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Experiments inves t iga t ing  the thermal and 
hydraul ic performance o f  a sieve t r a y  d i r e c t  
contagt heat exchanger (DCHX) were conducted using 
a 275 geothermal f l u i d  as an energy source and 
d i f f e r e n t  hydrocarbons as working f lu ids.  The 
basel ine performance tes ts  w i th  the d i r e c t  contact 
u n i t  were conducted w i th  isobutane. The thermal 
per fohance o f  the u n i t  met o r  exceeded the design 
goals f o r  ind iv idua l  t r a y  thermal e f f i c i enc ies  and 
pinch points. Hydrau l i ca l l y  the column operated 
near recommended design f l u i d  veloci t ies.  Follow- 
ing  the completion o f  these tests, the DCHX was 
operated w i t h  d i f f e r e n t  mixtures o f  hydrocarbon 
working f l u ids .  D i f f e ren t  combinations o f  the 
isobutanelhexane fami ly  were tested fol lowed by a 
ser ies w i t h  propane/isopentane f l u ids .  The tes t i ng  
conducted w i th  the d i r e c t  contact u n i t  showed t h a t  
the sieve t ray  column i s  a very e f f i c i e n t  heat 
exchange device although some degradation i n  b o i l -  
i ng  t r a y  e f f i c i ency  and column throughput were 
noted when mixtures were used. 

INTRODUCTION 

As p a r t  o f  the Department o f  Energy's 
Geothermal Conversion Technology e f fo r t ,  a special- 
l y  designed sieve t r a y  d i r e c t  contact heat ex- 
changer (DCHX) was tested w i th  the 60kW Heat Cycle 
Research F a c i l i t y  a t  the Idaho National Engineering 
Laboratory (INEL) Raft River geothermal t e s t  s i t e  
located i n  southern Idaho. 
Research F a c i l i t y  i s  used t o  t e s t  d i f f e ren t  compo- 
nents and/or concepts associated w i t h  the genera- 
t i o n  o f  e l e c t r i c a l  power from binary geothermal 
power cycles. This work was supported by the 
U. S. Department o f  Energy, Deputy Assistant 
Secretary f o r  Renewable Energy, Geothermal and 
Hydropower Div is ion,  Contract No. DE-AC07-761DO- 
1570. 

The purpose o f  the tes t i ng  o f  the DCHX with 
the f a c i l i t y  was t o  evaluate the thermal and hy- 
d rau l i c  performance o f  a sieve t r a y  d i r e c t  con- 
t a c t  heat exchanger i n  a geothermal appl icat ion.  
I n  t h i s  t y p e o f  heat exchanger there are no physi- 
cai boundaries such as a tube wa l l  separating the 
f l u ids .  This type o f  heat exchange device has 
s i g n i f i c a n t  po ten t ia l  when the br ines being used 
have high leve ls  o f  dissolved so l ids  and are prone 
t o  cause sca l ing  and corrosion o f  heat exchange 

The Heat Cycle 

surfaces. Although some previous tes t i ng  has been 
done w i th  sieve t ray  d i r e c t  contact heat exchang- 
ers, t h i s  i s  the la rges t  column tested i n  geother- 
mal appl icat ions, and t h i s  e f f o r t  included tes t i ng  
o f  mixed hydrocarbon f l u ids .  Mixtures do no t  b o i l  
a t  a constant temperature f o r  a f i x e d  column 
pressure, and t h e i r  use can p o t e n t i a l l y  decrease 
the cycle i r r e v e r s i b i l i t y  and improve performance 
i f  the countercurrent f low path can be maintained 
i n  the column. 
are thought t o  help i n  t h i s  respect and al low for 
the use o f  working f l u i d  mixtures i n  d i r e c t  con- 
t a c t  appl icat ions. 

F a c i l i t y  and Component Descr ipt ion 

The 60kW Heat Cycle Research F a c i l i t y  i s  a 
small-scale geothermal binary power p lan t  which i s  
s im i l a r  to f u l l - s c a l e  plants i n  most aspects except 
size. Because i t  i s  a research f a c i l i t y ,  i t  has 
been b u i l t  w i t h  the f l e x i b i l i t y  t o  operate i n  
d i f f e r e n t  conf igurat ions u t i l i z i n g  various compo- 
nents; the basic p lan t  cycle, though, remains the 
same. A f low schematic o f  the f a c i l i t y  w i t h  the 
p r i n c i p l e  power cycle components i s  depicted i n  
Figure 1. 
from the geothermal f l u i d  i s  t ransferred t o  a 
hydrocarbon working f l u i d  i n  the DCHX column. 
Since the two f l u i d s  are phys ica l l y  i n  contact 
w i th  each other, i t  i s  necessary t o  boost both 
f l u i d s  to the DCHX operating pressure using a 
geothermal f l u i d  boost pump and the working f l u i d  
boost and feed pumps. The geothermal f l u i d  enters 
the column a t  the top and flows ou t  the bottom 
preheating and vaporizing the working f l u i d  which 
enters the bottom o f  the column as a l i q u i d  and 
leaves near the top as a vapor. The e f f l u e n t  
geothermal f l u i d  i s  then discharged t o  a holding 
pond p r i o r  t o  re in jec t ion .  The working f l u i d  vapor 
leaving the DCHX can be expanded through a tu rb ine  
which dr ives a generator o r  through a turbine by- 
pass valve which drops the pressures o f  the vapor 
p r i o r  to i t s  enter ing the condenser. (The tu rb ine  
was no t  used during the DCHX operation as i t  would 
have required mod i f i ca t ion  t o  match the DCHX vapor 
flows.) 
i s  desuperheated and condensed, and the condensate 
i s  pumped back i n t o  the DCHX f o r  another heat 
exchange cycle. 
noncondensable gases dissolved i n  the geothermal 
f l u i d  on the cycle performance ( p a r t i c u l a r l y  the 

The trays i n  the sieve t r a y  column 

For the d i r e c t  contact tests,  the energy 

I n  the condenser the working f l u i d  vapor 

I n  order t o  reduce the e f f e c t  of 

condenser), the fa  
geothermal p re f las  
from the geotherma 

i l i t y  i s  equipped w i th  a- 
e r  t o  remove noncondensables 
f l u i d  before i t  enters the 
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cycle, and a secondary vent condenser which m i n i -  
mizes working f lu id  losses when noncondensables 
gases are vented f m  the working fluid system. 
If  measures are not taken to remove and/or minimize 
effects of the noncondensable gases, these gases 
accumulate i n  the condenser adding the i r  partial  
pressure t o  the condensing pressure and i n h i b i t  the 
condensation process; the net resu l t  being h ighe r  
condenser pressures. 

The d i rec t  contact heat exchanger tested i n  
the Heat Cycle Research Facil i ty is  a sieve tray 
or perforated plate column designed and b u i l t  fo r  
this application by the Wahl Company of Claremont, 
California.. T h i s  column which i s  approximately 
1 f t  in diameter and 19 f t  long is  schematically 
shown i n  Figure 2. The column is a vertical u n i t  
containing 20 trays and downcomers which provide 
for the ordered passage of flow through the column. 
In th i s  application the l igh ter  working fluid is 
dispersed as drops from the holes or perforations 
in each plate. 
heavier geothermal f lu id  because of the buoyancy 
force on the drop, and co l lec t  and coalesce under 
the next t ray  and vessel wall. T h i s  process of 
drop forming and coalescing is  repeated a t  each 
tray as the working f lu id  moves up the column, 
heating as i t  r i s e s  through the geothermal f lu id .  
The heavier geothermal f lu id  flows,as the con- 
tinuous medium horizontally across each plate 
transferring heat t o  the working fluid,  and then 
passes down to  the next plate through a disengage- 
ment space formed by the downcomer on each plate. 
As indicated in Figure 2 ,  the geothermal f lu id  
temperature is measured i n  the downcomer regions a t  
various locations as the f lu id  flows through the 
heat exchanger. Working f lu id  temperatures a re  
measured a t  selected locations beneath the plates 
where the f lu id  has coalesced. 

These drops r i s e  through the 

u 

t 

spaced a t  6-inch intervals and have 3-inch long 
downcomers. The next two trays,  i . e . ,  18 and 19, 
make up  the boiling section where the working 
fluid is vaporized. The perforations i n  a l l  of 
the trays,  o r  plates,  have a diameter of 1/8-inch. 
The upper tray,  number 20, is  a drawoff tray not 
used i n  this testing. 

Discussion of Thermal and Hydraulic Performance 

The primary emphasis i n  baseline t e s t s  with 
the isobutane working fluid was on the thermal 
performance of the preheating trays. The main 
indicator of the performance of these trays i s  the 
thermal tray efficiency which is a measure of how 
ef f ic ien t ly  heat is transferred dur ing  the contact- 
ing of the fluids.  There are more than one specif- 
i c  definit ion of tray efficiency, the simplest 
being the "overall" efficiency which is the ra t io  
of the number of ideal trays required to  exchange 
the thermal energy to the number of actual trays 
required to transfer the same amount o f  energy. 
an ideal tray the working fluid would leave a t  the 
same temperature as the geothermal f lu id .  This 
efficienc term is similar t o  the one proposed by 
Sheinbaumfz) for d i rec t  contact heat exchangers , 
and is a comnon term used in d i rec t  contact columns 
used for  mass transfer(3) - 
can be found graphically from the construction of 

In 

The overall efficiency 

-1.I 
Fig. 1: 60 KW Heat Cycle Research Facil i ty 

The lower 17 trays of the column comprise the 
preheating section where the working f lu id  is  heat- 
ed u p  to the saturation temperature corresponding 
to the column operating pressure. These trays are F i g .  2: Direct Contact 

Heat Exchanger 
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temperature-heat exchanged (TQ) p lo ts  f o r  the two 
f l u i d s  involved i n  the heat t rans fer  process. A 
second d e f i n i t i o n  o f  t r a y  e f f i c i ency  t h a t  can be 
used i s  a more loca l  term invo lv ing  the condit ions 
f o r  an ind iv idua l  tray. It can be expressed as 
the actual heat t ransferred t o  the theore t ica l  heat 
t ransferred i n  an ideal  tray. I n  evaluating the 
resu l t s  from the d i r e c t  contact t es t i ng  both o f  
these e f f i c iency  d e f i n i t i o n s  were used. The i n d i -  
vidual t r a y  e f f i c i e n c y  was used p r imar i l y  i n  the 
base1 ine  tes ts  were the analysis procedure and 
f l u i d  propert ies were incorporated i n t o  a computer 
program f o r  data reduction. When mixtures were 
evaluated, the overa l l  e f f i c i ency  term was used 
because o f  lack  o f  the time and resources required 
to  modify the programs f o r  the mixtures propert ies. 

Another i nd i ca to r  o f  the column thermal per- 
formance i s  the pinch po in t  o r  minimum approach 
temperature between the two f l u i d s .  
ac tua l l y  r e f l e c t s  the t r a y  e f f i c i ency  and the 
number o f  t rays  ava i lab le  f o r  heat t ransfer.  I f 
the t ray  e f f i c i e n c y  i s  h igh and the column has a 
s u f f i c i e n t  number o f  t rays  f o r  b o i l i n g  and preheat- 
ing, then the DCHX should be able t o  achieve small 
pinch points. The volumetric heat t rans fer  co- 
e f f i c i e n t s  were also evaluated; however, the 
d i f f i c u l t y  i n  de f in ing  the volumes i n  which heat 
t rans fer  occurs makes t h i s  value hard t o  compare 
f o r  d i f f e r e n t  heaters. 

extent a f fec ted  by the column hydraul ics, i.e., 
smaller drops heat up a t  a fas te r  r a t e  than la rge r  
drops. Any e f f o r t  t o  reduce the drop size must be 
tempered by the increase i n  mass t rans fer  and the 
increase i n  the po ten t ia l  f o r  the drops formed t o  
be swept along, i.e., car r ied  under, w i th  the 
geothermal f l u i d .  The ve loc i t y  a t  which the drops 
r ises,  o r  terminal veloci ty,  i s  approximately 
proport lonal  t o  the square roo t  o f  the drop dia- 
meter; thus, smaller drops r i s e  more slowly i n  
the column. I f  the ve loc i t y  o f  the continuous 
f l u i d  (geothermal f l u i d )  exceeds the terminal ve- 
l o c i t y  o f  the drop, then the drop w i l l  be swept 
along i n  the continuous f l u i d  stream, or mechan- 
i c a l l y  entrained. This terminal ve loc i t y  and the 
minimum f low area f o r  the continuous f l u i d  (usua l ly  
the downcomer region), es tab l i sh  the maximum geo- 
thermal f l u i d  f low r a t e  through the column. 

The pred ic t ion  o f  the terminal r i s e  ve loc i t y  
o f  a drop i s  usua l ly  based on a known drop diameter 
and the assumption t h a t  a drop behaves as a s o l i d  
sphere as i t  rises. 
formation process i n  l i q u i d - l i q u i d  systems have 
noted t h a t  t h i s  assumption i s  v a l i d  up t o  a ce r ta in  
drop diameter a f t e r  which the terminal ve loc i t y  no 
longer increases and may, i n  some cases, decrea 
A co r re la t i on  was developed by Treybal and Kleetgj  
f o r  p red ic t ing  t h i s  terminal ve loc i t y  l i m i t .  For 
the condit ions and f l u i d s  used i n  the basel ine 
tests,  t h i s  upper terminal ve loc i t y  l i m i t  was ap- 
proximately 0.56 f t / s  i n  the preheating section. 
I f  the geothermal f l u i d  ve loc i t y  exceeded t h i s  
value, then any drop formed would be "car r ied  
under" w i th  the geothermal f l u i d  stream. 

This ind ica tor  

The column thermal performance i s  t o  some 

Invest igators o f  the drop 

Although the i n t e n t  o f  the DCHX tes t i ng  was 

not t o  invest igate the d i f f e r e n t  mechanisms o f  drop 
formation, i t  was necessary t o  consider the d i f f e r -  
ent mechanisms i n  i n te rp re t i ng  the operating l i m i t s  
encountered i n  the column. A t  lower o r i f i c e  o r  
hole ve loc i t ies ,  the drops are uniform i n  s ize  and 
break o f f  a t  regular in te rva ls .  As the hole veloc- 
i t y  i s  increased, a po in t  i s  reached where a j e t  
w i l l  form a t  the o r i f i c e  and the drop formation 
mechanism changes. While these drops are not 
necessari ly uniform i n  size, there i s  some consis- 
tency a t  the lower j e t  ve loc i t ies ,  and the average 
drop s ize  can be predicted. As the hole ve loc i t y  
increases, the j e t  length increases, and a po in t  
i s  reached where the average drop s ize  formed i s  a t  
a minimum. 
po in t  i s  re fe r red  t o  as the ve loc i t y  producing the 
maximum i n t e r f a c i a l  area(4) and i s  the recommended 
maximum hole ve loc i t y  t o  be used i n  the design o f  a 
sieve t r a y  DCHX(1). Further increases i n  the hole 
ve loc i t y  produce more i r r e g u l a r i t y  i n  the drop 
formation u n t i l  the j e t  reaches a maximum length 
and begins t o  breakup i n  a random manner, and the 
drops have no un i fo rmi ty  i n  s ize(5).  

I n  mass t rans fer  appl icat ions t h i s  

RESULTS 

Base1 ine  Tests 

The basel ine performance tes t i ng  w i th  the 
d i r e c t  contact heat exchanger consisted o f  b r ing ing  
the column t o  a "flooded" condi t ion over a range o f  
DCHX b o i l i n g  pressures using an isobutane working 
f l u i d .  A "flooded" condi t ion was considered t o  be 
t h a t  po in t  where the carryunder o f  working f l u i d  
and/or the carryover o f  geothermal f l u i d  were 
s u f f i c i e n t  t h a t  column s t a b i l i t y  could no t  be main- 
tained. For a pa r t i cu la r  b o i l i n g  condit ion, the 
f low ra tes  were increased i n  small increments, w i th  
data taken a t  each f low step u n t i l  the column 
flooded. The data co l lec ted  f o r  each tested 
condi t ion a t  the "near flooded" ( j u s t  before 
f looding) condi t ion i s  l i s t e d  i n  Table 1. 

puter program developed f o r  the analysis o f  the 
DCHX thermal performance w i th  an isobutane working 
f lu id .  
temperature p r o f i l e  from measured f low ra tes  and 

The data co l lec ted  was inputted i n t o  a com- 

This program, which generated a predicted 
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fluid temperatures a t  the bottom of the column, 
allowed the individual tray efficiency to be varied 
along w i t h  the mass flow ra t io  and the local tray 
carryunder. 
not have a significant e f fec t  on the results 
obtained unless i t  was made unreasonable large. 
The mass flow ra t io  was varied until the predicted 
column temperature profile matched the experimental 
measurements in the upper portion of the preheating 
section. 
for instrument e r ror  or oscil lations i n  the column 
in order to obtain consistent heat balances. After 
the mass flow ra t io  was corrected, the individual 
tray efficiency was varied u n t i l  the predicted and 
measured column temperature profiles i n  the pre- 
heater section matched. Although i t  was possible 
to vary the individual tray efficiency from tray to 
tray, i t  was found tha t  satisfactory results could 
be obtained i f  the individual tray efficiency was 
held constant throughout the preheating section. 
An example of the matching of the predicted and 
measured temperature profiles is shown in Figure 3 
for one of the baseline t e s t  conditions. For this 
particular run  1 i t t l e  correction was required for  
instrument error,  and a t  an individual tray e f f i -  
ciency of 74 percent the best match was found 
between predicted and measured temperature pro- 
f i l e s .  T h i s  temperature profile also graphically 
demonstrates the small pinch points that  were 
obtained during the DCHX operation. 

In general, the carryunder term d i d  

This adjustment was made to compensate 

Fig. 3: DCHX Temperature Profile 

The DCHX thermal performance for  the baseline 
t e s t  runs i s  also sumnarized in Table 1. The  i n -  
dividual t ray  efficiencies are given fo r  the pre- 
heating section, along w i t h  the pinch point, heat 
loads, and volumetric heat transfer coefficients. 
Although i t  is d i f f i cu l t  to identify any trends i n  
the preheating tray efficiency, i t  is  significant 
that  the efficiencies obtained (except i n  t e s t  run 
1 which was not brought t o  flooding) were equal to 
or exceeded the design value of 70 percent. Boil- 
i n g  tray efficiencies were calculated using a 
combination of temperature measurements and pre- 
dicted enthalpy changes. Given the uncertainty 
i n  measuring accurately an intermediate geothermal 
fluid temperature between boiling trays,  any 
significance of apparent trends i n  boiling tray 
efficiencies i s  questionable and the only s igni f i -  
cant conclusion is  that the boiling trays had 

sufficient capacity for  the conditions tested. 

The pinch. p o i n t s  for t e s t s  conducted were 
small, much smaller than could be accurately 
measured w i t h  the instrumentation available. In 
matching the preheating section temperature profile 
pinch points ranging from 0.02kF to 0.30kF were 
obtained. These pinch points increased as the 
heat load fo r  the column increased and i t  would 
appear from those results that  the pinch point 
is more sensit ive to  the heat load i n  the boiling 
section than tha t  i n  the preheating section ( the  
largest  pinch point obtained occurred a t  the lowest 
preheating heat load). 

The volumetric heat transfer coefficients (Uv)  
were defined u s i n g  the heat transfer that  occurred 
i n  these sections, the total  volume where heat 
transfer could have occurred, and the log mean 
temperature difference. The log mean temperature 
differences were determined using the pinch point 
obtained i n  matching the preheating section temp- 
erature profiles. The preheating section volume 
was defined as the volume of the column from the 
top of plate 1 to the bottom of plate 18, less  the 
volume of the downcomers. The  boiling section 
volume was defined as the volume i n  the column 
from the top of plate 18 to  the bottom of the 
demister. The bottom of the demister was selected, 
as this represents the upper l imi t  as f a r  as the 
thickness of the boiling region is  concerned. 
the boiling occurred a t  a level above the demister, 
excessive carryover of water could occur and the 
column would be unstable.) Perhaps the most 
significant observation one m i g h t  make from these 
heat transfer coefficients i s  tha t  the Uv values 
for  the preheating section are relatively constant 
(reflecting the fac t  tha t  the preheating occurs 
over a f a i r ly  well defined region). 

( I f  

From a hydraulic standpoint, the DCHX op rated 
near the recomnended working f lu id  flow rates 'i 1 )  
which corresponds to the plate o r i f i ce  velocit ies 
tha t  produce the average drop s ize  a t  the maximum 
interfacial  area. 
through the plate or i f ices  varied from 0.69 to 
0.98 f t / s .  These velocit ies generally matched o r  
were s l igh t ly  h ighe r  than the velocit ies predicted 
to produce the maximum interfacial  area throughout 
the preheating section w i t h  the exception of plate 
17. The upper preheating tray (number 17) was 
designed to  also serve as a drawoff tray allowing 
working f lu id  near the saturation temperature to 
be removed from the column. 
this, the hole area i n  this plate was reduced by 
about 60 percent. T h i s  reduced area producing 
o r i f i ce  velocit ies ranging from 1 .!l to 2.03 f t / s .  
For those runs which approached a flooded" condi- 
tion, this velocity exceeded tha t  predicted to 
produce the maximum j e t  length. (corresponds to 
irregular j e t  breakup and a lack o f  uniformity i n  
drop  formation). I t  is  not known whether the 
hydraulic working f lu id  limits i n  these t e s t s  were 
imposed by the operation a t  the velocity producing 
the maximum interfacial  area i n  the lower portion 
of the preheating section, or  i f  they were imposed 
by the irregular breakup of the o r i f i ce  j e t  i n  
plate 17 with the formation of a number of very 

The working f lu id  velocit ies 

In order t o  accomplish 
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small drops. 

t a c t  device, the sieve t r a y  column i s  reputed t o  
have a thermal advantage, b u t  i s  sa id  t o  have a 
lower mass throughput capacity than a spray tower 
o f  s i m i l a r  dimensions(1). 
put  capacity r e l a t i v e  t o  spray towers, the super- 
f i c i a l  v e l o c i t i e s  o f  the sieve t r a y  DCHX i n  the 
basel ine tes ts  w i t h  isobutane were compared t o  
those o f  the DSS column(6) and the 500kW column(7) 
both o f  which are spray tower un i ts .  
son, shown graph ica l l y  i n  Figure 4, i s  somewhat 
inconclusive. The throughput o f  the sieve t r a y  
OCHX coqpares favorably w i t h  the r e l a t i v e  capacity 
o f  the BOOkW spray tower, however, t h i s  spray 
tower was never brought t o  a "flooded" condi t ion 
so t h a t ' a n  increment i n  capacity performance could 
be estimated. A comparison w i t h  the high tempera- 
tu re  cyc le  t e s t  performance o f  the DSS spray tower 
ind icates the sieve t r a y  DCHX had a throughput ad- 
vantage. When compared t o  the low temperature 
cycle t e s t  performance o f  the DSS un i t ,  the spray 
tower had an advantage. This  po in t  represents the 
probable operating l i m i t  f o r  the DSS column and 
ind icates t h a t  the spray column has, as reputed, 
a throughput advantage over the sieve t r a y  column. 

I n  comparing spray and sieve t r a y  d i r e c t  con- 

To compare the through- 

This compari- 

0 
3 LL 

z J  e 
2 
9 

Fig. 4: DCHX Throughput Comparison 

Mixed Working F lu ids 

Following the completion o f  the basel ine tes ts  
w i t h  isobutane, the second sequence o f  t e s t s  was 
conducted w i t h  working f l u i d s  consis t ing o f  d i f f e r -  
ent mi.xtures o f  hydrocarbons. 
tested was a 0.95 isobutane/0.05 hexane (mass 
f rac t ion)  followed by 0.90 iC4/O.lOC6 and 0.85 iC4/ 
0.15 C6. The p l a n t  was then drained and f i l l e d  
w i th  propane which was tested b r i e f l y  t o  get  a 
reference data point. Isopentane was then added t o  
the p lan t  working f l u i d  system and the mixture 
adjusted t o  a 0.95 C3/0.05 i C  composition. A f t e r  
tes t ing  t h i s  mixture, 0.90 C37D.lO iC5 and 0.85 
C3/O.10 iC5 f l u i d s  were tested. 

The mixture tes ts  showed t h a t  these hydro- 
carbon mixtures could be preheated and vaporized i n  

The f i r s t  f l u i d  

a sieve t r a y  DCHX. The thermal performance o f  the 
column, i n  terms of the minimum approach tempera- 
tu re  o r  pinch po in t  obtained, w i t h  mixtures was no t  
a t  the same leve l  as w i t h  the isobutane working 
f l u i d .  This does not  mean t h a t  the thermal per for -  
mance w i t h  mixtures was poor as pinch points  from 
0.3% t o  2.3%F were obtained ( the  h igher  pinch po in t  
corresponded t o  those mixtures having the highest 
concentration o f  the minor component). I t  merely 
accentuates the l eve l  o f  thermal performance ob- 
ta ined i n  the basel ine tes ts  w i t h  isobutane. 

t r a y  e f f i c i e n c y  i n  the mixtures t e s t s  was n o t  done 
w i t h  the computer program developed f o r  the base- 
l i n e  tests .  I n  these cases the overa l l  e f f i c i e n -  
c ies were determined using column T-Q p l o t s  f o r  
each se t  o f  conditions. An example o f  one o f  these 
T-Q p l o t s  and the determination o f  the overa l l  t r a y  
e f f i c i e n c y  i s  shown i n  Figure 5 f o r  a 90% iC4, 10% 
c6 mixture. 
p a r t i c u l a r  f l u i d  reached i t s  "bubble po in t "  (where 
the f i r s t  bubble formed) wel l  w i t h i n  the preheating 
section o f  trays. (These mixtures do no t  b o i l  a t  a 
constant temperatures f o r  a f i x e d  column pressure. 1 
I n  fact ,  the upper 8 o f  the 17 preheating t rays  
were being used f o r  bo i l ing .  
a l l  the working f l u i d  mixtures tested, the r e s u l t s  
o f  which are sumnarized i n  Table 2. These r e s u l t s  
which a lso include corresponding r e s u l t s  f o r  the 
pure f l u i d s  tests, show the t rend o f  the number o f  
t rays requi red f o r  b o i l i n g  increasing as the con- 
centrat ion o f  the minor component was increased. 
This  occurred f o r  both fami l ies  o f  mixtures tested. 
These r e s u l t s  a lso show t h a t  the overa l l  preheating 
t r a y  e f f i c i e n c y  appears t o  be q u i t e  independent o f  
the f l u i d  used, b u t  f o r  the t rays i n  which b o i l i n g  
occurred, the overa l l  t r a y  e f f i c i e n c i e s  were n o t  as 
h igh with mixtures as they were f o r  isobutane. 
When the preheating t rays  were used f o r  b o i l i n g ,  
t h e i r  e f f i c i e n c i e s  were lower than when used f o r  
preheating, and were lower than the e f f i c i e n c i e s  o f  
the t rays designed f o r  b o i l i n g .  

As ind icated previously, the evaluation o f  the 

This f i g u r e  a lso shows t h a t  t h i s  

This was t y p i c a l  o f  

l 
1 I 

-ea -2130 * 
HEAT T W W ,  &+ F H ! , W l b  

Fig. 5: Mix ture T-Q P l o t  

I n  the mixture tests, the throughput capacity 
o f  the sieve t r a y  column was reduced considerably. 
As the concentration o f  the minor component i n  the 
mixture increased, the maximum throughput f o r  the 
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TABLE 2: DCHX PERFMWAWE FOR MIXTURES 

F l a  Rate Tray Efficiency 
(Ibnlhr) x 

Number of 
Preheat Boiling Trays Trays with 

York F l n ,  Geofluid (Overall) (Overal l )  18. 19 Boil ing ------ 
Outlet 

Test C o l u n  Pressure W T ~ r a t u r e  
Run Yorking Fluid (pr ia )  F 

1 Irobutane (IC41 446 2 50 
2 Isobutane (IC41 365 231 
3 Isobutane (IC41 329 221 
4 Irobutane (IC4) 294 211 
5 Isabutane (ICg) 236 190 
6 Isabutant (IC41 146 151 

3636 17605 33 -- 100.98 2 
6282 15537 49 -- 99.98 2 
6984 14354 54 -- 100.98 2 
7569 13334 55 -. 1 w  1 
8325 12136 55 -- 99 1 
8887 96% 55 -- 90.99 2 

nxi 0.95 ICJO.OS c6 222 202 5220 mzu 60 50(18+19) 3 

MX6 0.95 IC410.10 C6 247 225 3110 5860 46 21 4 ( 1 8 + 1 9 )  10 
nx4 0.95 1 ~ 4 1 0 . 1 0  c g  1% M8 3190 4WO 62 

MX7 0.85 ICJ0.15 C6 166 204 2m 3730 47 23 52(18+19) 12 

PRP 6 Propane (C3) 484 182 1600 4750 82 -- 98(18+19) 2 

MXl4 0.90 C310.10 IC5 393 183 2370 2800 50 26 8 
M X l l  0.95 W 0 . 0 5  IC5 439 186 4360 4690 66 45 54(!8+19) 4 

Vould  not determine because of local t m e r a t u r e  tncom 

column decreased. The hydraul ic  l i m i t  i n  the mix- 
tu re  t e s t s  i s  thought t o  be imposed by the section 
o f  the column doing the b o i l i n g  since the through- 
pu t  o f  the column appears t o  vary inverse ly  w i t h  
the number o f  preheating t rays  i n  which b o i l i n g  
occurs. These t rays  are n o t  designed f o r  handling 
la rge  quant i t ies  o f  vapor flow; they are c lose ly  
spaced a d have r e l a t i v e l y  shor t  downcomers leav ing 
l i t t l e  ,lace f o r  the b o i l i n g  t o  occur. The en- 
trainment o f  l i q u i d  b r i n e  i n  the vapor, "weeping" 
o f  b r i n e  through the p l a t e  perforat ions, and the 
"ventingl' o f  working f l u i d  up the downcomer are 
suspected o f  con t r ibu t ing  to, i f  n o t  causing, the 
breakdowh o f  the column hydraul ics  when b o i l i n g  
occurs i h  the preheating trays. 

I CONCLUSIONS 
I 

 the^ sieve t r a y  d i r e c t  contact heat exchanger 
tes ts  confirmed t h a t  t h i s  type o f  column i s  an 
excel lenp heat exchange device p a r t i c u l a r l y  when a 
s ing le  cbmponent working f l u i d  was used. The 
thermal performance o f  the preheating t rays  
appeared t o  be independent o f  the type o f  working 
f l u i d  used provided the f low ra tes  were above 
c e r t a i n  Fevels. The ind iv idua l  t r a y  e f f i c i e n c i e s  
fo r  these t rays  were a t  o r  near the design goal o f  
70 percept a t  the h igher  flows, and the overa l l  
e f f i c i e n c i e s  were genera l ly  around 50 percent f o r  
both pure f l u i d s  and mixtures. 
obtained w i t h  the sieve t r a y  column were small, 
p a r t i c u l a r l y  i n  the basel ine tes ts  wi th isobutane 
where pinch points  o f  0.3OF and less  were obtained. 
I n  the mixtures t e s t s  the pinch points  were higher 
although they were s t i l l  less than 2.3'F. The 
e f f i c i e n c i e s  o f  the t rays  used f o r  b o i l i n g  were 
no t  as h igh w i t h  mixtures as they were with isobu- 
tane. For a l l  the pure f l u i d s  tests, two b o i l i n g  
t rays were more than adequate for  the b o i l i n g  heat 
duty. This was n o t  the case wi th mixtures, and as 
the concentrat ion o f  the minor component increased, 
the number o f  t rays designed f o r  preheating but 
required t o  do b o i l i n g  a lso increased. 

I n  the basel ine t e s t s  the column was operable 
a t  the working f l u i d  f low ra tes  predicted t o  pro- 
duce the maximum i n t e r f a c i a l  d rop le t  area (minimum 
average drop s ize)  from the sieve p la te  o r i f i c e s  
(the recommended operating po in t  f o r  t h i s  type o f  

The pinch points  

i istmcics.  

column). The geothermal f l u i d  f low ra tes  encoun- 
tered i n  the basel ine tes ts  corresponded t o  the 
terminal v e l o c i t y  o f  a drop w i t h  a diameter o f  
1-32 inch (a c o m n  droplet  s ize  used f o r  specify- 
i n g  the continuous f l u i d  v e l o c i t y  i n  these types o f  
columns). 
dropped considerably. 
decrease i s  f e l t  t o  be the r e s u l t  o f  b o i l i n g  i n  the 
upper preheating t rays  which were no t  designed f o r  
t h i s  type o f  duty. When compared t o  spray tower 
d i r e c t  contact columns, the sieve t r a y  compares 
favorably though the spray towers appear t o  have 
a throughput advantage. 

I n  the mixtures tes ts  the throughputs 
The primary cause f o r  t h i s  
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