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INTRODUCTION

The three-body potential V,23 in the three-nucleon Hamiltonian

(1)

is inherently ambiguous since all observables (energies, cross sections,

decay times etc.) are invariant under simultaneous unitary

transformations of the Hamiltonian H and the wave function y,

Ff=UHU+

This ambiguity is greatly reduced by a number of essential (usually
tacit) assumptions: (1) The three-body potentials v,-jk in the many-
body Hamiltonian

ijk

are the same for all nuclei. (2) The interactions are dominated by the

two-body potentials, and the importance of n-body forces decreases

rapidly with increasing n. (3) Two-body (n-body) operators in the charge

and current densities are determined by the supressed subnuclear

degrees of freedom (mesons and/or quarks).
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While meson field theory provides guidance to important features of the

two- and three-body forces nonrelativistic nuclear potentials are

essentially phenomemnological. The presence of three-body forces is

required by the well-known failure of two-body potentials alone to

account quantitatively for the binding of few-body nuclei and of nuclear

matter.

There are obvious reasons to inquire into the importance of relativistic

invariance for the dynamics of the three-nucleon system.

Electromagnetic probes of the the short-range character of the wave

functions involve large momenta for which a nonrelativistic theory

prima facie suspect. Even in ground-state of three-body nuclei at rest

the velocities of nucleons are sufficiently large that one may expect

relativistic effects on the binding energy comparable to the effects of

the three-body forces.

The states of any quantum system undergo unitary transformations

under rotations, boosts and translations in space and time.

Nonrelativistic systems transform according to the inhomogeneous

Galilei group. Only the time translations depend on the dynamics, all

other transformations are kinematic. Relativistic systems must

transform according to the inhomogeneous Lorentz group (Poincare

group). In that case the group structure demands that transformations

other than the time evolutions depend on the dynamics. The only the

representation of a kinematic subgroup remains independent of the

interactions. The choice of this kinematic subgroup is to somne extent

arbitrary and leads to different "forms of dynamics" which are unitarily

equivalent as far as the observable consequeces are concerned. In the



familiar "instant form" the kinematic subgroup (translations and

rotations) leaves the hyperplanes t=const. invariant, and the Lorentz

boosts are dynamical transformations. In the "front-form" dynamics the

kinematic subgroup leaves the light front r=xo+x3=O invariant, and the

rotations about any transverse axis are dynamical transformations.

The front form is particularly convenient because the kinematic

subgroup includes the Lorentz transformations which are important in

the calculation of electromagnetic form factors and inelastic structure

functions.

The Lagrangian dynamics of relativistic field theories formally satisfies

all these requirements in both the instant-form and the the front-form

Fock representations, but truncation of the Fock space to a finite number

of particles destroys the relativistic invariance. Moreover any practical

use of Lagrangian field theories has perurbative features which cannot

be justified for strong nuclear interactions.

It is therefore of interest to examine Poincare'invariant models for the

three-nucleon system which have the same heuristic relation to field

theories as the nonrelativistic nuclear models. The construction of

Poincare invariant dynamical models consisting of a finite number of

particles is based on the following observations. The generators of the

infinitesimal dynamical transformations can be obtained as functions of

the kinematic generators, the invariant mass operator of the interacting

system and additional operators which may be obtained from the

noninteracting system. These additional operators are the components of

the Newton-Wigner position operator in the instant form, and the

transverse components of the spin in the front form.



RELATIVISTS DYNAMICS

The generators of inf ini tesimal Poincare transformations are the four

momentum (P°,P*}, the angular momentum J, and the Lorentz boosts K*.

The generators of the f ront- form kinematic subgroup are p+sp°+p3 , the

transverse component of the momentum P j , the longitudinal

components of the angular momentum J 3 and the boosts K3, and

E ^ K r + n ^ T T ; r?= {O.O.O. (4)

The dynamic generators are p-=pO-p3 and the transverse components of

the angular momentum J j . The mass operator M is, of course, related

to the four-momentum by

M2 = P+P" - FT 2 . (5)

A bound state must be an eigenfunction of the spin operator T*as wel l

as the mass operator f i . The spin is related to the Pauli-Lubanski

vector { W ° $ H p t f ,P°J+PxK*} by

I3
 := W V P + ; Mlf == WT - P j (6)

Conversely, if the mass M and the transverse spin ] | are known then the

dynamic generators P~ and J j determined by

P- = [M2 • p V l / P + (7)

and

M P+ - P- P^ n^P*T

^T = — 1 T + n"*E"+— I3
 + K3 . (8)

P+ 2 P + P+ P+



Projection of a meson field theory onto the two- or three-nucleon

sector of the Fock space produces and expression for H2 which is

invariant under the kinematic subgroup, but the projections of the spin

components do not satisfy the correct commutation relations and do

not commute with H2 . Poincare invariant dynamical model can be

constructed by assuring that N2 commute with the total spin of the

free particles.

TWO-NUCLEON SYSTEMS

States |y> of a single nucleon are represented by square integrable

functions ^(p. j i ) , where _u=±V2 is the longitudinal component of the

spin and p - {P+«PT) • States |¥> of a two-nucieon system are

represented by square integrable functions ^Cp1.ji1,p2.P2) - All the

kinematic generators are additive in the two nucleons. Appropriate

internal variable are

T\ •- p,+/P+ and k*r == p iT - -qP*T, (9)

where P ;= P1+P2 - The mass operator M is given by

M2= + 4mV12 =M0
2 + 4mV1 2 . (10)

V I 2 is the nucleon-nucleon potential. Lorentz invariance requires that

V,2 commute with P and be independent of P. Further the dynamics so

formulated is Poincare invariant if and only if h2 commute with the

spin. This can be assured in the following manner. Define the

longitudinal component of the internal momentum k* as a function of T\

^ by



m2 + iTT
2

\ 0 0
2

The spin of the noninteracting two-nucleon system can then be

expressbd in the form

n ^ 0 5 . (12)

where R denotes a Melosh rotation,

- ia-(nx]TT)

- (13)

Expressed as a function of the vector k* the mass operator n is given

by

M2 = 4(k2+m2+mV12) (14)

where V12 must commute with the spin (12). Thus the dynamical

equations for the internal coordinates have the same form as in the

nonrelativistic case. The relations of k and P to the individual

nucleon momenta pj and p2 differ, of course, from the nonrelativistic

relations. This difference becomes manifest in in three-nucleon

systems as well as in form factors of the deuteron. For slow nucleons

we have the nonrelativistic approximation
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(15)

The two-body dynamics formulated here implies an obvious deacription

of two nucleons in the presence of an noninteracting spectator. The

transition to a fully interacting three-nucleon syatem involves new

problems which I w i l l adress in the next Section.

THREE NUCLEON SYSTEMS

As for nonrelativistic systems the convenient choice of internal

vaiables distinguishes one of the three particles. Let

p := p,+p2+p3 , (16)

T\ := Pi+/(p,+ + p2
+) ; I := P3+/P+ • C7)

^T : = PIT ~ *Hv T ~ P3T) • I T : = P 3 T ~ ^ T • (18)

The mass operator I I 1 2 of the interacting 12 subsystem is given by

Eqs. (10) or (14). Al l the Poincare generators are additive in two-body

cluster and the spectator. The mass and spin operators are

unambiguously defined as functions of those generators. However, the

spinoperator so defined depends on the interaction V t 2 and the

operator H12.32,

M122 +
 QT2 m 2 +

 QT2 4m V,2

1 - K K 1 - S

does not commute with the spin 1^ of the noninteracting three-nucleon

system, which commute with M0
2,



m2 + fcy2 m2

• . (20)

The noninteracting spin operator l0 is

where the longitudinal component of the vector q is defined by

(22)

The interaction-dependent spin operator Tj2.3 that commutes wi th N12.3

can be obtained from (21) and (22) by replacing Mo and M0i2 by M12>3

and I1 1 2 respectively.

The Hamiltonian H,2i3 = P 12.3 .

" > l + p+
2) (23)

has all the required invariance properties, but the addition of two or

three two-body interactions destroys the invariance unless an

appropriate three-body interaction is added. The expected result for

the fully interacting three-nucleon system is



P~= I P"i + I 4 m V i i Ap+t +P+j) + 6mV123/P+ (22)
i i<i

and

H2 = t1 , 2 < 3
2 • M3,.2

2 + M23J2 - 2 n 0
2 • 6mV I23 (23)

The task at hand is to show that a three-body potential Vl23 which

establishes the invariance of the three-body dynamics exists, can be

constructed explicitly and is small. To accomplish this we first

construct an operator H,23 which commutes with Io and describes the

same two-body dynamics as M12<3 , as well as the unitary

transformation B12#3 which relates them.

The operator V|2 in Eq. (19) has the matrix representation

(k \A\s | v I 2 | s , i , k ) * (S'.t I.j i i2 I.Ji3 l| i | j is.Ji i2.t3r); (24)

The operator V12 designed to commute with TQ can be defined by the

matrix representation

i,i,L,q). (25)

Manifestly the the dynamics of the two body subsystem is completely

specified by the operator V12 which is the same in (24) and (25). The

subsystem mass operators

and M I2
2 = n012

2 + 4m V,2 (26)

yield the same two-body bound-state energies and the same scattering

observables. The same is true forM12 i3 defined by Eq.(19) and fT,2.3
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rT12.3 = / ( i i ,2 2 + q 2 ) + /(m2
+q2) . (27)

They commute respectively with T 2̂>3 and I j . Therefore there exists a

unitary transformation B12,3 which transforms I1 2 3 into Io and Mt2,3

into M12i3 . It follows that

< = Gvq + /(m^TTl [M,^-1 - M0^l (28)

and

B +
1 2 i 3 rvq* B12_3 - fvcf =

1 m2+qj2

~ ^ (M12,3 - Mott - [M12.3-i - M0- ' ] f . (29)
2 K

Eqs. (28) and (29) provide the basis for an approximation. The effect

of B12,3 is small,i.e. B,2.3
ss1 + i3i2.3 with J$12i3 of the order flV^rV 1 .

Since M12i3 commutes with the spin Io the mass operator

Fl"2 = rT12i3
2 • rT31i2

2
 + rT23>1

2 -2M0
2 • 6mV123 (30)

is invariant for any three-body interaction V123 that commutes with

the spin Io . The choice of V123 is subject to the same arbitrariness

and restrictions as the nonrelativistic three-body potential. A three-

nucleon dynamics based FT and ]J satisfies all the invariance

requirements, but the dynamic generators do not become additive if one

of the particles is at a large distance. This macrocausality condition



11

calls for a unitary transformation B that transforms (30) into (23), and
-> -*
l0 into 1.

B+rlB = M ; B+l^B = f (31)

An appropriately defined product of B12>3 , B23j and B312 wi l l serve

that purpose. For the three-nucleon system the approximate form

B * 1 + 1(0,2.3 + 323.1 + 331.2) ( 30

should be adequate.

The three-nucleon duynamics so constructed satisfies all the Poincare

invariance requirements and has the correct cluster separabilty

properties. The transformation (31) introduces three-body interactions

in (23) even if V123 vanishes. The effects of the three-nucleon forces

required by Poincare invariance can be expected to be relatively small.
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