid floor. It should be noted that large re la t ive
motions (s l iding) occurred between the s t ee l shell and the lead
cylinder. Therefore, this problem provided a check on the ab i l i t y of
our newly developed interface element to model sliding between two
bodies. The material properties of the lead are as follows: density =
1.13 x 10 kg-s/mm , Young's modulus = 19.5 kg/mm, Poisson's ra t io =
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Figure 7. (a ) Two Impacting Bars and (b) F in i t e Element
Model of Impacting Bars
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Figure 9. (a) Finite Element Model for Impacting Gladded
Cylinder and (b) Deformed Shape at 5 ms Attcr Impact

0.42, yield stress = 3.02 kg/mm, and tangent modulus = 1.85 kg/mm.
The material properties for the eteel are density = 8.0 x 10
kg-s/mrn, Young's modulus = 1.96 x 10^ kg/mm, Polsson's ratio = 0.33,
yield stress = 31.6 kg/nrn, and tangent modulus = 195.0 kg/mm.

Figure 9a is a view of our model. A 15-degree circumferential
sector model was developed. The lead cylinder consists of 50
hexaliedral continuum elements: 5 elements in the radial direction mul
10 elements in the vertical direction. The cylindrical shell was
modeled with NEPTUNE's three-node triangular plate element. Interface
elements were inserted between the lead cylinder and steel shell In
order to allow sliding and possible separation at the interface. The
interface was assumed to be fr ict ionless.



Figure 10. History of Head Settlement

Figure 10 shows the history of the hear! sett lement, which is thr
displacement of the top of the lend cylinder. The cask impacts
against the floor at 0.G ms. The maximum calculated value for had
settlement was 6.5 cm and occurred at 5.5 m£. Yagewa et a l . (198A)
reported on the results from several organizations which used
different computer programs, and Key (1985) reported on his
simulations of this problem.

Table 1. Comparison of numerical resul ts from several codes
for impact response of a cladding cylinder

Code
Maximum Head Time
Settlement (Cm) (msec)

ABAQU3

ANSYS

HONDOIII

MARC

NEPTUNE

7.25

5.80

6.27

6.35

6.50

6.25

4.30

5. A)

5.70

5.50

Table 1 showed the r e s u l t s for maximum head s e t t l e m e n t and the time at
which i t occurred for numerical c a l c u l a t i o n s performed by f ive
d i f f e r e n t computer programs, i n c l u d i n g NEPTUNE. The range for maximum
head se t t l ement and the time at which i t occurred was 5.8 to 7.25 cm
and 4.3 to 6.25 m, r e s p e c t i v e l y . Our r e s u l t s compare favorably with
the above r a n g e s . Figure 9b shows the deformed conf igura t ion of the
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Figure 11. Schematic View of a Cylindrical Tank with a Spherical
Bottom Impacting Vertically onto a Rigid Floor

cask at 5 ms; the large sliding between the thin shell and lead is
clearly v is ib le .

5.3 Vertical impact of a spherical-bottomed cylindrical tank

The following problem was designed to check the performance of the
element in a fairly complex impact s i tuat ion. Since we constructed
this problem, we have no other solution at this time with which to
compare our results . Figure 11 is a schematic view of the problem. A
0.25 in. thick cylindrical tank with a spherical bottom was impacted
against a rigid floor. For simplicity, gravitational effects were
neglected. The cylinder was 12.4 in. long with a diameter of 20
inches. The material properties are as follows: density = 2.45 x 10 '
lb-sec/in^, Young's modulus = 10.5 x 106 lb / in 2 , Poisson's ratio =
0.3, yield stress = 24 x 103 lb / in 2 , and tangent modulus =0 .21 x 106

lb/ in2 .

The tank was assumed to impact the floor head-on with a velocity of
600 in/sec. By prescribing the impact in this way, only one-quarter
of the cylinder needed to be modeled. Also, the head-on 1mp.nct
orientation provided a good check for evaluating the degree to which
the symmetry of the response is maintained during the simulation. The
finite element model is depicted in Figure 12a, and it consists of 175
quadrilateral plate elements and 47 tetrahedral impact elements. The
Impact elements are infused between the floor and tank bottom;
however, for clar i ty , the impact elements are not shown. The bases of
the tetrahedral elements are located at the surface of the floor, and
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Figure 12. Cylindrical Tank Configuration: (a) Before Impact
(b) During Impact, and (c) After Impact
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the apexes are the nodes of the spherical cap. The rectangle at the
bottom of the figure represents the rigid floor. The simulation wns
started (time = 0.0 s) with the tank bottom being 0.10 in. above the
floor in order to see if the contact criteria properly detects contact
when the tank reaches the floor. Figure L2b shows the configuration
of the impacting cylinder at 2 ms after the beginning of the simu-
lation. Note, the center of the bottom of the t3tik, which was the
first area to make contact with the floor, has rebounded, and the
outer part of the tank bottom is now in contact with the floor. • In
Figure 12c, it is seen that the entire tank has rebounded off the
floor. Figure 13 showed the evolution of the total energy, kinetic
energy, and strain energy during impact. It was seen that the initial
kinetic energy was converted into strain energy as the cylinder comes
to rest at 2.16 ms. Most of this strain energy was in the form of
plastic strain energy as indicrted by the small amount of strain
energy that was converted back into kinetic energy during the
rebound. The total energy remained nearly constant throughout the
calculations, as it should. This checkout problem verified that the
previously developed contact and release conditions are satisfactorily
treating the mechanics at the impact Interface. Although we do not
have other results to compare with, we felt that the dynamic response
was reasonable, especially in view of the excellent conservation of
total energy.

ACKNOWLEDGEMENT

This work was performed under the auspices of the U. S. Department of
Energy, Office of Technology Support Program, under contract W-31-1U9-
Eng-38.

REFERENCES

Belytschko, T. B. and Mullen, R. 1981. Two-dimensional f l u i d - s t r v i c t u r e
impact computations with r e g u l a r i z a t i o n . Comp. Meth. in Appl. Mech.
and Eng. 27:139-154.

H a l l q u i s t , J .O. 1978. A numerical t reatment of s l i d i n g i n t e r f a c e s and
impacts. In K.C. Park and D.K. Gar t l l ng ( e d s . ) . Computational
techniques and i n t e r f a c e problems, AMD-30, p . 117-133. New York:
American Socie ty of Mechanical Engineers .

Hughes, T . J . R . , Taylor , R.L., Sackman, J . L . , C u r n i e r , A., and
Kanoknukulchai, W. 1976. A f i n i t e element method for a c lass of
contac t - impact problems. Comp. Meth. in Appl. Mech. and Eng. 8 :249-
21U.

Kennedy, J.H. and Belytschko, T.B. 1983. Buckling and pos t -buckl ing
behavior of the ACS support columns. Nucl. Eng. Des. 75(3) :323-342.

Key, S.W., Be i s inge r , Z.E. , and Kr i eg , R.D. 1978. HONDO-II - a f i n i t e
element computer program for a l a r g e deformation dynamic response of
axisymmetric s o l i d s .

Key, S.W. 1985. A comparison of r ecen t r e s u l t s from HONDO I I I with
JSME nuclear sh ipping cask benchmark c a l c u l a t i o n s . Nucl. Eng. Des.
85:15-23.



Kulak, R.F. 1984. A f i n i t e element quas i -eu ler ian method for t h r e e -
dimensional f lu id - s t ruc tu re i n t e r a c t i o n s . Comput. S t ruc t . 18(2) 319-
332.

Kulak, R.F. 1985a. Adaptive contact elements for three-dimensional
f lu id-Tt ruc ture in te r faces . In D.C. Ma and F.J . Moody (Eds.) , Fluid-
Ktnict-.ite dynamics, PVP-98-7, p. 159-166. New York: American Society
of Mechanical Engineers.

Kulak, R.F. 1985b. Three-dimensional f l u i d - s t r u c t u r e coupling in
t rans ien t ana lys i s . Comput. S t ruc t . 21(3) 529-542,

Marti, J. 1983. PR3D documentation manual . Tech. Rpt. No. FR-TN-4.32.
Principla Mechanica Ltd. , London, UK.

Nichols, B.D. and Hirt , C.W. l 0 ?^ , Numerical s imulations of hydro-
dynamic impact loads on cy l inde r s . EPRI NP-824 Interim Rep. 1978,
Elec t r ic -ower Researor. I n s t i t u t e , Palo Al to , Cal i forn ia .

Simo. J . C . , Wrtggers, P . , and Taylor, R. L. 1985. A perturbed
lagran^'.:,« formulation for the f in i t e element solut ion of contact
n^ ' - iems. Comp. Meth. in Appl. Mech. and Eng. 50:163-180.

Yapawa, G., Ohtsubo, H. , Takeda, H., Tol , Y. , Aizawa, T., and
Ikunhlma, T. 1984. A round robin on f i n i t e element ca lcu la t ions for
impact problems. Nucl. Eng. Des. 78:377-388.


