

Progress Report

December 1, 1978 - August 15, 1979

Gerald W. Esch

and

Terry C. Hazen

MASTER

Department of Biology

Wake Forest University

Winston-Salem, NC 27109

PREPARED FOR

U. S. DEPARTMENT OF ENERGY

UNDER CONTRACT EY-76-S-09-0900

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of the contractors, subcontractors, or their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

1 DISCLAIMER

2 This report was prepared as an account of work sponsored by the
3 United States Government. Neither the United States nor the United States
4 Department of Energy, nor any of their employees, nor any of their
5 contractors, subcontractors, or their employees, makes any warranty,
6 expressed or implied or assumes any legal responsibility for the accuracy,
7 completeness or usefulness of any information, apparatus, product or
8 process disclosed; or represents that its use would not infringe on
9 privately-owned rights.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

ABSTRACT

2 During the current contract year, the following results were obtained:
3 (1) Data from field-generated studies have shown that hematocrit, hemoglobin,
4 total red blood cell counts, total white blood cell counts and cortisol
5 levels are significantly affected in largemouth bass with body conditions
6 < 2.0, suggesting that stress, body condition and the probability of bass
7 acquiring red-sore disease are related. Laboratory studies appear to at
8 least partially confirm these results. (2) Chemotaxis studies show that
9 Aeromonas hydrophila is attracted to specific sugars and amino acids and
10 that there appears to be a strain-related affect of fish mucous on A. hydrophila
11 isolated from red-sore lesions. (3) Immunologic and serologic tests suggest
12 that A. hydrophila isolated from red-sore lesions on bass from one lake
13 system will not cross-react with antibodies in sera isolated from bass in
14 another lake system, suggesting the existence of different strains in
15 different lakes.

16

17

18

19

20

21

22

23

24

1 I. Brief Description of Scope of Investigation and Significant Results

2 Red-sore disease has been shown to be a significant problem for the
3 sport and commercial fishing industries in the southeastern United States
4 (Rogers, 1971; Shotts, et al., 1972; Miller and Chapman, 1976; Esch and
5 Hazen, 1978). Evidence generated over the past four years has strongly
6 indicated that the epizootiology of red-sore disease in a South Carolina
7 cooling reservoir is affected by thermal effluent from a nuclear production
8 reactor (Esch, et al., 1976; Esch and Hazen, 1978). Several lines of study
9 pursued during the same period of time have conclusively shown that the
10 gram-negative bacterium, Aeromonas hydrophila, is the primary etiologic
11 agent for the disease (Hazen, et al., 1978; Huizinga, et al., 1979). A
12 stress hypothesis, formulated by Esch and Hazen (1978) appears to have
13 substantial field and laboratory evidence for support.

14 Results of studies during the current contract year are presented in
15 manuscript form and in reprints comprising the next section of the report.

16 II. Progress in Achieving Objectives

17 Rather than repeating verbatim information contained within manuscripts
18 and reprints submitted or published during the current year, an abstract
19 and/or summary of each is presented. These abstracts and/or summaries will
20 comprise the annual report for the current contract year.

21 A.) Hazen, T. C., M. L. Raker, G. W. Esch and C. B. Fliermans, 1978. Ultra-
22 structure of red-sore lesions on largemouth bass (Micropterus salmoides):
23 the association of the peritrich Epistylis sp. and the bacterium
24 Aeromonas hydrophila. *J. Protozool.* 25: 351-355.

25 ABSTRACT: Epizootic outbreaks of red-sore disease in several reservoirs in

1 the southeastern United States have been reported to cause heavy mortality
2 among several species of fish having sport and commercial value. The
3 etiologic agent is said to be the peritrich ciliate Epistylis sp.; secondary
4 infection by the gram-negative bacterium Aeromonas hydrophila produces
5 hemorrhagic septicemia which results in death. However, in recent studies
6 on the largemouth bass Micropterus salmoides, Epistylis sp. could be
7 isolated from only 35% of 114 lesions from 114 fish, while A. hydrophila was
8 found in 96% of the same lesions. Transmission and scanning electron
9 microscopy of lesions associated with red-sore disease indicate that neither
10 the stalk nor the attachment structure of Epistylis sp. have organelles
11 capable of producing lytic enzymes. Since other investigators have shown
12 that A. hydrophila produces strong lytic toxins, and in absence of evidence
13 to the contrary, it is concluded that Epistylis sp. is a benign ectocommensal
14 and that A. hydrophila is the primary etiologic agent of red-sore disease.

15 B.) Hazen, T. C., C. B. Fliermans, R. P. Hirsch and G. W. Esch. 1978. The
16 prevalence and distribution of Aeromonas hydrophila in the United
17 States. Appl. Environ. Microbiol. 36: 731-738.

18 ABSTRACT: The abundance of Aeromonas hydrophila was measured in 147 natural
19 aquatic habitats in 30 states and Puerto Rico. Viable cell counts were used
20 to estimate density at all sites by using Rimler-Shotts medium, a differential
21 presumptive medium for A. hydrophila. Temperature, pH, conductivity, salinity,
22 and turbidity were measured simultaneously with water sample collection.
23 The density of A. hydrophila was higher in lotic than in lentic systems.
24 Saline systems had higher densities of A. hydrophila than did freshwater
25 systems. A. hydrophila could not be isolated from extremely saline, thermal,

1 or polluted waters, even though it was found over wide ranges of salinity,
2 conductivity, temperature, pH, and turbidity. Of the water quality parameters
3 measured, only conductivity was significantly regressed with density of A.
4 hydrophila.

5 C.) Huizinga, H., G. W. Esch and T. C. Hazen. 1979. Histopathology of
6 red-sore disease (Aeromonas hydrophila) in naturally and experimentally
7 infected largemouth bass (Micropterus salmoides). J. Fish Dis. 2:
8 310-321.

9 ABSTRACT: The histopathology of red-sore disease, caused by the gram-negative
10 bacterium, Aeromonas hydrophila, is described for largemouth bass, Micropterus
11 salmooides. Externally, lesions range from those affecting a few scales
12 (pin-point), to those associated with extensive chronic ulcerations; there is
13 focal hemorrhage, oedema and dermal necrosis which exposes underlying muscles
14 producing infiltration of mononuclear and granulocytic inflammatory cells.
15 Internally, the liver and kidneys are foci for toxic products produced by
16 A. hydrophila with, in the most severe cases, complete destruction of the
17 structural integrity of both organs. Pathological changes were not serious
18 in either the spleen or heart, even in cases with massive damage in the liver
19 and kidney. Internal and external lesions were similar in both natural and
20 experimentally induced infections. The pathobiology of red-sore disease in
21 bass was postulated to be linked to elevated water temperature stimulating
22 increased metabolism, decreased body condition and stress, leading to the
23 increased production of corticosteroids and the concomitant rise in
24 susceptibility to infection.

25 D.) Hazen, T. C. and C. B. Flicrmans. 1979. The distribution of Aeromonas

1 hydrophila in natural and man-made thermal effluents. Appl. Environ.
2 Microbiol. 38: (In press).

3 ABSTRACT: Densities of Aeromonas hydrophila showed distinct thermal optima
4 (25-35°C) and thermal maxima (45°C) when measured along thermal gradients
5 created by geothermal and nuclear reactor effluents. Survival of A. hydrophila
6 never exceeded 48 hr at temperatures > 45°C. Thermophilic strains could not
7 be isolated at any site.

8 E.) Hazen, T. C. 1979. The ecology of Aeromonas hydrophila in a South Carolina
9 cooling reservoir. Microb. Ecol. (In press).

10 ABSTRACT: Densities of Aeromonas hydrophila were determined monthly from
11 December 1975 to December 1977 in a South Carolina cooling reservoir which
12 receives heated effluent from a single nuclear production reactor. Selected
13 water quality parameters and prevalence of red-sore disease among largemouth
14 bass were monitored simultaneously.

15 Higher densities of A. hydrophila were observed in areas of the reservoir
16 receiving effluent from the reactor. Densities of A. hydrophila generally
17 were heterogeneous in the water column. The sediments had lower densities of
18 A. hydrophila than water immediately above. A. hydrophila could not be
19 isolated from sediments greater than 1 cm from the water interface. Temperature,
20 redox potential, pH and conductivity were all significantly correlated with
21 densities of A. hydrophila in the water column. The temporal and spatial
22 distribution and abundance of A. hydrophila in water were not related to total
23 organic carbon, dissolved organic carbon, particulate organic carbon, inorganic
24 carbon or dissolved oxygen. High densities of A. hydrophila were observed in
25 mats of decomposing Myriophyllum spicatum and, enterically, in largemouth bass,

1 several other species of fish, turtles, alligators, and snails. The greatest
2 densities of A. hydrophila in water occurred during the months of March and
3 June with a second peak in October. The mean monthly densities of A. hydrophila
4 were positively correlated with the incidence of infection in largemouth bass.
5 Largemouth bass from thermally altered parts of the reservoir had a significantly
6 higher incidence of infection. It is concluded that thermal effluent
7 significantly effects the ecology of A. hydrophila and the epizootiology of
8 red-sore disease within Par Pond.

9 F.) Fliermans, C. B. and T. C. Hazen. Submitted to Can. J. Microbiol.

10 Serological specificity of Aeromonas hydrophila as measured by immuno-
11 fluorescence photometric microscopy.

12 ABSTRACT: Strain specific fluorescent antibodies were prepared for three
13 isolates of Aeromonas hydrophila. These antisera were reacted with 276 other
14 A. hydrophila isolates and their immunofluorescence was measured quantitatively
15 by photometric fluorescence microscopy. Statistical analyses indicated that
16 the A. hydrophila isolated from aquatic habitats were serologically distinct
17 from the other isolates as a serogroup.

18 G.) Esch, G. W. and T. C. Hazen. Submitted to Trans. Amer. Fish. Soc.

19 Relationship of body condition and various hematological parameters of
20 largemouth bass (Micropterus salmoides) in a South Carolina cooling
21 reservoir.

22 ABSTRACT: A total of 465 largemouth bass (Micropterus salmoides) were
23 collected in Par Pond, a South Carolina cooling reservoir; bass were captured
24 quarterly, beginning in summer 1976 and continuing through winter 1978.
25 Hematocrit, hemoglobin, total red blood cells (TRBC), total white blood cells

1 (TWBC), cortisol and body condition (K-factor) were measured for each bass;
2 the presence or absence of red-sore disease was confirmed by visual observation
3 and subsequent isolation of the causative agent, Aeromonas hydrophila, on R-S
4 medium. Results show that hematocrit, hemoglobin, TRBC and TWBC were
5 significantly lower in bass with K-factors < 2.0, while cortisol levels and
6 prevalence of red-sore disease were significantly higher in bass with body
7 conditions < 2.0. Multiple regression analysis of the same data for the
8 entire population confirmed that bass in relatively poor body condition (< 2.0)
9 were more likely to have leucopenia and elevated cortisol levels. Since these
10 bass were also more heavily infected with red-sore disease, it is suggested
11 that the disease process in this reservoir system is related to stress,
12 probably chronic, induced by elevated temperature from a nuclear production
13 reactor.

14 III. Statement of Compliance

15 This is to indicate that all aspects of Contract EY-76-S-09-0900 have
16 been complied with by the Contractor.

17 IV. Approximate percentage of Time Devoted to Project and Amount of Time to
18 be Devoted During the Remaining Three Months.

19 The Principal Investigator has devoted approximately 40% of his time to
20 the project during the regular academic year and 100% during the summer months.

21 V. Papers and books published, or in press and papers presented at national
22 meetings (supported completely, or in part, by Contract EY-76-S-09-0900
23 between DOE and Wake Forest University):

24 A. Published (papers)

25 1) Hazen, T. C., G. Smith and R. V. Dimock, Jr. 1976. A method for

1 fixing and staining peritrich ciliates. *Trans. Am. Micros. Soc.*
2 95: 693-695.

3 2) Esch, G. W., T. C. Hazen, R. V. Dimock, Jr. and J. W. Gibbons. 1976.
4 Thermal effluent and epizootiology of the ciliate Epistylis and
5 the bacterium Aeromonas in association with centrarchid fish. *Trans.*
6 *Am. Micros. Soc.* 95: 687-693.

7 3) Esch, G. W., T. C. Hazen and J. M. Aho. 1977. Parasitism and r
8 and K selection. In: *Regulation of Parasite Populations*. G. W.
9 Esch ed. Academic Press. Pp. 9-62.

10 4) Fliermans, C. B., R. W. Gorden, T. C. Hazen and G. W. Esch. 1977.
11 Aeromonas distribution and survival in a thermally altered lake.
12 *Appl. Environ. Microbiol.* 33: 114-122.

13 5) Esch, G. W., G. M. Campbell and J. R. Coggins. 1976. Recruitment
14 of helminth parasites by bluegills (Lepomis macrochirus) using a
15 modified live-box technique. *Trans. Am. Fish. Soc.* 105: 486-490.

16 6) Hazen, T. C. and G. W. Esch. 1977. Studies on the population biology
17 of two larval trematodes in the amphipod, Hyalella azteca. *Am.*
18 *Midl. Nat.* 98: 213-219.

19 7) Hazen, T. C. and G. W. Esch. 1978. Observations on the ecology of
20 Clinostomum marginatum in largemouth bass (Micropterus salmoides).
21 *J. Fish Biol.* 12: 411-420.

22 8) Hazen, T. C., G. W. Esch, A. B. Glassman and J. W. Gibbons. 1978.
23 Relationship of season, thermal loading and red-sore disease with
24 various hematological parameters in largemouth bass (Micropterus
25 salmoides). *J. Fish Biol.* 12: 491-498.

1 9) Quinn, T., G. W. Esch, T. C. Hazen and J. W. Gibbons. 1978. Long
2 range movement and homing by largemouth bass (Micropterus
3 salmoides) in a thermally altered reservoir. Copeia 1978:
4 542-545.

5 *10) Hazen, T. C., M. L. Raker, G. W. Esch and C. B. Fliermans. 1978.
6 Ultrastructure of red-sore disease lesions on largemouth bass
7 (Micropterus salmoides): the association of the peritrich
8 Epistylis sp. and the bacterium Aeromonas hydrophila. J.
9 Protozool. 25: 351-355.

10 *11) Esch, G. W. and T. C. Hazen. 1978. Thermal ecology and stress:
11 A case history for red-sore disease in largemouth bass
12 (Micropterus salmoides). In: Energy and Environmental Stress
13 in Aquatic Systems. J. J. Thorpe and J. W. Gibbons, eds. DOE
14 Symposium Series (CONF 771114). Pp. 331-363.

15 *12) Gibbons, J. W., G. W. Esch, D. E. Bennett and T. C. Hazen. 1978.
16 A long-term study of the body condition in largemouth bass in a
17 thermally altered reservoir. Nature (London) 274: 470-471.

18 *13) Hazen, T. C., C. B. Fliermans, R. P. Hirsch and G. W. Esch. 1978.
19 The prevalence and distribution of Aeromonas hydrophila in the
20 United States. Appl. Environ. Microbiol. 36: 731-738.

21 *14) Huizinga, H., G. W. Esch and T. C. Hazen. 1979. Histopathology of
22 red-sore disease in largemouth bass (Micropterus salmoides).
23 J. Fish Dis. 2: 310-321.

24 *Denotes papers published during current contract year.

25

1 B. In press

2 1) Hazen, T. C. The ecology of Aeromonas hydrophila in a South
3 Carolina cooling reservoir. *Microb. Ecol.*
4 2) Hazen, T. C. and C. B. Fliermans. The distribution of Aeromonas hydrophila
5 in natural and man-made thermal effluents. *Appl. Environ. Microbiol.*

6 C. Manuscripts submitted

7 1) Fliermans, C. B. and T. C. Hazen. Serological specificity of
8 Aeromonas hydrophila as measured by immunofluorescence photometric
9 microscopy.
10 2) Esch, G. W. and T. C. Hazen. Relationship of body condition and
11 various hematological parameters of largemouth bass in a South
12 Carolina cooling reservoir.
13 3) Esch, G. W., J. W. Gibbons and J. E. Bourque. Incidence and
14 abundance of parasites in Pseudemys s. scripta from various
15 habitats in South Carolina.
16 4) Esch, G. W., J. W. Gibbons and J. E. Bourque. Species diversity of
17 endoparasitic helminths in Pseudemys s. scripta in South Carolina.

18 D. Published (books).

19 "Regulation of Parasite Populations." Edited by G. W. Esch. Academic
20 Press, N. Y., 253 pp.

21 E. Papers presented at national meetings

22 1) Esch, G. W., T. C. Hazen and J. W. Gibbons. Thermal effluent and
23 epizootiology of Epistylis (Ciliophora peritricha). August, 1976,
24 San Antonio, Texas. American Society of Parasitologists annual
25 meeting.

1 2) Fliermans, C. B., R. W. Gorden, T. C. Hazen and G. W. Esch.
2 Distribution and survival of Aeromonas in a thermally altered
3 lake. May, 1976, Atlantic City, New Jersey. American Society
4 for Microbiology annual meeting.

5 3) Hazen, T. C. and G. W. Esch. The distribution of Clinostomum
6 marginatum metacercaria in the centrarchid fish of a South
7 Carolina cooling reservoir. August, 1976, San Antonio, Texas.
8 American Society of Parasitologists annual meeting.

9 4) Hazen, T. C., G. W. Esch and M. L. Raker. Light and electron
10 microscope studies on lesions associated with red-sore
11 disease in largemouth bass. April, 1977, Raleigh, North
12 Carolina. Southeastern Society of Parasitologists annual
13 meeting.

14 5) Glassman, A. B., C. E. Bennett, T. C. Hazen, R. W. Gorden and
15 C. B. Fliermans. Light and electron microscopy of the peripheral
16 blood in Alligator mississippiensis. April, 1977, Savannah,
17 Georgia. Georgia Academy of Science annual meeting. November,
18 1977, Augusta, Georgia. Symposium on Energy and Environmental
19 stress in Aquatic Systems.

20 6) Hazen, T. C., G. W. Esch and C. B. Fliermans. Distribution of
21 Aeromonas hydrophila in a South Carolina cooling reservoir.
22 May, 1977, New Orleans, Louisiana. American Society for
23 Microbiology annual meeting.

24 7) Hazen, T. C., R. P. Hirsch and G. W. Esch. Hines and Nicholas revisited:
25 a study of parasite distribution. August, 1977, Las Vegas, Nevada.
 American Society of Parasitologists annual meeting.

- 1 8) Fliermans, C. B., T. C. Hazen and M. R. Tansey. Distribution of
- 2 Aeromonas hydrophila and other pathogens in a South Carolina
- 3 reservoir. Microbiology of Power Plant Thermal Effluents.
- 4 9) Hazen, T. C., G. W. Esch and C. B. Fliermans. The distribution of
- 5 the bacterium Aeromonas hydrophila in thermally altered environments.
- 6 November, 1977, Augusta, Georgia. Symposium on Energy and
- 7 Environmental Stress in Aquatic Systems.
- 8 10) Esch, G. W. and T. C. Hazen: Thermal ecology and stress: A case
- 9 history for red-sore disease in largemouth bass (Micropterus
- 10 salmoides). November, 1977, Augusta, Georgia. Symposium on
- 11 Energy and Environmental Stress in Aquatic Systems.
- 12 11) Gibbons, J. W., D. H. Bennett, G. W. Esch and T. C. Hazen. Body
- 13 condition of largemouth bass in a reservoir receiving heated
- 14 effluent. November, 1977, Augusta, Georgia. Symposium on Energy
- 15 and Environmental Stress in Aquatic Systems.
- 16 12) Hazen, T. C. The ecology of the bacterium Aeromonas hydrophila in a
- 17 South Carolina cooling reservoir. August, 1978, Athens, Georgia.
- 18 Ecological Society of American annual meeting.
- 19 13) Esch, G. W. and T. C. Hazen. Cortisol and body condition of
- 20 largemouth bass in a South Carolina cooling reservoir. August,
- 21 1978. Ft. Collins, Colorado. Wildlife Disease Association annual
- 22 meeting.
- 23 *14) Huizinga, H., G. W. Esch and T. C. Hazen. Histopathology of red-sore
- 24 disease in largemouth bass. December, 1978. Richmond, Virginia.
- 25 American Microscopical Society Annual Meeting.

1 *15) Hazen, T. C. and G. W. Esch. Chemotaxis studies on Aeromonas
2 hydrophila. May, 1979. Los Angeles, California. American Society
3 of Microbiologists Annual Meeting.

4 *16) Hazen, T. C. and G. W. Esch. Agglutinating antibodies in largemouth
5 bass. May, 1979. Los Angeles, California. American Society of
6 Microbiologists Annual Meeting.

7 *Denotes papers presented during current contract year.

8 VI. Literature Cited

9 Esch, G. W. and T. C. Hazen. 1978. Thermal ecology and stress: a case
10 history for red-sore disease in largemouth bass. In Energy and
11 Environmental Stress in Aquatic Systems, J. W. Tharp and J. W. Gibbons
12 (eds.), ERDA Symposium Series (CONF-771114), p. 331-363.

13 Esch, G. W., T. C. Hazen, R. V. Dimock and J. W. Gibbons. 1976. Thermal
14 effluent and the epizootiology of the ciliate Epistylis and the
15 bacterium Aeromonas in association with centrarchid fish. Trans. Amer.
16 Microscop. Soc. 95: 687-693.

17 Hazen, T. C., M. L. Raker, G. W. Esch and C. B. Fliermans. 1978.
18 Ultrastructure of red-sore lesions: association of the peritrich
19 Epistylis sp. and the bacterium Aeromonas hydrophila. J. Protozool.
20 25: 351-355.

21 Huizinga, H., G. W. Esch and T. C. Hazen. 1979. Histopathology of
22 red-sore disease (Aeromonas hydrophila) in natural and experimentally
23 infected largemouth bass (Micropterus salmoides). J. Fish Dis. 2:
24 310-321.

25 Miller, R. M. and W. R. Chapman, 1976. Epistylis and Aeromonas

1 hydropthila infections in fishes in North Carolina reservoirs. Prog.
2 Fish-Cult. 38: 165-168.

3 Shotts, E. B., J. L. Gaines, L. Martin and A. K. Prestwood. 1972.

4 Aeromonas-induced deaths among fish and reptiles in an eutrophic
5 inland lake. J. Amer. Vet. Med. Assoc. 161: 603-607.

6 VII. Estimate of probable events and occurrences during the remainder of
7 current contract period. The primary objectives during the remainder
8 of this contract period will be as follows.

9 A. Continue laboratory experiments on thermally-induced stress
10 in bass.

11 B. Continue chemotaxis studies on Aeromonas hydropthila.

12 C. Continue strain identification studies on Aeromonas hydropthila.

13 D. Continue studies on hematological characteristics of Par Pond
14 bass.

15 VIII. Appendix

16 A. Reprint of:

17 Hazen, T. C., M. L. Raker, G. W. Esch and C. B. Fliermans. 1978.

18 Ultrastructure of red-sore lesions on largemouth bass
19 (Micropterus salmoides): the association of the peritrich
20 Epistylis sp. and the bacterium Aeromonas hydropthila. J.
21 Protozool. 25: 351-355.

22 B. Reprint of:

23 Hazen, T. C., C. B. Fliermans, R. P. Hirsch and G. W. Esch. 1978.

24 The prevalence and distribution of Aeromonas hydropthila
25 in the United States. Appl. Environ. Microbiol. 36: 731-738.

1 C. Xerox copy of (reprints not yet available):

2 Huizinga, H., G. W. Esch and T. C. Hazen. 1979. Histopathology
3 of red-sore disease (Aeromonas hydrophila) in naturally
4 and experimentally infected largemouth bass (Micropterus
5 salmoides). J. Fish. Dis. 2: 310-321.

6 D. Copy of manuscript in press:

7 Hazen, T. C. and C. B. Fliermans. 1979. The distribution of
8 Aeromonas hydrophila in natural and man-made thermal
9 effluents. Appl. Environ. Microbiol. In press.

10 E. Copy of manuscript in press:

11 Hazen, T. C. 1979. The ecology of Aeromonas hydrophila in a
12 South Carolina cooling reservoir. Microb. Ecol. In press.

13 F. Copy of manuscript submitted to Can. J. Microbiol.:

14 Fliermans, C. B. and T. C. Hazen. Serological specificity of
15 Aeromonas hydrophila as measured by immunofluorescence
16 photometric microscopy.

17 G. Copy of manuscript submitted to Trans. Am. Fish. Soc.:

18 Esch, G. W. and T. C. Hazen. Relationship of body condition and
19 various hematological factors of largemouth bass (Micropterus
20 salmoides) in a South Carolina cooling reservoir.

21

22

23

24

25