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INTRODUCTION

The three~body potential Vo3 in the three-nucleon Hamiltonian
H = Ho*Via*Vo3+ V3 1+ V 3 m

1S inherently ambiguous since all observables (energies, cross sections,
decay times etc.) are invariant under simultaneous unitary

transformations of the Hamiltonian H and the wave function ¥,

H=UHU* ; V=uy . (2)

This ambiguity is greatly reduced by a number of essential (usually
tacit) assumptions: (1) The three-body potentials Vijk in the many-

body Hamiltonian

H= Ho*‘/zzvij*' '/3| Zvijk + L (3)
ij ijk

are the same for all nuclei. (2) The interactions are dominated by the
two-body potentials, and the importance of n-body forces decreases
rapidly with increasing n. (3) Two-body (n-body) operators in the charge ’
and current densities are determined by the supressed subnuclear %m
degrees of freedom (mesons and/or quarks). \w
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While meson field theory provides guidance to important features of the
two- and three-boay forces nonrelativistic nuclear potentials are
essentially phenomemnological. The presence of three-body forces is
required by the well-known failure of two-body potentials aione to
account quantitatively for the binding of few-body nuclei and of nuclear

matter.

There are obvious reasons to inguire into the importance of relativistic
invariance for the dynamics of the three-nucleon system.
Electromagnetic probes of the the short-range character of the wave
functions involve large momenta for which a nonrelativistic theory
prima facie suspect. Even in ground-state of three-body nuclei at rest
the velocities of nucleons are sufficiently large that one may expect
relativistic effects on the binding energy comparable to the effects of

the three-body forces.

The states of any quantum system undergo unitary transformations
under rotations, boosts and transiations in space and time.
Nonrelativistic systems transform according to the innomogeneous
Galilei group. Only the time transiations depend on the dynamics, all
other transformations are kinematic. Relativistic systems must
transform according to the inhomogeneous Lorentz group (Poincare
group). In that case the group structure demands that transformations
other than the time evolutions depend on the dynamics. The only the
representation of a kinematic subgroup ramains independent of the
interactions. The choice of this kinematic subgroup is to somne extent
arbitrary and leads to different "forms of dynamics” which are unitarily

equivalent as far as the observable consequeces are concerned. In the




familiar “instant form" the kinematic subgroup (translations and
rotations) leaves the hyperplanes t=const. invariant, and the Lorentz
boosts are dynamical transformations. In the “front-form™ dynamics the
kinematic subgroup leaves the light front T=x%+x3=0 invariant, and the
rotations about any transverse axis are dynamical transformations.
The front form is particularly convenient because the kinematic
subgroup includes the Lorentz transformations which are important in
the calculation of electromagnetic form factors and inelastic structure

functions.

The Lagrangian dynamics of relativistic field theories formally satisfies
all these requirements in both the instant-form and the the front-form
Fock representations, but truncation of the Fock space to a finite number
of particles destroys the relativistic invariance. Moreover any practical
use of Lagrangian field theories has perurbative features which cannot

be justified for strong nuclear interactions.

It is therefore of interest to examine Poincaré invariant models for the
three-nucleon system which have the same heuristic relation to field
theories as the nonrelativistic nuclear models. The construction of
Poincare invariant dynamical models consisting of a finite number of
particles is based on the following observations. The generators of the
infinitesimal dynamica!l transformations can be obtained as functions of
the kinematic generators, the invariant mass operator of the interacting
system and additional operators which 773y be obtained from the
noninteracting system. These additional operators are the components of
the Newton-Wigner position operator in the instant form, and the

transverse components of the spin in the front form.




RELATIVISTIC DYNAMICS

The generators of infinitesimal Poincare transformations are the four
momentum (PO} , the angular momentum J, and the Lorentz boosts K .

The generators of the front-form kinematic subgroup are P+=P0+p3 the
transverse component of the momentum ﬁ} , the longitudinal

components of the angular momentum Jy and the boosts K3, and
E=kr+emdy 5 n={00,1). (4)

The dynamic generators are P=PC-P3 and the transverse components of
the angular momentum T-} . The mass operator M is, of course, related

to the four-momentum by
M2 = P*P- - Py2 . (5)

A bound state must be an eigenfunction of the spin operator T as well
as the mass operator M. The spin is related to the Pauli-Lubanski
vector (W8 W)=(F-J POJPXK’) by

> =

Iy = W*/P* ; MI7:= W - Py (6)

Conversely, if the mass M and the transverse spin T; are known then the

dynamic generators P~ and Jr determined by

p- = [M2 + B2)/p+ (7)
and
M Pr-p Pr Py
Jr=—T1+ E + — 5 + Ks . (8)




Projection of a meson field theory onto the two- or three-nucleon
sector of the Fock space produces and expression for M2 which is
invariant under the kinematic subgroup, but the projections of the spin
components do not satisfy the correct commutation relations and do
not commute with M2 . Poincare invariant dynamical model can be
constructed by assuring that M2 commute with the total spin of the
free particles.

TWO-NUCLEON SYSTEMS

States |¥> of a single nucleon are represented by square integrable
functions Y(p,p) , where u=t'/, is the longitudinal component of the

spinand p = {p*p7} . States | ¥> of a two-nucleon system are

represented by square integrable functions Y(p,.jt1.p2.112) . All the
kinematic generators are additive in the two nucleons. Appropriate
internal variable are

ETRV I .S ©

where P := p,+p, . The mass operator M is given by

m2 + K72
M= ——— + 4mV12 = Moz + 4mV12 . (10)
n(1-n)

V)2 is the nucleon-nucleon potential. Lorentz invariance requires that
V2 commute with P and be independent of P. Further the dynamics so
formulated is Poincare invariant if and only if M2 commute with the
spin. This can be assured in the following manner. fefine the

longitudinal component of the internal momentum K as a function of ul
and ?{ by



1 m2 + K2
KN == {Mgm - ——— } (1)
2 MaT

The spin of the noninteracting two-nucleon system can then be
expressed in the form

T= iV + R(KnmMgs; + RU-1,-Kr.mMg)sz (12)
where R denotes a Melosh rotation,

m+Mgn - 10-(XKT)
R(n Kr.m,Mg) == — . (13)
v (msgm)2+ky2

Expressed as a function of the vector K the mass operator M is given
by
| M2 = 4(k2+m2+mV,,) (14)

where Vy, must commute with the spin (12). Thus the dynamical
equations for the internal coordinates have the same form as in the
nonrelativistic case. The relations of K and P to the individual
nucleon momenta py and p, differ, of course, from the nonrelativistic
relations. This difference becomes manifest in in three-nucleon
systems as well as in form factors of the deuteron. For slow nucleons

we have the nonrelativistic approximation




Pitpy ® (PH-2mPy : Ya(p-po) ® (m(2m-1).K7) (15)

The two-body dynamics formulated here implies an obvious deacription
of two nucleons in the presence of an noninteracting spectator. The
transition to a fully interacting three-nucleon syatem involves new
problems which | will adress in the next Section.

THREE NUCLEON SYSTEMS

As for nonretativistic systems the convenient choice of internal

vaiables distinguishes one of the three particles. Let

P=pp2tps (16)
=Pt/ Pyt +pet) i EEpgt/Pr a7
E; = l?n - Tl(ﬁ}r - EZT) ; E)T = I?ST ‘E*S‘T . (18)

The mass operator My, of the interacting 12 suhsystem is given by
Egs. (10) or (14). All the Poincare generators are additive in two-body
cluster and the spectator. The mass and spin operators are
unambiguously defined as functions of those generators. However, the

spinoperator so defined depends on the interaction V,, and the
operator My3? ,

- >
Mig2 + qr2 m2+ qp? 4mVy;
M|2.32 = + = M02 +

1-g £ 1=

(19)

does not commute with the spin TE of the noninteracting three-nucleon
system, which commute with My2,



m2 + 42 m2 a2

NUZ = + 4 (20)
n(t-m)(1-8) & £(1-&)
The noninteracting spin operator lg 1S
T = iVgq+ R(I-L,-GrMorzMoltz + R(E.GrmMg)ss (21)
where the longitudinal component of the vector E}’ is defined by
—>> ! m2 ' -anz
R L A T — (22)
2 Mgd,

The interaction-dependent spin operatar ﬁu that commutes with Mya3
can be obtained from (21) and (22) by replacing Mg and Mgz by Myz 3

and My, respectively.

The Hamiitonian Hyp 3 = P~12.3 ’

Pias =2.p i+ 4mVyy /(p*, + p*y) (23)

1

has all the required invariance properties, but the addition of two or
three two-body interactions destroys the invariance unless an
appropriate three-body interaction is added. The expected resuit for

the fully interacting three-nucleon system is




P =3 pi+ 3 4mVy /(pti +p*)) + BMV 5 /P* (22)

i i

and
M2 = Myg3? *+ Mxy 22 + Moz, 2 ~2Mg? *+ BMV 53 (23)

The task at hand is to show that a three-body potential Vy»3 which
establishes the invariance of the three-body dynamics exists, can be
constructed explicitly ard is small. To accomplish this we first
construct an operator M,y which commutes with Ty and descrities the
same two-body dynamics as My, 5 , @s well as the unitary

transformation By, 3 which relates them.

The operataor V,, in EqQ. (19) has the matrix representation

¥ 1] v 1 L} ’ L ﬁ
(k' 2,5 V12| S,0k) * (7' &' a2’ iz | 1| pzyada7) (24)
The operator V;, designed to commute with I can be defined by the

matrix representation
(k8.3 Viz] .06 = (q.L 1 u ) 1 L) (25)

Manifestly the the dynamics of the two body subsystem is completely
specified by the operatar V,, which is the same in (24) and (25). The
subsystem mass operators

H|22 = M0122 + 4mV,, and F]-|22 = NU|22 + 4m—\7|2 (26)
yield the same two-body bound-state energies and the same scattering
observables. The same is true for My, 3 defined by Eq.(19) and ﬁ,m




10
ﬁ-]g.} = (ﬁ|22+q2 + (m2+q2) . (27)

They commute respectively with ﬁm and _13 . Therefore there exists a
unitary transformation Byo 3 which transforms T;Q_z, into TE and Myg3

into Myp3 . It follows that

B3 &B*p3 € = (g + V2l Myp3™" - Mg~ (28)
and
B*123 nq Bi23 - ng =
| m2+qy2
= {(My23 - Mo)é, - Myg3™! - Mg~} . (29)
2 g

Egs. (28) and (29) provide the basis for an approximation. The effect
of Byg3 is small,i.e. Byp3%1+iB,5 With Byo5 of the order VMg~ .

Since Myo.3 commutes with the spin 1—5 the mass operator

M2 = Myg32 + M3y 22 + Maz,12 -2Mp2 + BMV 3 (30)

is invariant for any three-body interaction V,3 that commutes with
the spin TE . The choice of '\7,23 is subject to the same arbitrariness
and restrictions as the nonrelativistic three-body potential. A three-
nucleon dynamics based M and TE satisfies all the invariance
requirements, but the dynamic generators do not become additive if one

of the particles is at a large distance. This macrocausality condition




calls for a unitary transformation B that transforms (30) into (23), and
TE into T

B*MB=M : B*TgB=T (31)
An appropriately defined product of By 3 , By ; and By,  will serve

that purpose. For the three-nucleon system the approximate form

B~ 1+i(Brgz * Bozy * B3ra) (31)

should be adequate.

The three-nucleon duynamics so constructed satisfies all the Poincare
invariance requirements and has the correct cluster separabiity
properties. The transformation (31) introduces three-body interactions
in (23) even if V,p3 vanishes. The effects of the three-nucleon forces

required by Poincare invariance can be expected to be relatively small.
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