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ABSTRACT

Many flow problems encountered in petroleum reservoir
engineering are characterized by nonlinearities and are difficult
to solve analytically. The concept of a relative mass flow rate
function is used to arrive at an integral equation formulation
for some of these nonlinear flow problems. This formulation
has some distinct advantages over existing methods of han-
dling such nonlinear flow problems because of its generality
and simplicity.

The problems considered include two-phase fluid dis-
placement including the effect of capillary pressure and isoth-
ermal transient flow of gas. These problems can be described
by nonlinear parabolic partial differential equations that have
self-similar solutions.

Exact semi-analytical solutions are obtained which can be
easily evaluated using a rapidly-converging iteration process.
A new understanding of the mechanism of the displacement of
a non-wetting phase by a wetting phase has been developed
that is dependent on a critical value of the dimensionless injec-
tion rate constant.

INTRODUCTION

Many flow problems encountered in petroleum reservoir
engineering are characterized by their nonlinearity and are
difficult to treat analytically. These problems include the classi-
cal problem of transient flow of gas (equivalent to the
unconfined Dupuit flow of groundwater), the two-phase dis-
placement problem including capillary pressure, flow of non-
Newtonian fluids, flow through pressure-sensitive media, etc.
These problems are described by parabolic partial differential
equations in which the coefficient of hydraulic diffusivity is
either pressure- or saturation-dependent. Only a few exact
solutions to these problems have been obtained for the one-
dimensional case. Exact solutions for transient flow of gas (or

References and Illustrations at end of paper.

unconfined flow of groundwater) were obtained by Bous-
sinesq,! Polubarinova-Kochina2 and Barenblatt.3,4 Exact solu-

tions for two-phase flow including capillary pressure were
obtained by Rizhik,5 Rizhik er al.,6 Rakhimkulov and
Shvidler,7 Chen8-10 and Yonsos and Fokas.ll Recently,
McWhorter and Sunada,l2 McWhorterl3 as well as Chen et

used an integral equation approach, which was first
proposed by McWhorterl8 and discussed by McWhorterl9 and
Chen,20 to solve nonlinear hydrology problems of this type. In
this paper, the integral equation formulation is summarized and
applied to two nonlinear flow problems encountered in
petroleum reservoir engineering.

A GENERAL DESCRIPTION OF THE
INTEGRAL EQUATION FORMULATION

In petroleum reservoir engineering there exists a group of
nonlinear flow problems that can be described by the following
second order parabolic panial differential equation:

IriMMrl- G

where thecoefficient of hydraulic diffusivity, D (p), is a func-
tion ofp. The initial and boundary conditions are

p (I, 0) = pi 2
p(0,0 = po 3)
P<,°°1)=Pi 4

Using the Boltzmann transformation

art ©)

where a is a parameter having the dimension of L/ J7: Equa-
tion (1) can be transformed to an ordinary differential equation

1| lgt]-tt) |
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AND OTHER NONLINEAR FLOW PROBLEMS THROUGH POROUS MEDIA

The boundary conditions are:
p(83=0)=Po (7)
p($=00) =pi ®
Equations (6)-(8) describe a self-similar problem that can be
solved by means of the method proposed by Barenblatt3,4 for
the case ofp- = 0. We will demonstrate that it can be solved

more easily, and for any p,-, through an integral equation for-
mulation that was first used by McWhorter.18

Coming back to the basic equations, Darcy’s law and
equation of conservation of matter, we have:

_ k dn
ar ©
ai>p) _ d(pu)
dt dx GO)

Let us introduce a relative mass flow rate function /(p),
defined by

2«
/(P)=, .- ab
P)= peei .
where «| ( can be expected to be inversely proportional to
VT:
“L— N 2
VT

where B is a constant to be determined.

Using Egs. (9), (10) and (11), a second order nonlinear
ordinary differential equation for/ (p) can be formulated in the
~ space. It then is transformed to an integral equation which
can be solved easily by a rapidly-converging iteration pro-
cedure. During the transformation process, the unknown con-
stant B is determined from the fundamental condition that
dp !d\ *0 until an equilibrium state in the porous medium has
been reached. With the constant B and the relative mass flow
rate function / (p) known, the solution for p can be immedi-
ately written in a form similar to the well known Buckley-
Leverett solution for frontal displacement.2!

SOLUTION FOR TWO-PHASE DISPLACEMENT
INCLUDING CAPILLARY PRESSURE

One-dimensional flow of two immiscible and incompres-
sible fluids through a linear horizontal porous medium is
governed by the equation:10

dSw ,
ar dx <)/, (Sw)

ds

+ kreM (SwW) T (Sw)pc '(SJ’S‘\— =0 (13)
M-mv dx
where
l
/i(ST = 14
i | M-wLaw () (14
+
vLwV-"w)

Equation (13) is a nonlinear, parabolic differential equation of
second order, and no exact solution can be obtained for the
general case. It is possible, however, to develop self-similar
solutions under cenain conditions, namely, for a semi-infinite
length, a uniform initial saturation, and an injection rate
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inversely proportional to VT:
u,(r) = A/VT (15)

where A is a given constant. At first glance condition (15) may
seem unrealistic, but in fact this provides a realistic model that
is equivalent to a constant pressure boundary condition at the
inlet.16 Under these conditions, the following self-similar prob-
lem can be obtained:

d dSw
— = krnx(S,,)fi(S,,)J'(Swy dr

dSw o 16
2~A4 ! =
of\'(SJ % (16)
SW(*=0)=5: 17)
>00) = Swi (18)
where

5= °°F 5)

avt
" ocos8 Nr (19)

a -A-

Q0

7(SW) is the Leverett J-function which is related to the capil-
lary pressure. Pc(5W), by:22

pc(Sw) = aco&k QNN (Sw) (21)

S is the maximum obtainable saturation of the wetting phase:
S:=1-5__ (22)

and 5W- is the initial saturation of the wetting phase. When
A =0, the problem reduces to the problem of capillary imbibi-
tion.

Now we introduce a relative infiltration function, defined
by
JCSw)= — (23)
uwo

where o~ is the infiltration rate of the wetting phase at the

inlet that is a priori unknown and is expected to be inversely
proportional to VT:

Kwo = (24)

where B is a constant to be determined. Substituting Eqgs. (23)
and (24) into the equation of conservation of matter
dUy $dS,
— +E-N=0 25
dx dt @3)
we have
ds, B 3/(SJ
3r + VT dx (26)
or in dimensionless form
df (Sw RZ dSw
if (Sw) _ @7
de, 24p d»

where R is the ratio between the injection rate and the
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infiltration rate at the inlet
— (28)

Equation (27) yields a solution in the Buckley-Leverett form
24D df (Sw)
N= dSw (29)

provided/{Sw) and R can be found.

To determine / (5W) and R, a boundary value problem for
/ (Sw) can be formulated as follows. Differentiating both sides

of Eq. (29) with respect to Sw gives
dl = Up d2f(Sw) 30
dSw ~ R dsi (30)

Combining Egs. (23), (24) and the following expression for the
infiltration rate of the wetting phasel(

W = ui(2)fi (Sw)

mv(5w)/, (SWK'(SWY ™ 1)
Hmv )¢
gives
JS(Sw) = jALSw)
’ ds,,
& W (SWfI(Sw)Pe (Sw) (32)
M-nw
or in dimensionless form
f(Sw) =R [/i(SM)
dsw
krnw(Sw)fI(Sw) T(Sw)- (33)
Ap dt,

Substituting dZjdSw from Eq. (33) into Eq. (30) results in the

following differential equation for/ (Sw)
d2f(Sw) R*  krnw(Sw)MSw)J'(Sw) 0 y
dsi 241  f(Sw)-RMSw) 34

From Egs. (17) and (23) we have a boundary condition at the
inlet

JCSw) =1 (35)

The second boundary condition can be determined from Eqgs.
(33) and (18) as

J(Swi) =RMSwi) (36)

Equation (34) is a nonlinear second order ordinary

differential equation and cannot be solved analytically. How-

ever, it can be transformed into an integral equation which can
be solved iteradvely. A direct integration of Eq. (34) gives

dfs.,) R2 7 “mmv(oc)/] (aV'(Ot)
i da+C (37
dSw 2Als:  /(«)=-F/1 (>

Integrating Eq. (37) once again provides an integral equation
R% 57 (S, - a)kmi(a)/i (a)J'(a)

SeSw) = /(a)-/2/1 (a)

24]) 5*

+ C\(.SW-SW) + C> (38)
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where Ci and C2 are arbitrary constants of integration which
can be determined from the boundary conditions as

Rfx(Swi)~\
R2 'V (Swi - a)krmw(a)/] (a)7 '(a)
39
24p 5* S (a)-Rf\(a) (39)
=1 (40)

Now we need to examine R, the ratio between injection
and infiltration rates, because at this point, we know the value
of 4 but not of B. For the special case when =0, there is no
injection but there will be infiltration due to imbibition. There-
fore, inasmuch as the total flow rate u, =0, the infiltration rate
of the wetting phase at the inlet must be equal to the
counterflow rate of the non-wetting phase leaving the system.
Obviously, in this case, R =0.

Rakhimkulov and Shvidler7 have investigated this same
problem and have touched on a very interesting property of the
flow behavior for this system. If the injection rate is sufficiently
small, then at a location that is sufficiently behind the wetting-
phase front, there will be a region of counterflow. This is illus-
trated by the conceptual diagrams on Fig. 1.

Fig. 1A shows how the location of the front (Fig. IB) is
revealed by the saturation profile. Fig. 1C illustrates how the
flow rates vary behind the front. It should be noted that at the
inlet, the infiltration rate of the wetting phase n*, reaches its
maximum value U0, whereas the counterflow rate of the non-
wetting phase unw reaches its maximum negative value unw(.
The algebraic sum + unwl0 = ut gives the rate of injection.
This is illustrated on Fig. IB at the inlet to the system. Note
that the magnitude of the counterflow diminishes away from
the inlet and vanishes at a neutral point marked N on Fig. 1C.
Beyond this neutral point, both wetting and non-wetting phases
move in tha same direction, but u,, decreases and, for the par-
ticular condition 5WI £5,*, w* must vanish at the front. Ahead
of the front, only the non-wetting phase is flowing so as to
satisfy the constraint u, = u,, + u,w (Fig. 1C).

It is important to recognize that as the total flow rate u,
decreases, the neutral point moves further and funher from the
inlet; and when u, =0, the neutral point is at infinity, which
means that counterflow exists everywhere. On the other hand,
as u, increases above that shown on Fig. 1C, the neutral point
moves toward the inlet and the magnitude of counterflow
decreases. We can anticipate that when the neutral point
reaches the inlet and counterflow ceases, a critical value Apcr
is reached for which R =1 and Ap = Bp, where Bp is the
dimensionless infiltration rate constant defined by

(41)

Figure 2 illustrates the variation of Bp with Ap and also
the variation of Cp with Ap, where Cp, the dimensionless
counterflow rate constant, is defined by

(42)

Thus, we see from Fig. 2 that
Ap =Bp + Cp (43)
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Therefore, R ranges from O to | as 40 increases from 0 to AD(i<
and remains unity when Ap > A”cr-

Thus, when ADZADcr, R = 1, and Eq. (38) reduces to
S (Sw-a)krim(a)Ma)J\a)
/(a)-/,(a)

Sw Sw
Sw Sw

(Swi — a)krm/(a)/! (ay (a)

da +1 (44)
2Ais: /(a)-/!(a)

In the case of AD < ADcr, Eq. (38) contains an unknown param-

eter, R, that can be determined using the condition that in this

dSw
case. must be less than zero. Then from Eq. (29),

arsw& 7

S s. must equal zero in order to satisfy boundary condi-
W

tion (17), Sw( =0) = S». On the other hand, from Eq. (37)
dfw) 1._¢
W
Therefore, Ci =0, which results in an equation relating R to
Ap when AD < Apcr'-
1
Ap = .
2[R/i(S*,5)-1]
I*
J (Swi —a)kmw (a)/: (a)J'(a) d
a

X M / (a)-R/i(a)

(45)

The critical value Apcr can be determined from this equation
when R = 1. Substitution of Eq. (45) into Eq. (38) yields an
integral equation for f('Sw) when Ap <Apcr:
SCSw) =1

f. . .. A? (Sw-a)kmw(a)Ma)J' (a) d

? (46)
( (Swi-a)krnw(a)fl(a)J'(a) .
ys 7(a)-R/1(a) da

Both equations, Egs. (44) and (46), can easily be solved using
an iteration process, where the first guess can be taken as
JSCSw) = (Sw-Swi)/(SI-Swi).

From Eq. (29), the solution can now be expressed as:

A= Al; S, /(Sw)-RA(SW) (47

when Ap <Apcr, and
1 Sr *™w(Sw)/i(SwV'(Sw)

$™S " apt fsw-azsw (48)

when Ap ZApcr, where

SWi -Su
I ST (S..-a)i,m(aiflla,J-(a/ "“J <49

It can be seen that when Ap £4pcr, no saturated region
will be generated in the porous medium, whereas when
Ap > Apcr, a saturated region will develop as shown on Figs. 3
and 4 (to be discussed below).

However, there are some complications with the frac-
tional flow function, f1(Sw), and therefore, the solution
obtained above has some limitations. From Eq. (33), when
R =1 we have

/(5W)-/1(5W)S0 (50)
Then /'(5W) must be less than at S,, =S”, otherwise

/(5*,) would be less than f7(:Sw) in the neighborhood of Sw
and this would contradict Eq. (50). From Eq. (44)

1 SUSwi-a)krmM(a)Ma)J\a)

51
2417 S(a)-/i(a) D
and we see that/'(Sw) increases monotonically with increasing
value of Ap. The function increases from zero at
Ap £Apcr to a maximum value

FXSW) 1-/1(Swi) (52)

ax
as Ap-*o°. One should recall that #1 '(Sw) may be either greater
than or equal to zero depending on the relative permeability for

the non-wetting phase. If /\(8*,)<f(S*w) , then the solu-

tion obtained above for Ab >Apcr is valid only until the dimen-
sionless injection rate constant Ap reaches a maximum value
given by

A1-ZAISwil-ISI-Swil/i'IS:)]

s: (Sw;-a)Wet)/,(ay'(a) .
(53)

In particular, for the case where /, '(Sw)=0, then
Ap.mvL ~ Aper- This means that when /i"(Sw)=0, and
Ap >Apcr, no solution can be obtained by the proedure given
above. This limitation is quite important because many systems
are characterized by /, \SW) =0.

It should be noted that the self-similar problem stated by
Egs. (16)-(18) was first formulated and studied by Rakhimku-
lov and Shvidler7 in 1962, and the special case of imbibition
was solved earlier by Rizhik§ in 1960. For such nonlinear
problems, Barenblatt3,4 has made the imponant finding that for
the zero initial condition, the front of the disturbance must pro-
pagate with a finite velocity. Based on this finding, these work-
ers were only able to solve this particular problem semi-
analytically for the particular cases where Swi *S,w. The fact
that the front propagates with a finite velocity implies that their

SPE 20517
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solutions, as well as the solution obtained here when 5%, <Slw,
also apply to a porous system of finite length as long as the
front has not reached the end of the porous medium. However,
the work of Rizhik5 and Rakhimkulov and Shvidler] required
a trial and error process, and numerical integration of the
resulting ordinary differential equation is still required over
most of the range of saturation. Recently McWhorter and
Sunadal? have studied this problem using the integral equation
approach but only for the cases of unidirectional displacement
and imbibition. They envision a laboratory setup that uses a
semipermeable membrane to achieve unidirectional displace-
ment. This integral equation formulation has some distinct
advantages over existing methods in its generality and simpli-
city. Other existing self-similar solutions of two-phase flow
including capillary pressure6,8~10 can also be effectively
solved by this approach.12,19,20

RESULTS FOR
TWO-PHASE DISPLACEMENT

The self-similar solution presented above was evaluated
for cenain hypothetical parameters to illustrate the nature of
two-phase displacement. The relative permeabilities and the J-
function were taken as

krwfSw) = Si (54)
krrwfSw) = 1 -Sw (55)
J{SW) =:|:,‘—\ (56)

These parameters imply S7 = | and 5IW =0, and that the frac-
tional flow function of the system has a non-zero derivative
with respect to saturation at the maximum obtainable satura-
tion, i.e.,/i '(.C) > 0. Calculations were carried out for various
values of A0 (the dimensionless injection rate constant) and
different values of (the initial saturation). The viscosity
ratio was basically taken as unity, but the influence of viscosity
ratio on displacement was also examined.

Figure 5 shows how the relative infiltration rate function
/ (5W) varies with saturation. It can be seen that for the case of
no injection where Ap =0 and /? =0, the variation of / (Sw)
with Sw is funhest to the left. As Ap increases, the curve shifts
to the right, and when 4p for this particular problem, the
curve is simply the diagonal as shown on Fig. 5. The
Buckley-Leverett fractional flow curve,/i(Sw), is included on
this figure because the tangent to this curve, which is the well
known Welge23 technique for determining the frontal satura-
tion, is exactly the same as the diagonal shown for Ao—>.

The influence of the initial saturation S*; on the relative
infiltration function is shown on Fig. 6. Curves have been plot-
ted for Ap =0 and Ap =Apcr for Swl =0.0, 0.2 and 0.4. The
Buckley-Leverett fractional flow curve is also included
because it is very useful in locating the starting point for any of
these relative infiltration rate function curves. Examination of
Eq. (37) reveals that for §,.- >0, the slope of the curves at

=Swi must be venical, whereas when SM, =0, the slope at
Sw = Swi = 0 is finite.

Saturation profiles for several values of 4p ranging from
0 to 0.3 for Swi =Siw =0 are shown on Fig. 3. It can be seen
that a family of curves emanates from the point = 1.0, =0,
which means that Sw = S7 only at the entrance (x =0), as long
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as Ap does not exceed Apcr. It is imponant to realize, how-
ever, that the increase in area beneath each curve is not propor-
tional to the increase in the magnitude of Ao until the critical
value has been exceeded. As soon as Ap exceeds the critical
value, a saturated region will develop that migrates into the
porous medium as A" continues to increase. For example, Apcr
on Fig. 3 is 0.2541, and the curve for Ap = 0.3 stans at
~=0.09997 and ends at "=0.7772. Fig. 4 shows saturation
profiles for a larger range of Ap up to 1.5 at =0. In the case
of Ap =0.5, the curve stans at *=0.5710 and ends at
q= 1.1313. It can also be seen from Fig. 4 that the profile
becomes steeper and steeper as Ap exceeds Apcr. The
Buckley-Leverett profile, which does not consider capillary
pressure, is also shown by the dashed venical lines. At
Ap—too, the saturation profile willalso be a venical line that
coincides with the Buckley-Leverett solution.

The influence of initial saturation on the saturation
profiles is shown on Fig. 7. It can be seen that the saturation
profiles spread out over a greater range of ¢, as the initial
saturation increases. Theory predicts thatin the case where
Swi > 0. the initial saturation canonly be reached at "
whereas when Swl =0, the saturation profile terminates at a
finite location. This is in full agreement with the theoretical
results of Barenblatt.3,4 However, as can be seen on Fig. 7, in
practice distinct fronts can also be observed at finite locations
for the case of SWI > S1W.

The dependence of both the dimensionless imbibition rate
constant Bp and the critical dimensionless injection rate con-
stant Apcr on the initial saturation is illustrated on Fig. 8. It is
seen that both curves are monotonic functions decreasing from
their maximum values at Swi =0 to zero at S,,i = | and that the
curves are roughly parallel over most of the range. Figure 9
shows the imponant influence of the viscosity ratio,
UD =Um*fldw> _on  the  imbibition rate  parameter,

=n/fgcos60VkQ /v\ and the critical injection rate parameter,
A,,/[[ccos9<{>Vk<?] . These two curves converge to one point at
[ifi =0 (see Chen et a/.,)I6 and deviate from each other more
and more as the viscosity ratio increases. At li.p = 0, the critical
injection rate parameter Apcr=(, and two regions, one
saturated and one unsaturated, develop immediately. This is in
agreement with Philip’s results.24

ISOTHERMAL TRANSIENT FLOW OF GAS

Let us now consider a semi-infinite horizontal porous
medium which is initially saturated with gas at a uniform pres-
sure Pi. At time r = 0, gas is injected at the inlet, J: = 0, at a con-
stant pressure p =Po- This problem can be formulated as fol-
lows:

Y @
The initial and boundary conditions are
p (x. 0) =pi (58)
p(0.r) = po (59
P(°°.0 = Pi (60)

The problem given by Egs. (57)-(60) is a self-similar one. If
we employ the Boltzmann transformation

=
= a\ﬁ (61)
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where / (Pp =PDi) =0 (76)
Directly integrating Eq. (74) with respect to PD gives
- 1 kPo 6
am \2<0 62) d/(Po) 1 't Pp
Equations (57)-(60) reduce to dPo oD ijfr'(PD)\ dp. C (77)
dlpl 1 dpD Integrating once again, we have
d? +2 df ~ (63) o
" SPD) = ——7-7 BP =D\ cipp e (78)
PD(S = 0)= | (64) voo ¢ /()
£21ON)0) = PDi (65) The constants of integration, Ci and Cj, can be determined
where pp is a dimensionless pressure defined by using boundary conditions (75) and (76) as
Pa
= 66 Pp,—
PD o (66) , I (Pp,—a)a (79)
. . 1-PD< “p | /(a)
This problem has been semi-analytically solved by Baren-
blatt3,4 for a zero initial condition. We shall now solve this C2= | (80)

problem using the integral equation formulation for both zero
and non-zero initial conditions.

If we substitute the Darcy’s law from Eq. (9) into the rela-
tive mass flow rate function as defined by Eq. (10), we have

J) = —I2 (67)
p po ul dx
or in dimensionless form:
2 d
£(PD) = - pp-<bp ©8)
“OD
where
PIMQ
MOD (69)
aOPo

Substituting Eq. (11) into Eq. (10) and using an equation of
state for gas given by

Po (70)
Po
we have
0Po dp + PQMQ df (p) _Q 71
Po d' VT d*
or in dimensionless form
d/(Pp) £ dpD
I3 ' = 0 72
O o 2 at (72)

Equation (72) immediately provides the solution to the self-
similar problem in the form

df(P
£ = 2000 (73)
dpo
if / (po) and the unknown parameter UQD can be found.
Differentiating both sides of Eq. (73) with respect to po
and then using Eq. (68) to eliminate the variable £, a second
order, nonlinear ordinary differential equation for ./(po) is
obtained

df(Po) PD
dpi Mon/ (PO)
Two boundary conditions can be specified as

/(Pp = D= | (75)

(74)

The unknown constant UQD can 6e determined using the fact
that the pressure gradient at the inlet must not be zero until the
equilibrium state within the porous medium has been reached.
This leads to a condition that

df(Pp) |
dpo D =i

81
Then, Cj =0, and from Eq. (79), UQD can be determined as

"z (PDi-a)o. |
“qp {I -------------- da (82)

| eauation

and this can be solved iteratively using /(po)-PD as the first
guess.

This solution has been evaluated for various values of
dimensionless initial pressure, po,-. The curves for the relative
mass flow rate function / (po) for different dimensionless ini-
tial pressures are given on Fig. 10. We see that these curves
have the similar form and physical meaning as the well known
Buckley-Leverett fractional flow curves. Thus, the generalized
Welge graphical technique proposed by Chen and Song25 can
be used to determine the mass of gas between any two cross-
sections with poa and pob< respectively, on this figure. Namely,
two tangents of the / (pp) curve may be drawn at two points,
W (PDa)<PDb)] and [f'(PDb)'PDb]J< and the intercept of the two
tangents, ppoi. indicates the average dimensionless pressure
between these two cross-sections (see Fig. 10).

The dependence of dimensionless mass flow rate con-
stant, UQD. on dimensionless initial pressure, pp,, is shown on
Fig. 11. This constant decreases monotonically from its max-
imum value of KoD=0-6229 at pp, =0 to zero at pp; = 1.
Dimensionless pressure profiles for different dimensionless ini-
tial pressures are illustrated on Fig. 12. For comparison, the
results of Barenblatt’s exact solution4 for the case of pp, =0
are also shown by solid circles. As expected the solution
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developed through the integral formulation is in excellent
agreement with the results of Barenblatt.

CONCLUSIONS

Nonlinear flow problems are frequently encountered in
petroleum reservoir engineering and are not easily solved by
traditional mathematical methods. The nonlinearities are a
result of the fact that the hydraulic diffusivity is not constant
and is dependent on variables that are unknown and for which
solutions are being sought. An integral equation formulation
that was first developed in the field of hydrology has been
applied to these problems. This new approach is dependent on
casting the governing equation in terms of a relative mass flow
rate function. The solution can be expressed in a form similar
to that of Buckley-Leverett, with the relative flow rate function
as the unknown to be determined. An integral equation for this
function can be formulated and solved by iterative methods.
This new approach has been applied to several types of one-
dimensional problems involving two-phase displacement
including the effects of capillary pressure and isothermal tran-
sient flow of gas.

A new understanding of the mechanism of the displace-
ment of a non-wetting phase by a wetting phase has been
developed that is dependent on a critical value of the dimen-
sionless injection rate constant. When this constant is less than
the critical value, a counterflow of the non-wetting phase
exists; the maximum obtainable saturation of the wetting phase
can only develop at the entrance to the system. On the other
hand, when the injection rate constant is greater than this criti-
cal value, no counterflow exists, and the maximum obtainable
saturation of the wetting phase will propagate into the system.
An equation to evaluate this critical injection rate constant has
been developed.

The integral equation formulation has some distinct
advantages over existing methods of handling such nonlinear
flow problems because of its generality and simplicity. The
problems of flow in pressure-sensitive media, flow of non-
Newtonian fluids, and the problem of heat transfer with
temperature-dependent heat conductivity as well as the non-
linear problem of hydrodynamic dispersion in porous media
can also be solved by means of this mathematical formulation.

NOMENCLATURE
a = parameter having the dimension of L 7~u2 defined by
Eq. (19), or (62).
A = injection rate constant /L 1-1/2]
B = infiltration rate constant /L T~1/2]
¢, = total compresibility of the system [L2/F]
C = counterflow rate constant [L T"172]; constant of inte-
gration
D = hydraulic diffusivity [L2/T]
/= relative mass flow rate function defined by Eq. (10)
/] = fractional flow in Buckley-Leverett problem where
the capillary pressure is neglected, defined by
Eq. (14)
/ = dimensionless capillary pressure function
k = absolute permeability [L2]

Z.-X. CHEN, G. S. BODVARSSON AND P. A. WITHERSPOON

kr = relative permeability
p = pressure [FILI]
pc = capillary pressure [F/L2]

R = ratio between the injection rate and the infiltration
rate

S = saturation

Shw = irreducible saturation of wetting phase
Srnw — residual saturation of non-wetting phase
S,,i = initial saturation of wetting phase

S = maximum obtainable saturation of wetting phase
t = time [T]

u = flow rate [L/T]

x = distance [L]

a = dummy variable of integration

0 = contact angle

p. = viscosity [F-TIL2)

t, = similarity variable

p = density [M/L3]

a = interfacial tension /[FIL]

0 = porosity

Subscripts
cr = critical value
D = dimensionless
| = initial condition
nw = non-wetting phase
t = total
w = wetting phase
0 = conditions at the inlet, x =0
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Relative infiltration rate function. f(SJ

The relative Infiltration rata function f(S.) for § *, mS*, m0.

Fig. 6—Tha ratativa infiltration rata function f(S,,) for dIffarant Initial aatu-
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