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ABSTRACT

The heat transfer and fluid flow problem of opposing flow in the fully %
AdeQe]oped laminar region has been solved ana]yticélly for regular rod érrays. _ - J
The problem is governed by two}parametefs: the pitdh-to-diameter ratiovand E
the Gkashof;to-Réyno]ds number ratio; The critical Gr/ReAratios for flow i
separation caused by the upward buoyancy force on the downward flow were eval- é
uated for a large rénge of P/D ratios of the triangular array. Numericalxre—
sults reveal that both the heat transfer and pressure loss are reduced by the

buoyancy force. Applications to nuclear reactors are discussed.

.

DISTRIBUTION OF THIS DQCUMENT IS UNLIMITED

*Work performed under the auspices of the‘U.S.,DepartMeht of Energy.

JISTRIBUTION OF THIS DOCUMENT 18 UNLIMITED




DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.



DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.



-~ . . INTRODUCTION

It is well known that natural convection effects on heat transfer'in rod

arrays are important in.many engineering'app]ications.‘ Due.to the geometrical

’comp]ex1ty of rod arrays only a 11m1ted number of §tud1es are reported 1n the
'11terature; Most -of the stud1es are related to the safety ana]ys1s of nuc]ear
‘reactors and are app11cab1e to spec1f1c reactors. On]y a sma]l part of the re-. -

" parted work includes the general characteristic jeometry effects of the rod con-

figuration on fluid flow and heat transfer. Igbal et al. [1] first performed

an analysis of the combined convection for infinite rod arrays of,P/D (pitch-to-

| diameter ratio) between 1.3 and 2.5 with detailed results given‘for square. ar-

1it to a strip section of the hexagonal fuel assembly of an LMFBR (Liquid Metal

Cooled Fast Breeder Reactor) ‘The effects of radial power skews and duct wa]l

heat transfer were 1nc1uded in their study. In both References [1] and [2]
Nusselt numbers are evaluated in terms of the P/D ratio and the Rayleigh number

based on the hydraulic diameter. Since the,hydrau11cld1ameter of a rod. array

depends on the P/D ratio, the two parameters. are not mutually independent. The

‘rays. Ramm and Johannsen EZJAhave extended the work of Igbal et aI. and applied

effects of buoyancy and P/D ratio cannot be treated separately. Recently, Yang -

- [3] performed a detailed analysis for infinite triangular and square rod arraysa

The results are governed by two independent parameters: the.P/D ratio_and the =

“Rayleigh number based on the rod diameter. Thus, two parameters can be speci-

fied.- independently-and- the two effects, buoyancy and P/D- ratio, can be evaluated

separately. The work of Yang [3] and Iqbal et al. [1] is restricted to parallel

flow, i.e., upward vertica] f]ow. The opposing f]ow d.e., downward vertical

flow, 1s 1nc1uded in the stud1es of Ramm and Johannsen.

The oppos1ng flow possesses un1que features different from the paral]el

flow. In the opposing flow, the parabolic-type velocity profile is gradually



- distorted due to deceleration of flow near rod surface as the -buoyancy force in-. .-

creases. At high Ray]eigh numbers, a point of inflection appears on ‘the veloc-.
ity profile and separation of flow occurs at_thezrod syrfa¢e. According to the

~ Rayleigh thedrem;_[4J,thTs 1eads to;f]OW'jnstqbiTitx. For nuclear reactors and

. many 6thek‘fndustfia].app1ication53 flow stability s an-impbrtantfconSideration-»"

in design and safety analysis.

-~ In this paper, a detaj]ed'éna1yéis of obpdsing flow in infinite rod arrays -
is performed. . The velocity field, temperature field and the Nusselt numbers are
investigated for a large range of pitch-to-diameter ratios'and Rayleigh numbers.
In addition, the critiqa] Rayleigh number at which flow separation occurs is

evaluated.




"ANALYSIS

"Physical models of the rod array are shown in Figure 1 'for two basic ar-’

B rangements,i’The equilateral triangu]ar'arrayAcommonly.usedvin.advanced nuclear . .

: reactors is used to show deta1]s of the analys1s presented 1n this report. The

square array is 1ncluded in the mathematical fonnu]at1on wn1ch can be eva]uated T

for other appl1catlons.
:FortfuTiy‘developed laminar ‘flow in:-the vertical downward direction, the -

momentum and energy equations are:

2y = o '
uvéu P9 + 35 | 4 (1)
kv2t = pc_udt (@)

where
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" In order to introduce the condition of fully developed heat transfer, it is as-

sumed that the.azimuthally-averaged heat. transfer per unit length is uniform in. ..

the flow direction. Under these cohditions, the axial temperature grddient is
constant and ah overall energy balance yields
dtm qD ¢

at ‘
== Lo . (3)
9z 2pcpumAF ‘ ,

The equation of state is assumed to be

p =p,[1-8(t-t)] - . (4)
. Substituting Equationsf(3),and (4) intd Equations (1) ehd (2), and defining the
new dimensionless velocity and temperature as U and T, respectively, one obtains

v e etT=1 T (5)
V2T =4y ' (6)
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In Equations (5) and (6), the operator v2 is defined in terms of the dimen-
sionless coordinates R and ¢. In carrying out the above transformations, the
rod surface temperature, ty, is assumed to be independent of angle, a]ihough it

will vary along the length of rod. The boundary.condjtions are .

=0, T=0 atR=1 (7)

U
au _ T _ at ¢ =0 and ¢ (8)
36 - 0» 39 - 0 : B
U _ aT _ | _ _P/D o
380 30 at R = =55 ® : (9)

The angle of symmetry, ¢g, is n/6 for the triangular array and n/4 for the
square array. Equations (5) to (9) .indicate that the system of opposing flow is
governed By two.dimensidnless parameters: P/D (pitch-to-diameter ratio) and e
(ratio of the Grashof number and the Reynolds number). ‘The parameter e can be

expressed in terms of the Rayleigh number based on the rod diameter:

) .
mRa, \% - Bgp,c D% ¢
_ D \* _ w_p at
€ = (—96 ¢o) s where RaD = Ko (—az)

Thus, the two parameters can be specified independently and the effect of buoy-
l ancy can be evaluated for various pitch-to-diameter7ratios.
In order to obtain the general solution of Equations (5) and (6), the two

equations are combined to give



VU - €U =0 . - (10)- .

(V2 - e2)(v2 + e2)U =0 . (1)
General solutions of Equation (11) are obtained by combining solutions of
92y - 20 =0 - T 12)
and . _ . . ' ’ .
S v2U. + 20 = 0 (13) -

Using the standard method of separation of variables, it can be shown that the’
solution of Equation (12) contains terms' of

Im(eR)'cos mg, Im(eR) sin ms, Km(eR):cos mé , Km(eR) sin m¢;.
and the solution of Equation (13) contains

Jm(eR) cos m¢, qm(eR) sin m¢, Ym(eR) cos. mé, Ym(eR) sin mé.
According to boundary condition (8), the problem is even in ¢ and all tenms con-
taining sinme will drop out. In addition, the constant m will be positive

integers, i.e.,

m=0, 6, 12, 18, 24, ...... for triangular arrays

m=0, 4, 8, 12, 16, ...... for square arrdys

Thus, the general so]ution'fof U becomes
‘U = E '[Am In"(eR-). +B Km.(eR) + Cme-(zR) :
f,QhYm(ER) cos m¢ . - (14)
~ The corresponding solution for T is obtained from Equations (5), (12) and (13),
1 - . ‘ )
;.Ti— -2 E ‘E\m.lm(eR) + Bm Km (S.R) - Cm Jm(eR)-

m o
v 1 . £
- QnYm_(ER)}.CQS mé T (IJ)



The four sets of constants Ay, By, Gy, and D are determined from Equations (7)
and (9) by using the point matching method. [5] App1yihg‘the'boundafy condi-
tions, Equations (7) and (9) to Equations (14) and (15), yields four sets of

algebraic equations which can be readily solved.

The parameter E (the pressure loss temm) is-determined from the continuity

equation: A
' ‘ '¢o P/2cos ¢ ' B
u A =/ / urdrd¢ s 4 ‘ (16)
meF S Jor2 . <
th1ch yields P/D
4A. % ,cos ¢ -1
E =— f / URdRd¢ - {17)
0 o 1 C _

Knowing the parameter E, the complete velocity and temperature fields are thus
determined. - | |

The wall-to-bulk temperature difference and‘the‘NusSelt number are generally
the results of practical importance. They can be'canputéd'frdm the cdhp]eteA

velocity and temperature solutions. The wall-to-bulk temperature difference is

ﬁ,,fu(t-tw) rdr do
th -t T d/,d/.
_ urdrde -
Ar

or, in dimensionless form

defined as

P/D

292 [¢ ' ' : v
T =EZDZ [ "o f COSY yr1RdRdo (18)
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The integrand was evaluated numerically fron the velocity and temperature solu-

tions given by Equations (14) and (15). The Nusselt number is defined as
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Introducing the dimensionless temperature, one obtains .

.
- h :
Nu = (T) / Tn
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Nu - for triangular array

s (P ]2 [y for square
-1;. ‘ﬁ - B Qr square ‘array

]

]
~—
2 ~N
I3
AN
"O|o
\_/NJ

'
el
N
\

a—l

" Nu

[
[}
—

(19)

(20)



RESULTS

The effect of buoyancy on the radial velocity distribution‘is illustrated in
‘ F1gure 2 for-a P/D ratio of 1.5. Two sets of velocity profiles at ¢=0 (gap re-”~..‘
gion) and ¢=30° (central region) are 1nc1uded in Figure 2. As expected, the
parabolic-type velocity profiles at 1ow Gr/Re ratio (curve 1) are distorted by
the buoyancy force with the increase of Grashof numbers (curves 2 and 3). Com-
parison of the two sets of velocity profiles revea]s that the buoyancy force has
a much stronger effect on f]ow in the gap region (i.e., $=0). In this region,
the downward flow velocity is considerably retarded-by the upward buoyancy
force. Consequent]y, in the central reg1on at ¢ = 30° the flow is accelerated by
the buoyancy effect in order to satisfy continuity of tota] mass f]ow rate. It .
is seen that at sufficiently high Gr/Re ratios, the 1ow is so retarded that
flow reversa] occurs near the rod surface at the gap reg1on (curve 3). The cor-
respond1ng temperature prof1]es at both the gap and centra] reg1ons are shown in
Figure 3. Contrary to the velocity profiles, the temperature prof11es are not
strongly affected by the upward buoyancy force imposed on the flow fie]d.
Representative graphs of the buoyancy effect. on rod arrays With various
pitch-to-diameter ratios are shown in Figure 4. Similar to the paralle]jflow in
the-rod'arrays given in ReferenceA[4], the buoyancy force exhibits a larger ef-
fect with an increase in pitch-to-diameter ratio. For rod arrays of large P/D
ratio, i.e., large flow area between rods, there is a great tendency for the up-
ward buoyancy force to slow down the fluid near the rod surface and to acceler-
ate the fluid near.the central redion. The deceieration of flow near the rod -
surface, illustrated in Figures 2 and 4, indicates the unique‘feature'of the
,4opposin§ flow. At high Gr/Re ratios, the upnard,buoyancy_force nillfcause a

jpoint“of'inf]ection on the velocity profiles of the downward flow. This results



in flow separation at the rod surface and leads to=f]owlinstabi1ity as. described

by the Rayleigh theorem. [4] Numerical computations were carried out to evalu-

. .ate the critical Gr/Re ratios--at -which the. velocity gradient at-the rod surface

vanishes. It is considered in this study that the}?erovvelocity gradient leads
to separation of flow from the rod surface and causes flow instability. De-
tailed computations show thét for all P/D ratios between 1.1 and 1.5, the veloc-
ity gradient first vanishes at ¢=00 as the Grashof-Reynolds number ratio is
increased. The critical Gr/Re ratios for the first occurrence of flow éepara-
tion (i.g., ét $=00) are plotted in Figure 5 where it is seen that rod arrays
with smaller ﬁ/D ratios are more stable than arrays with larger P/D ratjos. The
increase of the cfitica] Gr/Re ratfo ét_sma]]er P/D ratios. agrees with the ve-
locity profiles shown in Figure 4.

The critical Gr/Re curve in Figure 5 provides some interesting insights on
the applications to nuclear reactors. For advahced fast rgéctors, such as the

Gas-Cooled Fast Reactor (GCFR) ahd Liquid-Meta]ACooled Fast Breeder Reactor

(LMFBR), representative P/D ratios in the fuel assembly are 1.35 and 1.25, re- -

spectively. At these pitch-to-diameter ratios, expected Gr/Re ratios for these

nuclear reactors under off-normal conditions with reduced flow rate are much

lTess than the estimated. critical Gr/Re ratios in Figure 5. Thus, it seems that

the buoyancy force is unlikely to cause flow instability for current designs of
nuclear reactors.

Finally,'the Nusselt number and the pressure drop results are shown in Fig-

ures 6 and 7, respectively.  In Figure 6, the asymptotic Nusselt numbers are

compared with the Nusselt numbers of purely forced convection (Reference [5])

and good.agreement‘is indicated. As the Gr/Re ratio is increased, the Nusselt

" number decreases_S]ow]y_in a manner similar to that observed in circular pipes




" with opposing flow. [6] When the Gr/Re ratio becomes sufficiently large and the
flow is cdnSiderably retarded, the Nusselt number is theh reduced rapidly, as
-indicated in Figure 6.. For nug]ear reactors within the expected:range-of the
Gr/Re ratio, the Nusselt numbers are not significantly-affecfed by the buoyancy
force. Thus, the heat transfer computed from correlations based on foréed con-
vecﬁion flow can still be appfied for the combined convection flow.

The pressure parameter E is plotted in Figure 7. The pressure parametér .
exhibits a very large dependence on the Gr/Re ratio as the buoyancy force is
‘increased similar to4the_Nusse1t number. With no bubyanéy.force, the parametér
E is negative (i.e., flow is in a favorable pressure field and dP/dz is nega-
tive). With the increase of Suoyancy force, the flow becomes retérded and the
pressure gradfent is reduced. At high Gr/Re ratios, the pressure gradient be-
comes positive and eventually the parameter E is pbsitive,‘as iﬁdicated in Fig-
ure 7. The adverse pressure gradient is closely reiafed to the process of flow
separation, és described by fhe.boundany layer theory. [4] Thus;'the pressure
parameter E, in Figufe 7, also indicafes thé approach of flow separation at high

Gr/Re ratios.'



CONCLUSION

The prublem of opposing tlow in regular rod arrays is investigated under

- various cqnditions; Numerical results of the velocity field, temperature field,

Nusselt number and pressure drop are performed for triangular arrays. The crit-
ical Gr/Re ratio for flow separation is evaluated. :For nuclear reactors within
the expected range of Gr/Re ratio, the flow is in the stable region and the heat

transfer is slightly affected by the buoyancy force.

To1e
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Gr

Nu

.~ NOMENCLATURE

coolant flow area

specific‘heat at .constant pressure
rod diameter '

hydraulic diameter
dimensionless pressure ioss
acceleration of gravity
Grashof number

thermal conductivi;y

Nusselt number

pressure

pitch of rod'array

heat flux

radial coordinate

dimensionless radial coordinate
Reynolds number

temperature

normalized temperature

fluid mean temperature

axial velocity

normalized velocity

fluid mean velocity

axial coordinate




- NOMENCLATURE (cont.)

volume expansion coefficient

ratio of Grashof number to Reynolds number
angular coordinate |

angle of symmetry

viscosity

density
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