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INTRODUCTION

Receiver Operating Characteristic (ROC) curve analysis provides a powerful
and broadly applicable approach to the problem of evaluating the diagnostic

152 1n the past, there has been no

performance of medical imaging systems.
statistical test with which one can adequately address the question: "Is an
observed difference between two measured ROC curves statistically significant?"
An ROC curve obtained in a visual detection experiment usually must be described
by two parameters. Previous attempts to develop a significance test for ROC
data have dealt with only a single index of signal detectability, by assuming
that each of the ROC curves in question is described by a single parameter such
as d' (which is inadequate for most visual detecgion experimenés), by testing
differences in only one of the two parameters describing‘an ROC curve, or by

summarizing each ROC curve in terms of a single and incomplete index of- perfor-

mance, such as the area under the curve.

Recently we developed and evaluated a statistical test which simultaneously
takes into account apparent differences in both parameters of the two ROC curves
in question. The sets of rating scale data obtained for estimation of the two
ROC curves are assumed to be statistically independent. Also, each ROC curve is
assumed to be binormal -- that is, to be of a functional form that plots as a |
straight line with generally non-unit slope on double normal-deviate axes.
The literature of experimental psychology provides much empirical evidence that
curves of this functional form provide good fits to ROC data from experiments

in which decisions are based on subjective judgements.

On the basis of these assumptions, maximum likelihood estimates of the two

ROC curve parameters associated with each set of rating scale data are computed

TLEE

using the "method of scoring. This procedure yields not only maximum

likelihood estimates of the two parameters of each ROC curve, but also estimates

of the variances and the covariance of the parameter estimates.
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. HASTRR

It is known theoretically, under rather general conditions, that maximum
likelihood estimates of underlying parameters follow a multi-variate normal
distribution in the limit of large numbers of trials in the experimental data.®
By assuming that the maximum likelihood estimates. of the ROC curve parameters
are sampled from a bivariate normal distribution, we construct from the two pairs
of ROC parameters a test statistic .that should follow the Chi-square distribution
(with two degrees of freedom) when' the two sets of rating scale data arise, in
fact, from the same ROC curve. -The hypothesis that the two sets of rating scale
data arise from a single underlying ROC curve is :then réiected ét"the 106(1—&)%
confidence level if the test_statistic exceeds the critical value'c‘fo: which

Prob (X2V=2 >c)=a.

'THEORY » : S
Consider two independent  pairs of normal ‘random vériables'(Al, B;) and
. N ”~ R . - . . . . N . :
(Az, Bz)' Each pair represents.ihe éstimates of the two pavameters of an ROC
curve. Assume that the variances and covariances of the four parameters are

known, with values
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The covariance of A, and B, and the covariance of A, and B, are generally non-
zero because the Ai and.Bi are estimated jointly from-a single set of observer
response data. The covariances of.A.1 and A, of A1 and'Bz, of B1 and Az; and
of B, and'ﬁ2 must be zero, however,-since'the data’ sets ‘used ‘to.estimate the

pairs (31, ﬁl) and'(Kz, ﬁz) are statistically independent.

If we wish to determine the statistical significance of an obséfvéd differ-
ence between two ROC curves, then'we must test the null hypothesis that the two
estimated ROC curves arose, in fact, from a single underlying ROC curve. ~This
is equivalenf'to the null hypothesis that E{Kl}=E{Kz} and E{§1}=E{ﬁ2}, or
E{Kl—ﬁz}io and E{§1-§2}=O, where E{ } indicates “expected value of.":

Let'Ad = Xl"gz and Bd = ﬁl—ﬁz represent the observed differences between the

estimates of the A parameters and the B parameters of the two measured ROC curves.
Then we must test the null hypothesis that E{Ad}=0 and E{Bd}=0. Since the two

ROC curves were estimated from independent data,
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where p represents the correlation coefficient for Ad and Bd' These relation-

ships can be summarized by the matrix equation W = § +Sz’ where W represents
. 1 .

the "covariance matrix'" for A, and B,:
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. An observed difference between two estlmated ROC curves-is reprebented
Ly the pair of numbcro-(A B ) If each pair (A B ) and (A , B ) arises
from a bivariate normal dlstrlbutlon then the pa1r (A s B ) also follows a
‘bivariate normal distribution. According to the- null hypothe51s, the expected
" value of this pair is (0, 0). Thus according to the null hypothesis (HO),lthe
probability density distribution of A, and B, is given by

d d
f(Ad, Bd.H ) = 1
2
ZWOA B 1 p |
By 2ABy (By)
* exp Z TG + - N
2(1 -p?) o} 5 A g o
A.d ‘ E d 7d Bd
~in whlch 04 » O and p are. deflned as _above and can be calculated from the:
d d> :

“known (or estimated) variances and covariances of Ai’ Bl, Az’ and Bz. The
locus .of points (A ,'Bd)lfor.which this probability density is constant plots
as an ellipse centered at (0, 0) in the (A, Bd) plane, with orthogonal major
and minor axes given by the eigenvectors of the matrix W. The integral of
f(A‘,’BleO)'witbin any such ellipse represents gbezprobabllity'of observing -
a pair (A, Bé) within that ellipse of.constantAprobability denoity. Thus if
an observed pair (A, Bd) lies outside the ellipse within which the integral
of f(Ad, B IH ) equals 0.95, for example, then we can conclude that the null
hypothe31s (i.e., that E{A }= E{A } and E{B }= E{B -}) should be reJected with
(1-a) = 0.95 confldence._iw‘“

If a new set of coordinate axes in‘the (Ad, Bd)lplane is chosen by:

"rotation about the origin so that the directions of the new axes coincide
with the major and minor axes of a.constant probability .density ellipse, and
_ if thesewnew axes are then‘rescalediso that the variance of each transformed
coordinate is 1.0, then the ellipses of constant probability density are
transformed into circles of constant_probability. den51ty, and the. probabllltles
within an original ellipse and the corresponding clrcle w1ll be equal.’ In the
new ;ransformed coordlnate system (x, y), the probability density distribution .
is given by ' A !

| (x> +y?)
f(x, y|H0)=-E% e s




and the probability P that a pair (x, y) -— representing a transformed pair
(Ad, Bd) — lies inside a circle of radius r is given by .
P = Prob ( x’ty? <r2)

=1 - e—lz(rz-) R ’ .

This is tha cumulative probabilitY'distribution of a Chi-square random

: . . T2 iy . s s sgs '
variable with 2 degrees of freedom, X . Thus the 'statistical significance

of an observed difference between'(Kl,vﬁj) and (KZ, ﬁz), which is the same as -
thg statistical significance of an ‘observed difference between (Ad,'Bd) and

(0, 0), .can be de;ermined’by appropriately rotating and scaling the coordinate
axes in the (A,, Bd);plané_to.express‘the pair (A,, Bd) in terms of the indepen-
dent’ standard deviatg pair (x, y),:and by then finding the probability of

that is as large or larger than r25x2+y2:

observing a value ofi'Xz\)=2

: : (242
Pl‘Qb_(sz:Z > x24y7) = e s(x“+y%)

If this probability«is less than a critical value o (e.g.; 0.05), then we con-
clude that the observed difference between the two ROC curves is significant

at the o level used. - E P

To summarize the above discussion, mathematical formulation.of the appropriéte
Chi-square statistic can ‘be thought of in the following way. First, one deter-
- mines the eigenvectors of the matrix W, which express the major and minor axes

of the constant probability density ellipses. Next, one expfesées a pair of

a’
been rotated to coincide with these eigenvectors, and divides each transformed

parameter value differences (A Bd) in terms of a coordinate system that has

. - coordinate by the square root .of the corresponding eigenvalue of W (i.2., by. the

~standard deviation of the transfppmed'variaﬁle on the eigenvector axis), so that

the'pesulting coordinates equivalent to‘(A R Bd).gre in@ependent standard normal

deviates (i.e., normal with zero mean and unit variaﬁce). Then”qne can.shovlthat

 the requirad X2 statistic is given in matrix form by
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or in algebraic form by

2
v=2 . 3 o, 2 o U, 2
1 p‘ Ad Ad Bd 'Bd
2 2! 2 2
where A A~A,, B. EB~-B,, 0, E{0. +0 o, o, +0
d a A, AT A, , By | B, B, , and

p= (04 y*0yy) /Oy

All of the terms on the r1ght~hand side of thls equatlon can be calculated from
the two pairs of estimated ROC curve paramaters, (Ax’ B . and (Az, B »), and
their associated varlances and covariances. All~of these are provided by the

computer program for maximum llkellheod estimation from rating scale data.

" Any dlfference between the estlmated ROC curves (A Bl) and (Az, ﬁz) is
then significant at the 100(1-a)% confidence level 1f ‘the value of sz—z '
obtained by the above procedure. exceeds =2 1n(a). Note that use of the
100(1-a)Z confidence 1évelAfor significance testing implies*%hat one expects
the null hypothesis (of no difference) to be rejected falsely in 100a% of all
similar situations for which thé'two sets of rating scale data arose, in fact,

from the same underlying ROC curve.

EVALUATION OF.THE SIGNIFICANCE TEST"

Thé statistical test: described above waé derived on the basis of an assump~—

" tion that the dlfferences between. ROC curve parameter estlmates,Ad z (A 2)

and Bd (B B ) ;are distributed as standard normal deviates after they are
itransformed_on the basis of their estimated wvariances and covariance.’ Becausé
this assumption is known to be valid only in the limit of large numbers of
experimental trlals, one must determlne empirically the extent to wﬁlch the test -
performs adequately for the numbers of trlals typically used in psychophy31cal

and medlcal applications of ROC analysis. To perform this evaluation, a digital
computer was used to simuiate sets of rating scale data from a binormal decision
model. The statistical test was -then applied to ROC curves estimated from these

data, and observed performance of the test was compared to ideal performance.



In the following; wé report some of the results of these simulations for

the binormal ROC curves labeled as Curve 1 and Curve 3 in Figure 1.. For each
curve, the parameter A represents the 2y intercept and the parameter B repre-
sents thekslope ﬁhen the‘ROC curve is plotted as a4straight line on'double
nbrmaludeviate axes. For each ROC curve, one thousand independent SQES'of
rating scale data weré simulated containing m "noise-only" trials and m "signal-
“plus— nolse“ trials for m=50, 250, and 500. Expected operating points on each
'ROC curve were held constant during the simulation of each data set but were
varied randomly across data sets téfyield realistic distributions of operating
?qints. Typical sets of expected operating points on each ROC c&rve are shown
in Figure 1 by similar s&mbols.“ Details of our computer simulation of ratlng
scale data will be publlshed elsewhere. R
' The algorithmzdescribed’by Dorfman and>

T SR - — . AlIf" and corrected by Grey and Morgan was

1O s
oot . ? v””xyfﬁ’Ai used to computé maximum likelihood esti-
osl: /5 h — | mates of the parameters A and B and their
o7k 2 . : 1 varlances and . covarlance from each .set of
ost| /7 ;Q_"¢§9 . ‘L " rating scale data. Then the statistical |
g o5 .if G;P' ' ;_ i sxgnlflcance ‘test was applled to arbitrarlly:.‘
&'64 €9§& B , . selected palrs of estlmated ROC curves‘“
03 _“76‘&9 | %EE% S:E%?ngsgé? | that had arisen from the same under}tyxng
oz _ T | ROC curve. For each underlying ROC curve
ol ‘ e | and for each number of tria}s; the fraction
' Co ,‘ Ly .!‘,} L of curve’'pairs in which the difference was
(01 02 .03 qipg;ﬁqﬁ‘oj o8 08 fﬁv found significant at“varioﬁs o levels waé
: “ | T , “ tabulated. The differences found signi~
Fig. 1. The binorméleOCA’ . E ficant in this way were falselz 31gn1f1cant

curves used to generate the

~simulated rating scale data. ,
On each curve, similar symbols " estimated ROC curves in each pair tested
indicate typical expected ‘
operating points.

(i.e., were type I errors) because both

had arisen from the same underlying RQC -

curve.

To evaluate the performance of the test statistic, the fractions of (falsely)
significant results (fs) obtained at various ¢ levels between O and 1 wereﬁcom~
pared to the expected proportions (o). If the proposed test performs well f

should be close to o for any o between 0 and 1.




RESULTS

We report hzare some typ1ca1 results of our evaluation of the perrormance
of the test statistic when it was applied to' two sets of simulated rating scale
daéa'generated from the same underlying ROC curve and containing the same '
number of trials. A moré extensive summéry of our resultSjwill be published

.

elsevhere.
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Figures 2 through 5 compare fs, the fraction of 500 curve'pairs.fOUnd
significan; using our test, and a, the fraction expected with a perfect test,
for values of ¢ in the range 0<a<0.1, which is the range of greatest interest
iﬁ practical applications of statistical hypothesis testing. The broken lines
indicate the 957 probability band for the 300 pairs tested here. 1In each
figure, sypbols'of different shape indicates the results of four different
arbitfary methods of pairing the estimated ROC curves. The results for paired
estimates of ROC.curve #1 are shown in Figure 2 for m=50 trials of each kind
for each curve estimate.and in Figure 3 for m=250. '.The results.for paired .
estimates of ROC curve #3 are shown for m=56 in Figure 4 and for m=250 in
Figure 5. The correspondence between f and o found for'm=500 though not

shown here, was similar to -- but: sllghtly better: than -~ that obtained for

m=250. in Flgures 3 and 5. In general, for all ROC curves and all numbers of

‘ trials, the agreement between f .and o improved for values of o greater than 0. 1.

- The selected results shown in Figures 2 through 5 are typical of those
found for paired ROC curve estimates based on equal numbers of trials. Our

statistical test for differences between ROC curves performed better -- that

. is, the observed values of f lay :closer to o relatlve to the 95% probability

bands -~ (1) for ‘larger numbers of trials in tne ratlng scale data for each

curve, and (2),for lower ROC curves (i.e., curves representing less detect-

.ability). Both observations can be explained by the related facts that (1) for

*a given underlying ROC curve, the distributions of ROC curve parameter estimates

become more nearly normal as the asymptotic limit is approached'by larger

‘numbers of trials; and (2) for a given number of trials in the rating scale

data, the parameter estlmate dlstrlbutlons, especially. for =50, are less normal
for hlghex ROC curves because uncertainties in the ROC curve operating.points

estimated from the data become larger (and nonlinear), relative to a giVen'

increment in the curve parameters, in the upper left portion of the ROC space.

The proposed test clearly performs very well for typical ROC curves when

1250 or more tiials of each kind are used to estimate each ROC curve. When only

50 trials of each kind are used to estimata each curve, the test performs well
for ROC curves like #1 and #2 in Figure 1, but somewhat less reliably for
higher ROC curves like curve #3. Even in this situation the test is probably
adequate  for most applications, however. The results of Figure 4, for example, .

suggest that.when the test is used with a typical a level of 0.05, the fractionA
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‘of curve pairs found-falsely significant will be somewhat smaller than expected,
e.g., about 0.025 instead of 0.05. AInlorder to fully understand the impact of
such incorrect-predictions of Type I7error .rate, one must determine the perfor-
mance.df the statistical test with regard to the rate of Type II errors (falsely
accepting the null hypothesis of no actual aifference'between‘ROC curves when,
in fact, a.real difference exists). In general, the trade-offs. that are possible
betweénAType I error and Type II:error rates By selectién of different o levels
are analogous to the compromises that can be made betweén‘falsé:positiVe and
false-negative decision fractions in a detécfipnfexperimént, which can be
described by an ROC curve. '
DISCUSSION N
The statistical test that we propose here for. dif;erences between ROC
curves’ perform well for typical ROC cugyes estimated from typical numbe;s of -

experimental trials in a rating scale experiment.  For moderately high ROC

“curves (such as Curve 3 in Figure 1) and small numbers of trials (such as 50

of each kind), the test statistic yields Type I errors less frequently than

* would be expecfed on the basis.of the o level used for the test. Even in this

situation the discrepancy is small, however. THuS‘the:proposed test appears

"to provide a useful assessment. of the statistical signifiéance of apparent

- differences between ROC curves estimated from independent rating scale data.

. If a statistically significant difference is found between two independent
ROC curves, one may wish to be able to state which ROC .curve is "better" than
the other. If the two ROC curves do.not intersect in'a region of the ROC space

of interest, then the ROC curve. closer to the upper left-hand cornmer of the ROC.

" space can’ be -considered-betterssinde.that curve represents greater detect-" -

ability' " However, ‘the dec131on is not always SO clearcut, as in the case of

\

'Curves 1 and 2 in Figure 1, whlchnlntersect each other near the negatlve

diagonal of the ROC space. Two approaches are possible in such seemingly
amblguou5'51tuat10ns. One .is to examine those portions of" the curves where the
decision maker is likely to operate  and determine which portion exhibits greater
detectability. ‘Tﬁe other is to calculate the areas under the estimated ROC
curves, since the area:is.an overall performance index. This.lafter alterna--
tive can always be used because the area measure requires no assumption regarding
wheré.thé;decision maker isvlikely to operate; the resulting conclusion may be
misleading,.however, if particular operating points are of primary interest in

an applied detection task.
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In its present form, the statistical test we describe heré requires thét
the data sets obtained for .the two ROC curves in question be statistically
independent. Thus the present test isvapﬁlicable to sets of ROC data due to
different sets of~noiéy images produced from the same phantom, or due to sets
of clinical imageés made from different patients. This test is not applicaﬁle,
however, when two sets of ROC data are generated by the same or different
observefg”viewing the same set of images, or when the two data sets are
obtained from different clinical‘images'of the same set of patients. A gener—
‘alized statlstlcal test that will take such correlatlons into account is

currently underg01ng development.
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SUMMARY

A test for the statistical significance of observed'differénces'betweenA
two measured ROC curves has been designed and evaluated. The set of_qbserVer
response data for each ROC curve is assumed to be independent and to arise
from an ROC curve having a form which, in the absence.of'statistical fluctua-
tlons in the response data, graphs as a straight 11ne on double normal-deviate
axes.’ Such a "binormal" ROC .curve is deflned by two parameters, which represent

the slope and one axis intercept of the normal-deviate graph

To test the significance of an apparent difference between two measured
ROC curves, maximum likelihood estimates of the two parameters of each curve
and the  associated parameter variances and covarlance are calculated from the
correspondlng set  of observer response. data. An approx1mate Chl—square
statistic with two- degrees of freedom .is then constructed from the differences
between the parameters estimated for each ROC curve and from the varJances‘

and covariances of these estimates.

This statistic is known to be truly Chi-square distributed‘only'in the limit
of large numbers of trials in the observer performance experiments. Performance
of the statistic for data arlslng from a llmlted number  of experimental trlals
- was evaluated by 31mulat1ng five-category rating scale data: with 50, 250, and
500 each of noise and signal-plus-noise trials, and by applying ‘the test to
‘these data. Independent sets' of rating scale data arising from the same under- :
’lying ROC curve were paired, and the fraction of differences found‘(falsely)
significant was compared to the significance leVel;‘a, used with the test. .
Although test_performance was found to be somewhat dependent on both the .
number of trials in the data and the position of the-underlying ROC curve in
the ROC space, the results for various significance levels showed the test to.be

reliable under practical experimental conditions.





