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ABSTRACT
A collisionless kinetic ballooning moc= equatfon, which fncludes the
full {on finite Larmor radius (FLR), the magnetic drift. and the trapped
electron effects, 1s derived and investigated for a larpe aspect ratie,
circular flux surface equilibrium in the frequency vepime,
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<<l uw Ve The finfte larmor radius effects can reduce the
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prowth rate, but do not stabilize the hallooning modes due to the
degtahilizing Influence of the lon magnetic drift resonances. It 1s, in
peneral, fincorrect to simulate the FLR effects hy employing the often used
FLR modified MWD model for (kppi12 > 0.1 and £y > 0.1, where k”oi is the 1on
FLR parameter anc € =Ln/R measures the magnetie drift frequenecy. The
trapped electrons have a stahilizing effect due to the reduction of the

destabiltzing circulating electren parallel current perturbation. For

typical tokamak zspect ratio, the critical § can be improved by 40Z.
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. IRTRODUCTION

Ideal mapgretohydrodynamfc (MHD) theory predicts that 1in taroldal
plasmas the ballooning wodes can bhe driven unstable by the combined cffects
of the azgnetic curvatute and the pressure gradlent. TWhen R (the ratio of
the plusma pressure to the magnetle pressure) lles bhetween twny sefriecal
values, say P.I <A< R?,' unstahle modes can develop and ballann Ia the %ad
curvature repion §1-33. tne of the basic assumptions of the Ideal MHD
theoty is that T + V x g;/c - . This assumption Is not valid when kinetic
effects such as finite larmor radius (FLR), magnetie drifr and landau
resonances, trapped nparticles and c¢ollistonal effeets are retained.
Especially, rthese kinetic effects can be significant in the high-n limit (n
is the toroldal mode number) and modify the crirical heta [4=-R],

Tt was penerally believed that the FLR effects can reduce the growth
rates and may yleld total stabilization of the high-n MHD ballooning modes
for arbitrary values of R. This couclusion is based on the iInvestigation
of rhe so-c:iled FLR modified MHD ballooning mode equation [4-6) which has
the same form as the 1deal MHD ballooning mode equation, except w2 is
replaced by w(w ~ m*pi)’ where Wgpy is the pressure driven ton diamagnretic
drift frequency. Employing the high-n ballooning mode and WKE formalism
[2,3]1 the FLR modified MHN ballooning mode equation 1s derived under two
assumptions: (1) the perturbatfons have long perpendicular wavelength,
klpi < 1, and only the lowest order FLR contribution is retailned, and (2)
the ion magnetic drift fraquency Is small compared with the mode frequency,
w4y < w, and 1is treated perturbarively without including drift resgonances.
In the ballooning mode formalism, the ion magnetic drift frequency Wyy and

the perpendicular wavenumber ki are nonuniform along the magnetic field

lines and can be written in the form, gy * Yy + mIFl + mzez, where 9 1s the
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X and w, are periodic functions of n with

exteunded poloidal angle and Wy W
a period of ?n. Therefore, unless the eigenmode structure 1s well
localized, the perturbative treatment of “’di/w and ko, tan be invalid.
Furthermore, the 1on magnetic drift resonance can provide a destabilizing
effect and modifies the stabtlity analysis. Tn fact, it has heen shown that
there {s no absolute FLR atahilization of the bhallooning modes when full FLR
and 1on magnetic drift effects are retained [7,R].

The effect of trapped particles on the MHD ballooning mode has been
found to bhe stabilizing hy uslng a modified energy principle 14]. MNHowever,
in these 1investigations, the trapped particle ecffects were not treated
properly and the full finite Larmor radfus and ion magnetic drift resonance
effects were not tetained. In this paper we wi{ll derive the high-n kinetic

hallooning mode equation without making any assumptions an fw and

“a1
klpi [7-10}. Trapped particle effects will also be kept. The eigemmode
equation 1n the c¢ollisionless 1imit have also been derived by wvarious
authors [9,10]. To assess the importance of these kinetic effects, we will
compare the kinetic rnsults with those from the FLR modified model and the
ideal MHD model.

The paper is organized as follows. 1In Sec. IT coordinate systems and
MHD equilibria in an arbitrary toroidal geometry are described. In Sec. III
the hipgh-n ballooning mode and WKB formalism are applied to the gyrokinetic
equations and Maxwell's equations and then the kinetic equations are
expressed In these general coordinates. The eigenmode equations 1in the
frequency range, where the frequency of the waves lies above the bounce and
transmit €frequencies of thza Jions but below rhose of the electrons, are
derived in Seec. 1IV. The trapping effecte are retained only for electrons

and the collisional effects are neglected. The kinetic equations are then
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shown to reduce to the FLR modiffed MHD Dballoonlng model Llu the
limits klpi << 1 and wdt/m << 1. In che limiting case
with n; = 0, w = w,, and without trapped electron ecifects, the kinetic
equation reduces to the {deal MHD ballooning mode equation at marginal
stabilicy This means thac the cricical R {¢ {dentical toe che ideal MHD

qc and {s independent of the {on Larmor radius and magnetic drift resonance
effects. In Sec. V, we empleoy a large aspect ratfo, low R, circular cross
section model equilibrium used in n number of previous calculations [6,8,11-
13] to study the stahility of the hallooning wmodes. We then compare the
results from the kinetic equations with thode of the ideal MHD model and the
FLR modified MHD model. The {fon FLR and magnetic drift effects and the
trapped electron effects are examined. Mo ahgolute fon FLR stabiltization of
the ballooninp moudes is found due to the lon magnetic drift resonances. The
presence of trapped electrons {s stahilizing because of the reduction of the
destabilizing circulating electron parallel current perturbation. Finally,

a summary of ¢ur piper is given in Sec. VI.

I7. COORDINATES AND MHD EQUILIBRIA FOR TOROTIDAL SYSTEMS
We will empley a cuerdinate system (¢, 8, Y in which the field lines

are stralght and the magnetic field can be expressed by
B = W0 x T+ qe) Wxva (1)

where ?np 1s the poloidal flux hetween the magnetic axis and a & = constanmt
surface, O and I are the pgeneralized poloidal and toroidal angles with a

period of 2%, q(¢) is the safety factor and 1s a monotomic function of §

only. In this coordinate system



Bev = TR, e (%), 0 (2)

where the Jacobian J = (W x VB'VE)-I. Tt 18 alao advantageous ta emplay

the coordinate syatem (&, &, a), where a » £ - q{d4)A, eo that E = g x 9
-1
a0 a .
and B+% J “(a/a )u»,a
Stnce the equilibrium magnetic fileld B must satisfy the pressure
balance condition,

llx']}sv‘,’ (3

N

where p(¢) is the equilibrium pregsure, J = (c/4n)V x B 1s the equilibrium
current density, and c¢ {g the speed of 1light, the angles 6 and { are not

entirely arbitrary. From Eq. (3) we see that 1*¥4 =~ 0 gives

Qa0 % (Vo ¥ T)) = O . (4)

Equation (4) shows that 8 can be arbitrarily specified, and [ ts determined
by solving Eg. (4) or wvice versa. Alternatively, we can specify the
Jacobian and detarmine both f and 7. Although there 1is some analytic
simplification by requiring J to be a function of & only as in the case of
Hamada's coordinate system, computational experience [3] with high 8
equilibrium has ghown that it 1s better to retailn control over 8 by
allowing J to vary within a surface.

For the axisymmetric case, 1f we let [ be the usuyal teroidal angle
¢, then with the choice of Jacobian I = xsz(q,.), where x 18 the distance

from the axig of symmetty amd £(¢) 1s determined by the perlodicity
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requirement, our coordinate system is essentially that of the PEST stability
code Tl4}. 1f we 1instead choose J = x/[f(4)|{V4]]), we have equal arc
lengtha on the 1intersection of a magnetic surface with the ¢ = constaat

plane. This has been found to be optimal for numerically integrating the
MiD ballooning mode equation along the extended A directionm §3}. By taking
the 7¢ component of Eq. (3), we obtain the Grad-Shafranov equation for the

axisymmetric case

Ko tvalx’) + An (Ap/ag)] + g (Bgfow) = 0, (5)
where

ROOY = ~a(u)(1 + 1) ’7 y T b - aledBle, M .

Note that &(¢, ©) s determined by Bq. (4) by arbitrarily specifying &. If
we speclify p(d), 1(w;, and J, then ¢ 1p determined by Eq. (3).

for axisymmetric rovoidal plasmas, the lowest aorder (im p/L, p is the
particle Larmor radius and L is the macroscopic scale langth) egquilibrium
distribhution fuccrlon is roughly a local 1sotropic Maxwellian distribution,

3/2 exp{-uE/T{})) where E = VZ/Z, The

FM(E. W) = No(w)imIZnT(é))
macroscopic pressure is given by pld) = N(4IT(¢), and therefore in kimetic

deseription we have one more degree of freedom in determining p{y).

IIT. GYROKINETIC AND MAXWELL'S ENUATIONS IN HIGH-n BALLOONING MODE AND WKR

FORMALISM

low frequency perturbeations, svch as drift waves and balleoning modes



ia torcidal plasmas, have very short wavelengths perpendicular to the
sheared magnetic flield B in comparison with the parallel wavelength,
kﬂ/kL <« 1. However, in solving eigenmode equations,
iy, &, b, 0IMD, 8, 5) =0, 2 formal WKE type expansion in lowest order
in k“_fkl would lead to an aperiodic lowest order efgenfunction iIn o since
the field lines do not close cn themselves on a magnetic surface whose
safety factor, q, ls {frratioual. Tn order te solve the problem of
satisfying the perfodic constraint in ® the ballooning representation is
introducad by vrepresenting the etgen-function as an 1Infintte sum of

aperfodic functions [2,3] which add up to give a periodic function; i.e.,

ol ™~
®(o, 8, &) =V ¢, &~2mp, C) (5)
ps-m
where @ extends from -» to = iy 8. To ensoure convergence of this sum, ;
must van:gh sufficlently fast as }9) » =, Since the llnear operator

L(¢, A, §, w) 1s periodie in &, the aperiodic components can be assumed to
ohey the oripinal eipenmode equations. ‘Thus, the problem 1s aequivalent to
solving the eigenmaode equation over an iInfinite range 1In A with no

periodicity constraint; if.e.,

Lld, A, &, WG, 8, C) = O . (6

Since the perturbatione of interest are locally flute like, we
use £ = 1/n ~ O(kn/kl) a8 an expanslon parameter to develop an asymptotic
solution of Eg. (6). The solution of Eg. (6) can he expressed by the

eikonal repregentation,



~8=-

o= ;(tb. 8, £y expfisS(a, /ey , (7

where S(a, () describes the rapld cross-fleld variations and 4 the slow
variations along the field 1ines on the equilibrium length scale.
Therefore, B«9S = 0, i.e., d5/p8 = N, In the axlsymmetric case, & is

separable and can be expressed as
Sa, ¢) =a+ [ 8.) dq , (8)

where ak is to be detarmined by a higher order radially nonlocal analysis
12,31, By our choice of straight fileld line coordinates, we have avoided
the need For an elkonal description of the fast A-dependence [2,3].

Since the e derendence of L is explicit, we can expand L in powers
of g¢ L = Lm) + eL(” + ..., where L(m 15 an operator only 1n § space.
Fxpanding ; and v {n simllar series and demanding that Eg. (6) bhe sarisfied

order hy order gives, at the lowest order,
L, a6, o, me™ a0 . (9

This 1s a one-dimensional differential-integral equation for a given ¢, ek,
and n. With proper boundary conditions, it defines an eigenvalue probdlem
and gives the lowest order eigenvalue m(O) -m(q)(q.., ek, n). The fact
that 8,  occurs in Eq. (%) only in the combination (8-6,) implies that w(®
i1s a perlodic function of ek. Therefore, within the WKB approximation the
spectrum of the flute-1ike modes are infinitely depenerate, corresponding to

each component of the infinite swm iIn the bhallooning representation, Eq.

(5). In the following, we will choose Bk = 0 so that the perturhations are



centered at the outside of the torus. This choice aof ek Is made because
from computational experience the maximum growth rate occurs at Gk = 2np
(p=0=%1, ...) for up~down symmetric equilibria [2-8}.

Applying this high-n ballooning mode and WKB formallsm, the lowest

order linearized gyrokinetic equation Is given by

v eF v A
WA T M 1 11
fo+ 1 gy g5 = 0qle = (o) —p (83~ z vy A ~ o

(n

where the perturhed distribution function g, electrostatic potentfial ¢ and
vector potentials A", Al account for the slow varfations along the field

Mnes. Tn Bq. (10) A = Awer, A = e,eA, e, = e x75/|us], e = B/B, with

0 1 3
9 “n - PO
wy = wB(VIIZ) +o v, w, = (2ucT/eB)eB X (eB~‘7eB)-VS, and
wp = (?_ncTIeBZ);B *x YBaySs. From the MHD equilibrium condition, ¥3. (3),
wg = w, = w,[B (140 ) + 8, (140, ), with n = dinT/d&nN,
1 - 2 . .
Be,i = BﬁNTe,i/B s Vo= v/vth, Yeh 27/m, W, = (ncT/eB)eB ¥ VEnNsvS,

and wi = w1 + n(vZ - 3/2)]. Finally, J |/@) are the Bessel

0,1 = Jo,1tkv
functions of the first kind with orders 2zero and one, respectively, and

ki = nV8, O = eR/me. Naote that the superscripts of g, 4, A, A, and o

L
are neglected, hecause we will only deal with this lowest order equatiom 1in
the remafnder of the paper.

The linearized, one-dimensional gyrokinetic equations are coupled hy
the gquasinentrality condition and Ampere’'s law to form trhe basic set of

integro-differential equations governing the eigenmodes of the system.

Within the WKB ordering, the quasineutrality condition can be expressed as

aF,
3 e M
iefdv(gJD+m_¢_a_E__)-o . (11)



-10-

with the summation being over the particle species. Ampere's law is given

by

L LI P RN (eg¥,Jp-e3tv I )8 - (12) ‘

P -
(nvs) (eBn“+e3:i) =2
e, 1

IV. HIGH-n BALLOONING MODE EQUATIONS
Since the ballooning mode frequency w near marginal stability 1is of the
same order as the ilon diamagneric drift frequency ulygs WE expect, for high-n
modes, w to 1le in the frequency rteglme: Wgr Wy {w< Bpat Wyg? whate

) and o ) are the average 1on and electron transit (bounce)

9 g0y te(¥pe

frequenctes, regpectively. To ensure w > W,y we requite n > (EoLn/qut)’
where €y = ¢/R 15 the inverse aspect ratio of the torus, L, 1ls the density
scale length, o is the lon Larmor radius, and q 1s the safety factor.

/2 2
w < Yhe implies that n < (eo Ln/q pe), where Pe is the electron Larmor

radius, and thi: cendltiorn is easier to be satisfied for the wavelengths of

3/2

2
5 Ln/q py) for low frequency

interest. fn the other hand, we require n < (¢

modes with w < Wyt For such low values of n, it may be necessary to carry

out the next order WKB exparsion in 1/n in order to obtain meaningful eligen
solution.. Therefore, we should 1limit ourselves to high-n modes with

W, w0 << War Yo'

bi* i te
For w > Wy the solution of Eq. (10) for ions is given by

G W
1, oy an

where



-]l

eF, v oA
. T M _1 IR
G, = Qm—m*i) ,—r—i— (¢J0 EVHAHJQ 1 ——-c Jl)i .

The general solution for circulatlng electrons with the houndary
conditions gd(a) » 0 as 8 » 3o 18 given by
e 1

e hl
g,(0) = 1o {an de' x, exp(-iolg } , (14)

where
Xg = Xy = Xy 0
eF iv
B T M
Xp T T (0une) T (89 = 5= A7)
eF A J
T M 10
Xp = Bluru) T e
e
192 - '62 48 B (w0, )
>} J v l de ’
1 61 L
and g = :x refers to the sgign of v, for particles in question. Note
8
that '[e2 i1s of the order of w,wte and Eq. (14) can .. reduced to
1
T
W eF
1 - - *a M w
g, =5 (8, +8) = =(-5=2) 7 ¢, + 0=} , (15)
e te
vhare

@

]
1w
o = ( J’_mde' JBAJI, - j’e a8' TBA T ) . (16)
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For trapped electrons, the houndary conditions at the turning points
ate g,(6,) = g_(6,) and g (8,) = g_(8,), where g, and §, refer to the

nearest turning polnts with 6. < 8 {8 Note that there are infinite

1 2°
pairs of turning points In the cxtended O space for trapped particles. The

general solution for trapped electrona is

o 0
8 2, -1 ' ' '
8,(8) = exp(1aT)(-2 stnly?) jez a0’ [y_exp(112') + x, exp(-1T5 )]
1 1 1 2 2
B 8
+1ic [ de* Xy exp(~icl, y - (17)
%
6, )
Since I9 is of the order of m/wbe for trapped electrons, Eq. (17)
1 1}
reduces to
g - _e" T ' 9 T
g0 = (IpY) Vran oM x) - a1 dey, 4ol (18)
2 1 A 0, “be

and the total ronadiabatlic *rapped electron distributior fu :tion is

1
gt = ¥ (g+ + :l‘,_)

6 0 ) ]
1.=1 ;2 o, o' 1
= (1,73 [ 7 ae' [x¢+ixA(Ie #To V2l =2 (f det x, + [ do' x,]
2 G1 1 2 61 92
+ 0Cw/u, ) - (19)

Let
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[ a

9 2
Ry = | da( Bflvll) R/ f a8 8y, , (20)
91 91
and
8 BA, Joe 8, BA, I, .
Gy g ae TPy e —LE2 2t
8, 8

Then, 8¢ can bz written as

¥ T T iv A J W~
e W, aFw, p
M *a ~ bl 1717 1e de ~ w
g, = =(=—[ by + == <pd,  + - f 14,51 + of—1 .
t 1; - W I y (mde> Oe c [N h Wy o
(22)
1f we further assume that
iv A J W= iv A J w~<wy, >
11 le dey~ 1 11le de \~
BT t—3 (V> ~ o3, +-— e,
then
(eFM ( w_mze iVLALJIe ] ©
g, = (o [t (o3 + L ley] 4oy | (23)
t T m-(wde> De c oy

The total electron nonadiabatic distribution is given by g = g + g, -
Since w < What ©pgr we must retaiv the O(Q/wbe) or O\w/wte)

contribution of the electron distribution function iIn order to ohtaia the

electron parallel current perturhation j“. Rowever, it is oftern convenient

to uhtain j‘ by taking the wmoment of the gyrokinetic equation, Eg. (10).

Voting that

1o f% fad vel . (243
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3 5.0 B du o o2
because [ d7v = 2 V2 _ro dR 7z 17;1. and p = v|/2B. Then from Bq. (1),
we have, by setting Joe = 1,

a aF iv A J
fd'v v, g\ =1 f (m-mg g d v+ 1l (m'm* ) __!.(¢+__i_£_lﬁ] d1v .
e

(2%)

Suhstitution of Eqs. (13), (15), and {(23) iInto rhe quasinreutrality

condition given by Eq. (11) ylelds

(v + 7T -T1) ¢~ (T, +1,) T T 0, (26)
where
w-—wT
*q 2
I, =71 f (m~u AFpdag 4V,
a1
" Wnyg
2=rrr i\MmJuf——\dv,
l
W e 3
R A=y L
N
T2 - £ ( _(md )FM le( ] d v s
U, = [ { ¥, av
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d’i = iA_L, T = TelTi' and T and U refer to integration over trapped and

untrapped particles, respectively.

The perpendicular A -ere's law, Eq. (12), reduces to

2,2
(T, + T00 + (K]AS + Ty + Ty + Uy = 0, 27y

where

N

W2 = vy’ Jamt

-
m

lal
1t

T
m,i v, 2 1
72T [ f Ty J(E_ JliW dv ,

\ f(:‘——g)F(—J Vad

-3
1

From Fqs. (13), (15), (23), ard (25), the parallel Mmpere's law, Eq.

(12), can be written as

2 22

8 (n¥%S8)” b 4nNe "w

Yy Y = U, (4 - ¢,)+ U
RL:] B2 ag "1 Técz 1 ]

1

3y t Tyt + (U, + T5)¢l} ,

(28)

where
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Uy = § f \f }FM v,
u
T
=W, > W
_ “e de *e 3
T[‘ '; (m]( ]F d7v N
T
=<, > wew, v
T = m—( d: i e\FM E£ e v
7 e w

Note that the parallel curtsnt perturbation is due to elertrons because the
ior. contribution 1s of the order of (mu/w)?' smaller and 1is negle_cted.

In order to carry ouc the velocity space iIntegration of the elec-ron
terms, we will employ as our velocity spaee coordinstes, v, A, and o,
In terms of

where \ = h(&)vi/vz, n(e) = B /B(6), and 3;1 = T aon(e).

these variables, we have

[ v =72 ? N ama-amt’? . (29

g
Circulating particles correspond to 0 ¢\ ¢ hm and trapped pa-ticles to
hm < A < h(B) at a glven #, where hm = MIN[h(@)]. If we further assume
that <w ) =y (v/v ') for trapped electrons, where the plitch angle

dependence has been neglected, we then find that the electron velocity

integrals can be reduced to

oW
1 %o
g (—5 =16

[=]
[]

1
kK, T w-w, (l+n)
3, 1% *e e
UZ Y | el [y ]CZ ’
wra, (1+m ) C
0, - 3 (e e ylhey 2y By ol
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where

*
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11

_]lee

lk-LTe 2
eB 33

2[( ]7—+( \(R-R)-(»-1R1.

k T w. R
1 Be 3
- "eB'e]SS[rT\ ) =+ ( ](R »Ry) - [_WR 1,

201 - b /ey s
m

1/2
(4/3)(1+hm/2h)(l—hm/h) '

h h 2 h 172
Bh+p+2 @®in-2

= 5 o ng = (£3glrien (22 ez

(30)



and Z 1is

1lhe

e = kg/Wge

-18-

2 1,2 2
A S,‘ = i (g 'E,*) £

L}

e2- 2 te-ghamy)y

A

= wla., .

the plasma dispersion function.

ion parallel velocity space integration can be carried out and the

integrals are simplified to one dimensional ones, which can thep be

numerically integrated. These integrals can bhe expressed as

where

L 2
T fo dx exp(-x) JOiw '

[}
o

io dx exp(-x) JOiJli Yx W,

Yi,2 = 2
= TfE— fo dx exp(-x) J;," W , (1)

= bI1+E2(F)) + (atbx) Z(ED/F ,

= =tlwrw, (1-3n,/2)1/w o s

= —w*enilmki ,
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o
4

E ._[mm(xfz) -m]lmn , and the argument of the {fon Bessel

1/2

22
functions 1is (‘bix‘; » where b, = klpi, py = "1"’-1' Note that the preper

analytic contiruation of ¥ must he carried out.

Fquatlions (26) = (28), (30) and (31) form a single asecond order
differential equation describing the high-n collisionless ballooning modes
in axisymmetric toroidal plasmas and can be solvcd as an eigenvalue problem
for » under the boundary candition that «bu be square integrable

and (alp"/ae) 0. We snall s~lve these equations by a numerical

8=
shooting method and the results will be desecribed In Sec. V.

In order te consider the MHD lim*t of Eqs. (26), (27), and (28), we

neglect the trapped electron effects, which is of order (r/R)Uz. We also

take the limita w lo << 1 and x py €€ 1 and eliminate the Ion wmagnetic

i L
drift resonance effect. Then the kinetic Egs. (26) - (2R} reduce to FLR

modifled MHD ballooning mode eguation,

LD LS
a8 BZ a8

(L +

2 2 2
(78)° w @y, * ﬂﬂ\’wp'—huNTika\d;“ =0 3

5™

2 2 ~
where vy = B /4-n1\‘mi, Wapg = g (14ny), K, = Keey X VS/B, p' = ap/a4,

p = N(Te + Ti)’ K =e Q= Tq.,, + lma";i/uo , and

b Ve 2 e

u” =1 ~ (1+£nj)w*j/m. Note that the K‘ZJ term is of order £ smaller
than the Rw term. For w ta he of order (lml)mki, the K: term 1Is
destabilizing. For larpe aspect ratio toroidal plasmas, the KZ) term in Eg.
(32) 1s wusually mneplected to simulate the FLR stabilization of the
bellooning modes 2nd we will refer to this simpliffcation as MI-1 model {n
the following. In addition, if we take the limit w,/w + 0, Bq. (32) reduces

to the ideal MAD equation ror studying infinite-n ballooning modes,
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2 . 2
13 (98)° o {vsYy" 2 ' -
(*36-‘;2"6‘6*—‘;2‘—“’ + Bakptlyy =0 .
In the next sectionAwe pregent the numerical solutions of the kinerle

(33

Eqs. (26), €27), and {(2®), and compare these resules with those obtained
from solving Egs. (32) and (33) in order to establish the degree of valildicy
of the simpiified wmodels (MI, MIl, and ideal MHD model). There 18 an
interesting limiting case of Egqs. (26) ~ (28) at n, = 0 and without rrapped
particle effects. By letting w = Wygr WO find ¢ = 4y from ‘£g. (26)
and le = ~112¢“/ki7\2 from Rq. (27). ‘“Equation (28) then reduces to the 1deal
MHD equatton, ¥Eq. (33), atr critical B with w = O. This means that the
critical B ohtained from the kinetic Fgg. (26) ~ (?%) 4is identlcal to the
iteal MWD ﬁc. This observation also serves as a good way of checking the
numerical solutioans. fcr n, z 0 or tncluding trapped particle effects, we

must rely on numerical so'ations.

V. RESULTS

In genera!, we must obtalm a numerical equilibrium by solving the Grad-
Shafranov eaquatiom, Eq. (5), in order to integrate fhe efgennode
equatinus. Powever, becaugse one of our purposes {8 to establish the
correlations netween the kinetic model and the slmplified models, we will
employ an analytic model equilibrium used im a number of previous ballooning
mode calculations [11-13]. The model corresponds to a large aspect ratle
tokamak with circular magnetlc surfaces over which the pololdal magnetic

field is uniform but the shear is nonuniform. Then, Fgs. (2A) - (2R) reduce

to

. 2
1+ (s0-ay stnd)’] G by = (=)0, (38)
e

a
38
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where
K= (U (8=0)) + Ugdy + T, + (U, + Ts)wll/d:l s
= 1A 4 T, + T, - (T, + 1)U, 14, /D
o = [k)r, + Ty + 1300 2 * L1/,

§, = -r(r2 + Iz)u1 + (1 +1- Tl - tl)uz]wI/n s

2.2 2
D=(1+1—T1-Il)(klxe+'r3+13)+('1‘2+12) N

Yoo = zw,een[cose + (86 = ap 3ing) sinf] ,

= - + + +
Ype * Yo w*efﬂe(l n) +8,Q ni)l )
de = “xefn 7

22

11 " (2b,/TY[1 + (80 - « sine)z} , s=rq'lfqg ,

- 2t 2,.2 - 2
[+ 2p'Rg /B (q /sn)lﬂe(l +ne) +Hi(l +ni)] N
B_ = BuNT /B B, =B/t , B =R +0p b, = tk2p2/2
e e 4 i e~ ! e i’ ¢} a1 ?
k, = nq/r, w, = VA/qR,

and the I's, T's, and U's are glven by Eqs- (30) amd (31).

Equation (32) (MI model) reduces to [10]



-
d“"-““ T

B0

S 11 + (;e-ap stn®)?) 37 4, + e, {feoss + (Qe-up gin@) sind]

+ (a4doo + (1 + ni)/‘l:][l + (;e - sine")z]

o
Bya” “fi - 2
- (Ta,, + 47 —=)[cosd + (38 - a_ sinB) sinf]“}¢ =0 , (35}
a 21 a P i
] oe .
where O = wlw, , A = bn/sp, and €y ™ (e, /2)[1 + m_+ (1 + ny)/<]. In ‘Eq.
(35) the elgenfrequency, 0, 18 a function of the parameters,

;, ap, A, Nys T ﬂiqz. While in the MI-1 model, which 1= given by

A - 2.3 -
g M1+ (sA ~ ap sinA) 1 a5 9t ap!‘fcose + (s6 - ap ainf) sinb}

+ (A/8)Q10 + (1 + nM/I(1 + (s0 - @, s108)“Thyy = 0 (36)

0 depends on the parameters ;, ap, A, (1+ni)/-r and margiial stahility oecurs
at @ = (1+-ni)/21. The corresonding ideal MHD ballooning model is glven by

9 ° . 2.3 a
35 [l + (s@ c:p €inf) ") 35 d,-" + ap[[cose + (s - ap s5iné) sinb]

+ (5 o®11 + (g0 - @, sine)z]}q," =0 , 37

where Q@ 1s a funetion of r, ap, and A only and marginal stability occurs

at » =N,

We first compare the results of the simplified models by solving Eqs.

(35), (38}, and (37). Figure 1 shows the growth rates and the real

- e, sl
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frequencles versus s for the parameters: g = 0.5, by = 0.1, e, = 0.2,

T2q=n, =0 = 1. For the ideal MHD model, the growth rate {8
normalized by Wpgy defined at bﬂ = 0.1 and the unstahle region 1lies
between ap1 = 1.389 and “pz = 1.684. The MI-1 model, ¥q. (36), gives
constant frequencies with w = m*i(1+n1)/2 when the modes are unstable aund

the FLR stabilization 18 shown hy the samaller growth rates and smaller

2
W

unataeble repion bounded hy apl = N.4R43 and "p2 = 1.456. If the K term
is retained, the MI model, FEq. (35), predicts a larger unstable region than
the 1deal MHD model. The veal frequencies are more negative. This 1s

becauge for B, 0.2, the KZ term is not negligible in comparisen with the

w
K, term and it may be incorrect to employ the MI-1 model to simulate the FLR
effects.

Since the MI model 1s strictly valid only in th2 limits bG << 1 and
e, K1, their results must be Justified by comparing with the kinetic

model, Eq. (34). We first neglect the trapped particle effects by setting

e, = 0 and vary both hg and € but hold A fixed, from small numbers to

normal tokamak values. The results are {llustrated by two sets of
ha and En values (bg =, = D,.01 and bg =g, = 0.1) with the elgen—
frequencies versus n:p plotted 1in Fig. 2. The fixed parameters are

s = 0.5, q=1=1, n, =ny g = 0. For bg = €a = 0.01, the MI model 1s
a good approximation of the kinetic equation when the growth rates of the
modes are large. However, when the MI model predicts stable modes, the
kinetic equation, Eq. (34), gives rise to small residual growth assecilated
with the Ion magnetic drift resonances. e real frequencies deviate
sharply from w*ifz and reach wy; when the modes become marginally stable at

the same ecritical B as predicted in the ideal MHP model. 4s b6 and €,

increase (t-:n - be = 0.1), hoth the growth rates and the real frequencies
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from the kinetic model further deviate from those obtained by the MI
models. But the sgtaliility boundaries remain the game as the ideal MHD
gtability boundaries in the ni = 0 case. This larger discrepancy at larger
he and €, is due to the breakdown ol the expansion 1in klp1 and mdi/w as
well as the omlssion of the magnetic drift resonances. when ng # 0 the
reglon of {nstability is usually greater than in the corregponding idezsl MHD
and MI cases.

From the parallel /Jmpere's law, Eq. (28), we realize that the parallel
rurrent perturbation is mainly due to circuluating electrons because the
trapped electrou contribution is almost averaged out. Especially for deeply
trapped particles wr!e - <mde> = 0 and from Eq. (30), '1"[. and 'li‘_li almost
vanish. Therefore, when particle trapping effects are retalned, the
destahilizing parallel curreat perturhations due to circulating electron 1s
reduced. This 1s ifferent from the drift wave branch where the
destahilizing contribution 1Is due to trapped particle density perturbation
through dissipatiorn effects such as magnetic drift resonances ot
collisions. Figure 3 shows the elgenfrequencies versus ap for g, = 1]
and e, = 0.2, and the stabilization of the particle trapping effects i:
clearly seen. ‘The results of the MI model are also shown for comparison.

~

The fixed parameters are s = 0.5, be = 0.1, G 0.2,

In order to check the dependence of critical B on € Fig. 4 shows BB

as a functlon of o for both the first f[zurve (a)] and the second [curve -

(b)) critical  beta, where 868 = Rc/ﬁc(eo=0) - 1 for curve (a) and

&R =1 - Bc/Bc(so=ﬂ) for curve (b). The fixed parameters are
5n=bg=n.1, s =05 q=1=1, ne-ni=0. At e°=0,
A = 0,03914 for curve (a) and fi, = 0.1685 for curve (b). For small €5»

-
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both curves {a) and (b) are proportionsl to E;/Z, which can be explained by

1/2

local analysis. As €, increases, &f deviates from €. dependence and

hecomes larger.

The FLR effects have also been studied and the results are shown in

-2

Fig. 5 with b= a4 x 1074, Fig. 6 with by = 10", and Fig. 7 with

b9 = N.16. In these figures the eigenfrequencles are plotted agalnst
ap and the results of the MI and 1deal MHD models are alao shown for
comparissn. The fixed parameters are ; = 0.6, q = 1.414, €, "8, = 0.1,

T, Ty T 1. When b9 << 1, as in Figs. 5 and 6, the MI mdoel and the
{deal MAD model give about the same growth rates, but different real
frequencies. Dua to trapped particle effects, the kinetic model produces
smaller stability region and smaller growth rates. A= be increases, both
the MI model and the kinetic model begin te give substantially different
results from the ideal MHD model, as shown in Fig. 7 for b9 = 0.16. Now
the MI model gives rise to a smaller unstable region. If b9 is further
increased, the MI model would predict complete stability (be 2 0.25 for this
set of parameters), but the kinetic model still predicts {nstabilities in a
smaller a_region than the ideal MHD model. The breakdown of the MI model

1s oﬁviously due to the expansion in kipi and “Hi/m as well as the omission

L ]
of the trapped particle effects.

vi. CORCLUSION
Employing the high-n ballooning mode and WKB formalism, we have derived
a collisionless kinetie ballooning mode equation in an axisymmetric toroidal
plasma by solving the Vliasov-Maxwell equations. The kinetic ballooning mode
equation, which includes the full ion finite Larmor radius and magnetic

drift effects and the trapped electron effects, is obtained in the frequency
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regime Wy mti < w< wbe' mte' In the 1imit of long wavelengths,
klpi << 1, and swmall ion magnetic drift ftgquenciea. mdilm << 1, the kinetic
ballooning mode equatlon 1s shown to reducé to the FLR modified MHD
ballooning wmodel and the 1deal MHFD wmodel in the absence’ of the trapped
particle effects. In order to study the influence of these kinetic effects
on the stability of the ballooning modes, we perform numerical solutions of
the kinetic ballooning mode equation and compare the results with those
from various simplified models. In the numerical calculations we employ,
for simplicity, an analytic model equilibrium which corresponds to large
aspect ratio tokamsks with circular magnetic surfaces over which the
poloidal magnetic field is uniferm but the magnetic shear 1s not uniform.
An interesting 1limit has been found with n o= 0, = ty g and without the
trapped particle effects. The kinetic ballooning mode equation hecomes
ldentical to the ideal MHD equation at Rc. This implies that the fon FLR
and magnetic dr{ft resomance have no effects on the critical ? for
ny = 0. In gererai, :ﬁe fon FLR effects can reduce the growth rate but do
not completely stabilize the hallooning modes due to the destabilizing
influence of the ion magnetic drift resonances. Our results also show that
it is incorrect to simulate the FLR effects by employing the FLR modifiled
MHD model for (kepi)2 > 0.1 and € 2 0.1. Since the parallel current
parturbation 1is mainly due to circulating electrons, the presence of the
trapped electrons reduces the circulating electron population and gives rise
te stabllizing effects. For small €y the change 1n ﬂc is proportional

to ei/z. for typical values of E€gr Bc can be Improved by 40%.
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FIGURE CAPTIONS
Dependence of the growth rates and the real frequencles on ap for
s = 0.5, be = 0.1, e " 0.2, =0 T=g=mn, =y = 1 where
oy = ~2p'Re” /8% = a’l1 + n, + 11 + 4 M/le (1 + T)].  The eigen
frequencies obtained from the MI model [Eq. (35)], the MI-1 model
[Eq, (36)1, and the ideal MHD model [Eq. (37)] are compared.
Plot of the efpenfrequencies versus ap for two sets of bg and e
values: (a) bg =€, = 0.01, and (b) by = €y = 0.1. The fixed
parameters are s = 0.5, q=+=1, ng TNy TEL T a. The
results from the kinetic model, ‘Eq. (34), the MI model, Eg. (35),
and the ideal MHD model, Eq. (37), are compared.
Dependence of the elgenfrequencies from the kinetic model, 'Eq.
(34), on ap for two values of €gt €, = 0 and £, = 0.2 The fixed
parameters are ; = 0.5, be = 0.1, e = ..2,
g=r=mn, =7 =1l The results of the MI model, Eq. (35), are
also shown for comparison.

Dependence of 58 on €, for both the first [curve (a)] and the

second fcurve (b)] eritical B, where 68 = Bc/e"(so = 0) - 1 for

1]
o

curve (a) and 68 = 1 - Bc/ﬁc(eo = 0) for curve (hb). At £,

R, = 0.03914 for curve (a) and B, = 0.16R5 for curve (b). The

fixed parameters are £ =D, =M1, 8 =05, q=7=1,

N, =My = 0.

Nependence of the eigenfrequencies from the kinetic model, Fq.

(34), the MI model, Eq. (35), and the ideal MHMD model, ¢q. (37), on
&4

o, for b, = 9 x 1074, The fixed parameters are s = 0.6, q =

1.414, Eo = En = 0;1, T = ne - -ni -],
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Fig. 6. Same as In Fig. 5 except hﬁ = 0.01.

Fig. 7. Same as in Fig. 5 except bH = 0.18.
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