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THERMAL DESIGN FOR PROTECTION OF DOWNHOLE ELECTRONIC PACKAGES 

Gloria A. Bennett and Gail R. Sherman 
Los Alamos Nat ional  Laboratory 

Los Alamos. NM 87545 

AESTRACT 

This  r e p o r t  d e s c r i b e s  design improvements made for 
downhole tools based on r e s u l t s  ob ta ined  from t h e  
t.l?ermal a n a l y s i s  of t h e  instrument  package. 
inc iude  h e a t  f l u x  a t  t h e  tool s u r f a c e  and temperature- 
time h i s t o r i e s  of each subsystem. 

The r e s e a r c h  stems from a need for t o o l s  t h a t  can 
s u r v i v e  t h e  harsh environment present  i n  geothermal 
uellbores. The high tempera tures  and p r e s s u r e s  create 
stress on t h e  tools t h a t  func t ion  i n  t h i s  environment. 
Improvements i n  t h e  des ign  o f  downhole t o o l s  lead  t o  
more a c c u r a t e  da ta  obta ined  from t h e  wel lbore dur ing  
experimentat ion.  

t h e  conductance between e l e c t r o n i c s  and i ts  h e a t  s i n k  
was too small and was misd i rec ted .  S i g n i f i c a n t  
improvements were achieved by i n c r e a s i n g  t h e  a v a i l a b l e  
thermal  c a p a c i t y  of  t h e  hea t  s i n k ,  t h e  thermal  p o t e n t i a l  
between t h e  hea t  s i n k  and e l e c t r o n i c s ,  and t h e  
conductance of t h e  heat t r a n s f e r  paths .  

NONEMCLATURE 

Resul t s  

The a n a l y s i s  showed t h a t  t h e  thermal p o t e n t i a l  and 

A = a r e a  
c = s p e c i f i c  hea t  a t  c o n s t a n t  pressure  
hp = convect ive  f i l m  c o e f f i c i e n t  
K = thermal  c o n d u c t i v i t y  
Q = h e a t  
T = temperature  
r = r a d i a l  c o o r d i n a t e  
V = tool v e l o c i t y  
z = axia l  c o o r d i n a t e  
A = change i n  
I- - t ime 
o = d e n s i t y  
S u b s c r i p t s  

c = convect ive  
1 o = i n i t i a l  

p = pressure  
M = ambient 

INTRODUCTION 

The goa l  o f  t h e  Hot Dry Rock ( H D R )  Program is t o  
i n v e s t i g a t e  t h e  f e a s i b i l i t y  o f  e x t r a c t i n g  thermal  energy 
from n a t u r a l l y  h o t ,  bu t  e s s e n t i a l l y  d r y  format ions ,  by 
c i r c u l a t i n g  water  from an i n j e c t i o n  well through 
a r t i f i c i a l l y  made hydraul ic  f r a c t u r e s  t o  a product ion 
well d r i l l e d  nearby (F ig .  1 ) .  Successful  development o f  
energy e x t r a c t i o n  techniques  r e q u i r e s  e x t e n s i v e  d a t a  
about water  chemis t ry ,  a c o u s t i c  s i g n a l s ,  temperature .  
temperature  changes,  p r e s s u r e ,  and flow r a t e s  a t  v a r i o u s  
d e p t h s  i n  and between t h e  two wells. The t o o l s  and 
downhole e l e c t r o n i c s  used i n  making these  phys ica l  
measurements must wi ths tand  t h e  h e a t  and s e v e r e  wel lbore  
c o n d i t i o n s  to  which t h e y  a r e  r e p e a t e d l y  s u b j e c t e d .  The 
purpose o f  t h i s  i n v e s t i g a t i o n  i s  t o  improve t h e  des ign  
of downhole t o o l s  so t h a t  t h e y  can withstand t h e  harsh 
environment and f u r n i s h  t h e  a c c u r a t e  and e x t e n s i v e  d a t a  
requi red  to achieve  t h e  g o a l s  of  t h e  Hot Dry Rock 
Program. The des ign  improvements a r e  based on f o u r  
f i n i t e  element ana lyses  t h a t  have been completed f o r  an 
a c o u s t i c a l  t o o l  with a t y p i c a l  thermal  p r o t e c t i o n  
s y s t e m .  The model is a lumped mass approximation of t h e  
real  components i n  each s e c t i o n  of t h e  t o o l .  The 
ana lyses  d e f i n e  thermal  c o n d i t i o n s ,  h e a t  f l u x e s ,  and 
boundary and temperature  c o n d i t i o n s  which vary a s  
f u n c t i o n s  of time and temperature .  

BACKGROUND 

The two wel lbores  a t  t h e  Fenton H i l l  s i t e  (FHS) 
t h a t  are be ing  used t o  develop a commercial s i z e  
r e s e r v o i r  are about 4600 q deep have a bottom-hole 
tempera ture  o f  593 K and a h y d r o s t a t i c  p r e s s u r e  o f  40.3 
E+06 Pa. The bottom 1200 m of  each wel lbore i s  open 
h o l e  and i s  i n c l i n e d  a t  35" t o  t h e  v e r t i c a l  (1). 
Because of subs tances  introduced dur ing  t h e  d r i l l i n g  
process ,  water  chemis t ry  i n  t h e  FHS wells can vary  
between n e u t r a l ,  pH=7 t o  very  b a s i c ,  pH=11. Such 
c o n d i t i o n s  r e q u i r e  downhole e l e c t r o n i c  t o o l s  t o  be 
packaged i n  a p r e s s u r e  vesse l  t h a t  can withstand 
a b r a s i o n ,  c o r r o s i o n ,  high tempera ture ,and  high p r e s s u r e .  
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Fig. 1. Fenton Hill s i te  geothermal wells. 

Previous ly ,  t o o l s  and e l e c t r o n i c s  had survived t h e  
c o n d i t i o n s  i n  a M S  demonstration r e s e r v o i r  (2) which 
was 2930 m deep and 470 K, b u t  exposure t o  t h e  
h igher  temperatures  and hea t  f l u x e s  i n  t h e  deeper wells 
caused thermal failure.  Problems a r i s e  when 
measurements must  be made a t  temperatures  above t h e  
upper l i m i t  o f  480 K (2). which occurs a t  FHS well 
depths  below 3000 m. 

e l e c t r o n i c s  and a hea t  s i n k  i n s i d e  a t a l l ,  s l e n d e r  dewar 
t h a t  p r o t e c t s  t h e  package from r a d i a t i o n  hea t  t r a n s f e r .  
A cut-away i l l u s t r a t i o n  is shown i n  Fig. 2. The 
s e n s o r s ,  b a t t e r i e s .  c i r c u i t  boards,  and o t h e r  components 
a r e  mounted on b r a s s  rods  held i n  p l a c e  by copper 
bulkheads.  Power d i s s i p a t i o n  from the  e l e c t r o n i c s  is 
approximately 1 wat t  and is considered n e g l i g i b l e  
compared to t h e  hea t  e n t e r i n g  t h e  tool fiom a hot  
geothermal wel lbore.  While parked on s t a t i o n  t h e  tool 
i s  subjec ted  to a h igh  hea t  f l u x  (shown i n  Fig. 10) a t  
502 K. The hea t  t h a t  enters t h e  e l e c t r o n i c s  from t h e  
wel lbore must be t r a n s f e r r e d  to t h e  hea t  s ink .  ’Ihe hea t  
s i n k  is t i g h t l y  a t tached  t o  t h e  bulkhead n e a r e s t  t h e  
open end of t h e  dewar. The rods and bulkheads are t h e  
only  high-conductance heat ,  t r a n s f e r  pa ths  frm t h e  
e l e c t r o n i c s  to t h e  hea t  s ink.  Ihe hea t  s i n k ,  f i l l e d  
with Woods Metal, is intended to absorb h e a t  from t h e  
e l e c t r o n i c s ,  mel t ing  t h e  Woods Metal a t  a temperature  
bc,lnbT +he maximum temperature  a t  which e l e c t r o n i c  
components can be r e l i a b l y  exposed. F igure  3 
i l l u s t r a t e s  t h e  temperature  h i s t o r y  expected during 

a opera t ion  and Fig. 4 shows t h e  results of t h e  downhole 
t e s t .  The temperature  sensor  mounted i n  t h e  e l e c t r o n i c s  
s e c t i o n  was expected to show a temperature  i n c r e a s e  up 
t o  t h e  Woods Metal mel t ing  p o i n t ,  then a c o n s t a n t  
temperature while t h e  absorbed heat melted t h e  Woods 
Metal, and f i n a l l y  another  temperature  i n c r e a s e  a f t e r  

_ _  I :.--” s i n k  is  completely melted. Ins tead ,  t h e  
temperature  h i s t o r y  showed a s t e a d i l y  c l imbing 

The o r i g i n a l  thermal p r o t e c t i o n  design p laces  t h e  
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Fig. 2. Thermal p r o t e c t i o n  system components. 

temperature  wi th  no l e v e l l i n g  a t  t h e  Woods Metal mel t ing  
poin t .  

There a r e  numerous p o s s i b l e  explana t ions  f o r  t h e  
observed temperature  h i s t o r y :  ( a )  t h e  sensor  f a i l e d  or 
was i n a c c u r a t e .  (b)  t h e  hea t  s i n k  was a l ready  melted,  
(c)  t h e  a i r  temperature  was a c t u a l l y  higher  than t h e  
hea t  s i n k  temperature ,  or (d)  t h e  heat  t r a n s f e r  pa ths  
a v a i l a b l e  for moving h e a t  from e l e c t r o n i c s  t o  h e a t  s i n k  
were p h y s i c a l l y  too m a l l  o r  t h e i r  conductance was too  
smal l ,  and ( e )  t h e  thermal p o t e n t i a l  between e l e c t r o n i c s  
and hea t  s i n k  was too  small  or was i n  t h e  wrong 
d i r e c t i o n .  This i n s t r m e n t  was t e s t e d  a t  3340-m depth  
where t h e  temperature  is 493 K. It f a i l e d  thermal ly  
a f t e r  2-1/3 h. This  amount o f  time a l lows  a s i n g l e  t r i p  
i n t o  and out  of t h e  FHS wells. In order  t o  provide 
e f f e c t i v e  and s u f f i c i e n t  measurements o f  geophysical  
d a t a ,  t h e  tool m u s t  have a thermal l i f e t i m e  of  a t  l e a s t  
10 hours. 

Examination of t h e  system immediately fol lowing t h e  
test showed t h a t  t h e  h e a t  s i n k  m a t e r i a l  was s t i l l  s o l i d  
and t h e  sensor  was found to be o p e r a t i o n a l  and accura te .  
The o t h e r  explana t ions  both involve  determining t h e  
temperature  of  each subsystem. This de te rmina t ion  
r e q u i r e s  e i t h e r  a d e t a i l e d  thermal a n a l y s i s  or e x t e n s i v e  
ins t rumenta t ion  and t e s t i n g .  

THERMAL ANALYSIS 

, 

Four thermal ana lyses  were made of t h e  instrument  
s e c t i o n  of t h e  t o o l .  Nunerical c a l c u l a t i o n s  were made 
using the  AYER (4) f i n i t e  element hea t  conduction code,  
which s o l v e s  t h e  genera l ized  two-dimensional h e a t  
conduction equat ion i m p l i c i t l y .  Meshes of t h e  models 
were cons t ruc ted  using ZONE (z), a l i n e a r  f i n i t e  element 

Temperature 

I 
I b 

Tirnek) 36,000 s 

Fig.  3. Expected temperature  h i s t o r y .  
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mesher and input  d a t a  was prepared using a preprocessor  
program. 
results. which a r e  presented i n  t h e  form of temperature  
h i s t o r i e s ,  h e a t  f l u x  h i s t o r i e s ,  and p l o t s  o f  temperature  
versus  p o s i t i o n .  , 

The r i g h t  hand s i d e  of t h e  axisymmetric geometry IS 
shown i n  Fig. 5. 
or geometric v a r i a t i o n s  In t h e  B - d i r e c t i o n .  which IS 
s t r i c t l y  t r u e  only f o r  t h e  heat-s ink s e c t i o n  shown In 
Fig.  6. 
and 8. have symmetry i n  approximately 180" angular  
.-Fm-nt.s and were modeled as l m p e d  masses with 
e q u i v a l e n t  smeared thermal p r o p e r t i e s  of  t h e  copper, 

lumped mass conta in ing  steel  and Woods Metal. 

a n a l y s i s  a r e  given i n  Reference 6. Each equat ion  was 
obtained by l e a s t  squares  r e g r e s s i o n  on t h e  da ta .  

given i n  Reference 7. 

A postprocessor  program was used to p l o t  t h e  

It a s s m e s  t h a t  t h e r e  are no m a t e r i a l  

The b a t t e r y  and e l e c t r o n i c s  s e c t i o n s .  F igs .  7 

2nd phenol ic  components. The h e a t  s i n k  Is a 

The m a t e r i a l  p roper ty  equat ions  used throughout t h e  

The p a r t i a l  d i f f e r e n t i a l  equat ions  of  i n t e r e s t  are 

(1)  

(2) 

They a r e  solved numerical ly  using t h e  f i n i t e  
element formulat ion and an i m p l i c i t  s o l u t i o n  technique.  
These equat ions  a r e  second-order i n  two independent 
space v a r i a b l e s  and time and a r e  quas i - l inear  because 
t h e  m a t e r i a l  p r o p e r t i e s  a r e  allowed to vary  with 

373F----l 363 

Time (s) 
Fig. 4. Instrument  t e s t  temperature  h i s t o r y .  
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Fig.  5. Right hand s i d e  of axisynrnetric model. 
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Fig.  6. Heat s i n k  p l a o e  goo3etry model. 
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Fig .  7. Electronics section plane geometry model. 
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Fig.  8. Bat te ry  s e c t i o n  p lane  g e m e t r y  model. 

temperature .  The i n i t i a l  c o n d i t i o n s  assumed for t h e  
e n t i r e  mesh are 

T(r.2) = To = 298 K. (3) 

The boundary c o n d i t i o n  on t h e  o u t e r  tool body 
s u r f a c e  is based on t h e  average t r i p  v e l o c i t y  i n t o  t h e  
well and t h e  background geothermal temperature  g r a d i e n t .  
The g r a d i e n t  is approximated by 

T- = 300.9 + 0.06 *VW. (4 )  

The f i l m  c o e f f i c i e n t  on t h e  s u r f a c e  is c a l c u l a t e d  

The boundary c o n d i t i o n  on t h e  o u t e r  t o o l  body 
us ing  t h e  Dit tus-Boel ter  equat ion  t i ) .  

s u r f a c e  v a r i e s  wi th  time and is given a s  t h e  product  o f  
t h e  f i l m  c o e f f i c i e n t  and t h e  temperature  d i f f e r e n c e  
across t h e  too l  body wall. A t  t h e  upper end of t h e  
dewar. hea t  must pass  through a cork  plug and a t  t h e  
bottom h e a t  is t r a n s f e r r e d  through a 4.2-cm a i r  gap. 
Solu t ion  of t h e  p a r t i a l  d i f f e r e n t i a l  equat ions  and t h e i r  
a s s o c i a t e d  a u x i l i a r y  c o n d i t i o n s  was accomplished 
nun er i c  a1 1 y . 
RESULTS 

lhe purpose of t h i s  i n v e s t i g a t i o n  was t o  determine 
t h e  i n p u t  h e a t  f l u x e s  and t h e  temperature  f i e l d  i n  t h e  
t o o l  as a func t ion  of time. F igures  9, 10, and 11 show 
t h e  h e a t  f l u x  on t h e  o u t e r  too l  s u r f a c e  and t h e  
temperature  h i s t o r y .  

4421 s where t h e  tempera ture  is 502 K (F ig .  11). The 
h e a t  f l u x  is p l o t t e d  in two p a r t s  corresponding t o  t h e  
time i n t e r v a l  t o  reach  s t a t i o n  and t h e  time i n t e r v a l  
while  parked. A curve  f i t  was made to  t h e  f lux-t ime 
r e s u l t s ,  shown i n  Fig.  9. using l i n e a r  r e g r e s s i o n  f o r  
times l a r g e r  than 200 s and yielded 

A t  t h e  given v e l o c i t y ,  t h e  tool reaches  s t a t i o n  a t  

W A  = 1350.9 + 4.696E-2.8. (5)  

After reaching s t a t i o n .  t h e  i n p u t  hea t  f l u x ,  shown i n  
Fig. 10, drops  t o  6% o f  i t s  previous  va lue .  This  
f lux-t ime h i s t o r y  y i e l d s  a curve  f i t  o f  t h e  form 

Q/A = 187.82EXP(-8.69E-5*8). ( 6 )  

The energy input  per u n i t  a r e a  for t h e  t r i p  i n t o  t h e  
well is 6.4 E+06 J/m2. A hand c a l c u l a t i o n  t o  e s t i m a t e  . 

Ttme IS8 

Fig.  9. Input hea t  f l u x  a t  t o o l  s u r f a c e  during t r i p  
i n t o  wel l .  
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Fig. 10. 

t h e  expected temperature  change f o r  the t o t a l  mass, with 
e q u i v a l e n t  s p e c i f i c  h e a t  and t h e  above energy i n p u t  
g ives  AT = 148 K a s  compared to a 189 K temperature  rise 
f o r  t h e  t o o l  body. 
major p a r t  of t h e  thermal mass of t h e  system. p r o t e c t i n g  
t h e  e l e c t r o n i c s  f o r  t h e  t r i p  i n t o  t h e  well. 
i n p u t  per u n i t  a rea  while parked on s t a t i o n  u n t i l  
f a i l u r e  i s  3.373 + 6 J/m*. 

Figure 12 shows t h e  p l o t s  of temperature  versus  
r a d i a l  p o s i t i o n  through t h e  e l e c t r o n i c s  s e c t i o n  for 
t h r e e  times during t h e  s imula t ion :  a t  t=2660 s, a t  
t=44?1 s time t o  reach s t a t i o n  and a t  t=8020 s. time 
approaching maximum temperature .  
indeed t h e  c o o l e s t  o b j e c t s  i n  t h e  t o o l .  Figure 13 shows 

'he steel  t u b u l a r  tool body is a 

'Ihe energy 

The e l e c t r o n i c s  a r e  
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Fig.  13. Isotherm contours  i n  the  e l e c t r o n i c s  s e c t i o n  

a t  time=8020 s. 
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i so therms of  348 K and 321 K i n  t h e  e l e c t r o n i c s  s e c t i o n  
a t  8=8020 s. f o r  bulk a i r  and electronics r e s p e c t i v e l y .  
Because 353 K is t h e  maximum r e l i a b l e  o p e r a t i n g  
temperature ,  t h e  time l i m i t  is  reached a t  approximately 
8500 s, which c o r r e l a t e s  with measurements taken dur ing  
t h e  i n s t r m e n t  developaent  test. 

and e l e c t r o n i c s  temperature  rise t o  368 and 348 I( 
r e s p e c t i v e l y ,  (F ig .  14) leav ing  very  l i t t l e  margin 
between t h e  c a l c u l a t e d  and maximum o p e r a t i n g  
temperatures .  Then, using t h e  a i r  temperature  to 
d o + r m * n *  time of r e t r i e v a l  is reasonable .  

I-_-- ..- i n  t h e  dewar assuning t h e  tool remains i n  t h e  
well, a temperature  h i s t o r y  a t  each s e c t i o n  and on t h e  
boundary i s  p l o t t e d  i n  Fig. 11. A t  time = 8921 s, t h e  
h e a t  s i n k  and b a t t e r i e s  are 48 and 57 K warmer than t h e  
e l e c t r o n i c s .  The e x i s t i n g  thermal p o t e n t i a l s  w i l l  move 
hea t  i n t o  t h e  e l e c t r o n i c s  r a t h e r  than from e l e c t r o n i c s  
t o  hea t  s i n k .  The a v a i l a b l e  pa ths  for h e a t  t r a n s f e r  
have a conductance of 4.71X10' W which can t r a n s f e r  

on ly  2.5 W a t  t h e  g iven  p o t e n t i a l s .  Recal l ing t h e  
p o s s i b l e  ex p l a n a t i o n s  f o r  t h e  measured temperature  
h i s t o r y ,  bo th  c) and d )  have been shown t o  c o n t r i b u t e  t o  
thermal  f a i l u r e .  

DESIGN IMPROVEMENTS 

Assming t h a t  t h e  tool 
* is removed a f t e r  8500 s a t  t h e  same v e l o c i t y ,  the air 

To i n v e s t i g a t e  t h e  thermal p o t e n t i a l s  between 
- - - + 4  

z 

Design improvements made to t h e  thermal p r o t e c t i o n  
system involved i n c r e a s i n g  both t h e  conductance and t h e  
thermal p o t e n t i a l  between e l e c t r o n i c s  and heat s ink .  

Heat p ipes  rep laced  t h e  b r a s s  rod mounting ra i ls .  
For a heat  pipe o p e r a t i n g  a t  323 K ,  t h e  conductance o r  
a x i a l  h e a t  f l u x  is 4.0 E+04 W/m', which i s  v a s t l y  l a r g e r  
than t h e  conductance of  long ,  small  diameter b r a s s  rods 
(11,. 

The thermal c a p a c i t y  of t h e  heat  s i n k  is based on 
i t s  volume. An i n c r e a s e  i n  thermal c a p a c i t y  must be a 
resul t  of increas ing  the  pc and p*Lfusion products  of  

0 2000 4000 boo0 8000 loo00 12000 14Ooo 

Time (s) 
=:- ' 1 '  PnlinC! t r i p  temperature  h i s t o r y  f o r  t o o l  

s u r f a c e ,  e l e c t r o n i c s  and s tagnant  a i r .  

t h e  m a t e r i a l .  Also, any m a t e r i a l s  considered m u s t  have 
a mel t ing  p o i n t  below 353 K, t h e  maximum e l e c t r o n i c s  
o p e r a t i n g  temperature .  For each m a t e r i a l  cons idered ,  a 
c a l c u l a t i o n  was made t o  determine t h e  en tha lpy  i n c r e a s e  
of t h e  s o l i d ,  energy absorbed i n  mel t ing ,  and en tha lpy  
Increase  o f  t h e  l i q u i d  between t h e  temperature  limits of  
273 and 353 K. Mater ia l  p r o p e r t i e s  and results a r e  
l i s t e d  i n  Table I. 
replacement hea t  s i n k  m a t e r i a l ,  a f t e r  cons ider ing  c o s t ,  
a v a i l a b i l i t y  and handl ing d i f f i c u l t i e s .  

This  choice of a hea t  s i n k  m a t e r i a l  with a mel t ing  
p o i n t  below 353 K provides  a much l a r g e r  thermal  
p o t e n t i a l  i n  the  r i g h t  d i r e c t i o n  - from t h e  
e l e c t r o n i c s  t o  t h e  h e a t  s i n k .  For ice. t h e  maximum 
temperature  d i f f e r e n c e  is AT=80° which diminishes  with 
time a f t e r  t h e  ice melts and t h e  e n t i r e  package h e a t s  
UP. 

These t h r e e  design changes made t o  t h e  thermal 
p r o t e c t i o n  sys tem improved i t s  o p e r a t i o n  by al lowing 
energy t o  be absorbed a s  l a t e n t  hea t  i n  a d d i t i o n  t o  t h e  
energy a l r e a d y  absorbed a s  en tha lpy  i n c r e a s e s .  The t o o l  
s u r v i v a l  a t  given temperatures  was increased  by a f a c t o r  
of  4 and t h u s  allowed reasonable  time f o r  making 
necessary  measurements. 
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Mater i a1 

Eicosane (2) 

W ~ U S  Metal (E) 
Gallium (lo) 

Ice (1) 

- .. 
b20"42 

. 

344 

303 

273 

TABLE I 

HEAT SINK MATERIAL 

S p e c i f i c  Latent 
Density Heat Heat 
(kg/rnr ) (J/kg-K) (J/kgx 10' 1 

788 2210 2.46 

9400 

6095 

913 

7 

167.4 

372 

4226 

0.325 

0.802 

3.35 

Heat 
Absorbed 
( JX 1 0 ' )  

1.59 

2.88 

3.81 

4.58 


