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Abstract

The utilization of externally-launched radio-frequency waves as
a means of active confinement control through the generation of
sheared poloidal flows is explored. For low-frequency waves, ki-
netic Alfvén waves are proposed, and are shown to drive sheared
E x B flows as a result of the radial variation in the electromag-
netic Reynolds stress. In the high frequency regime, ion Bernstein
waves are considered, and shown to generate sheared poloidal
rotation through the ponderomotive force. In either case, it is
shown that modest amounts of absorbed power (~ few 100 kW)

are required to suppress turbulence in a region of several cm radial
width.



I. INTRODUCTION

The suppression of edge turbulence by sheared plasma flows (and conse-
quently, the radial electric fields associated with them) has emerged as the
leading paradigm to explain the improvement of confinement in the transi-
tion from L- to H-mode.- The basic idea is that in the presence of rotational
E x B shear, fluctuations experience enhanced decorrelation and are shorn
apart before they have had time to grow to large amplitudes. The criterion
for turbulence suppression is roughly given by

d(: Awy
’ <U«9>1 > Co ké:;kly

dr )
where (vg) = —c(E,)/Bo is the Ex B flow, &k}, Awys, and ANz are the poloidal
wavenumber, decorrelation frequency, and radial correlation length of the am-
bient turbulence, respectively, and Cy < 1 is a model-dependent parameter
that accounts for how much the general criterion (vg) > (Awk /kjAxy) over-
estimates the velocity shear needed for turbulence suppression. As the sign
of the shear is irrelevant to this argument, it is possible to effect a transition
to an improved state of confinement with either sign of the electric field, a
prediction of the theory that has been experimentally corroborated.? Indeed,
observations of locally reduced turbulence in the vicinity of shear layers even
in non- H-mode discharges® suggest that this mechanism is robust and of
general applicability. One is therefore naturally led to inquire whether it is
possible to actively control plasma confinement quality through the gener-
ation of sheared flows by erternal. non-intrusive means (thus, for example,
dodging the inherent limitations associated with electrode insertion?). Given
the wall-sputtering disadvantages associated with neutral beam injection.!
the utilization of externally-launched radio-frequency waves in this capacity
lends itself as an intriguing possibility which we consider in this work. For
low-frequency waves, we propose kinetic Alfvén waves (KAW), which are
shown to drive sheared E x B flows as a result of the radial variation in the
electromagnetic Reynolds stress.® In the high frequency regime, we consider
ion Bernstein waves (IBW), and show that they generate sheared poloidal
rotation through the ponderomotive torce. In either case, it is shown that
modest amounts of absorbed power (~ few 100 kW) are required to suppress
turbulence in a region of several cm radial width.
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II. KINETIC ALFVEN WAVE FLOW DRIVE

We first consider the application of kinetic Alfvén waves in connection
with sheared flow drive and turbulence suppression at the plasma edge.’
To minimize losses due to radial attenuation, the location of the Alfvén
resonance 74 [where w = kj(r4)va] is taken to be very close to the plasma
edge. The time evolution of the average poloidal flow, in the low-frequency,
cylindrical approximation, is driven by the electromagnetic Reynolds flux
and damped by neoclassical magnetic pumping:

Ave) _ d(S) .
ot = _d';_—ﬂ'neo<vd>s (2)

where (S) = v (B, By/B?) — (i.04) is the electromagnetic Reynolds stress
(or equivalently, ponderomotive pressure), pne, = av;; is the magnetic pump-
ing frequency (o ~ ¢ = r/R in the plateau regime and ~ Wi /v in the
Pfirsch-Schliiter regime), and (v,B) are the KAW velocity and magnetic
field fluctuations. Equation (2) indicates that for rotational flow to be
generated, one must have ¢) radially propagating waves (since for stand-
ing waves, the cross-correlations are identically zero), and ii) an imbalance
between the fluid and magnetic stresses. These criteria are satisfied by
KAW’s, for which the radial wave vector is complex, and ion inertia in-
troduces an imbalance between electric and magnetic fluctuations. Thus,

ke = kB 4+ ikl where kBp, = [(wz/kﬁvf‘) — 1]/% characterizes the radi-
ally propagating component of the wave vector (p, = ¢,/Q, ¢ = 2T,/m;
is the sound speed, and Q; = eBy/mic), and k!/AR = §,/2 characterizes

the evanescence scale length, where &, is electron dissipation. For a colli-
sionless (wy > v.) plasma, 8, = w(w/|wee)| exp(—w?/w}l), and for a colli-
sional (we < v.) plasma, 6. = wel /ve [w? + (Wi /ve)?]. where wie = kyjree.
Using flnk = (1 + k1p?) (kyc/w) ¢ as appropriate for KAW's, we obtain
(S) = kBkgp? k2 p? ¢ (led/T.|?), and for steady flows,

(vo) _ o _wh p(ra)py WP
= =0 G

2
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where & = di,/dt is the radial displacement vector. Substituting this ex-
pression into Eq. (1), we obtain the amount of absorbed power required to



suppress turbulence over a radial width Ar:

72 Colwyr wp Py / w? -5/2
abs T R s 252 LA -1 X QARA y
Pavs > 2 mn;alt p, C, 5.3 k{;A.rkl Qikecy, Ly, (kﬁvi ) exp( i r)
(4)
where L;' = —dlnn;/dr is the density scale length, and a and R are the

plasma minor and major radius, respectively. In deriving Eq. (4), & was
eliminated in terms of the absorbed power to which it is related by® Py, =
(7/4) aRw (|:2/k2) x d(4rmniw? — kiB3)/dr. As an example, assuming
drift wave-like turbulence (Awy ~ w.. = kpcTe/eBL,, kjdrw ~ 1, and
hps ~ 0.2), for TEXT edge parameters (By = 20 kG. ng = 5 x 10'2 cm™,
T. = 30 eV), Py, = 300 kW is required for a 3 cm wide zone of enhanced
confinement. Similar estimates for the edge of DIII-D (By = 21 kG. ny = 10'3
cm™3, and T, = 150 eV) indicate that P,, = 300 kW will result in a 4 cm
wide turbulence suppression zone.

III. PONDEROMOTIVE FLOW GENERATION BY ION BERN-
STEIN WAVES

One of the dilemmas of thermonuclear fusion research is that confinement
quality in the plasma core must be simultaneously high enough to allow for
the possibility of ignition, yet low enough so as to allow for the rapid re-
moval of helium ash. An active knob with which confinement quality in the
plasma core could be regulated would therefore be a major boon to the fu-
sion program. [t is with this motivation in mind that we now turn to the
possibility of using high-frequency RF waves to suppress core plasma turbu-
lence through the generation of sheared rotation. The proposed RF scheme
must i) be able to access the high-temperature plasma interior, ii) have
very short perpendicular wavelength (as shall become clear momentarily),
ii1) have high power density, and iv) not adversely affect plasma confinement
in other ways. As a working paradigm, we consider here the utilization of
ion Bernstein waves in this regard. These quasi-electrostatic waves, for which
nt 2 K.. > nﬁ ~ KNy ~ Ry, and E'I > E. > E,J. satisfy the dispersion
relation \ )

n
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where n = ck/w, k = k &, +kjé., and Kz, K.y, and K. are the elements of
the hot plasma dielectric tensor” and incorporate cyclotron damping on the
minority species (in K;;) and electron Landau damping (in A%.). The total
power absorbed comes predominantly from the sloshing energy of the ions
and given by Pus/A = (vprL/4T) |E:|* 0K ;z/0Inb;, where vph = w/ky, and
b; = k% p}/2. The perpendicular ion flow pattern associated with the wave is

(i’f> NZ'“_J& ( K”) EE_E (6)
f’y ,'— wg,' -K::y,i BO ’

where the subscript ‘i’ refers to ions. The nonlinearly-generated, pondero-
motive ion poloidal flow at.steady state is then given by

UJQ,‘
-5

(v,) ~ pih (v-9v,) =~ (

Vo

“wini freo

(7)
where (A8, k1) represent the radially propagating and evanescent components
of the perpendicular wavenumber, and 1 is the radial location of the reso-
nance layer. Eliminating the field amplitude in terms of the absorbed power
and substituting into Eq. (1), we obtain the power requirement to suppress
turbulence over a layer of radial width Ar:

roRB? 0% fineo Colwy nt — Ko 0ln Ky /Obi exp(2kL Ar)
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A simple estimate of the (cyclotron) damping decrement k{ can be obtained
from the field fail-off, i.e., (kiR)’1 ~ AB/B ~ (w— Qim)/w ~ 3.[\‘“‘(‘“',,1/(.‘).
where the subscript ‘m’ denotes the minority ion species. Again, assuming
drift wave-like turbulence for the case of PLT (B = 30 kG, no = 3-10"% ecm ™3,
T =1keV, R =132 cm,ro = 40 cm), we find P,s > 300 kW for confinement
enhancement over a 7cm wide radial zone. It is interesting to note that
there have been a number of experiments which have observed confinement
improvement, turbulence suppression, and/or poloidal rotation generation in
connection with IBW heating. On PLT ? for example, the energy confinement
time with the application of 650 kW IBWH yielded a factor 1.7 improvement
over the value associated with neutral beam-heated L-mode discharges at
the same density. Furthermore. the electrostatic density fluctuations. as
measured by microwave scattering, were observed to drop in magnitude by

wl
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a significant factor relative to the equivalent-density ohmic phase, while the
frequency spectrum was Doppler-shifted, suggesting a net increase of the
poloidal rotation velocily. Further evidence of confinement improvement with
the application of IBWH comes from JIPPTII-U,® where transport analysis
shows that the ion thermal diffusivity, x;, decreases with the application of
400 kW of IBW in the vicinity of the core plasma region where the wave is
deposited. The reduction in transport coefficients is accompanied by a sharp
steepening of the density profiles.

In summary, our calculations indicate that RF waves afford a promising
means of actively controlling plasma confinement quality. We h..ve found
that modest amounts (~ several hundred kW) of power are required to cause
a local suppression of turbulence and consequent confinement improvement
either at the plasma edge or in the plasma core. The possibility of helicity
injection current drive has also been explored and will be presented elsewhere.
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