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ABSTRACT

The decays of stopped pions in the LAMPF beam stop present a
unique opportunity to probe neutrino oscillations in the mass region of
8m? ~ 0.1eV? and mixing parameters as lov as sin220 ~ 1073. The
appearance of Vv, will be measured with high sensitivity by Experiment 645
during the run cycle that begins in the summer of 1986.



Intermediate-energy proton accelerators provide neutrino sources in
the energy range 10-50 MeV, which are ideal for oscillation searches in
the mass region &m? ~ .leV2Z. 1In addition, the available beams are very
intense, allowving the experiments to be sensitive to mixing parameters as
low as sin228 - 107}. The distance of the detector from the beam stop
(L) and neutrino energy (E,) set a t"picalv oscillation scale of
L/Ev ~ .6 m/MeV, a value intermediate to that which can be obtained in
reactors and high energy experiments.

The Los Alamos Meson Physics Facility (LAMPF) provides a 670 pA
proton beam with a kinetic energy of 800 MeV. The beam is absorbed in a
copper beam stop, producing on the average 0.09 pions for every proton.l)
Although both positive and negative pions are produced, n~ quickly fall
into’ atomic orbitals and are absorbed into the nucleus by strong
processes. The n* come to rest and decay, producing the beam-stop
neutrino spectra via the decay sequence n* -+ u*v , u* - e*veiu. These
decays provide a clean point source of Ver ﬁu and vy

The LAMPF experiment E-645 is located 24 m from the beam stop at a
polar angle of 17° from the main proton beam. The liquid scintillator
detector is the target for the inverse beta decay reaction ¥V p - e'n
e The
construction phase of the experiment is complete. Calibration and

vhich, if seen, wvould provide a signature for the appearance of %

cosmic-ray background studies are currently under way. The first data
run is expected to begin in July of 1986.

The design and construction of the experiment is dictated by the
expected backgrounds rather than by the signal of a single isolated
positron. Due to the long accelerator duty cycle (~9%), cosmic rays
constitute a serious background, since Los Alamos is 2100 m above sea
level. The detector will operate inside a tunnel with an overburden of
3000 g/cm?, enough passive material to eliminate the hadronic component
in the cosmic-ray flux (see Figure 1). The estimated integrated muon
flux inside the tunnel is 8 kHz. In addition, the central detector is
coverad by a 4n cylindrical cosmic-ray shield,Z) which contains a 15.2 cm
outer layer of liquid scintillator and an inner layer of lead (12.7 cm)
and iron (5.1 cm). The outer layer is used to veto charged particles.
The passive layer is designed, in particular, to eliminate the background
of wmuons stopping outside the active layer, where an electron from the
decay radiates a photon that can pass through the scintillator undetected

before it converts inside the shield. To minimize inefficiencies in the
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shield, the scintillator £fills only three optically isolated sections:
the cylinder and one endcap, the bottom and the other endcap. The
scintillator is viewed by 360 photomultiplier tubes (EMI 4870-B) to
provide ample redundancy.

The central detector has forty layers, each one consisting of a
scintillator plane followed by vertical and horizontal proportional
. drift-chambers (see Figure 2). The liquid scintillator is contained in
horizontal lucite tanks (366 x 30 x 3 cm®) and viewed at both ends by
Hamamatsu R878 phototubes. Particles lose 75X of their energy in the
scintillator, the rest is deposited in the lucite and drift tube walls.
The drift-chamber planes consist of 45 wires assembled 8.1 cm apart.
Drift-time and pulse-height information are recorded for every wire.
Nuclei with loosely bound neutrons, e.g. 27Al and !3C, provide a target
for Ve interactions and are a source of background since we are not able
to distinguish between electrons and positrons (see Table I). Thus, the
drift tubes are constructed of laminated Kraft paper with only a 25-um
aluminum inner layer to shape the electric field.}) The detector weight
is 20 metric tons, of which 2.3 tons is hydrogen.

Ve must be able to distinguish protons from electrons with high
efficiency in order to eliminate knock-on protons produced in fast
neutron interactions. The granularity of the detector permits such
identification to be made by comparing the particle range to the energy
loss measured in the scintillator. An additional selection can be made
based on the dE/dx measurement in a single scintillator plane. Using
these criteria, protons have been rejected by a factor of 3x10™¢ in a
prototype detector studied in the LAMPF test beam channel. Given the
present estimates of neutron backgroﬁnds (~1000/day) in our detector,
this rejection is adequate to eliminate knock-on protons with kinetic
energies greater than 100 MeV.

The signals from the detector and the shield are digitized with
flash ADC’s and stored in cyclic memories containing 150 usec of data.
The positron trigger is flagged by hits in three consecutive planes. At
this point, data are continued to be read into the memories for 100 usec,
so that vhen the data are eventually transferred to the computer, only 50
usec of information is recorded before the event trigger. The history is
used to tag any signals that might be associated with the trigger, e.g.
a stopping muon. The data recorded after the trigger is needed to help

identify the neutron, which would be present if the event was in fact a
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Ve interaction. Mylar sheets painted with natural Gdzo3 are located
between all scintillator planes. Neutrons from the interaction may
thermalize in the scintillator and capture on Gd, wvwhich deexcites by
emitting 4.5 gamma rays on the average. The detection of these gammas
(total energy is 7.9 MeV) provides a neutron signature. The detection
efficiency of the neutrons is expected to be about 25%, but depends on
requirements imposed on the detection of the resulting gammas.

In Figure 3 ve shov the expected sensitivity of E-645 to neutrino
oscillations. The VoP interaction cross section is 11x1074! cm? .4)
Assuming a positron detection efficiency of 50%, the event rate for
maximum oscillation is 47 events/day. Background rates, which limit the
sensitivity of the experiment, are hoped to be kept to less than .1
events/day. For comparison, the best published limits are also shown in
the figure.5)

Table I. Backgrounds due to v_ interactions in the detector.

e
Target Mass 6(10741iem?) Rate/day in
(tons) Detector (Ev>3SHeV)
12¢ 15 1.5 <0.01
iic 0.15 <5 <0.05
2741 0.2 <5 <0.03
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Figure 1. Cosmic-ray shielding which includes 3000 g/cm? of overburden, an
active charged particle veto, and an inner layer of lead and
iron.



TR R 1quIn SCINTILLATOR

deHe [ 1 ‘
(HREH R HRR Y ) (366x30 x 3cm3)
MHHHHHHHEHHRBHH R R I
alsBil: s B s H H ,JE smg/cm2

' Gdp O3/SHEET

HAMAMATSU

R878

| VERTICAL PHOTO TUBE

HEEL < AND
A HORIZONAL

UDRIFT TUBES -~
(8.1 cm SPACING)

- 7m -

v DETECTOR (ELEVATED VIEW)

Figure 2. E-645 detector sandwich consisting cf forty scintillator and
drift-chamber planes.

!
{
i
]
i
!
|
[
]

fe————366m
| ot ) 4 ) 1 1 1 I
R S T

—1 X 1 I

X ‘J » emeptum— L
X n

1 X

- | — 1

C L — 1

| smme i — ) §

| e . i - | L

— 1.

| e = -1

X C

| — — R SRS {
cor———x

| s 3 1 —1 .

> -
- N )
o > 1+ N
N — <o o
t g 3 k=
|:LUJ ] (dp)
7] e
1
0 z 3 £
+ O 3 >
t'o '&. -------- - : —
. o~
a o >
x _l —_-'O Q
w S b—m————— T o
) . E
ﬁu_ll 1.1 1 lunc 111 jouJ | | '.IJLIIJ 1 luu 1e 1 1 |9
m9 NQ = - o o

Figure 3. Expected sensitivity of E-645 to neutrino oscillations. The
dashed curve assumes the experiment is free of background. The
full curve assumes a background rate of .1 events/day. The
dotted curve shows current oscillation limits.
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