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Abstract

A numerical scheme has been developed for determining the global static bifurcation char­
acteristics of a nonlinear system. Based on the desirable properties of equilibrium solution 

surfaces in certain coordinate systems, its utility also extends to the task of classifying the 
different multiplicity patterns found in the remaining parameter space. An outline of the 

numerical technique and a discussion of its inherent parallelizability will be presented in 
this paper.
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Introduction

In the analysis of nonlinear systems, one may wish to present the description of the system’s 

equilibrium behavior in the form of plots of the value of a distinguished state variable as 

a function of a distinguished parameter. Called bifurcation plots, their construction poses 

large computational problems in the case of nonlinear systems described by a large vector 

of equations. Some of the more subtle problems (as opposed to the more obvious compute­
intensive ones) include isolated solution branches—segments of the equilibrium solution arc 

which make the 2-dimensional continuation schemes used for speed difficult to automate. 

Other issues that must be addressed involve the qualitative changes in bifurcation behavior 
that occur in the remaining parameter space and the lack of multivariate numerical schemes 

useful in the study of this phenomenon.

A FORTRAN bifurcation analysis package has been developed by the authors that does 

both bifucation diagram construction and the numerical singularity analysis used in classi­
fying the different multiplicity patterns exhibited by an arbitrarily large nonlinear system 

in a user-selectable parameter plane. The numerical schemes developed take full advantage 

of the desirable behavior of static equilibrium solution surfaces residing in spaces chosen 
with cognizance of the Nice Hypersurface Theory. We will not present a detailed exposi­

tion of this theory as that discussion has been directed to another outlet (Adomaitis and 

Qinax, 1988).

This paper will focus on the development of the bifurcation analysis code with em­

phasis on parallel processing and how well it meshes with our numerical techniques. It will 
begin with a prerequisite introduction to singularity theory by way of a simple example 

followed by an outline of the numerical scheme developed for finding singular sets on a 

solution manifold. The features of the technique that make the emulating code a sim­

ple target for parallelization will be discussed along with its natural extension to solution 

manifold construction. An application of BIFF, the bifurcation analysis package, to the 

analysis of a tubular laboratory-scale chemical reactor will conclude this paper.

Nice Solution Surfaces

As was mentioned in the introduction, both the construction of bifurcation diagrams and 

the task of classifying the different bifurcation behaviors benefit by an understanding of
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static equilibrium solution surfaces in appropriate (state; parameter)-spaces. Consider now 

such a surface in (u; <f>, ?/>)-space (Figure 1) and the implications of the following theorem:

Theorem (The definition of a nice space). Given the set where u is the dis­

tinguished state variable, (j> is the distinguished (bifuration) parameter, and <f> £ Se\J Sne, 

the equilibrium solution manifold in ■ ■ ■, V’n)-space is unique and well-behaved

when ifti (E <Se where i = 1,2,... ,n.

Proof. The proof of the above theorem is actually more of a definition since the <S-sets 

need to be defined:

See= The set of parameters of a nonlinear system whose members consist of parameters 
that can be expressed explicitly as functions of the remaining parameters and 

state variables.

Sie= The set of parameters of the same system that are implicitly extractable. In other 

words,
dx

Sne n Sie = 0 and if V’ e Sie, 7^ 0dip

over the relevant ranges of the states and parameters, where x is any state or 

parameter.

Se= Sie U See

Sne= The set of parameters that are neither explicitly nor implicitly extractable.

So we see that the uniqueness of nice surfaces is assured by their definition. The well- 

behavedness of the solution manifold stems from the continuous nature of most physical 

models and can be proven by the implicit function theorem. []

The theorem’s utility should not be assumed to be proportional to its simplicity: for 

example, in all of the nonadiabatic chemical reactors studied by the authors to this time, 

Vin (the reactant stream feed temperature) € Se. Thus, when the creation of bifurcation 

plots in the (effluent reactant concentration, feed flowrate)-planet is the task at hand, the 

construction of the solution manifold in (u',Q,Vin)-space guarantees the elucidation of all

f The feed flowrate Q in nonadiabatic reactors is generally an «Sne-parameter, hence, 

the troublesome isolated solution branches.
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Figure 1. An equilibrium solution manifold in a nice space.
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Figure 2. The appearance of an isolated solution branch. The singularity occurs at 5 = 0.
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static equilibrium solutions. As will be illustrated in the next section, a second benefit 

of thinking in terms of solution manifolds is enjoyed in a numerical singularity analysis 

scheme used for classifying bifucation behaviors.

Singularity Theory

To introduce the singularity theory and some of the properties of universal unfoldings in 
nice spaces, consider an example of an isolated solution branch in the bifurcation diagram 

plane. If one observes the behavior of the isola as another parameter is varied, one would 

find a unique value of this secondary parameter at which the isola disappears (see Figure 2). 
It is easy to envision the general shape of the solution manifold that would give rise to 

such behavior: a smooth surface with a local minimum defining the point of disappearance. 

This geometrical information can be taken advantage of in the development of a numerical 

scheme for finding these points since it can be formally proven that the neighborhood of 
any singular point has generic characteristics particular to that type of singularity. For 

example, the manifold surrounding the isola center singularity on an arbitrary solution 

surface [defined by the scalar equation g(u\ Q, v,n) = 0 where u,n G <Se] in the neighborhood 
of the singular point (u*; Q*,v*n) satisfies

g(u; Q, vin) = S(u; Q, vin)G(x-, A, S)

where

U = U-U* Q = Q-Q* Vin = Vin- V*n

5^0, and in the case of the isola center singularity,

G(x; \,6) = x2 + \2 - 6 = 0

where the following diffeomorphisms,

x = E(u; Q) A = A(Q) 8 = A(uj„)

are defined by the singularity theory (Golubitsky and Schaeffer, 1985).

Because the singular point satisfies x = 0, A = 0, and therefore <5 = 0, the conditions

36 _
dx d\
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are also satisfied. With this and the arguments of the diffeomorphisms in mind, we find

dA dvin dA „ d=L= 2A—+ 2x — 
dv%ji uQ dQ uQ

and
dA dvin _ d£ 
duin 3u du

Thus, the singular point (u*, Q*) can be determined by iterating on the following Newto­

nian convergence schemes:

i/+l v ( v j/—1\ dvin (u )
U ^ = U — [U — U ) -------t--------

V ' OU
dvin (uv) dvjn (uv *) 

du du

and as dvin/du —► 0 (obtained by iterating on the above) or by using the points (ujQ") 

and (u, Q1'-1),

0"+1 fO" — Ol,~1) ^Vin (Q1'} dvjn (QV) _ dvin (Q 1)
V w ^ ^ ) dQ l dQ dQ

where u denotes the iterate number.

The moral of the story is that differential information computed on the solution surface 

can be used as a guide in finding singular sets. Furthermore, if one begins with a reasonable 
estimate of the singularity’s location, the convergence of our algorithm to the singular point 

is guaranteed.

Computation of Manifold Gradients

In each orthogonal step of the Newtonian convergence scheme, the value of the gradient 

of Vin with respect to one of the axes of the bifurcation parameter plane is required at 

two different points on the manifold. The simplest means of computing these values is by 

finite-difference using the cross-shaped set of points illustrated in Figure 3 (b+-l- is used 

in determining the hysteresis singularity, the other codimension-1 singularity). From this 

set of points, the second derivatives with respect to u and Q can also be computed. These 

are useful in identifying the singularity captured, for if both derivatives are of the same 

sign the isola center singularity has been found; if not, the simple bifurcation has been 

captured.
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Figure 3. The node net used in finding and identifying codimension-1 singularites.



With the outline of the numerical algorithm at hand finally complete, we can now move 

on to the central issue of this paper—the parallelization of the analysis technique. First, it 

should be noted that many mathematical and numerical details of our analysis scheme have 

changed and continue to change in time, hence, coarse parallelization would make for less 

painful code changes. Combine this requirement with the notion of computing independent 

points on a solution manifold and the obvious parallelization scheme illustrated in Figure 4 

emerges. In the processor activity chart of Figure 4, we see that (for large models) there are 

two computational steps that are much larger that the rest. The first involves determining 

the equilibrium point corresponding to the (uI,+1; Q'/+1) dictated by the singularity analysis 

algorithm). This allows the computation of the satellite points of the node net to then be 

computed via the efficient predictor-corrector arc-length continuation scheme discussed in 
Adomaitis and Qinar (1987). Iterating on this singularity analysis algorithm will produce 

the singular point in short order. After that, the value of a tertiary distinguished parameter 

can be changed by an increment and the singularity analysis scheme is once again set in 

motion.

We note from the processor activity chart that all of the processors do the same thing 

except for the parallelized DO-loop. While other users of the campus mainframe may not 
appreciate this inefficient use of processors that might otherwise be used by those users, it 

does allow for the minimum number of program variables that must be classified a global 

over the processors. Keeping these variables to a minimum helps minimize some of the 

subtle bugs) that arise when using parallelized code on multiple processors.

Determining the benefits of parallelization is an easy task when considering large

f This step and the next consume large amounts of CPU time because they amount to 

several Newton-Raphson iterations on a very large vector of nonlinear algebraic equations.

f One of most sinister of these bugs is encountered when a program variable, say a, is 

defined as global over the processors and the statement

a = a + e where e •< 1

is found in a segment of code run on more than one processor. This will result in a slow 

accumulation of error that may not be noticed until disaster strikes.
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1 iteration on the Newtonian convergence scheme

Figure 4. A flowchart and processor activity chart describing the computational side of the

numerical singularity analysis technique.



models (more than 20, or so, equations). For the isola center and simple bifurcation 

singularity searches, the effective speed-up over sequential code is

compute 5 equilibrium points
-------------  ------ ——:---------:-----= 2.5 times faster
compute 2 equilibrium points

and for the hysteresis singularity search,

compute 6 equilibrium points
-------------  ------——;---------;-----= 3 times faster.
compute 2 equilibrium points

The results of one application of BIFF can be seen in Figure 5 where the classification 

of six bifurcation behaviors is shown in the (uin, U{n)-plane [the (feed CO concentration, 

feed temperature)-plane]. The reactor model describes a tubular packed-bed autothermal 
CO oxidation reactor and consists of 7 PDF’s. Orthogonal collocation on finite elements 

was used to simplify it to slightly more than 100 ODE’s. More details of the reactor model 

and its simplifications can be found in Adomaitis (1988).

Manifold Construction

By providing a classification of the different bifurcation behaviors exhibited by a chemical 

reactor, the values of the selectable remaining parameters can be chosen so that the reactor 

behaves in a desirable way. The remaining task involves the actual bifurcation diagram 

construction, a job which also benefits from nice surfaces and parallelized algorithms.

As shown in Figure 1, the equifibrium solution manifold in a nice space is fairly well- 

behaved. It is easily traced by the continuation scheme discussed in Adomaitis and Qinar 

(1987), but a much faster algorithm is proposed in Figure 6. In this scheme, a zig-zagging 

ribbon of manifold is computed by determining three points at one time along with an 

evaluation of the stability of the system linearized about the center point. This scheme 

takes full advantage of the predictor-corrector arc-length continuation technique since the 

satellite points radiate from a previously determined satellite point (the center point or 

point 1 of Figure 6). Computationally speaking, this scheme is very efficient since not much 

time is spent on redundant calculations, and since the time needed to do the stability check 

is on the same order as the computation of a satellite point, little time is wasted in the 

resynchronization of the programs after the parallelized-DO. All of the bifurcation diagrams 

of Figure 5 were computed by this scheme.
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Figure 5. Continued.
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Figure 5. The classification diagram along with sample bifurcation diagrams illustrating the 

six bifurcation behaviors exhibited by the tubular CO oxidation reactor. Behavior 

VI contains no multiplicities.
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▲

Figure 6. The parallelized manifold construction scheme and its processor activity chart.
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Computational Issues

A 2500 line FORTRAN program named BIFF has been written to do both the manifold 

construction and numerical singularity analysis tasks. The program is set up in a structure 

similar to an ODE solver—the user needs only to change the subroutine that contains the 

model and sections in the main program that pertain to problem-specific I/O demands 

and the like. All of the results presented in this paper have been computed by BIFF. The 

FORCE macros (IITMAX, 1988) make parallelization of the main DO-loop a simple task and 

also makes deparallelization of the code (so that it can be run on a serial machine) likewise 

simple.

The computer used was a six processor Encore Multimax with a Weitek floating-point 

accelerator. Each processor on this machine is capable of 2 MIPS. With a model consisting 
of more than 100 state variables and with all arithmetic done in double precision, a single 

separating line in the classification plane (Figure 5) took roughly 2 hours to compute and 
a manifold can take up to one week. When faced with the prospect of one CPU month 

of time required for the construction of a manifold on a serial machine, the benefits of 

parallel processing make the extra programming effort worthwhile.

Concluding Remarks

A FORTRAN program has been written that does both bifurcation diagram and classifica­

tion diagram construction for nonlinear systems described by a large vector of nonlinear 

equations. The numerical technique developed has unique features that make for large 

computational efficiency increases even with coarse parallelization. Since the efficiency of 

our parallelization scheme will increase as the codimension of the singularity sought does, 

our future work in the development of a complete classification of all the bifurcation be­

haviors displayed by the tubular CO oxidation reactor will depend heavily on parallelized 

code.
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