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ABSTRACT 

The addition of an t - 1 helical winding to the heliac central 

conductor adds a significant degree of f l ex ib i l i t y to the configuration 

by making i t possible to control the rotational transform and shear. 

Such control is essential for an experiment because the presence of 

low-order resonances in the rotational transform prof i le can cause 

breakup of the equilibrium magnetic surfaces. The use of the 

additional winding also permits reduction of the total central 

conductor current and can deepen the magnetic well. 
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Helical-axis stellarators with high rotational transform, low 

shear (dt/dr W 0). and an average magnetic well have been shown 

theoretically capable of stably confining plasmas with |3 greater than 

10% in the infinite-aspect-ratio l imit [1-4], and a relatively simple 

coi l set — the heliac [4] — has been proposed as a f inite-aspect-ratio 

realization of such a configuration. However, both analytic [5] and 

numerical [6,7] studies of f inite-aspect-ratio, three-dimensional (3-D) 

equil ibria have shown .that the growth of f i n i t e plasma-pressure-i nduced 

f i e ld harmonics resonant at rational values of the rotational transform 

can lead to formation of large magnetic islands. These islands break 

up the equilibrium flux surfaces at low 0 values, which would 

presumably lead to a significant deterioration of confinement in an 

experiment. Similar effects have already been observed for J$ lj{ in 

the circular-axis, low-shear, Wendelstein VIIA device [8], which has 2 

fa i r l y low transform per period (tf/M ~ 0.1). Heliac configurations 

typical ly have higher values of tjM > 0.3; th is greatly increases the 

number and strength of the potential low-order resonances [5,7,9]. I t 

is important, therefore, to have a means of rotational transform 

prof i le control in an experimental heliac device in order to explore 

(and ultimately avoid) the dangerous resonances. 

In this paper we show that the incorporation of an i = 1 helical 

winding into the hardcore of the heliac configuration (Fig. 1) 

introduces an extra degree of freedom that can be used to control the 

rotational transform prof i le; th is technique could be valuable in both 

the design and operation of a heliac device. The additional winding 

can incidentally lead to a deepening of the magnetic well. This latter 

finding is in qualitative agreement with the physical reasoning in 

1 



2 

ORNL-DWG 84-3343R FEO 

FIG. 1. Coil set for modified heliac configuration, showing additional 

£ = 1 hardcore winding (shaded). 

early papers [10-12] on th is general type of configuration, as well as 

with a more recent calculation by Yoshikawa [13], who showed that an 

£ = 2 hardcore could be used to produce a magnetic well in a heliac 

configuration that otherwise would not have V" < 0 everywhere. 

To elucidate some of the properties of the heliac with an £ = 1 

hardcore winding, i t is useful to consider a simple analytic model. In 

the helically symmetric l imi t , the helical flux function is given by 

[10-12, 14]: 

, B 0 r 2 M o 1 . 
+ b i K i 

1*1 R 
cos(e-i)' (i ) 
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where only the dominant helical terms are retained and and Kj are 

modified Bessel functions. The f i r s t term in Eq. (1) represents a 

uniform toroidal f i e l d of strength Bg, while the second term results 

from the net longitudinal current I flowing in the central conductor 

and the unidirectional t - 1 hardcore winding. The and K} helical 

terms are due, respectively, to the "external" / = 1 f i e l d (which in a 

heliac is generated by the helical displacement of the toroidal f i e ld 

coils) and the "internal" i - 1 f ie ld of the helical hardcore. 

The magnetic axis (0-point) is the turning point of Eq. (1) with 

6 = Z/RQ and r = r w h e r e 

r^ HQI RQ _ Ro M . U - l M l f 2 ) 

Ro ~ SitRqBo rA " rA Wo J B0 ^ 0 / B0 W j " 

Expanding in a Taylor series about the magnetic axis, we f ind that the 

e l l i p t i c i t y of the magnetic surfaces is 

•I ar2 
L r A * aS2 n r (3) 

where the second derivatives are evaluated at r = r^. The (1 + 

term in Eq. (3) occurs because we require the e l l i p t i c i t y to be in the 

plane normal to the magnetic axis. The e l l i p t i c i t y is directly related 

to the rotational transform per f ie ld period at the magnetic axis [12] 

by 

£0 = 1 2e 1 ( 4 ) 

• e2
 + 1 (1 + r ^ ) 1 ^ ' U 
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From Eqs. (1) and (3), we f ind 

2tiR0B0 4B0R0 

Hfll 8 lpA 

blrA ' 
4B0R0 

(5) 

Given any three of the quantities I , aj , bj, e, and £q/M, the others 

may be determined from Ers. (3) through (5). In examining Eq. (5), i t 

is clear that, for a given a^ and e l l i p t i c i t y (or equivalently as 

b^ increases, the required I decreases. Physically, this means that to 

maintain constant we require less total current in the hardcore as 

the current in the helical hardcore is increased. There is a further 

effect that decreases the current I when b^/Bp increases. This is due 

to the change of magnetic axis position with bj/Bp, as can be seen from 

Eq. (2). Figure 2 shows the reduction of the current I with bj/BQ for 

the particular parameters aj/BQ = 0.25 and €q/M = 0.3. This figure 

shows both the variation in hardcore current I due to increasing b^ and 

the variation in I due to the magnetic axis sh i f t [Eq. (2)] alone. 

Also plotted in Fig. 2 are results from numerical f ie ld- l ine tracing 

calculations using the helical flux given by Eq. (1). The analytic and 

numerical results are in good agreement. 
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b,/B0 (xlO"3) 

FIG. 2. For a helically symmetric f ie ld model, the net longitudinal 

hardcore current I required to maintain constant t^fM = 0.3 decreases 

as the £ - 1 helical hardcore f ie ld component b̂  is increased. For 

th is examplt, s^/Bq = 0.25 in Eq. (1). 
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Using the expressions given in Ref. [12], we can also compute V' 

at the magnetic axis: 

V" = 
R0B§e2( l + rl/Rl) 3 / 2 

r ^ e2 - 1 - rjj/Wjj /RQ a ^ + b ^ 

f o 1 + rJ/Rg \2rA a i I i + b l K i e2
 + 1 + rJ/Rg/J 

(6) 

For the same parameters as in Fig. 2, this expression gives 

R0B§V" = -0.197 when bj/Bg = 0, and R0B§V" = -0.497 when b ^ = 

3.2 x 10""3. Thus, for a fixed €q the magnetic well gets deeper as the 

current in the helical hardcore is raised. Numerical f ield-tracing 

calculations also show the same result. 

We have found that while helically symmetric calculations are 

useful as a general guide to the behavior of the central transform and 

magnetic well, fu l l 3-D calculations using a filamentary representation 

of the heliac coil set are necessary to accurately determine flux 

surface shapes and profi les of transform and V". This is because the 

existence and shape of magnetic surfaces are strongly affected by (1) 

the f i n i t e extent of the toroidal coils and (2) toroidal effects (which 

actually determine the last closed surface by introducing resonances 

[15]). In the calculations that follow, we represent a heliac 

configuration as an array of N circular coils of radius ac, whose 

centers are located on a toroidal helix having major radius Rq , minor 

radius r<^, and M periods. For a l l of the calculations shown here, 

N/M = 9 coi ls per period. The nominal toroidal f ie ld strength is given 
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( in amperes per meter) by H q = N I j p / 2 h R q , where Iyp is the toroidal 

f i e ld coil current. The circular center conductor at the minor axis 

carries a current IR. The helical hardcore winding carries a current 

and fol lows the same winding law (0 = Mcj)) as do the toroidal f ie ld 

coi ls, but with a minor radius a^c (< ac). The total (toroidally 

directed) current in the hardcore is Iy = Ip + A small external 

vertical f ie ld of about 5% of HQ is required to define the magnetic 

axis, which we usually sh i f t toroidally outward (relative to the 

"helically centered" position) by a small amount (AR/Rq ~ 18) to 

improve the magnetic well and flux surface size. 

Figure 3 shows the results of 3-D f ie ld- l ine calculations for two 

heliac configurations — one with a helical hardcore winding and one 

without. The two configurations are essentially identical in 

rotational transform prof i le and average last closed-surface radius, 

but the configuration with the helical hardcore winding requires 

somewhat less than one-half the total toroidal hardcore current [ i .e . , 

one-half the value of Iy/(R()Ho)]' This is in good agreement with the 

analytical calculations done in the helically symmetric l imit . The 

profi les of V' from the f ie ld- l ine calculations show that the 

configuration with the helical hardcore has a deeper magnetic well, as 

is also indicated by the greater indentation in the magnetic surface 

shape. The increase in magnetic well is in agreement with the analytic 

calculations. Figure 4 shows how the axis position varies as a 

function of helical hardcore current for the same configuration as in 

Fig. 3. This also shows good agreement-with the analytic calculations: 

the axis sh i f ts helically inward (toward the hardcore) as the fraction 

of the current flowing in the helical winding increases. 
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FIG. 3. Comparison of £ and V' profiles for M = 4, R/ac = 4 heliacs 

with and without £ = 1 hardcore winding. For th is example, Rq = 1 m, 
rSw/ac = ° - 7 ' ac/ahc = 6» a n d AR/R0 = 0 . 0 1 2 5 . 

Variation of the helical hardcore current can also provide a means 

to vary the shape of the rotational transform profi le. Figure 5 shows 

an example in which the sign of d«r/dr is changed by varying the 

fraction of the (fixed) total hardcore current flowing in the helical 

winding (a heliac without a helical hardcore has d£/dr > 0). Figure 6 

shows similar plots for a configuration having the same pitch but three 
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FIG. 4. Magnetic axis position r^ as a function of helical hardcore 

current I ^ i / I j (other parameters as in Fig. 3). 

times the aspect rat io and number of f ie ld periods. The profi les of 

tT/M are similar to those in Fig. 5, which indicates that the profi le 

shape is determined directly by helical, rather than toroidal, effects. 

A range of possible transform profi les that can be synthesized for 

a particular configuration is shown in Figs. 7 and 8. In Fig. 7 the 

fraction of total hardcore current carried by the helical winding is 

held fixed and the net hardcore current is varied, while in Fig. 8 the 

net hardcore current is held fixed and the fraction carried by the 

helical winding is varied. The radius of the last closed flux surface 
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r , AVERAGE RADIUS (m) 

FIG. 5. Effect of increasing helical hardcore current on the t prof i le 

of an M = 4, R / a c = 4 heliac. For these calculations, Rq = 1 m, 

rSw/ac = °-7 - ac/ahc = 3 - 3 3 ' a n d I t / C W = 0 33-
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7, AVERAGE RADIUS (m) 

FIG. 6. Effect of increasing helical hardcore current on the t prof i le 

of a heliac with M = 12, R/ac = 12, and other parameters as in Fig. 4. 
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r, AVERAGE RADIUS (m) 

FIG. 7. Rotational transform profiles for a range of net hardcore 

currents in an M = 4, R/ac = 4 heliac with a fixed helical hardcore 

current fraction. I ^ i / I y = 0.304 (other parameters as in Fig. 3). 

is strongly affected by the proximity of strong resonances (e.g., = 

1/2) that break up the outer flux surfaces, as can be seen in the 

rotat i onaI tra nsform prof iIes. 

Figure 9 shows flux surfaces at two positions within a f ie ld 

period for three configurations from the parameter scans shown in 

Figs. 7 and 8. The plots i l lustrate the shapes of the magnetic 

surfaces obtained for widely varying tfM values. For the case with the 
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FIG. 8. Rotational transform profi les for a range of helical hardcore 

current fractions for the configuration of Fig. 7 with fixed net 

hardcore current Ij/CRqUq) = 0.63. 

rather high value of £q/M = 0.552, the magnetic axis has a large 

helical excursion, and toroidal effects make the surfaces rather 

asymmetric. This is because the coil parameters of the configuration 

used for the parameter scan were chosen to give optimum results in the 

range t/U ;$ 0.4. I f , for example, the helical excursion of the 

toroidal f ie ld coils (rgy) is reduced to ~ 0,5, the optimum 

range of tfg/M shi f ts upward and highly symmetric surfaces can be 

obtained with £q/M > 0.5. 
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shown in Figs. 7 and 8. 



15 

We conclude by noting that the range of rotational transform 

values that can be achieved in an actual device wi l l depend on a 

careful design of the coil configuration that allows suff ic ient space 

for the required windings at real is t ic current densities. We have 

carried out preliminary studies of th is practical question that 

indicate that variations in £/M of at least a factor of about 2 can be 

readily achieved. Given the large number of design parameters 

involved, computer optimization techniques [16,17] and concepts for 

modular heliac coils [18,19] could be profitably applied to further 

improve modified heliac configurations of the type considered here. 
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