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ABSTRACT 

A colHslonless kinetic ballooning mod" equation, which Includes the 

full Ion finite tarwor radius (FLR), the magnetic drift, and the trapped 

electron effects, Is derived and Investigated for a l.irpe aspect ratio, 

circular flux surface equilibrium in the frequency regime, 

(i). , u , < ro < U) , lit • the finite Larmor radius effects can reduce the bi rl he te 

growth rate, hut do not stabilise the ballooning modes due to the 

destabilizing influence of the Ion magnetic drift resonances. It Is, in 

Keneral, Incorrect to simulate the FLR effects hy employing the often used 

FLR modified MHD model for Ck Bp. 1 > 0.1 and t > 0.1, where k no, is the ion 

FLR parameter and e » L /B measures the magnetic drift frequency. The 

trapped electrons have a stabilizing effect due to the reduction of the 

destabilizing circulating electron parallel current perturbation. For 

typical tokamak sspect ratio, the critical p can be improved by 40?. 
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I . INTRODUCTION 

Ideal raagnetohydradynamtc (HHD) theory p r e d i c t s t h a t in t o r o i d a l 

plasmas the ba l loon ing roodes can be dr iven u n s t a b l e by the combined e f f e c t s 

of the '4,'Rnetic cirrvature and the pressure p . radlenr . When fl ( t h e r a t i o of 

the plasma p res su re to the magnetic p r e s s u r e ) l i e s between r v i . - ' ' r i e a l 

v a l u e s , sny P. < fl < P , u n s t a b l e modes can develop and ba l l ron til N-i.. Vid 

c u r v a t u r e rep.lofl 11-31 . One of the ba s i c assumptions of the ideal MHD 

theory i s t h a t ?. + V x B/c « <\. This assumption Is not va l id when k i n e t i c 

e f f e c t s such as f i n i t e larmor rad ius (FLR), magnetic d r i f t and Janrtau 

r e s o n a n c e s , t rapped p a r t i c l e s and e o l l i s i o n a l e f f e c t s a r e r e t a i n e d -

E s p e c i a l l y , these k i n e t i c e f f e c t s can be s i g n i f i c a n t in the htgh-n l i m i t fn 

i s the t o r o i d a l mode number) and modify the c r i t i c a l beta f 4 - f i ] . 

I t was g e n e r a l l y be l ieved thai- the FLR e f f e c t s can reduce the growth 

r a t e s and may y ie ld t o t a l s t a b i l i z a t i o n of the high-n MHD ba l loon ing modes 

for a r b i t r a r y values of R. Tills co-.iclusion I s based on the I n v e s t i g a t i o n 

of the so--c.-.i led FLR modified MHD bal looning mode equat ion f4-6) which has 
2 

the same form ,is the idea l HHD bal looning mode e q u a t i o n , except w i s 

replaced by mfn - u . ) , where ^ , i s the p r e s s u r e d r iven ion diamagnet lc *pl *pl 

d r i f t f requency. Employing the high-n ba l loon ing mode and wttE formalism 

r ? ,1 ] the FLR modified NHn bal looninp mode equat ion i s der ived under two 

assumpt ions : (1) the p e r t u r b a t i o n s have Jonj, pe rpend icu la r wavelength, 

k p < I , and only the lowest o rde r FLR c o n t r i b u t i o n i s r e t a i n e d , and (2) 

the ion magnetic d r i f t frequency Is small compared with the mode frequency, 

a), . < (it, and I s t r e a t e d p e r t u r b a r i v e l y without inc lud ing d r i f t r e s o n a n c e s , di 

In the ba l loon ing mode formalism, the Ion magnetic d r i f t frequency u . . and 

the pe rpend icu la r wavenuraber k a re nonuniform along the magnetic f i e l d 

l i n e s and can be w r i t t e n in the form, to.. » o)„ + oi.fl + w„ft", where 9 i s the 
d l '.' 1 * 
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extendnct pololdal angle and uin, u, , and u, are periodic functions of fl with 

a period of ?n. Therefore, unless the eigenmode structure is well 

localized, the perturbatlve treatment of u>../u> and k,p, can be invalid. 
di 1 1 

Furthermore, the Ion mapnetlc drift resonance can provide a destabilizing 

effect anfl nodifies the stability analysis. Tn fact, it has been shown that 

there Is no absolute FLR stabilization of the ballooning modes when full FLR 

and 1on magnetic drift effects are retained f7,«1. 

The effect of trapped particles on the MUD ballooning mode has been 

found to be stabilizing by ustnj? a modified energy principle [A]. However, 

in these Investigations, the trapped particle effects were not treated 

properly and the full finite Larmor radius and ion magnetic drift resonance 

effects were not retained. Tn this paper we will derive the high-n kinetic 

ballooning mode equation without making any assumptions on w.. /to and 
di 

k,p, r 7 - 1 0 l ' Trapped particle effects will also be kept. The elgenmode 

equation in the collislonless limit have also been derived by various 

authors i 1»10"|. lb assess the Importance of these kinetic effects, we will 

compare the kinetic rnsults with those from the FLR modified model and the 

ideal MHT> model. 

The paper is organized as follows. In Sec. II coordinate systems and 

MHTi equilibria in an arbitrary toroidal geometry are described. In Sec. Ill 

the high-n ballooning mode and WKB formalism are applied to the gyrokinetic 

equations and Maxwell's equations and then the kinetic equations are 

expressed in these general coordinates. The eigenmode equations in the 

frequency range, where the frequency of the waves lies above the bounce and 

transmit frequencies of tha ions but below those of the electrons, are 

derived in Sec. IV. The trapping effects are retained only for electrons 

and the collislonal effects are neglected. The kinetic equations are then 
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shown to reduce to the FtR modified HhTi ballooning model In the 

limits k,p. « 1 and (0,,/uj « I- Tn che limiting case 

with TI. •= 0, oi = (jA. and without trapped electron effects, the kinetic 

equation reduces to the ideal MHD ballooning mode equation at marginal 

stability This means thac the critical f* is identical to the ideal MHD 

P. and is independent of the ion Larmor radius and magnetic drift resonance 

effects. In Sec. V, we employ a large aspect ratio, low B, circular cross 

section mode! equilibrium used in n number of previous calculations f6,N,ll-

131 to study the stability of the ballooning modes. We then compare the 

results from the kinetic equations with those of the ideal MHD model and the 

FLR modified MHP model. The ion FLR and magnetic drift effects and the 

trapped electron effects are examined. No absolute ion FLR stabilization of 

the ballooninp nodes is found due to the Ion magnetic drift resonances. The 

presence of trapped electrons la stabilizing because of the reduction of the 

destabilizing circulating electron parallel current perturbation. Finally, 

a summary of cur pipsr Is given in Sec. VI. 

TI. COORDINATES AND MUD EQUILIBRIA FOR TOROIDAL SYSTEMS 

We will omploy a coordinate system (i|i, 3, O in which the field lines 

are straight and the magnetic field can be expressed by 

B = VC * V(b + q(d,) V<|, x TO , (1) 

where Pittp is the poloidal flux hetween the magnetic axis and a tit » constant 

surface, A and K are the generalized poloidal and toroidal angles with a 

period of 2n, qO) Is the safety factor and Is a monotonic function of <J, 

only. In this coordinate system 
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5" • ^ " w V c + <<*> <kW< • ( 2 ) 

where the Jacobian J • (V<|, * TO*VO~ . It la alao advantageous to employ 

the coordinate system (d., A, art, where a » ?; - q(Ui1flt so that J • 7a x ?il 

and B'7 - J - 1 ( a / a f l ) , . 

Since the equil ibrium magnetic f i e l d B must s a t i s f y the pressure 

balance condi t ion , 

I j x B = 7p , (3) 

where p(<l>) is the equilibrium pressure, J • (cMit)7 x B is the equilibrium 
current density, and e is the speed of light, the angles f) and C are not 
entirely arbitrary. From Eq. (3) we see that j'tfty • 0 gives 

17* [74. * (Vrt x 7<|.)] « 0 . (4) 

Equation f4) shows that f) can be arbitrarily specified, and C. is determined 
by solving Eq. (4) or vice versa. Alternatively, we can specify the 
Jacohlan and determine both f> and /;. Although there Is some analytic 
simplification by requiring J to be a function of <). only as la the case of 
Hamada's coordinate system, computational experience [3| with high B 
equilibrium has shown that it is better to retain control over 9 by 
allowing J to vary within a surface. 

For the axlsymmetrlc case, if we let C he the usual toroidal angle 
0 t then with the choice of Jacoblan J - x /£(<).), where 31 is the distance 
from the axle of symmetry and f(40 is determined by the periodicity 
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requirement, our coordinate system is essentially that of the PEST stability 

code TIM- if "e instead choose J - x/Tf (<b) | V<|>] 1, we have equal arc 

lengths on the Intersection of a magnetic surface with the * » constant 

plane. This has been found to be optimal for numerically Integrating the 

Mirn ballooning mode equation along the extended a direction {3J. By taking 

the 7CJJ component of Eq. (3), we obtain the Grad-Shafranov equation for the 

axisymmetric case 

x 2 r? . fV<| , /x ? ) + 4n (op/a(l.)l + 8 (og/oil,) - 0 , (5> 

where 

? 

gf<l>) = -qfiMh + ^ ) ~ , r = 6 - qfilOofili, fi1 . 

Vote tha t Mil,, e) I s determined hy Eq . (4) by a r b i t r a r i l y spec i fy ing B. If 

we spec i fy p(<k), q(m,, and J , then it i s determined by Eq. ( 5 ) . 

For axi symmetric t o t o i d a l plasraas, the lowest order ( i n p/L, p i s the 

p a r t i c l e Larnior r ad ius and 1, i s the macroscopic s c a l e l eng th ) e q u i l i b r i u m 

d i s t r i b u t i o n funct ion i s roughly a l o c a l i s o t r o p i c Maxwellian d i s t r i b u t i o n , 

F M ( E , 40 = S ((t01m/2nT(<!>)} 3 ' 2 exp[-nT5/T((J.)) where E - v 2 / 2 . The 

macroscopic p r e s su re i s given by p(Ui) = N(((j)T(<tO , and t h e r e f o r e in k i n e t i c 

d e s c r i p t i o n we have one more degree of freedom in de te rmin ing p(<J>). 

I I I . GYROKINETJC ANP MAXWELL'S EnrtATIONS IN HIRH-n BALLOONING MODE AND WKB 

FORMALISM 

Low frequency p e r t u r b a t i o n s , such as d r i f t waves and ba l loon ing nodes 
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i« toroidal plasmas, have very short wavelengths perpendicular to the 

sheared magnetic field B in comparison with the paral le l wavelength, 

k , /k . « 1. However, In solving eif?enmode equations, 

T.(it<, P, K, iS)^(i>, B, O " l \ a formal WK8 type expansion in lowest order 

In k /k would lead to an aperiodic lowest order eigenfunction in ft since 

the field l ines do not close on themselves on a magnetic surface whose 

safety factor, q, i s I r r a t i o n a l . Tn order to solve the problem of 

satisfying the periodic constraint in ft the ballooning representation i s 

introduced by representing the eigen-functioo as an Infinite sum of 

aperiodic functions 12,11 which add up to give a periodic function; I . e . , 

*<«,, e, Q « Y $(4, 9-2* P , o > (5) 
p*-oo 

where <J> extends from —*> to => in 9. lb ensure convergence of this sura, 4 

must vai.ish suff icient ly fast as '&) * °>, Since the linear operator 

l>(.i>> **» Ci u) is periodic in ft, the aperiodic components can be assumed to 

obey the original eigenaode equations. Thus, the problem is equivalent to 

solving the eigenmode equation over an in f in i t e range in ft with no 

periodicity constraint ; i . e . , 

U<t<, A, C, dO-nO, fl, CI • rt . (fO 

Since the perturbations of interest are locally flute like, we 

use e = 1/n » 0(k /k. ) as an expansion parameter to develop an asymptotic 

solution of Ecj. (6). Ihe solution of Eq. (6) can be expressed by the 

eikonal representation, 



* - 4><<t>. fl, E> expfiS(or, d.'i/e) , (7> 

where S(a, <M describes the rapid cross-field variations and * the slow 

variations along the field lines on the equilibrium length scale. 

Therefore, E«7S - 0, i.e., BS/B9 - 0. In the axlsymmetric case, S Is 

separable and can be expressed as 

S(«, *) = a + J ekU) dq , (fl) 

where fi, i s to be determined by a higher order r a d i a l l y nonlocal ana lys i s 

f ? , t | . By our choice of s tra ight f ie ld l i n e coordinates , we have avoided 

the need for an eikortal descr ip t ion of the fas t P-dependence [ 2 , 1 1 . 

Since the E dependence of L Is e x p l i c i t , we can expand L in powers 

of E: L - 1/ ' + EL + . . . , where L i s an operator only In G space. 

Expanding $ and u In s imilar a e r i e s and demanding that Rq. (fi) be s a t i s f i e d 

order by order g i v e s , at the lowest order, 

L ( 0 ) (<k fi~V « < n ) « " > * ( 0 ) " ° ' ( 9 ) 

This Is a one-dlmenslonal d i f f e r e n t i a l - I n t e g r a l equation for a given <l, 6. , 

and n . With proper boundary condi t ions , i t def ines an eigenvalue problem 

fact and g ive s the lowest order eigenvalue or ' - ur '(ip, 6 , n ) . The fact 

that 9. occurs in Eq. (<*) only in the combination ( 8 - 8 v ) tapltes that 

i s a periodic function of 6. . Therefore, within the WKB approximation the 

spectrum of the f l u t e - l i k e modes are I n f i n i t e l y degenerate , corresponding to 

each component of the i n f i n i t e sun in the ballooning representat ion , 'Eq. 

( 5 ) . In the fo l lowing, we w i l l choose fi - 0 so that the perturbations are 
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centered at the outs ide of the torus . This choice of 8. la made because 

from computational experience the maximum growth rate occurs at 6. - 2np 

(p - 0 4 1, . . . ) for up-down symmetric e q u i l i b r i a f2-8] . 

Applying th i s hlgh-n ballooning mode and HKB formalism, the lowest 

order l inear ized gyrokinet ic equation la given by 

V « h T e F M 1 V 1 A 1 
fu> + 1 U m ~ u d 1 e ' f u ' u * 5 - T - f " J o " c v l V o • * T — J l ) ' 

f in ) 

where the perturbed d i s t r i b u t i o n function g, e l e c t r o s t a t i c potent ia l 4 and 

vector p o t e n t i a l s A , A account for the alow var ia t ions along the f i e l d 

l i n e s . Tn Eq. (10) An = A»e„, A, - e,»A, e , - e x V S / | 7 S | , e„ • B/B, with 

""d = < V V l / 2 ) + V H ' "* * ( 2 n c T / e B ) e

B

 x ( e B ' V e B ) « ? S , and 
2 * u)„ = (2ncT/eB )e_ * 7B-9S. From the MHD equil ibrium condi t ion , Eq. ( 3 ) , 

u B = u^ - u * r P e n + 1 e ) + P 1 (1+T) 1 )I , with n - dJfnT/dAnN, 

R . = SuNT , / B , v - v/v . , v. . - 2T/n, u. = fncT/eB)e . x VJfnN»?S, 
e , i e , i tn in * B 

and U j t = (DjJI + nfv - 3 / 2 ) ] . F i n a l l y , J_ , - J n , ( k . v /Q) are the Bessel 

functions of the f i r s t kind with orders zero and one, r e s p e c t i v e l y , and 

k = nVS, Q = eB/mc. Vote that the superscr ipts of g, 6 , A , A , and u 

are neglected , hecause we w i l l only deal with t h i s lowest order equation In 

the remainder of the paper. 

The l i n e a r i z e d , one-dimensional gyrokinet ic equations are coupled hy 

the quas lneutra l i ty condit ion and Ampere's law to fern the basic se t of 

i n t e g r o - d i f f e r e n t i a l equations governing the elgenraodes of the Bystem. 

Within the WKB ordering, the quasine-atrality condit ion can be expressed as 

e ,1 
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with the summation being over the p a r t i c l e s p e c i e s . Anpere's law i s given 

by 

( n V S ) 2 ^ ^ } - | * J e / < t \ ( ^ J ^ l v J )g . (12) 

IV. HIGH-n BALLOONING MODE EQUATIONS 

Since the ballooning mode frequency <o near marginal stability is of the 

same order as the ion dtatnagnetic drift frequency ij,, we expect, for hlgh-ti 

modes, u to lie In the frequency regime: uv , u> , < u> < iju, to , whoTe 

u ,(«,.) and u (u, ) are the average ion and electron transit (bounce) 
2 

f r e q u e n c i e s , r e s p e c t i v e l y . To ensure u > id . , We r e q u i t e n > ( E L /q p . ) , t l o n i 

where E = r/R i s the inve r se aspect r a t i o of the t o r u s , L,, i s the d e n s i t y 

s c a l e l e n g t h , o Is the Ion Larnor r a d i u s , and q i s the s a f e ty f a c t o r . 

3/2 2 ID < u. Impl ies t h a t n < ( e L / q p ) , where D i s the e l e c t r o n Larraor be o n e M e 

r a d i u s , and thi:i r e n d i t i o n i s e a s i e r to be s a t i s f i e d for the wavelengths of 

3/2 2 

I n t e r e s t . On the o the r hand, we r e q u i r e n < (c L /q p ) for low frequency 

modes wi th to < io . For such low va lues of n, i t may be necessary to c a r r y 

out the next order WKS expansion in 1/n tn order t o ob t a in meaningful e lgen 

s o l u t i o n , . The re fo re , we should l i m i t o u r s e l v e s t o h igh-n modes wi th 

111. . , J , < u < to, , U 

b i ' t l b e ' t e 
For u > u , the solution of Eq. (10) for ions i3 given by 

GJ iii H 

al 

where 
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eF„ , v,A, 
G, "K )f7 !t* Jo-7V lV 1T i jA 
The general solution for circulating electrons with the hound.iry 

conditions g (9) * 0 as d •* ±« Is given by c 

6 fi-
ga(9) - lo / d9' xa exp(-lcrle > , d*) 

-o°> 

where 

*c * H ~ a*A ' 

eF. lv. 
v r'nl e T v Oe c 1 le' ' 

D, T . e FM Vcie 
*A *• * e y T c 

e 
9 9 

T 2 i 2 ,, B , . 

\ = J e "^T d e ' 

and o = :t refers to the sign of v.. for particles in question. Nore 
9 2 

that I is of the order of iu/a>. and Eq. (14) can .. i-educed to 
61 t e 

Ec - J (g+ + B_, _ -££*) p , *, + of J!-) , (15) 
whsre 

*, - £ - ( / d9' JBAJ - / « • -TBA J ) . (16) 
-CD 9 
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For trapped electrons, the boundary conditions at the turning points 

are g^Oj) - E_f f t

T) a a i ! i S+f^ " * - f l V ' w h e r e e i a n d fi2 r e f e r t o t h e 

nearest turning points with P. < 9 < 6„. Note that there are infinite 

pairs of turning points in the extended fi space for trapped particles- The 

general solution for trapped electrons Is 

9 9 
6 a(9) = exp(itfI®)(-2 s i n l g V 1 / e

2 °V [x_exp(il^) + x + Mpt-iljj ')] 

6 9' 
+ la f d9* * exp(-lol" > • ( 1 7 > 

6! ° 
Since I. is of the order of OJ/UJ. for trapped electrons, Eq. (17) 

reduces to 

A 1,-1 ,-62 _ ' 

and the total ronadiabatlc ^rapped electron diatrihutlar fa. o.tlon is 

" f l e ! ] _ I ^ d9' ' ' A ( I K 1 / J l " J r-f! d9' *A + /' dfi' ^ 
2 0 1 X 2 6 l 92 

+ 0(u/u b e ) . (19) 

Let 
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e 2 R 2 

<R> = I dft < B / | v , | ) R / / d9 ( B/ |v | ) , (20) 

\ " 9 1 

and 

6 BA„J. S 2 B A , J n f l 

* . - g ( f d S . ~ f 5 i - . f d 9 ' _ L i t ) . (2D 

"hen, g t can ba w r i t t e n as 

T T 
, M , r *e •»• *e 1 1 l e r oei; ,i , «/ i i 

5 t ' T L u> « ti5-<(jj. > Oe c id ll ' - ^ g 

( 22 ) 

If we further assume that 

IvA.J, uj-u, iv,A J ui-<u. > 
<*Jft + _ L i i i - f—*£^t> , 4 J f t + _ J^LJl - f fH_^, 

f)e c uj Tlt Oe c u 1 

then 

T 

e de t>e 

The total electron nonadlahatlc distribution Is given by g » g + g . 
Since 10 < w. , <o , we must retain the 0(<o/w. ) or Ofw/n). ) 

contribution of the electron distribution function in order to ohtaln the 
electron parallel cuttent perturhation j . However, it is often convenient 
to obtain j, by taking the moment of the gyrokinetic equation, Eq. flO). 
noting that 
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because f d v » V /2 it f (IE -^-^ •*-£*- and u - v /2B. Then from 6q. (10), 
a o K ' r 

we have, by setting J n = 1, 

U ,1 f ,5 •, , f , . .3 , . f , T . e F H , * Vl Al Jle, .•> - j j ' l ( d v v^g) = i I (w-u>f )g d v + 1 I (u)-tDie) -j.— (4+ — 1 A v . 
e 

(?*>) 

Substitution of Eqs. (13), (15), and (23) Into hhe quaslneutrallty 

condition given by Eq. (11) yields 

(i + T-Tx - I x> * - (T 2 + I 2 ) + i - D ^ , - 0 , 

where 

T 

I = T f f -^ujt. d V , 
(11 

, , " 1 " w * i , , v l > 3 
2 tii-u)., M Oi 11 c 

CO-U)a.„ , 
T 1 - f f ^ 0 F M d V ' 

1 T 0 ) - < a . d e ^ M 

T 

T 

n. - f { — ^ F M d 3 v , 
1 D w M 

(26) 
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<1» - i A , , T - T ' T . , and T and U refer to Integrat ion over trapped and 1 1 e 1 
untrapped p a r t i c l e s , r e s p e c t i v e l y . 

The perpendicular AL-ere's law, Eq. ( 1 2 ) , reduces to 

( T 2 + I 2 )J, + ( k ^ 2 + T 3 + I ^ + U ^ - 0 , (27) 

where 

k"V = (n?S)*T MnN , 1 e e e 

"""• i , , , / l T , 2 , 3 i - T f f — i i F r-± J . . 1 ' * J v , i ui-u;., H c 11 nl 

T, - f f " . *%1rMf-i. j . ) 2 d3v , 3 tir-<u. > H c l e ' r de 

n 2"i Hr 1 ** r 1 J i e d * 

From Eqs. ( 1 3 ) , ( 1 5 ) , ( 2 3 ) , a.id ( 2 5 ) , the para l l e l Anpere's law, Bq. 

( 1 2 ) , can be written as 

1 8 (n7S) 2 a , 47tNe 2u 2 ,„ , 
~ oTF —^~~ 39 *« * T < , 2 f V * " V + U 3 * l + V + <"•> + W , 

(28) 

where 
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'5- I f-^H=.>TKa\ . 
T 

T 
_ f c de ae w * e , ,3 
T, - I \——? r - l f lF„ d v , 

T de 
T 

T » r (*• d* i f _ ^ i F i j d \ 
5 „, (ii-<w, > to H c le 

J <ie 

Note t h a t the p a r a l l e l c u r r e n t p e r t u r b a t i o n Is due to e l e c t r o n s because the 
7 

lor. c o n t r i b u t i o n I s of the order of (u ,/&)) ' sma l l e r and I s n e g l e c t e d . 

In o rde r to c a r r y oui the v e l o c i t y space I n t e g r a t i o n of the e l e c t r o n 

t e r m s , we w i l l employ as our v e l o c i t y space c o o r d l n e t e s , v , \ , and a, 

where X = h ( 6 > v 2 / v Z , h ( 9 ) «• B / B ( e ) , and B - 1 - J* d6/B(fi) . In terms of 

these v a r i a b l e s , we have 

/ d 3 v = y tt r dv v 2 / * d * / [ h ( l - \ / h ) 1 / 2 ] . (29) 

Circulating parfrlcles correspond to 0 < \ < h and trapped particles to 
- - m 

h < \ < h(fi) at a given 9, where h 2 MIN[h(fO]. If we further assume 

that <(i). > = to. (v/v V for trapped electrons, where the pitch angle cte ne e 
dependenr.e has been neglected, we then find that the electron velocity 

Integrals can be reduced to 

, (11-0)4. (l+T) ) <1)_ C „ (0 
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T t - V i * 

k T 

k T 2 
T3 : h i r ' S3R3 • 

where 

1 /? 
R, - 2(1 - h / h i ' 

R, - ( • 4 / 3 K l + h l n / 2 h ) C l - h m / h ) 1 / 2 , J- m m 

h , h 2 h 1/2 

C t 2 - R x , 

C - 1 6 - R C 3 T5 R 3 ' 

SX ' 7 E * ' 'e " ^ . 2 - £ * n + n e ( J ; 2 - ^ / 2 ) l } [ l + E Z ( F , ) 1 , 
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2 1 2 2 
S 2 " 5 S l ~ 7 ( ? "**> ' 

s 3 - 5 2 - j [5 2 -«*( l+n e ) l 

r 2 /" F. = (o/w. cie 

,2 , -
F,* = ^ * e / u ) r t e , 

and Z I s the plasma d i s p e r s i o n func t ion . 

lhe Ion p a r a l l e l v e l o c i t y space i n t e g r a t i o n can he c a r r i e d out and t h e 

i n t e g r a l s a r e s imp l i f i ed to one dimensional ones , which can then be 

numer ica l ly I n t e g r a t e d . These I n t e g r a l s can he expressed a s 

,a> 2 
I . = t I dx exp( -x ) JQJW 

TZ = T ? c 1 ) C d x e x p ( " x ) J 01 J 11 ^ W ' 

I 3 = t f j i ) 2 r dx exp( -x ) J ^ W , (31) 

where 

H - bJl+F.Z(F)l + (a+bx) Z(FJ/F, , 

a - - r r u - o ) i l ( l - 3 - n 1 / 2 ) l / t o K l , 

b » fceV-Vrl ' 
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£' > -fm (x/2> - a]la . , and the argument of the Ion Bessel 
Bl tci 

funct ions Is O ^ x } 1 ' 2 , where b j - k ' p j , p± - Vj/ f l j . Note that the proper 

analyt ic continuation of K must be carried o u t . 

Equations (26) - ( 2 $ ) , (30) and (31) form a s i n g l e second order 

d i f f e r e n t i a l equation describing the hlgh-n c o l l i s i o n l e s s ballooning modes 

In axisynunetric toroidal plasmas and can be solved as an eigenvalue problem 

for uy under the boundary condit ion that <|> be square integrable 

and (oi|>„/69) I „ » 0. We sna i l s^lve these equations by a numerical 

shooting method and the r e s u l t s w i l l be described in Sec- V. 

In order to consider the HUD linL'.t of Eqs. ( 2 6 ) , ( 2 7 ) , and <2fc), ve 
1 /2 neg lect the trapped e lec tron e f f e c t s , which i s of order (r/R) ' . We a l so 

take th^ l i m i t s w , , /w « 1 and k p « 1 and e l iminate the Ion magnetic o i 1 1 

d r i f t resonance e f f e c t . Then the k i n e t i c Eqs. (26) - (2P) reduce to FLR 

modified MHH ballooning mode equation, 

B VA 

vhere V* - B ? /4aNi» t , U i l ± - w»t (1+Vt), *„ ' f \ x ?-VB, p' = ap/fi*, 

p - W(T + T ) , K * e.-Ve, , Q = 7 a , , + 4xa^. /a , and 
e l - b b 2i 11 oe 

a... - 1 - (1+J-l,)*^ /w. Note that t i e K term Is of order e smaller 
S.j J J H n 

than the Xtf term. For w to he o f order (1-Vri. )djjfc. , the K2 term i s 

d e s t a b i l i z i n g . For large aspect ra t io toro idal plasmas, the KZ tern in Eq. 

(32) i s usual ly neglected to simulate the FLR s t a b i l i z a t i o n of the 

bol loonlrg modes and «e w i l l refer to t h i s s i m p l i f i c a t i o n as MI-1 model in 

the fo l lowing. In addi t ion , i f we take the l i m i t uiju, -• 0, Eq. (32) reduces 

to the ideal MJTO equation tor studying i n f i n i t e - n bal looning modes. 
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A In the next section we present the numerical solutions of the kinetic 

Eqs, (26), (27), and (29), and compare these results with those obtained 

from solving Eqs. (32) and (33) in order to establish the degree of validity 

of the simplified models (MI, Mil, and ideal MHD model). There Is an 

Interesting limiting case of Eqs. (26) ~ (28) at n •= " and without trapped 

particle effects. By letting u =» a^ , we find t •> 4i. front Eq. (26) 
2 2 and (j, * ~,!2*||^i^e f r o m E<*' ^ 2 7^' Equation (28) then reduces to the Ideal 

MHO equation, Eq. (33), at critical ft with to - 0. 7his means that the 

critical R obtained from the kinetic Eqs. (26) - (?K> is identical to the 

ideal MHD R . this observation also serves as a good -way of checking the 

numerical solutions. For n £ 0 or Including trapped particle effects, we 

must rely on numerical so1utions. 

V. RESULTS 

In genera1., we trust obtain a numerical equilibrium by solving the Grad-

Shafranov equation, Eq. (5), In order to integrate the elgetunode 

equations. Powever, because one of our purposes Is to establish the 

correlations "between the kinetic model and the simplified models, «e will 

employ an analytic model equilibrium used in a number of previous ballooning 

mode calculations f11-131. The model corresponds to a large aspect ratio 

tokamak with circular magnetic surfaces over which the poloidal magnetic 

field Is uniform hut the shear is nonuniform. Ihen, Bcjs. (2fi) - (2P) reduce 

to 

2 
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trtiere 

K - f^dJ-d, , ) + Ugdi, + T 4* + (U 2 + T g J ^ I / * , . 

* - r < k ^ + T 3 + I 3 ) U j - (T 2 + I 2)tlj,l( |» |/n , 

*i " " K T 2 + V"l + <l + T " Tl " W V D * 

D » (1 + -t - T x - I ^ t t ^ + T 3 + I 3 ) + ( T 2 + \\) , 

w * 2«u# e [cos9 + ( s6 - o s ine ) sinfll , ice " e n p ' 

u_ » w - i). ffl (1 + T) ) + R.(l + n )J , Be Ke *e e e 1 1 

ne *e n ' 

k l P ± « (2b f ) / xMl + (sfl - a p s in f t ) 2 ] , s - rq ' /q , 

a p « - 2p 'Rq 2 /B 2 = ( q ? / E n ) f P e ( l + n g ) + fi^l + ^ ) | , 

P e - 8nme/B2 , p t - (?e/T , 0 = fie + p i , b 9 - Tkgp 2/2 

fc0 - n-l/r, oiA » VA/qR, 

and the I ' s , T'a, and D'B are given by Eqs- (30) and ( 3 1 ) . 

Equation (32) (MI model) reduces to flO] 
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w [1 + ( s 6 - a p s t n9 ) ] -^ 4>„ + a {fcose + ( s 9 - a s i n e ) s i n 9 ] 

+ ( A M ) G [ Q + (1 + T l l ) / T ] f l + ( s 9 - a s i n9 ) ] 

a 2 2 
V "li - ? 

- = (7a,, + AT l[cos9 + <s6 - a slnfi) slnepH, - 0 , (*5) 
2 a p 2 I S e P " 

where Q = u ' u ^ , A = t>„/e . and e - f f i n / 2 ) r i + n e + CI + i ] j [ ) /Tf . I r> "&1 • 

(35) the e lgenf requency , 0 , i s a func t ion of t he p a r a m e t e r s , 

" 2 
s , a , A, TI , t , P.q . While In the Ml-1 model, which I s g iven by 

5fl- [1 + (sfl - a sinft) ' 1 ^ - 1 ^ + a ffcosfl + (sC - « s lnR) sirtR] 

+ fA/4lQfR + (1 + T ) 1 ) / r i r i + ( s 6 - a s i n f l ) £ ) } ^ « 0 (36) 

Q depends on the parameters s, a , A, (l+r|.)/T and marginal stability occurs 

at Q = (1+TK)/2T. The corresondlng ideal MHD ballooning model is given by 

^ fl + (sS - a sftiO) ] Qf 4", + a [fcosS + (s9 - a sine) sin6] 

+ fi-1 fTfl + (s6 - a slnfiriU = 0 , (37) 

where Q is a function of p, a , and A only and marginal stability occurs 

at Q = 0. 

We first compare the results of the simplified models by solving Eqs. 

(351, (36), and (37). Figure 1 shows th» growth rates and the real 
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frequencies versus a for the parameters: s - 0 . 5 , b„ • 0 . 1 , e » 0 . 2 , p O n 

• t - q - T i » n. - 1. For the ideal MHI) model, the growth rate i s 
^ e I 

normalized by (ô  defined at b„ - 0 . 1 and the unstable region l i e s 

between a . • 0.389 and a , - 1.684. Tie MI-1 model, T5q. ( 3 6 ) , g ives 
pi P2 

constant frequencies with « - ( ^ . ( l + n . ) ^ when the modes are unstable aud 

the FLR s t a b i l i z a t i o n i s shown by the smaller growth rates and smaller 

unstable reRlon bounded by a » 0.4R43 and a . 1 .456. If the K term 
pi p2 w 

is retained, the MI model, Eq. (35), predicts a larger unstable region than 

ths Ideal WHD model. The real frequencies are more negative. this is 
2 because for E » 0.2, the K terra is not negligible in comparison with the n w 

K̂ , term and it may be Incorrect to employ the MI-1 model to simulate the FLR 

effects. 

Since the MI model la strictly valid only in th» limits b « 1 and 

e « 1, their results must be justified by comparing with the kinetic 

model, Eq. (34). We first neglect the trapped particle effects hy setting 

e = o and vary both b_ and e , D U t hold A fixed, from small numbers to 
0 n n 

normal tokamak v a l u e s . the r e s u l t s are I l l u s t r a t e d by two s e t s of 

h„ and e values ( b . - e - 0.01 and b„ = e = 0 . 1 ) with the e i g e n -
P n - f i n fin 

frequencies versus a p lotted in F ig . ?• lhe f ixed parameters are 

s = 0 . 5 , <J - T * 1, ti - n. = s " 0 . For h_ - e = O.01. the MI model i s e i o v n ' 

a good approximation of the k i n e t i c equation when the growth rates of the 

modes are l a r g e . However, when the MI model predicts s tab le modes, the 

k ine t i c equation, Eq. ( 3 4 ) , g ives r i s e to small res idua l growth assoc iated 

with the Ion magnetic d r i f t resonances. The real frequencies deviate 

sharply from '"'aj/^ and reach o^, when the modes become marginally s table a t 

the same c r i t i c a l p as predicted in the idea l MHP model. As b„ and e 
H n 

increase (e^ » b Q « 0.1), both the growth rates and the real frequencies 
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from the kinetic model further deviate from those obtained by the Ml 

models. But the staMlity boundaries remain the same a9 the Ideal MHD 

stability boundaries in the TI « 0 case. This larger discrepancy at larger 

b and s Is due to the breakdown of the expansion in k p. and u . /« as 

well as the omission of the magnetic drift resonances. When n. * 0 the 

region of Instability is usually greater than In the corresponding Ideal MHD 

and MI cases. 

From the parallel Anpere'a law, Eq. (28), we realize that the parallel 

rurrent perturbation is mainly due to circulating electrons because the 

trapped electron contribution is almost averaged out. Especially for deeply 

trapped particles 10 - <to > = 0 and from Eq. (30), T, and Tr. almost de de 4 > 
vanish. Therefore, when particle trapping effects are retained, the 

destabilizing parallel current perturbations due to circulating electron is 

reduced. This Is different from the drift wave branch where the 

destabilizing contribution is due to trapped particle density perturbation 

through dissipation effects such as magnetic drift resonances or 

collisions. Figure !i shows the elgenfrequencies versus a for e = 0 

and E =0.2, and the stabilization of the particle trapping effects li 
clearly seen. The results of the MI model are also shown for comparison. 

The fixed parameters are s = 0.5, b = 0.1, e 0.2, 
9 n 

q = -c = r, e = T)t = 1 . 

In order to check the dependence of c r i t i c a l f) on £ , Fig. 4 shows 66 

as a function of E for both the f i r s t Fsurve (a)] and the second Ccirve 
(b)] c r i t i c a l beta, where 6g » R /p (s =0) - 1 for curve (a) and 

6fi = 1 - 8 /ft (E »0) fur curve (b) . The fixed parameters are 
c e o 

e n = b f i = n . l , s = 0 . S q = T - 1, n e - Vj_ = 0. At e Q = 0, 

fi = n.03914 for curve (a) and fl = 0.16*5 for curve ( b ) . For small e , 
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bcth curves (a) and (b) are proportional to e , which can be explained by 
1/2 

l oca l a n a l y s i s . As e Increases , fifl dev iates from e dependence and 
o *-• 

becomes larger. 

The FI.R effects have also been studied and Che results are shown In 

Fig. 5 with b 9 - 0 x If) - 4, Fig. 6 with bfi - lO - 2, and Fig. 7 with 

b = O.lfi. In these figures the eigenfrequencies are plotted against 
B 

a and the results of the MI and ideal MHP models are also shown for P 
comparison. The fixed parameters are s • 0.6, q » 1.414, e » E = 0.1, 

t = T) = T). =» 1. Hhen bfl « 1, as in Figs. .*> and 6, the MI mdoel and the 

ideal MUD model give about the same growth rates, but different real 

frequencies. Due to trapped particle effects, the kinetic model produces 

smaller stability region and smaller growth rates. An b. increases, both 
b 

the MI model and the kinetic model begin to give substantially different 
results from the ideal MHD model, as shown In Fig. 7 for b = 0.16. Now 

B 
the MI model gives rise to a smaller unstable region. If b Q is further 

9 
increased, the MI model would predict complete stability (b„ > 0.25 for this 

set of parameters), but the kinetic model still predicts instabilities in a 

smaller it region than the Ideal MHD model. The breakdown of the MI model P 
is ooviously due to the expansion In k p, and u../u as well as the omission 

of the trapped particle effects. 

VI. rONCLUSION 

Employing the hlgh-n ballooning mode and WKB formalism, we have derived 

a collisionless kinetic ballooning mode equation in an axlsymraetric toroidal 

plasma by solving the Vlasov-Maxwell equations. The kinetic ballooning mode 

equation, which includes the full ion finite Larmor radius and magnetic 

drift effects and the trapped electron effectB, Is obtained in the frequency 
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regime u , u < u < u) , u In the limit of long wavelengths, hi ti he te 
k p « 1, and small ion magnetic drift frequencies, u../u « 1, the kinetic 

ballooning mode equation is shown- to reduce to the FLR modified MHD 

ballooning model and the Ideal MHD model In the absence' of the trapped 

particle effects. In order to study the influence of these kinetic effects! 

on the stability of the ballooning modes, we perform numerical solutions of 

the kinetic ballooning mode equation and compare the results with those 

from various simplified models. In the numerical calculations we employ, 

for simplicity, an analytic model equilibrium which corresponds to large 

aspect ratio tokamaks with circular magnetic surfaces over which the 

poloidal magnetic field is uniform but the magnetic shear is not uniform. 

An interesting limit has been found with n. - <1, u - jj^. and without the 

trapped particle effects. the kinetic ballooning mode equation becomes 

identical to the ideal MHO equation at R . Ihis implies that the ion FLR 
c 

and magnetic drift resonance have no effects on the critical P for 

n = 0. In g-ujera'i , tho ion FLR effects can reduce the growth rate but do 

not completely stabilize the ballooning modes due to the destabilizing 

influence of the ion magnetic drift resonances. Our results also show that 

it is incorrect to simulate the FLR effects by employing the FLR modified 

MHT) model for (k.p ) > 0.1 and E > 0.1. Since the parallel current 
9 1 - n "• 

perturbation is mainly due to circulating electrons, the presence of the 

trapped electrons reduces the circulating electron population and gives rise 

to stabilizing effects. For small e , the change in p is proportional 
1/2 to e . For typical values of e , S can be improved by 40£. 
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FIGURE CAPTIONS 

Dependence of the growth r a t e s and the r e a l f r equenc ie s on a for 

s - 0 . 5 , b f i » 0 . 1 , e n - 0 . 2 , e o - 0 , T » q - n e » T^ - 1 where 

^ p ' R q ' / B 2 - Rq 2 [ l + r\t + t ( l + T i e ) l / [ e n ( l + t ) ! - The e igen 

f r equenc ie s obta ined from the MI model TEq. ( 3 5 ) ] , the MI-1 model 

fEq. ( 3 6 ) ] , and the Idea l MHD model [T!q. (37) ] a r e compared. 

P lo t of the e lgenf requenc ies ve r sus a fo r two s e t s of b n and e_ 
p H n 

values: (a) b. - e = 0.01, and (b) b- » £ „ = 0.1. The fixed H n " n 
parameters are s » 0.5, q » t « 1, n ™ n. =" e = 0 . The 

results from the kinetic model, F,q. (34), the MI model, Eq. (35), 

and the ideal MHD model, Eq. (37), are compared. 

Dependence of the elgenfrequencies from the kinetic model, Eq. 

(34), on a for two values Of E : E - 0 and e = 0 . 2 . Tne fixed 
p O O O 

parameters a re s - 0 . 5 , b = 0 . 1 , e = . 2 , 
o n 

q = T = n • r j . - 1. The r e s u l t s of t he MI model, Eq. ( 3 5 ) , a r e 

a l so shown for comparison. 

Dependence of 6fi on e for both t he f i r s t [curve ( a ) ] and the 

second rcurve ( b ) ] c r i t i c a l B, where 66 » B /p ( E - 0) - 1 for 
c : o 

curve ( a ) and 6B = 1 - B /R ( E - 0) for curve ( b ) . At E^ = 0, 
p - 0.03914 for curve (a ) and ft - 0.16*5 for curve ( b ) . The c c 
fixed parameters a r e E " b . » 0 . 1 , s - 0 . 5 , q • t = 1, 

Dependence of the e lgenf requenc les from the k i n e t i c model, Eq. 

( 3 4 ) , the MI model, Eq. ( 3 5 ) , and the Idea l MHT model , iiq. ( 3 7 ) , on 

a for b « 9 i 10" . The f ixed parameters a r e a - 0 . 6 , q = 

1-414, E O - e n - 0 . 1 , x - n - n ± - 1. 
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Flg. 6. Same as In Fig. 5 except b. » 0.01. 
Fig. 7. Same as In Fig. 5 except b„ - 0.16 
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