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ABSTRACT 

The heat  t r a n s f e r  and f l u i d  f low problem of oppos,ing f low i n  t h e  f u l l y  
. . 

devel oped 1 ami na r  region has been sol  ved a n a l y t i c a l  l y  f o r  regul a r  rod a r r a y s  , 

The problem i s  governed by two parameters: t h e  pitch-to-di.ameter r a t i o  and . ' 

t h e  Grashof-to-Reynol ds number r a t i o .  The c r i t i c a l  Gr/Re r a t i o s  f o r  f l  ow 

I s e p a r a t i o n  caused .by t h e  upward buoyancy f o r c e  on t h e  downward f low were eval-  

I uated f o r  a l a r g e  range  of P/D r a t i o s  of t h e  t r i a n g u l a r  ar ray .  Numerical re- 

I sults reveal  t h a t  both the heat  t r a n s f e r  and p r e s s u r e  l o s s  a r e  reduced by t h e  

buoyancy force .  Appl i c a t i o n s  t o  nuclear  r e a c t o r s  a r e  d iscussed,  
- 

*Work performed under t h e  auspices  of t h e  U.S.,Departmerit of Energy. 
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I t  i s  we1 1 known that  natural convection effects  on heat t ransfer  in rod 

I arrays are important in. many engi neeri ng: appl i cat i ons. Due to  . . the geometrical 
. . . . .  

I complexity of rod arrays, only a limited number of Rudies are reported i n  the 
. . .  . . . . . . . . 

. . 
1 iterature.. Most o f  the studies are r e ld t ed  t o  the safety analysis of nuclear 

. . .  . . . . . . .  

. . . .  . reactors: and are appl icable t o  specific reactors. Only a small' part  of the re-.. . 

- .  . . . . . .  . . . .  . . -  .. . . . . . . . .  
. . ported work includes the general characterist ic  a o m e t r y ' e f f e d s .  of the rod con- . . .  

. . figuration. 'on f luid flow and heat transfer.  Iqbal e t  a'l. [l] f i r s t  performed 

an analysis of the ccmbined convection f i r  in f in i te  rod arrays of P/D (pitch-to- 

diameter . . r a t i o )  between . . 1.3 and 2.5 with detailed results  given 'for square. ar- 

rays. Rarnm and Johannsen 121 have extended the work of Iqbal e t  al. and applied 
. . .  . . . . . . . .  . . . . . . . .  . . . . . . . . . . . .  . . . . 

. . 

' i t  to  a strip section of the hexagonal fuel assembly of an LMFBR (Liquid Metal 

Cooled Fast Breeder Reactor). .The effect's of radi.al power skews and duct wall 
. . . .  

. . 

heat t ransfer  were included in thei r '  st,udy. ' I n  both References [,l] and [ Z ] ,  

Nusselt numbers are evaluated in terns of the P/D rat io and the Rayleigh number- 

based. on the,hy$raulic diameter. . Since the'.hydraulic diameter of. a rod. array , ,, , 

depends o.n the P/D rat io,  the  two parameters. . . are not mutual ly independent. The, 
. . .  

effects  of buoyancy and P/D ra t io  cannot be treated separately. ~ e c e n t l ~ ,  Yang 

[3] performed a detailed analysis for  in f in i te  triangular and square rod arrays. 

The resul ts  are governed by two independent parameters: the P/D r a t i o  and the 

Rayleiyh number based on the rod diameter. T h u s ,  two parameters can be speci- 

f i e d  i ndependently-and-.the two effects ,  buoyancy and P/D. r a t io ,  can b e  eval uat.ed . ' .  I . .  

separately. . Th,e work of ,Yang [3] and Iqbal e t  a1 ., [I]. i s  restr icted.  t o  parallel. . . . .  

flow, i . e., upward vertical fl.ow. The opposi n,g f l  ow, . i  .e., downward vertical 

. . 
flow, is.included in t h e  studies of Ran~m and Johannsen. 

. . .  
. . 

. . 
. . 

The opposing f l  ow unique features' different 'from the paral 1 el" 

flow. In the opposing flow, the  p a r a b o l i ~ ~ t y p e  velocity profi le  i s  gradually 



. . .  distorted due to deceleration of..flow ne.ar rod. surface as the.buoyancy force in-. .. 
. . 

creases. A t  high Ray1 ei gh numbers ,. a poi n t  of i n.f.1.ec.t i on ap.pe.ars on. -the ve1o.c- 

i'ty prof i l  e ,and s,eparation of f1,ow occurs . . a t ,  the., rod' . . . .  surface. According to the 
. . . . 

kiyl&i i h  theoren,, [4] t h i s  '1 eads t o - f l  ow i nstabi l'i tY. F o r  "ycl &rreac tdr f  and ' ' .  ". 

. . . .  . . 

- many other industrial appl ications, f l  ow stabil i ty i s  a n  import~ant~'consideration . . ' .  

. . .  

i'n design and safety. a.naiysi.s .' 
. . . .  In  th i s  paper, . . a deta;iled.analysis . . of opposing flow in infinite '  rod arrays. . . 

i s  performed. . The velocity fie.ld,: temperature f ie ld  and the Nusse1.t numbers are 
, . . 

investigated for  a large range of pitch-to-diameter ratios and Rayleigh numbers. 

In addition, the cr i t ical  Rayleiyh number a t  which flow separation occurs js 
. . .  ... 

evaluated. 



. . . . .  . -. . 
,. "Physical' model's. o f  ' t h e '  rod a r r a y  a r e  sh'own' 'i'n F i  Sure '  1"'for '  two "basi-c a'r-' ' . ' '' 

. . . . rangements .  The equila.tera1. t r i a n g u l  a r a r r a y  . ccm~only  u s e d  i n .  advanced nuclear . .' 

. . .  . . 
r e a c t o r s  i s  used t o  s.how d e t a i l s  of t h e .  a n a l y s i s  presented i n . . t h i s ,  r epor t .  

. . .  
The 

. . . . . . . . . .- . . 
. . . . . .  . . square '  a r ray  i s  inc l  udkd i n  t h e  mit 'hematical f o r m u l a t i o n  whiih can be evaluated  

. . .  . . .  , . . . 

. . .  f o r  0th;; a p p l i c a t i o n s .  

. . . .  
: For.  f u l l y  developed lami nay f l o w  i n : t h e  v e r t i c a l *  downward d i  r ec t ion ,  t h e  . . . . . .  

momentum and energy e q u a t i o n s  are:. 

. . . . . .  . . . . .  . . . . .  . . . . . . . . . . 

where 

. . 

In o r d e r  t o  in t roduce  t h e  cond i t ion  of f u l l y  developed hea t  t r a n s f e r , ,  i t  is as- 

sumed t h a t  the.azimuthal.ly-averaged heat .  t r a n s f e r  per  u n i t  . l e n g t h  i s  unifonn i n .  . . . . .  

t h e  f l  ow d i  r e c t  ion. Under these condit ions. ,  t h e  ax ia l  tempera ture  g rad ien t  is  

cons tan t  and an o v e r a l l  energy balance y i e l d s  

The equat ion  of s t a t e  i s  assumed t o  be 

S u b s t i t u t i n g  ~ ~ u a t i  ons ' (3): .  and (4)  i  0 t6  Equations ( 1 )  and ( 2 )  ,. and de f in ing  t h e  . . . . 

new diinensionless v e l o c i t y  and temperature a s  U and T, r e s p e c t i v e l y ,  one ob ta ins  
. . . . .  . . .  . . .  . -. . . 



. . . . .  . . . .  .- . . .  . . .  . . 

'where' . . E ~ K A , ( ~  - tw), 
. . . . . .  . . R = 2r/D, T = . .  . . 

, D 3 $ o q E  
. . 

. . .  and 

In Equations (5)  and ( 6 ) ,  t h e  o p e r a t o r  v2 i s  def jned i n  terms of the dimen- 

s i o n l e s s  coord ina tes  R and . In ca r ry ing  out  t h e  above t ransformat ions ,  t h e  

rod s u r f a c e  tempera ture ,  tw, i s  assumed t o  be independent of a n g l e ,  al though i t  

wi l l  vary along t h e  l eng th  of rod. The boundary cond i t ions  a r e  . 
. . . .  . . . .  

a t  $ = 0 and (o 

P/D 
a e a t  R = -  cos + 

The angle  of symmetry, $o, i s  a/6 f o r  t h e  t r i a n g u l a r  ar ray .  and ~ / 4  f o r  t h e  

square  ar ray .  Equations (5) t o  (9 )  . i n d i . c a t e  t h a t  the system of opposing f low i s  

governed by two dimension1 e s s  parameters: P/D ( p i  tch-to-di ameter r a t i o )  and 

( r a t i o  of t h e  Grashof number and t h e  Reynolds number).. The parameter E can be . . 

expressed i n  terms of the Rayleigh number based on t h e  rod diameter:  
2 

B g P,,, c D*. 
where RaD = 

Ku 

Thus, t h e  two parameters can be spec i f i ed - indspenden t ly  and t h e  e f f e c t  of buoy- 

- ancy can be eval uated f o r  var ious  p i tch- to-di  amete r  r a t i o s .  

In  o r d e r  t o  o b t a i n  t h e  general s o l u t i o n  of Equations (5) and ( 6 ) ,  t h e  two 

e q u a t i o n s  a r e  combined t o  y i  ve . ,. 



General so lu t ions  o f  ~ ~ " a t i 0 . n  (11) are  obtained by combining so lu t i ons  o f  
. . . .  

. . . . .  . . v2u - E2u '= 0 
('1 2 

and 

Using t he  standard method o f  separat ion o f  var iab les ,  i t  can be shown t h a t  t h e  

s o l u t i o n  o f  Equation (12) contains terms. o f  

. . . .  I m ( ~ R ) c o s  mg, I m e R  s i n ,  K,,,(ER).cos rng, Km(sR) sinrng;. 

and t h e  s o l u t i o n  o f  Equa t ion  (13) contains . . 

J,(cR). cos g, J,(ER) s i n  mg, Ym(cR) cos  m(, Ym(cR) s i n  mg. 

Accordi ng t o  boundary c o n d i t i o n  (8 )  ,: t h e  problem i s  even i n  6  and a1 1  tenns con- ' ,  

. . . .  .. . . . . .  . . . .  - -. .- . . 

t a i n i n g  s i n  mg w i l - l  d;op kt.' 1n addi t ion,  th8 i o n i t t i n t  i i  w i l l  b e p d s i t i ' " e  

integers,  i.e., 

m = 0, 6, 12, 18, 24, ...... f o r  t r i a n g u l a r  arrays 

...... m = 0, 4,  8,. 12, 16, f o r  square arrays 

Thus, t he  general s o l u t i o n  ' f o r  U becomes 

The, correspondi ng s o l u t i o n  f o r  T  i s  obtained from Equations (5),  (12) . . . . .  and ( 1 3 ) ,  



. . 

  he four sets of constants % ,  B,,,, $, , and Dm are detenni ned from Equations' (7)  

and ( 9 )  by u s i n g  the point matchi ng method. [5] ~ ~ ~ l ~ i  ng t h e  boundary condi- 

. , tions, Equations (7)  and ('9) to .Equa.tions (14) and (-15), yi.elds four .sets of 

algebraic equations which can be readily sol ved. r . . 

. . The parameter E (the pressure loss term) is-determined froin the continuity 
. . 

equat i on : 
P12cos 4 . . 

. . 

u r d r  d$' (16) 

which yields 
- 

I - I  . . 

Knowing the parameter E ,  the complete velocity and temperature fie1 ds are thus 

determi ned. 

The wall -to-bul k temperature difference and 'the ~ u s s e l t  number . . are geneial ly 

I the results of practical importance. They can b e  cmputed f r &  the conpl ete 

I ' '  

vel oci ty and temperature sol u t  i ons. The i a l l  - to-  bul k t ernperat ure difference i s 

defined as 

. . I .  o r ,  in dimensionless form 

. . .  

The i ntegrand was eval uated numerical ly fran the vel ocity and temperature sol u- 
. . .. . 

tions given by Equations (14) and (15.). The Nusselt number i s  defined a s  . 
. . 



Introducing t h e  dimensionless temperature,  one obta ins  
. . 

. . .  

f o r  t r i a  ngul a r  a r r ay  

f o r  square a r r ay  



The effect  of buoyancy on the radial velocity distribution . i s  i l  lustrated in 

Fi.gure 2 f 0 r . a '  P/D ra t io '  of 1.S. ' Two ' se t s  of velocity profiles a t  6.10, (gap re-,, . ,  , ,. 

. . 

. . 

gion) and $=30° (central region) are included in Figure 2. As expected, the . . 

parabolic-type velocity profiles a t  low Gr/Re ra t io  (curve 1) are distorted by ' .  

the buoyancy force with the .increase of Grashof numbers (curves 2 and 3 ) .  Com- 

parison of the two sets  of velocity profiles reveals that  the buoyancy force has 

a much stronger effect  on flow in the gap region (i.e. ,  4=O) .  In th i s  region, 

the downward flow velocity i s  considerably retarded by the upward buoyancy 

force. Consequently, in the central region a t  $ = 30°, the flow i s  accelerated by 

the buoyancy effect  in order t o  sa t is fy  continuity of total mass flow rate, I t  

i s  seen that  a t  sufficiently high Gr/Re rat ios,  the flow i s  so retarded that 

flow' reversal occurs near the rod surface a t  the- gap region (curve 31.. The cor- 

responding teinperature profiles a t  both the gap and central regions are shown i n  

Figure 3. Contrary to  the velocity profiles, the  temperature profiles are not 

strongly affected .by the upward buoyancy force imposed on the flow field. 

Representative graphs of the buoyancy effect .  on rod arrays with various . ' 

pi.tch-to-diameter rat ios are shown in Figure 4. Similar to  the parallel .flow i n  

the rod arrays given in Reference [4], the  buoyancy force exhibits a larger ef- 

fect  with an increase in pitch-to-diameter ratio. For rod arrays of large P/D 

ra t io ,  i.e., large flow area between rods, there i s  a great tendency for the up- 

ward buoyancy force t o  slow down the f luid near the rod surface and to acceler- 
l 

a te  the fluid near the central region. The deceleration of flow near the rod , 
I 

' sur face ,  i l lus t ra ted in' ~ i g u r e s  2 and 4,  indicates' the unique feature 'of  the 

. . opposing f 1 ow. ,, A t  h.igh Gr/Re rat ios,  the upwa,rd, buoyancy, force wi 1 1.cause a. . . 

point' of i nfl ect'ion on the ie l  oci ty prof i 1 es of the downward f l  ow. This. results  



1 
, in f l  ow"separation a t  the rod surface and. leads t o  f l  ow instabil i.ty as .  described 

. . .  
I . .  . . .  by the Rajl eigh theorem. [ 4 ]  Numerical ' computations were carried out t o  eval u- 

. . . .  .. ..ate the c r i t i ca l  Gr/Re ratios- : a t  .wh-ich the. ve1:oci ty. gradient a t  . the red surface .: 
. . . .  

vanishes. I t  i s  considered in th i s  study t h a t  the ;era velocity gradient leads 

t o  separation of flow from the  rod surface and causes flow instability. De- 
I 

ta i led computations show that  for al l  P/D rat ios between 1.1 and 1.5, the veloc- 

I i ty  gradient f i r s t  vanishes a t  $=Oo as the Grashof-Reynolds number ra t io  i s  
I ~ 
! 

increased. The c r i t i ca l  Gr/Re rat ios for  the  f i r s t  occurrence of flow separa- 

t ion (i .e. ,  a t  $=0°) are plotted in Figure 5 where i t  i s  seen that rod arrays 

with smaller P/D rat ios are more stable than arrays with larger P/D ratios. The 

increase of the c r i t i ca l  Gr/Re ra t io  a t  smal l e r  P/D ratios. agrees with the ve- 

locity profiles shown in Figure 4. 

The c r i t i ca l  &/Re curve in Figure 5 provides some interesting insights on 

the applications t o  nuclear reactors. For advanced fas t  reactors, such as the  

 as-cooled Fast Reactor (GCFR) and ~ i ~ u i d - ~ e t a l '  Cooled Fast ~ r e e d e r  Reactor 

(LMFBR) ,  representative P/D rat ios in the fuel assembly are 1.35 and 1.25, re- 

spect ively. A t  these pi tch-to-di ameter ratios, expect ed Gr/Re ratios for  these 

nuclear reactors under off-normal conditions with reduced flow rate are much 

less  t h a n  the estimated. cr i t ica l  Gr/Re ratios i n  Figure 5. T h u s , ,  i t  seems that  

the buoyancy force i s  unlikely t o  cause flow ins tabi l i ty  for current designs of I 
1 
i 

nuclear reactors. I 
Finally, the Nusselt number and the pressure drop results are shown in  Fig- 

ures 6 and 7 ,  respectively. In. Figure 6 ,  the  .asymptotic Nusselt numbers are 

compared with the Nussel t numbers of purely forced 'convection. (Reference [5]) 

and good. agreement i s  indicated.. As the Gr/Re ra t io  i s  increased, the Nusselt, 

number decreases slowly . . in a manner similar to  that  observed in circular  pipes 



".. . . .  . . , . .. . . . ... . . .  . . . .  . ... . . . - .  .. ' . . , . . . . . ,  . ' .  . . .  . . . . . - . .  . . .  . . . 
. . . .  

. . . .  . . .. . . . .  . .. . . . 

.- '. with  opposing f 1 ow. [6] When the Gr/Re ra t  icbecornes . swff ic i  entl y 1 arge and the 
' ' " 

. . . . 
flow i s  considerably retarded,. the ~ u s s e l t  number i s  then reduced rapidly, as 

indicated i n  Fjgure 6. .. For nuclear reactors within the expected. range .of the ' .  
. . . . 

Gr/Re ra t io ,  the Nusselt numbers are not  significantly affected by the buoyancy 

force. T h u s ,  the heat t ransfer  canputed from correlations based on forced con- 

vection flow can s t i l l  be applied for the combined convection flow. 

The pressure parameter E i s  plotted in Figure 7. The pressure parameter 

exhibits a very large dependence on the Gr/Re ra t io  as the buoyancy force i s  

i ncreased simi 1 a r  t o .  the Nussel t number. W i t h  no buoyancy force, the  parameter 

E i s  negative ,(i.e., flow i s  in a favorable pressure f i e ld  and dP/dz i s  nega- 

t ive) .  Wi th  the increase of buoyancy 'force, the  fl ow'becomes retarded and the 

pressure yradient i s  reduced. A t  high Gr/Re ra t ios ,  the pressure gradlent be- 

canes positive and eventually the parameter E i s  positive, as indicated in Fig- 

ure 7. The adverse pressure gradient i s  closely related t o  the process of flow 

separation, as described by t h e  boundary layer theory. [4] Thus, t h e  pressure 

parameter E ,  in Figure 7 ,  also indicates the approach of flow separation a t  high 

Gr/Re rat  i 0s. 



CONCLUSION 

The preubl ~ I I I  o f  opposing flow i n  regular rod arrays i s  investigated under 

various conditions. Numerical r e s u l t s  of t h e  velocity f i e l d ,  temperature f i e l d , .  ' .  

< 
Nusselt number and pressure drop are  performed f o r  t r iangular  arrays. The c r i t -  

ical  Gr/Re r a t i o  f o r  flow separation i s  evaluated. For nuclear reactors within 

the  expected range of Gr/Re r a t i o ,  the  flow i s  in the s t ab le  region and the  heat 

t r a n s f e r  i s  s l  ight ly  affected by the  buoyancy force. 
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NOMENCLATURE . . .  

I 
A = cool an t  flow area 

c = spec i f i c  'heat a t  .constant pressure 
P 
D = rod diameter. 

' Dh = hydraulic diameter 
, . .  

I E = dimensionless pressure 1,oss 

g = acceleration of gravi ty 

Gr = Grashof.number 

K = thermal conductivity 

i Nu = Nusselt number 

I p = pressure 

P = pitch of rod array 

q = heat f lux '  

r = radial  coordinate 

R = dimension1 ess  radial  coordinate 

Re = Reynolds number 

t = temperature 

T = normal i zed temperature 

tm = f lu id  mean temperature 

u = axial  velocity 

U = normalized veloci ty  

= f lu id  mean veloci ty  

z. = axlial coordinate 
~. 



NOMENCLATURE (cont . ) 

B = volume expansion coef f ic ien t  

s = r a t i o  of Grashof number t o  Reynolds number 

4 = angular coordinate 

$ 0  
= angle of  symmetry 

p = viscos i ty  

p = density 
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