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ABSTRACT

A contimuous system approach to the vibration
characteristics of a symmetrically slotted beam
has been developed. The beam was modelled as a
Bernoulli-Euler beam with a reasonable stress
distribution associated with the slots. The
equation of motion was developed and resonant
frequencies obtained from Rayleigh's Quotient. An
experimental study of an aluminum beam with
symmetrical slots was performed. The resonant
frequency and apparent mass (a measure of damping)
were measured. Reasonably good correlation in
natural frequencies between theory and experiment
was obtained. The reduction in natural frequency
was a more sensitive indicator of damage than was
the increase in damping.

INTRODUCTION

A simple, quick and reliable method for
determining the integrity of a structure has long
been a goal for engineers. The development of
such a test would allow easy periodic inspection
of structures and devices with applications
ranging [rom production quality control to
evaluation of in-service and stockpiled items.
One family of methods is the use of forced
vibration as a diagnostic of structural integrity.

DISCLAIMER

The identification of a flaw in a complicated
structure is a very difficult task. In small
components, methods such as ultrasonic and
radiographic inspection may be used to locate
flaws. However, these methods are not readily
applicable to larger structures or assemblies of
camponents. A method is needed which would
identify a fairly small defect in a structure from
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a reasonably easy and cost effective test. The
forced vibration testing of a structure is one
cardidate method. ‘

Previous work in this field [1,2,3,4,5] has
centered on the change in natural frequency of a
structure due to reduced stiffness resulting from
material removal as the best indicator of damage.
Recent work (6] indicates that for certain types
of damage the change in damping is more sensitive
than is the change in nmatural frequency. Thus, it
seems that a test method which gives a measure of
matural frequency and of system damping would
provide a better opportunity to identify the
existence of damage.

In the current work, a forced vibration test
method is used which measures the resonant
frequency and the damping of the test system. The
tests were performed on an aluminum beam with
symmetric slots. The driving point force and
acceleration were measured and analyzed to give
the resonant frequency and system damping. The
equation of motion for the system was obtained
from a contimuous system approach using Bernoulli-
Euler theory modified to account for the slots.

THEORETTICAL DEVELOPMENT

A uniform beam containing symmetric slots was
modelled using Bernoulli-Euler beam theory
modified to account for the presence of the slots.
A similar development was done by [5] using a
variational approach. However, same insight into
the implicit assumptions of the derivation may be
obtained fram the following development.

Consider the beam shown in Fig. 1. The beam depth
. 1s 2d and is slotted top and bottom at a distance
X, elther way from its center. The beam is of

length 2L. Each slot, shown in Fig. 2, has a
depth a such that :

2 =23+ 2h (1)
The local beam depth coordinate is k.

For an unslotted beam, Bernoulli-Euler beam theory
gives the equation of motion
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where
E = the modulus of elasticity
I = the area moment of inertia

p

Equation (2) assumes that E and T are uniform
along the beam. In addition, Eq. (2) assumes that
the elastic flexure formula and associated stress
distribution from classical elastic beam theory
are valid. In the case of a slotted beam, this is
not the case ard a modification to standard beam
theory must be considered.

the mass per unit length

The existence of the slots may be considered in
terms of its effect on the stress field. It is
assumed that the effect of the slot is a maximum
at the slot location and that it dies away at
locations removed fram the slot. Thus, the
longitudinal stress in the beam may be written as

o(x,€) =¥ + £(x,8)] S(x,%t) (3)
where

o(x,¥) = the longitudinal normal stress

S(x,t) = the stress function

f(x,¥) = the slot function

Ve further assume that the stress distribution in
the y direction at the slot is linear. This is
known to be incorrect, but should give a
reasonable and tractable development. The stress
distribution must drop to zero immediately upon
entering the slot and is assumed to return to
nominal unslotted values in an exponential manner.
One slot function which meets these criteria is

£(x,8) = [E - mgACh - 1E1)]
exp(-alx - xcl/d) (4)
where

Hth - 1E1)
a

the unit step function;
a decay parameter to be
selected.
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If we require that the moment carried by the
slotted section be the same as that carried by an
unslotted section, the constant m may be
determined from equilibrium by .

]A(—s S(x,%))E dA =

/(%r(—s + £x,E) S, E A (5)

which reduces to

= (/1) (®)
where
Ar = the cross section at the slot;
I, = the area moment of inertia at the slot.

Thus, the lor)gitudjml normal stress in the beam
is given by

o(x,¥) = {-t¥ + [§ - mgH(h - 1E1)] A
exp(-alx - ;écuxd)} S(x,t) Co

Since the stress function must be correct for the
unslotted case, the stress function is given by

Sx,t) = M(x,t)/T (8)

where
M(x,t) = the berding moment.

In order to write the equation of motion for the
slotted heam, one must first consider the moment
equation for the beam in terms of the elastic
curve. Assuming that shear effects are negligible
and that the beam is still elastic, the radius of
curvature, r, may be written as

1 dzy o(s) Ml-r + £(x,¥)]
- = = = €))

T d:x2

~E¢ ~ETg
Fram which the moment equation may be written as



azy(x, t)
M(x,t) = EIQ(x) ———— (10)

o

where
QG = [1 + (1) exp(-aix - x, /I (1)

The moment equation may be differentiated twice
with respect to x and the equation of motion for
the slotted beam may now be written as

mQYiv + K[Qlylll + EIQI IYI 1] + p§ = 0 (12)

where
prrimes indicate derivatives with respect
to x; ,
dots indicate time derivatives.

Equation (12) along with appropriate boundary
corditions describes the motion of the slotted
beam. '

EXAMPLE

To test this develomment and to investigate the
sensitivity of damping and natural frequency to
slotting, a specific example was selected. A
free-free beam of length 2L with symmetric slots
located a distance X, from the beam’'s center (see

Fig. 1) was considered. Assuming that the slots
are far removed fraom both the center of the beam
and fram the free ends and assuming symmetry, the

appropriate boundary conditions are
7'(0.t) =0
Ely''(L,t) =0 :
(13)
EIy'''(L,t) =0

2ETy’ '’ (0,t) + my(0,) = F(%)

where '
mb=thebasemassfromthetransduoers.

A closed form solution to.Bg. (12) was not
obvious; therefore, an approximate solution for
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the natural frequencies using Rayleigh’s quotient
was obtained. The terms which appear in
Rayleigh’'s quotient are potemtial and kinetic
energy terms. For the example, the potential
energy term is '

A 82Y
v(t) =j16 EIQL — 1Rax (14)

8X2

And the kinetic energy term is
T(t) =ﬂ; pl — 1%ax (15)
ot

_ Which, in the neighborhood of a mode, reduces to
T(t) =/g wzpyzdx (18)

And Rayleigh’s quotient becomes

3%y
o EIQL — 13ax
2
w2= ' a7
(5o o

Thus, Rayleigh’'s quotient gives an approximation
to the natural frequency, w.

The quality of the approximation is strongly
deperdent on the assumed mode shape function,
y(x). This function must be selected since a
closed form solution to the equation of motion was
not obtained. The mode shape function selected
here was obtained by assuming that the moment
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equation (Eg. 10) could be rearranged to give the
secord derivative of the mode shape; and by
assunming that

M 2y (unslotted)

- = (18)
Bl ox°

so that
oy (slotted) 8% (unslotted) 1
— - Z (19)
ax= x> Q

The unslotted problem with these

conditions (Eg. 13) has been solved by [7]. Thus,
the use of the unslotted mode shapes is
advantageous. The second derivative of the mode
shape for the slotted case is assumed to be

d2y
— = 2%(-A cos Ax - B sin Ax + C oosh Ax +
dx2
1
D sinh AX) —— (20)
4169
where

A = the beam parameter;
A, B, C, & D = the constant calculated

fram [7].

The value of A is obtained from the unslotted
eigenvalue equation shown by [7] to be

M

—— (1 + cos AL cosh AL) +
2oL

1
— (co3 AL ginh AL 1 @in AL ocogh AL) = 0 (21)
AL

The mode shape function was obtained by twice

integrating Eg. (20). This mode shape was then
substituted into Eq. (17) to obtain an estimate of
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the natural frequency. The parameter, a, was
selected to give good correlation with
experimental data.

TEST DESCRIPTION

The beam was slotted symmetrically top and bottom
at locations 3" each direction from the center of
the beam. The slot depth was increased from zero
to 0.625" in 0.125" steps. The slot width was
0.10" so that the slots remained fully open during

testing.

The tests were performed using simisoidal
excitation from an electrodynamic shaker at the
first flexural resonance of the beam system. The
force ard acceleration at the driving point, the
center of the beam, were measured using
piezoelectric transducers. The driving point
acceleration was maintained at 10 g’'s peak, ard
the force was monitored to identify resonance.

The measurement of force and acceleration at the
driving point is sufficient to obtain a measure of
the system damping. It has been shown [6,7] that
the damping at resonance for a free-free beam is

given by

mn = (F/a)D (22)
where

n = the loss factor, a measure of damping;

F = the driving force magnitude;

a = the driving point acoeleration magnitude;

D = a function of mode mumber and geometry.

Thus, damping is proportional to the ratio of
force to acceleration, the apparent mass, at the
driving point; and this test method allows for the
investigation of the change in damping and change
in natural frequency as a function of slot depth.
In addition, a comparison of theoretical
development with test results may be performed.

DISCUSSION OF RESULTS

The results of the tests were in the form of
natural frequencies and a relative damping
measure, the apparent mass. Only the natural
frequencies could be compared with the theoretical
development so that data will be considered first.
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The parameter a of Eg. (4) was a free parameter
which was adjusted to obtain a good fit of the
natural frequency data. The physical significance
of a is that it is the decay parameter in the
longitudinal normal stress. The effect of a on
the mode shape is shown in Figs. 3 and 4. As a
increases, the beam becomes stiffer giving a mode
shape closer to the unslotted mode shape.

The effect of a on the natural frequency was also
significant as might be expected. The natural
frequency is shown as a function of slot depth in
Figs. 5 and 6. In each case, the ratio of natural
frequency to unslotted natural frequency is shown.
The correlation between theory and experiment is
acceptable in each case but is significantly
better in Fig. 6. This results fram allowing a to
increase with increasing slot depth. Thus, the
assumed mode shape function is probably not the
best candidate. A more accurate description of
the stress field would provide an improved shape
function which would not require adjustment of
parameters with slot depth. However, until such a
mode shape function is derived, the current shape
function gives very acceptable results.

The natural frequency is seen from Figs. 5 and 6
to roll off smoothly with increasing slot depth.
The reduction is natural frequency being nearly
30% when the slot depth reaches 62.5% of the beam
depth.

The change in damping (apparent mass) with slot
depth is shown in Fig. 7. The damping reamains
nearly constant from the unslotted state to a slot
depth of half of the beam depth, with variations
in this region due to measurement noise. On
increasing the slot depth to 62.5% of the beam
depth, the damping increased significantly. Thus,
the damping measurement does not seem to be
sensitive tothistypeofdam,g‘eunlessthedamge
is quite severe.

'OONCLUSIONS

1. The theoretical development leads to a
reasonable equation of motion, and good
comparisons with test data may be obtained if
a is allowed to vary with slot depth.



2. 'mecha.ngeinna.tural frequency is a more
sensitive indicator of slots in a beam in

bending than is the change in damping.
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