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Abstract.

Numerical models of groundwater flow require hydraulic conductivity values to be
assigned to the grid blocks covering the flow domain. However, field-measured
conductivities tend to be measured at a different ;cale (usually smaller) than that of the
grid blocks. The present paper describes a novel approach for upscaling field values to
block-scale, which combines the rigorous result of small-value perturbation analysis with
a plausible generalization of the first-order results to large variance. Also the correlation
lengths are assumed to be comparable to block size. Steady-state flow through a block of
stochastically heterogeneous medium with constant hydraulic head values at the two
opposite sides is analyzed. An upscaling rule and relationship is obtained between the
local-scale hydraulic conductivity and the expected mean and variance of block-scale
conductivity, where the block size is comparable with the correlation scale of the local
conductivity field. The rather simple expressions obtained are validated using data from
numerical experiments. Furthermore, a generalized spatial power-averaging method to
calculate the Block-scale conductivity from values of local-scale conductivity is

developed, in which the exponent value is given as a function of the ratios of flow domain

dimensions to the respective correlation lengths.




1. Introduction

The theory of fluid flow in statistically heterogeneous aquifers is well developed.
The starting point for this theory is usually the flow resistance as a local spatial function of
the geological media, i.e., the local hydraulic conductivity. Typically, the spatial variation
of the local hydraulic conductivity is described as a random process with a given statistical
distribution and covariation function. For numerical modeling of groundwater flow, one
needs to assign hydraulic conductivities to grid blocks that cover the flow domain. For
porous flow, the law of spatial averaging of hydraulic conductivity is often quite different
from a simple arithmetic averaging of local-scale conductivity values. One needs to know
which upscaling rule to apply from local-scale conductivity to conductivity averaged over
large blocks (i.e., the block-scale conductivity) to properly simulate flow through
heterogeneous aquifiers. On the other hand, to investigate practical environmental
problems such as groundwater contamination and the design of underground waste
disposal sites, one also needs. to estimate the information loss on spatial variation of flow
velocities due to the genefally large griding used in the numerical models. Taking into
account these losses, it is possible to define effective grid macrodispersion parameters to
describe solute advective dispersion in aquifers.

The goal of the present paper is to find the upscaling rule and relationship between
the local-scale hydraulic conductivity and the expected mean and variance of block-scale
conductivity, where the block size is comparable with the correlation scale of the local

conductivity field.




In recent years different approaches to this-problem have been published. Rubin
and Gomez-Hernandez [1990] developed é first-order approximation for the expected
mean and variance of the effective block transmissivity of a heterogeneous aquifer, and
investigated by numerical simulation the variations of these parameters. 4babou and
Gelhar [1990] obtained particular solutions for effective conductivity of finite one-
dimensional flow domains using the local mean and the local mean slope of log
conductivity. Durloevsky [1991] numerically examined the effective block transmissivity
for the special case of periodic structure of the local hydraulic conductivity field.
Desbarats [1992a, 1994] developed a geostatistical model for the block condu'ctivity. In
his model, conductivity at the block scale is obtained empirically as a spatial power
averaging of local-scale values. Dukaar and Kitanidis [1993] determined the effective
block transmissivity using a numerical method based on the Taylor-Aris moment analysis.
In the works of Indelman and Dagan [1993] and Indelman [1993], the general approach
for upscaling local hydraulic conductivity to the global block value was éven for isotropic
and locally anisotropic media and some closed expressions were obtained by small-value
perturbation analysis. Neuman et al. [1992] and Neuman and Orr [1993] developed an
exact expression for the mean Darcy flux within bounded domain by using a residual flux.
The residual flux depends on domain size, and the general form of the integral equation
for which it was obtained. Paleologos et al. [1996] derived a first-order approximation for
effective conductivity by using this exact expression and generalized the first-order result

to strongly heterogeneous media.




All these publications mentioned above do not contain exact equations for the
mean and variance of block-scale conductivity of strongly heterogeneous medium for a
general three-dimensional flow with arbitrary block sizes.

The present paper describes an approach for problem of block-scale, which
combines the rigorous result of small-value perturbation analysis with a plausible
generalization of this first-order product to large variance. The rather simple expressions
thus obtained are validated using data from numerical experiments. The approach
described below also allows us to re-examine the spatial power averaging method for local
data. Landau and Lifshitz [1960] conjectured that for three-dimensional dielectric
conductivity of a medium an appropriate additive quantity is the cubic root of the
conductivity values. Much later, Desbarats [1992b], and Debarats and Bachu [1994]
developed a power averaging method for flow in heterogeneous aquifers by using
numerical modeling. In present paper a general case is studied in which a new expression

for the averaging exponent is derived.

2. Spatial averaging of conductivity

This section presents a semianalytical method for averaging local-scale hydraulic
conductivities of a statistically heterogeneous aquifer to obtain block-scale conductivities.
The method is based on an extrapolation of results obtained by the small-value
perturbation technique. This development follows the hypothesis used by Gelhar and
Axness [1983], Gelhar [1993], Paleologos et al. [1996] for the generalization of first-order

results to estimate an effective conductivity of strongly heterogeneous media.




2.1 Definition of the problem

Consider a heterogeneous aquifer with a scalar point, local-scale hydraulic
conductivity field that can be modeled as a random function K(X) over spatial coordinates
x={x,,X5,x3}. The conductivity is often observed to be asymmetrically distributed, and in
standard practice, a lognormal distribution is found to be a good approximation of
empirical conductivity data. Following Dagan [1989], Gelhar [1993], and others, let us
assume the random function Y(x)=In K(x) to be stationary, ergodic, and Gaussian. Then

we define the two first moments of Y(x) as:

E[Y(X)] =4, (1a)
Var{Y(X)] = o2, (1b)
Cov[¥(X), Y(X+ U] = 02p(1) (lc)

where the autocorrelation function p(w) has an isotropic structure with the same
correlation scale A in all principal directions of the Cartesian coordinate system
¥={x1,%2,%3} -

Next, consider the flow domain with spatial dimension L = {L,,L,,L3}. Let us use a
- ratio of L; to the correlation scale A as an indicator of the physical spatial dimension of
flow. If all the ratios L;/A are non-zero, it indicates that flow is three-dimensional in space.
If one of the ratios tends to zero, the flow is two-dimensional. For the case when two
ratios are zero, the flow has a one-dimensional structure. Following the finite differential

method for numerical modeling of flow, we cover the flow domain by a grid of blocks

with the length of each side given by &; (b;< L)) for each direction of the coordinate




system. We intend to assign to each block a value of hydraulic conductivity %
appropriately averaged over the block volume. For the widely used case of planar flow,
where b;= L3, we can define the transmissivity of block Ty, as Ty, = bs-k.

The following problem should be investigated. Because a block value is defined as
an average of the random function K(x), we consider the block-scale value to be a
realization of random function Kj(x). Thus, the goal of this paper is to find the upscaling
rule, or the relationship between two first spatial moments of Ky(x) and the moments of

K(x) or its transformation Y(x).

2.2 Bounding values for block conductivity moments and proposed
upscaling equations

The block-scale conductivity can be obtained by averaging the hydraulic gradient
and the hydraulic conductivity over a block with a volume V. Rubin and Gomez-
Hernandez [1990] gave the following expression for the &, value for an isotropic porous

medium:

b=V [ q@de (V7 [ I@d) ™ q@) =-k(0VE; Ix) =Vh, @

- where £ is the hydraulic head.

Note that in this expression, the block-scale value depends not only on the local
conductivity, but also on the flow gradient. The most significant form of the flow gradient
on the hydraulic spatial averaging (as it was shown by Shvidler [1986], Dagan [1989],
Desbarats [1992a,.1994], Indelman et al. [1996]) is the strongly divergent/convergent

flow, i.e., the local part of flow domain surrounding a pumping or injection well.




Generally, however, for the other largest part of the flow domain, the hydraulic head
changes gradually m space. The quasi-parallel flow in one direction should be considered
as a more common model of groundwater ﬂow.' '

For quasi-parallel flow, the limits of a block volume tending to zero or infinity
provide the bounds for the expected mean 4, = E[K}] of block-scale conductivity, which

can be written in the form:

a

b2k kg k =k, oxp(z0%), (3a)

where £, is the arithmetic mean of K(X), k, = exp(i) the geometric mean, and 4, the value
of effective conductivity for uniform flow in an infinite medium. Correspondingly, the
bounds for the variance are:
0 <Var[K,(x)] £ Var[K(x)]. . (3b)

A number of theoretical works seeking the effective conductivity of an infinite
heterogeneous medium was published, including Shvidler [1964, 1986], Matheron [v1967],
Gelhar and Axness [1983], and Dagan [1989, 1993]. The main result of these
investigations is that an equation for the effective conductivity has the following form for
the case of lognormal local hydraulic conductivity distribution with isotropic

autocovariance [ Gelhar, 1993] :

1 .
ky =k, GXP[GZ(E‘ gu):|§ gu=n", @

where n (rn = 1,2,3) is the spatial dimension of the flow.




Note that eq. (4) is rigorous only for the one- and two-dimensional flow cases. It
has not yet been proven rigorously for three-dimensional flow, and the equation is
obtained by a generalization of the first-order result ﬁsing perturbation techniques, and by
regarding it as a truncation of the Taylor series expansion for the exponential function
[Gelhar, 1993]. Theoretical contribution in support of eq. (4) was obtained by Dagan

[1993] who showed it to be valid for the second-order approximation in o”.

Unfortunately, there is still no theoretical proof of convergence of the perturbation series

for any given 0. Numerical Monte Carlo simulations for the determination of effective

conductivity for three-dimensional flow by Neuman and al. [1992], and Dukaar and
Kitanidis [1993] show very good agreement between predictions by eq.(4) and numerical
results for the range of variance values between one and seven. Thus, practically speaking,
one can say that eq. (4) is valid for effective conductivity for all these flow-spatial
dimensions.

Let us propose that an equation for the expected mean of the block-scale

conductivity has the same structure as eq. (4):
2,1 |
kb = kg exp[o— (5— gscaIe )] ’ (5)

where ggcq., Which we call the upscaling function, depends on the ratio of block sizes to
the correlation scale of local hydraulic conductivity for a given autocorrelation function
p(). It is clear that to satisfy the upper boundary value of eq. (3a), the upscaling function

should tend to O for the very small block size. For the lower boundary, it tends to g;; when

the block size tends to infinity. Theoretical contributions in supports of eq. (5) were

9




obtained by Paleologos et al. [1996], that used development of Neuman and Orr [1993]
for effecti‘ve conductivity of bounded media.
Following Desbarats [1992b], assume that Y(x) = In K4(x) is stationary and
multivariate Gaussian, and also assume that
Varl%,(x)] = 0” -G s (6a)

so that the coefficient of variance of the block-scale conductivity C, is given by:

¢, = VKO _ Fertop bl Loy 6b)
kb k b
where ¢, 1S a variance upscaling function gradually changing from 1 to O for the block

volume changing from 0 to infinity for any given autocorrelation p(u).

2.3 Small perturbation and first-order approximation

In this section we outline the first-order results to find the particular structure of
the upscaling function for quasi-parallel flow. For this, consider three-dimensional block-
scale steady state flow in the x; direction with the following boundary conditions: constant
non-random hydraulic head drop A%, between the two opposite sides of the block along x;;
and closed boundary conditions on all other sides of the block. For a random local-scale
conductivity, the total flux @, through the block is a random value for the given external
gradient J; = Ah,/b,. Thus, the expected mean and variance of block-scale conductivity
are:

k, = JTQUE[Q,], (72)

Varlk,]1= J72QVar[0,], (7b)

10




where Q = b,bs is a cross section of the block that is normal to flow. Using the standard

practice of the small perturbation analysis [ Dagan, 1989], and starting with the integral of

Darcy’s law Q=—Jkadx2dx3,k=exp(/.t+Y‘), we formally expand
Q

h=h2+h® +hP +... and exp(Y)=1+Y +05Y?% +--- to obtain:

0=09+0® +0P+... (8a)
where
QO =qu M = kb Y’ on(0 8b
Qdy ;Q ; H Ji S Ix10x,0X3 (8b)
00 X4

2 -1 anth
Q( )_ b jj —J1 Y,gx— X1dX2dX3 y (8C)

1

where Y is the centered random function, Y’ =Y — .
The first-order result is E[Q,]1=0'" - E[Q]; and Var[Q,]= Var{Q" ] Taking
into account the boundary conditions and the ensemble averaging eqgs. (8a) and (8b), we

obtain:

: ' bbb
E[Q,]= Jlgkg |:1 +02(%- & } &= '!"!_‘[é(xl’ X5 X, )X, dx,dx 5 (%2)
Xy Xy Xy
Var(Q,) = k;Jfb,‘zVar[ I1] y’(x)dx,dxzdxs}, (9b)

where £ can be formally represented by a combination of the Green function for the

Laplace equation and the autocorrelation function [ Shvidler, 1986]:

b,

| bj‘Vle -Vp._. dx,dx, dx, (9¢)
00

o'———,_s:r

(xl>x29x3)




The hard work to analytically integrate (9c¢) for the finite-domain Green function was first
made by Shvidler [1986], who applied the autocorrelation function of the symmetric-

exponential structure:

pw=TTew(-%} u=}i-x] (10)

The resulting equation for g; for a block that has different lengths in all three directions
has the form:
1[, b b b b,, b
== 1— (D) | 2 + (=) + 0(=2) + 20(=2)p(== 11
g=4 100 |2+ 0+ 05 + 203003 (1)
where function @ is a “directional” dimensionless variance of the expected mean of

random function along a given axis, 1..,:

o(u) =u'2j

© Gy

exp(—lu -u bdudu' = 2u~ [exp(—u) +u —1] (11b)

Combining egs. (9a) and (11a) for eq. (7a) gives the first-order value for the expected

mean of block-scale conductivity:
!
kb = kg l:l +0 ('5— &3 )] (12)

For the variance of block-scale conductivity, we easily find from egs. (7b) and (9b) that

Varlk,]= k;an'zjVij(x —x)dxdx = kg262<;3;

uu,

Cn = ]i[ ul—zji‘"’ exp(—- Iui —ui'l)iudu' =]j (P(%‘)z
= s =

0

(13)

The equations for g and ¢ can be applied for any flow spatial dimension. By letting b3

equal to zero, we obtain the equations for g, and ¢, for flow in two dimensions, and by




additionally letting b, equal to zero, we obtain the equations for g, and ¢ for one
dimensional flow. Note that for a block with equal lengths in all 7 spatial dimensions,
&=(1-g)/n.

Formally we could also use small perturbation analysis by expanding the local
conductivity around its arithmetic mean, i.e., K = &, + k’. Taking into account that for the
lognormal distribution and small values of the variance, Var[K(x)]/k? =o* and
autocorrelation of local conductivity, p,(#) = p(u), and then using the same technique as

above, we obtain a slightly different first-order result for the two first moments of block-

scale conductivity. It can be written for the general #n-dimensional case as:

o
k, =k, exp(—zl-J(l— c’g,), (14)
Varlk, 1= k20® -, . (15)

To generalize the first-order results, we adopt a cénjecture used by Gelhar and
Axness [1983], Gelhar [1993], and Paleolougos et al. [1996], which considers an
expression like eq.(14) as the first two terms of a series. Thus we can consider egs. (12)
~ and (14) as the product of the Taylor series expansion of the proposed equation (eq. 5) for
the expected mean of the block-scale conductivity. It yields the value of upscaling
function gy, in eq. (5) to be g, . = g,.- By substituting in eq. (112) the bounding values
for the ratio of the block size to correlation scale, it is easy to find that for very large

blocks g, =#', and for the small block sizes g, — 0. Thus, the bounding values for the

upscaling function are satisfied.




For the variance of block-scale conductivity, we can replace the value of
conductivity on the expected mean of block-scale conductivity 4, in eqgs. (12) and (14) and
extend it for large variance values using the Desbarats [1992b] assumption that Yy(x) has
a lognormal distribution. This gives the value of upscaling function gy, in eq. (6) as
Gscale = Go-

Let us consider the equations for the upscaling function for two frequently used
correlation functions: exponential

N 2
p(u)=exp{— 2(”7) > u=po-x], (162)

=1

and Gaussian

2
pu) = Hexp—(%] ;U= lxz —x;t A, =2 (16b)
=1 0

T

It is impossible to directionally integrate the exponential correlation to obtain the close

form integral even for the variance. We can geometrically relate the separation 7 used in

eq. (16a) and the separation ' =Y. }u, —u I used in eq. (10) by the inequality:
i=]
I <r<r, a7
n

Thus, the bounds for upscaling functions for the case of exponential correlation can be

written in the following form




b

b b >l by
g"(lsl;l-,“,).ﬁ)_gsca[e_gn(l,“’ l)’

(18)

n

b b b
) S Cote S G, =
grz(ﬂ;’ mn—) Cscale =€ (A l)

Direct numerical calculation of the four- and six-times integral to obtain the ¢, and ¢;
values for the exponential correlation can be compared with the analytical estimation by
using eq. (13). The comparison shows that the analytical solution in eq. (13) for
symmetric-exponential correlation is favorable for predicting the value of the exponential
correlation with a maximum absolute error of less than 0.01 by replacing the correlatioﬁ
scale A by the effective scale A,, where A. = aA. It was found that the value of the
numerical constant o is 1.25 for the two-dimensional case and 1.5 for the three-
dimensional one. Furthermore, for all calculations for the exponential correlation case, the
equations should be used with the replacement of the actual correlation scale by the
effective correlation scale.

For the Gaussian autocorrelation function, direct substitution in egs. (9b) and (11b)

gives the same form as eq. (13) but with different values of the multiplication product ¢.

Thus, in the equation for ... we should replace qo(%) by ¢'(%), where

o'(w=u[ [expl-(u—u') Pudu =u(Jzu- erf @) +exp(-u*)-1).  (19)
00
Using the linear property for the first-order approximation we can find the

equation for the autocorrelation function Yy(x) (Appendix A). The results given in

Appendix A show that the correlation scale of block conductivity is equal to b+ A. It is




approximately equal to the scale of local conductivity for small block size and equal to
block side length for a large b;/A ratio.

Unfortunately, we cannot evaluate g, for any given dimension of flow and
Gaussian autocorrelation. For a one-dimensional flow case, the equation for g; for this

correlation has the same structure as that of the function for exponential correlation, but

b,

with (D(T) replaced by go'(—:-:—). We will assume that such a substitution is also valid for

two- and three-dimensional flow.

Thus, this subsection presents an analysis that allows us to find approximate
upscaling functions for the expected mean and variance for block-scale conductivity.
These functions depend on physical flow dimension, the type of autocorrelation of log
local conductivity, and the ratios of block lengths in different directions to the correlation

scale of the local conductivity.

2.4 Effective transmissivity of an uniform confined aquifer

For regional-scale modeling, a planar two-dimensional model of flow averaged
over the vertical coordinate (i.e., over aquifer thickness) is often used. The transmissivity
of aquifer 7 can be defined by using the Dupuit-Forscheimer-Boussiness assumption

[Bear, 1979] as:
L
T(x,y) = | k(x)dx;, (202)

where L, is the thickness of the aquifer.

16




Note, that according to this definition the transmissivity is a simple arithmetic
average of conductivity, which is valid for the following very special cases: a) when there
is a perfect layered aquifer with scalar local conductivity; and b) when the local hydraulic
conductivity is a tensor with the vertical component tending to infinity. Dagan [1989],
taking into account these limitation of arithmetic vertical averaging, suggested the
following definition for the transmissivity of a heterogeneous aquifer:

T(x,%) = kg Ly, (20b)
where kg, is the effective conductivity value.

It is physically clear that to estimate the effective transmissivity of a very thin
aquifer, one should use the value of k., equal to the effective conductivity for two-
dimensional flow. Now, to obtain the effective transmissivity for any aquifer thickness
we can formally calculate the block-scale conductivity for the block size in each direction
to be equal to the size of the flow domain in this direction (b; = L;). Consider the case of a
two-dimensional planar uniform flow (L /A and L,/A—<). The calculation of g, for this

case,:
1 L
o= 500 L/ ) =3[ 2+0030), C1a)

gives the value of effective transmissivity T s as:

o

T, =Lky = Lk, exp’[ : (l—gr(% ﬂ (21b)

where g,(u) = @(u) for the symmetric-exponential correlation of local-scale conductivity,

g2, (u)=0@(u/ a) for the exponential correlation, and g,(u)= ¢ (u)for the Gaussian

17




correlation. From eqs. (21a) and (21b) one can see that to increasg the value of the’ratio of
the aquifer thickness to the correlation scale, the effective conductivity k.5 must change
from the effective conductivity of two-dimensional flow to the effective conductivity of
three-dimensional flow. The other bounding case for the transmissivity value that should
be considered is the one-dimensional flow, i.e., L/A—e and L,/A—0, for which we

obtain:

o’ L
T, =Lk, = Lk, exp(—TgT(-f)). @2)
Now we try to expand the relationship (22) to obtain an approximate expression of
the effective transmissivity for the case of anisotropic spatial correlation of local
conductivity. Consider the anisotropic correlation of ¥(x) field with the horizontal scale Ay
(Ax = A1 = Ay) larger than the vertical scale A, (A, = A3). Under such conditions the
effective horizontal conductivity of a uniform medium can also be calculated by usjng eq.

(4) with the value of g;; in terms of the ratio of correlation scales € = A/A3 [ Gelhar, 1993,

p111Y:

2
& = l [ ——arctg 82-1—1} \‘ (232)

1
Then, on the basis of eq. (21a), the expression for the gy, function for anisotropic

aquifer is proposed to have the following structure with numerical constants a, b:

& L
Zuoae == [bw( T } (23b)

18




To the obtain the unknown constants a and b, we take into account the physical bounds for
the upscaling function, i.e., the value for the two-dimensional flow case ( L3y/A;—0 ,
Zocale—1/2), and that for the three-dimensional case ( LyAz—>o , guu.—>g11)- These
considerations produce the following proposed expression for the effective transmissivity

of an anisotropic aquifer:

]:ef = Lskgﬁ = L3kg CXPI:O'Z(%(I - gr(%’)) -gn(l- gT(%))Jj! . (23¢)

Figure 1 shows the relationship between the effective transmissivity of an aquifer
and the dimensionless aquifer thickness for the case of a Gaussian correlation of local-
scale conductivity and for different £ values. All the curves were calculated for ° = 1, and
they were normalized by dividing the results by the effective transmissivity value for two-

dimensional flow.

2.5 Power averaging of the local-scale conductivity data

In this subsection we outline an approach within the framework presented above to
find the exponent of the power-averaging method that is used for spatial averaging local-

scale conductivity data to obtain the block-scale conductivity. Following Desbarats
[1992b], and Desbarats and Bachu [1994], we define the spatial average value 12,, of the

point random function K(x) over the volume V as:

19
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Figure 1. Gaussian correlation relationship between effective transmissivity and aquifer
thickness (see text). Curves are labeled by the ratio of horizontal to vertical direction
hydraulic conductivity correlation scale (g).

1
k =[V'1 K(x de]w, w#0;
L=V K(x) o)
k, = exp[V-‘ | mK(x)dV] @ =0.

For w = -1, ® = 0, and @ = 1, eq. (24) yields harmonic, geometric, and arithmetic

averaging, respectively. To evaluate the appropriate exponent value from the geometry of

20




flow domain, let us consider the following useful relationship from the properties of the

ensemble “power” mean of lognormal distribution:

1 0_2 0_2
E [K(x)“’ ]"_ = exp[,u +0 -5-] =k, exp(a) -2—) . (25)
To reach the expected mean of block-scale conductivity power-averaged over the
block with volume V', let us consider the associated transformation for In K. Starting from

eq. (24) we obtain
EmK,]= w"E[ln(V“ fexp(@u+Y )W]] ~

. (26a)
2
/—l+a)"£1:ln(1+V" [loy Jr%-lf'2 +-~)a’VJ

v

12
VarlnK,]= w'zE[ln 1+ V7 (@Y +- ~)a’VJ : (26b)

and taking into account that for a small x value of In(1+x) = x -x*/2, after integration and

averaging we have:
EllnK,]=p+20*(1~3,), (27a)
Var[ln K 1= 0%c,. (27b)

Using the precondition that a distribution of In X, is a normal distribution, taking into
account eq. (25), and using the power-averaging method of local data over the block, we

finally have the expected mean E[K,] of block-scale conductivity,

BiK 1=, 9] - 00-5)+5.) 2s)




To estimate the value of expoment @, we compare eq. (28) to the proposed
upscaling equation (eq. 5) for the expected mean of the block-scale conductivity. This

gives the relationship for o,

© =1 2Bemte 29)
1-¢,

' Using this exponential value for averaging, one can calculate the power-averaged values
of k, that has the same expected mean as the hydraulically averaged 4, values. Taking into

account that for an n-dimensional block with equal side length g, =(1-¢,)/n; we

obtain the known bound results [Desbarats, 1992b] for n-dimensional flow: @=1-2#n".
Thus, for the one-dimensional flow case, @ = -1; for the two-dimensional case, @ = 0; and
for the three-dimensional case, @ = 1/3; note that these values do not depend on block
size.

For horizontal flow in a confined aquifer that has a thickness comparable to the
correlation scale of local conductivity and a horizontal grid block side length much greater
than the correlation scale (i.e., g, — 0), according to egs. (21a), (21b), and (29) the value

of wis

, 1
0] =l——3-[2+ gr(%]. (30a)
This value gradually increases from 0 to 1/3 with increasing aquifer thickness L;

(Figure 2). For an anisotropic aquifer the value of exponent @ can also be predicted by

using eqs. (23¢) and (29):
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Figure 2. Relationship between the exponent © value and the aquifer thickness.

= [1 - gr(‘%‘)](l - 2g11)' | (30b)

Note that here the value of @ changes from 0 to 1 and is different from the one
proposed by Desbarats and Bachu’s [1994] relationship for @ (@ = 1 — 2g;;), which is
valid only for a very thick aquifer where L3/Az;—>oo.

It is also interesting to note that if we want to calculate the effective conductivity

of the flow domain L confined in all directions by using the power-averaging method, the
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value of exponent @ depends on the ratio of domain side-length along the mean flow
direction (L) to the domain side-lengths normal to it (L, L3). This means that for a given
aquifer thickness L; and L #L,, different values of @ are obtained for cases of the mean
flow gradient applied along L; and L,, respectively. Such an apparent aquifer anisotropy is
due to the limitation of flow “freedom” in a heterogeneous confined flow domain.

Thus, results obtained in this subsection are a new addition to the Desbarats’
[1992b] equation for power-averaging of local spatial data to simulate the hydraulic
averaging of a heterogeneous medium. For equal block side lengths in all # dimensions of
flow, the exponent value (®w) depends only on the physical dimension of the flow.
However, for an arbitrary ratio of block side-lengths it also depends on these lengths, and

can be calculated using eq. (29).

3. Verification against numerical results

A number of assumptions were made to determine the upscaling equations for the
expected mean and variance of block-scale conductivity. In this section the semianalytical
equations for the expected mean of block conductivity and its variances are verified

against numerical results found in recent publications.

3.1 One-dimensional flow

In general, to obtain the expected mean and variance of block-scale conductivity
for the one-dimensional flow case, one does not need detailed numerical flow modeling,
because the value of block-scale conductivity for a grid block with size b; can be directly

obtained by harmonic averaging the local data. In this subsection we would like to verify
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two of the preconditions used: a) is spatially power-averaged block conductivity
distribution a lognormal-like distribution? b) can upscaling eqgs. (5) and (6b) predict the
expected mean and the coefficient of variance of one-dimensional block-scale
conductivity for large o> values? One particular problem results from these two
preconditions. In Appendix B one can find that for a lognormal distributed local
conductivity field with the exponential structure of correlation, the correlation scale of
conductivity is essentially less than the scale of log conductivity for large variance o°
values. Thus, in this subsection we will also examine what is the effective correlation
scale of local conductivity.

For purposes previously mentioned, the exponential correlated one-dimensional
process was precisely simulated on a fine grid with the ratio of spacing to correlation scale
equals to 0.05 and different values of o°. The total length L, of each realization was 250
times the correlation scale. For each realization, the numerical one-dimensional analog of
eq. (24) with the exponent value ® = —1 was used to calculate the conductivity averaged
over the blocks of length b,. Figure 3 shows the empirical cumulative probabilities of the
logarithm of block-scale conductivity for one-dimensional flow obtained by power-
averaging local conductivities with 0> = 3. One can see from this figure that distributions
of averaged conduétivity appear lognormal for the wide range of cumulative probability
values. This supports the precondition of lognormal distribution of block-scale values of

conductivity.
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Figure 3. The empirical cumulative probabilities of the log of block-scale conductivity for
one-dimensional flow. Curves are labeled by the ratio of the block-side length to the
correlation scale (see text).

In Figures 4 and 5 one can see the analytical and numerical calculations of the
expected mean and the coefficient of variance of block-scale conductivity for the one-
dimensional case. Numerical results were obtained by power-averaging with the

exponential value ® = —1 over the blocks of the exponential correlated one-dimensional
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Figure 4. The expected mean of block-scale conductivity for the one-dimensional flow case.
Lines are analytically caiculated values and symbols are numerically calculated values.
Curves are labeled by the values of log conductivity variance. Aill data were normalized by
dividing them by the geometric mean.

process with o~ values equal to 1, 2 and 3. The expected mean and the expected
coefficient variance C, also were cafculated analytically by using the upscaling equations

for the one-dimensional flow case, i.e.,:
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Figure 5. The coefficient of variance of block-scale conductivity for the one-dimensional
flow case. Lines are analytically caiculated values and symbols are numerically calculated
values. Curves and symbols are labeled by the values of log conductivity variance.
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kb = kg exp[:o-Z(_zl__ & scale )] = kg CXP[O'Z (¢(%) - ;—)] 2 (313)

C = .JVar[kb] _
v kb

Vexp (02 qa(%‘-)) -1. (31b)

Figure 4 shows a very agreement of numerical and analytical results for all used ¢°
values. The agreement for the coefficient of variance is good for o> =1 for any size of
block side length. For larger o” values the agreement of numerical and analytical data
begins to be good when the block-size value exceeds four times the correlation scale. Note
that for analytical calculations of the expected mean, we used the conelaﬁon scale for log
local conductivity and got a very good agreement between numerical and analytical
results. According to these results, it is believable that the scale of log is really the

effective scale for averaging hydraulic conductivity.

3.2 Two-dimensional flow

Rubin and Gomez-Hernandez [1990] and Gomez-Hernandez [1991] investigated
the block-scale transmissivity using numerical simulation of steady-state flow on a fine
grid after averaging the numerical result over blocks that have a size larger than the grid
cell size. The steady-state two-dimensional flow in a rectangular aquifer with stochastic
local-scale transmissivity field was simulated. The boundary conditions imposed were: no
flow along the boundary parallel to one axis; and constant heads in each of the boundaries
parallel to the other axes. The 1ocal;scale transmissivity was defined as a stochastic

process with an isotropic exponential correlation function and lognormal distribution. The
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size of the simulated domain LxL, was equal to 6.5 >< 6.5 times the log transmissivity
correlation scale. To numerically simulate the aquifer it was subdivided into a grid with
the length of each side of the grid cell equal to 0.1 of the correlation scale. For a constant
value of the mean of log local transmissivity and different values of variance, 200
realizations of the transmissivity field for each variance value were simulated using a
turning band method in the grid nodes. For each realization, the steady-state flow wés
modeled by the finite difference method, using this numerical grid and the mentioned
boundary conditions. Then, the values of block-scale transmissivity were computed for
different block sizes by using the discrete version of eq. (2) for two-dimensional flow, and
blocks of different sizes growing outwards from the center of the simulated domain. The
mean and the variance of block-scale transmissivity were obtained for different Elock
sizes by averaging over all 200 realizations for each local-scale transmissivity variance
value.

Figure 6 compares the numerically calculated mean of the block-scale
transmissivity and analytically predicted values of the expected mean as a function of the
block side length and the variance of log local-scale transmissivity. The two-dimensional
version of eq. (5) was used for the analytical prediction of the expected mean. To calculate
the g,.ae values for two-dimensional exponential correlation using eq. (11b), the effective
correlation scale was increased 1.25 times. All numerical and analytical results v?ere
normalized by dividing by the effective value for two-dimensional uniform flow. One can

see from Figure 6 that the comparison results show a good agreement of analytical
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Figure 6. The expected mean of block-scale transmissivity for the two-dimensional flow
case. Lines are analytically calculated values and symbols are numerically calculated
values. Curves are leveled by the values of log conductivity variance. All data were
normalized by dividing by the geometric means.

prediction with numerical data up to variances equal to 3. The errors of prediction for
variance equals 4 are not significant for block side lengths exceeding two times the
correlation scale.

Figure 7 shows the same graph for the coefficient of variance of block-scale

transmissivity. As in the one-dimensional case, the coefficient of variance of the block-
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Figure 7. The coefficient of variance of block-scale transmissivity for the two-dimensiona!l
flow case. Lines are analytically calculated values and symbols are numerically calculated
values. Curves and symbols are labeled by the values of log conductivity variance.

scale values is less predictable analytically than the expected mean. One the possible
reason for the numerical values being smaller than the analytical ones is that the flow
domain was equal to 6.5 x 6.5 times the correlation scale. This means that the variance of

log transmissivity for this finite domain was less that the ensemble variance by a factor of

(1-05(6.5)), which gives a value of about 90% for the ensemble variance.
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3.3 Three-dimensional flow

Dukaar and Kitanidis [1993] investigated the block-scale transmissivity using the
numerical method based on general Taylor-Aris moment analysis. This method allows to
find out the effective parameters of two-dimensional flow by solving specially
determinated periodic three-dimensional flow problem and then integrating the results into
the vertical direction. Thus, in this paper the block-scale transmissivity was determinated
using a three-dimensional spatially variable local hydraulic conductivity tensor and locally
variable three-dimensional flow. The stationary Gaussian log conductivity variation
process with the Gaussian covariation function was used for generating a three-
dimensional local hydraulic conductivity field. A number of experiments for determining
effective grid transmissivity were performed for various block sizes and log conductivity
variances. For each block size and variance of log conductivity the expected block-scale
transmissivity mean and the variation coefficient were obtained by averaging the results of
over 10 realizations.

The series of experiments discussed in this subsection examined the influence of
aquifer thickness on block-scale transmissivity. The expected block-scale transmissivity
mean was found for the aquifer thickness (L;) change from 1 to 30 times the correlation
scale, and for a constant horizontal block size equal to 30 times the correlation scale.
Figure 8 shows the comparison of analytical and numerical values of the mean block-scale
transmissivify. Analytical values of transmissivity were determined as Ls-k,, where the

block-scale conductivity &, values were calculated for the given block size equal to
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Figure 8. The expected mean of block-scale transmissivity for three-dimensional flow case.
Lines are analytically calculated values and symbols are numerically calculated values.
Curves are labeled by the values of log conductivity variance. All data were hormalized by
dividing by the geometric mean. The horizontal block length equals to 30 times the
correlation scale.

30x30xL; times the correlation scale. All data were normalized by dividing by the
effective value for two-dimensional uniform flow. From Figure 8 one can find a very good
agreement between numerical and analytical data for the variance equals to 1 and

satisfactory agreement for variances equal to 2 and 3.




Figure 9 shows an agreement of numerical and analytical calculations of the
coefficient of variation of block transmissivity for variance of log conductivity equals to 2
and two different values of the aquifer thickness: 10 and 4 times the correlation scale,

respectively.

OO ™MOTITOOTNIND O T OOXINOM T D03 R
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Figure 9. The coefficient of variance of block-scale transmissivity for three-dimensional
flow case. Lines are analytically calculated values and symbols are numerically calculated
values. Curves and symbols are labeled by the values of aquifer thickness in units of
correlation scale. The log conductivity variance equals to 3 for cases in this figure.
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Desbarats [1992b] used results of three-dimensional numerical simulations of
steady-state flow in a heterogeneous medium with the exponential correlation of log local-
scale conductivity to estimate the expected mean of block-scale conductivity and the value
of power-averaging exponent for a rectangular flow domain. Then he computed the values
of block-scale transmissivity for different block sizes by using the discrete version of eq.
(2) for three-dimensional flow. To investigate the effect of the geometry of flow domain
on the power-averaging exponent ®, he numerically estimated the w values for the domain
that had constant side lengths in two directions (b, = b; =3 times the correlation scale) and
increased the side length along the main flow direction (5,) from 0 to 20 times the
correlation scale. Analytically, the value of the exponent can be predicted by using
eq. (29) for the three-dimensional flow case and given block side lengths.

Figure 10 shows the comparison of the numerical and analytical results. One can
see from this figure a good agreement of analytical data and numerical experiments for the
relatively cubic blocks. However, when the transversal block length increases, the

difference between analytical gnd numerical data also increases. The reason for this can be
found in the numerical data and in the analytical estimations. Note that for the exponential
structure of correlation we use the symmetric-exponential correlation function to
approximate. That is why the bounding lines (dashed) are shown in Figure 9. The
bounding lines were calculated taking into account egs. (17) and (18). One can see from

this figure that the numerical data are bound by these lines.
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Figure 10. Power-averaging exponent value versus the block side length along the main
flow direction for the constant block-length transverse flow.

Thus, in this section the comparison of the proposed upscaling equations for the block-
scale conductivity with numeri;:al data shows that analytical estimates (using eq. (5)) of
the expected mean of block-scale conductivity agree well with numerical data for all
physical dimensions of flow and local-scale hydraulic log conductivity variances up to 3.

Although the coefficient of variance of block-scale conductivity predicted by eq. (6b) does
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not agree so well with the numerical data for small block sizes, asymptotically the method
gives satisfactory results for large blocks. Thus, the verification presented here show that

the proposed upscaling equations can be used to estimate block-size conductivities.

4. Discussion and conclusion

Present development of upscaling properties of a stochastic heterogeneous medium
from the local-scale data to a larger scale can be useful for a broad range of applications of
stochastic theory investigating flow in confined domain. Let us discuss some problems

where we can see applications of the approach discussed in this paper.

4.1 Computational stochastic subsurface hydrodynamics

Direct numerical simulation of processes is used to understand flow and transport
phenomena in a strongly heterogeneous medium. Examples of such an approach can be
found in Tsang et. al. [1988], Tompson and Gelhar [1990]. The basic approach here is to
simulate flow and transport in a heterogeneous medium by using a very fine numerical
grid to obtain the representative fields of head and flow velocity; that is, the model of
natural velocity fluctuation. Van Lent and Kitanidis [1996] stated, that typically a
discretization of 5-10 nodes per correlation scale is required and it should be even finer as

the log of local conductivity variance increases.
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A typical example where this approach can be used is a three-dimensional

contaminant plume spreading in uniform flow in a heterogeneous medium [Tompson and
Gelhar, 1990]. For example, the size of the modeling flow domain is an important critical
number in examining transversal and longitudinal macrodispersion. On the one hand the
domain size should significantly exceed the correlation scale (by one or two orders of
magnitude). However, precise modeling of the flow field requires a very fine resolutions
of the grid (by an order of magnitude of 10 and 107 on the correlation scale). Trying to
satisfy these two criteria one can run into computational problems because of the need of
billions of grid nodes. A reasonable way to resolve this problem is to decrease the domain
size of the transversal-to-flow section (relative the longitudinal direction). Using the
upscaling equations discussed in this paper, one can determine how this domain compares
to the uniform media. Table 1 show the ratio of the expected means of block-scale
hydraulic conductivity for 6> = 3 and for a flow domain having a the constant length
L,=50 times the correlation scale in one direction, and different domain sizes in the other
two directions. The k; value was calculated when the main flow direction is along L; the
k, value was calculated for the case when the main flow direction is along L,. Here ks is
the effective value for a three-dimensional uniform medium. One can see from the table
that the influence of apparent anisotropy of a bounded flow domain can be significant for
a non-cubic domain with the small (less than 0.2-0.3) ratio of the domain size in the

longitudinal direction to the size in the transversal direction.




Table 1. Comparison of the expected conductivity in the longitudinal direction k; and
the transverse direction k., and the effective value for uniform flow k.. for a
rectangular flow domain.

Domain ki/k; ky/ks ki/kes ko/Kes
Dimensions Lyx Gaussian Exponential Gaussian Exponential
L, XL, correlation correlation correlation correlation
50x1x1 0.091 0.130 0.208 0.266
50x5x5 0.534 0.455 0.662 0.598
50x10x10 0.769 « 0.690 0.840 0.784
50x15x15 0.861 0.806 0.906 0.868
50x20x10 0910 0.871 0.939 0913
50x30x10 0.960 0.941 0.973 0.961
50x40x40 0.985 0.978 0.990 0.985

50x50x50 1.00 1.00 1.00 1.00

Another useful application is to use the power-averaging method to calculate
interface conductivity between grid nodes for simulating flow in a heterogeneous medium.
The values of interface conductivity can be calculated by using simulated values of
conductivity in two neighboring nodes aiong a given direction. For the cubic blocks, the

exponent @ value should be 1/3.

4.2 Upscaling and downscaling from local data to the transmissivity of an
aquifer

Another possible application is an upscaling and downscaling from local data to
the aquifer transmissivity, which is averaged over aquifer thickness. Sometimes the value
of aquifer transmissivity should be estimated by using core-scale data measured in a

vertical section of an aquifer. To achieve this, the power-averaging method with the
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exponent value defined by egs. (30a) and (30b) can be used for upscaling from the point-
measured conductivity to the aquifer transmissivity.

Sometimes field data present the opposite problem,; that is, data on spatial variation
of transmissivity are available, but one needs to know the variation at the local-scale level.
This problem, of coursé, cannot be solved correctly for a general case, because the scale of
the measuring tools here is larger éhan the scale of the local data. However, the method
developed in this paper can be useful for one particular important problem: to estimate the
variance of log local-scale conductivity o° by the use of the known value of log
transmissivity variance 0°r obtained from the field data. Let us assume the variance of
transmissivity to be equal to that of the local-scale value. According to the obtained
upscaling equation for the variance, these values are related by:

02 =6, 0" 32)
The problem is that, as a rule, we do not know exactly what is the real volume of the
“block,” which is represented by the transmissivity measuring point. Formally we know
that in the vertical direction it is the aquifer thickness L. To obtain the size of this “block™
in a horizontal direction, we can use the autocorrelation function to perform the averaging
over a block random function (Appendix A). The integral correlation scale of this function
I is equal to the sum of the block horizontal size and the correlation scale of random
function A. Thus, obtaining from the variogram analysis of the field transmissivity data its

horizontal correlation scale 7, , one can rewrite eq. (32) as:

/
o2 = c%(%)q»z -9,




Taking into account that for a large u @(u) = 2/u we obtain the relationship between

variances and correlation scales of local-scale conductivity and transmissivity:
o= 02562¢‘1(£'i)(1—h—1)2. (33b) |
g AAA

Thus, to estimate local-scale conductivity variance one needs the variance and the

correlation scale of field-measured transmissivity data.

4.3 Summary and conclusion

This paper presents the development of a relatiqnship between the local-séale
hydraulic conductivity and the conductivity hydraulically averaged over a block, i.e.,
block-scale hydraulic conductivity. The block-scale conductivity is considered to be a
stochastic function, and a semianalytical method is used to obtain the expected mean and
the variance of this function. The results are summarized as follows:

1. The equation for the expected mean of the block-scale conductivity has the form

k,=k, exp[az(—;-— gmle)] for a given lognormal distribution of local-scale

hydraulic conductivity with isotropic autocovariance. The equation for the variance of
- the log of the block-scale conductivity has the form Var[Y,(x)]=0-¢_, . The
upscaling functions gy, and (. are different for the cases of quasi-parallel and
convergent flows. In the case of quasi-parallel flow, the equation for the upscaling
function is obtained by using perturbation analysis, followed by extrapolation of the

result to a large variance of local hydraulic conductivity.
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2. The derived equation for the block-scale conductivity completely described the result
for the flow domain within limits of small and large values of the ratio of block size to
the local hydraulic conductivity correlation scale (for any spatial flow dimensions).
Comparison of these analytical results with numerical calculations of the expected
mean and variance of the block-scale conductivity, given in recent technical literature,
shows good agreement over a broad range of log local-scale conductivity variance for
all physical dimensions of the flow domain.

3. An equation of effective transmissivity for uniform flow in an aquifer whose thickness
is comparable to the correlation scale of local hydraulic conductivity is proposed on
the basis of asymptotic solutions of the upscaling function. The value of effective
transmissivity thus obtained depends on the ratio of correlation scale to aquifer
thickness, and lies between the effective conductivities of the two- and three-
dimensional cases. An equation for effective transmissivity of aquifer with different
correlation scales of local conductivity in the horizontal and the vertical directions is

‘also proposed.

4. The spatial power-averaging method of local-scale conductivity data described by
earlier authors is developed in this paper, and an analytical equation for the averaging
exponent is obtained. This equation gives for three dimensional flow the value of 1/3,
which agrees with the Landau and Lifshitz (1960) conjecture. However, for a flow
domain which is infinite horizontally but of a limited size in the vertical direction, the

averaging exponent is found to be between 0 and 1/3. In general, the value of the
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exponent depends on the ratio of the aquifer thickness and the correlation scale of

local conductivity.

Acknowledgments. The first author would like to express his appreciation to the U.S.
Fulbright Program, which granted him a Fulbright Fellowshii) that allowed him to carry
out the research described in this paper at the Ernest Orlando Lawrence Berkeley National
Laboratory. The careful technical review and english editing of Dr. M.J. Lippmann of the
Berkeley Laboratory is gratefully acknowledged. This work was jointly supported by the
Power Reactor and Nuclear Fuel Development Corporation (PNC) of Japan and the
Department of Energy, Office of Energy Research, Office of Basic Energy Sciences

(Engineering and Geoscience Division), under Contract No. DE-AC03-76F00098.

44




Nomenclature

n spatial dimension of flow, where n=1orn=2orn =73, [-]
X(X1 ,Xp) Cartesian coordinate system, [L]

L(;...Ly) size of flow domain, [L]

b(by..,bp) size of blocks covering the flow domain, [L]

K(x) spatial variable local hydraulic conductivity, [L/T].

Ky (x) block-scale hydraulic conductivity, [L/T]

Y(x) stationary random field, where ¥(x) = In K(x), [-]

u mean value of Y(x), where u= E[Y(x)], [-]

o log conductivity variance, where 0 = Var[¥(x)], [-]

p(u) log conductivity autocorrelation function, [-]

A integral correlation scale of log conductivity, [L]

k, geometric mean of local hydraulic conductivity, where k, = exp(y), [L/T]
k, effective value of hydraulic conductivity for uniform flow (L/T).

ki, expected mean of block-scale conductivity, where &, = E[Ky(X)], [L/T]
Gscale upscaling function, [-] |

Cscale upscaling function, [-]

[0 averaging exponent, [-]
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APPENDIX A: Block Covariation Function for Gaussian Stochastic Process

Let us consider a stationary random function Y (x) with Gaussian autocorrelation:
Cov, = o*[ [ exp(—x}/ %) , (A.D)
=1

where n = 1,2,3 is a space dimension of Y, x; a separation along i-axis, and A; the
correlation scale.
The covariation function Cov(x, B) averaged over blocks of random function Y(x) can be

represented in the form:
Cov(x, B) = 0"2H Covy(x,/ A, B,/ 4,), (A2)
=1

where B; is a block-side length along the i- direction and the partial covariation
Covy(x/A,B/A) is
x B X+05B X+x+0.5B
covo(7,7)=3—2 j j exp[- (6, - 6,)* / A* 16,46, . (A3)

X-05B X+x-0.58

Upon integrating (A3) we obtain the equation for partial covariation as a function of
dimensionless block side length B = B / 1, and dimensionless separation =x /1 :

Cov, (%,B) = 058 {7l (x, +1)eif(f+ B) - 2xyerf () +(x, — Derf (¥ - B))]

- _ _ (A4
+B [exp(—(X+B)*) —2exp(-%) +exp(—(¥—- B))}; x,=x/B
For the zero separation eq. (A.4) is going to be equal to eq. (19):
Cov,(0,B)=¢'(B). ~ (A.5)

The autocorrelation function p(¥, B) of a value averaged over the block can be calculated

as:
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2 Covy(¥,,B,)

p(x.B)=]]

A6
1= (&.9)

For a small ratio of the block-side length to the correlation scale, eq. (A.6) is Gaussian
autocorrelation, and for a ratio of more than 5-7, the equation for autocorrelation function

can be rewritten in the simple form:

Rz B)=]]0-x,/B) o 0 for x,>B, A7)

i=]

The correlation scale along each direction of averaged process equals to A + B, .




APPENDIX B: Integral Scale of Spatial Covariance of Lognormal Distributed
Random Function

Let us analyze the spatial correlation scale for stationary random function K(x) for
the given normal distribution of ¥ = log(%) with the expected mean , the variance o,
and the spatial covariance Cov, = ¢°r(x). Here r(x) is the function of the separation
between the points. Using the moment-generating function for a normal random variable.
M(n)= E[exp{nY)] =exp(nu+0’n®/2), B.1)
the second spatial moment Cov,(x) will be:
Cov,(x) = exp(2u + 0 *)[exp(cr(x)) — 1], (B.2a2)

and for the normalized autocorrelation function p(x) dependent on distance and variance:

exp[o r(x)] ~1
exp(0?)-1 " (B.2b)

pr(x) =
It is clear from the structure of eq. (B.2b) that for the small values of variance ¢°— 0 the
normalized autocorrelation function py(x) is almost the same as function p (x). However,
for the large variance these functions can be very different. Let us inspect the difference
between autocorrelation functions p(x) and py(x) for two spatial autocorrelation functions
of Y(x): i.e., exponential covariance, p(x)=exp(—x/A); and Gaussian covariance,
p(x) = exp[«0.257x / A). We will use the ratio of the spatial integral scales equals to
pi(x)dx

. B.3)
p(x)dx

—y
Il
Oty § [ 8
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The results of the integration of eq. (B.3) are shown in Figure 11. One can see that for the
exponential structure of covariance for the realistic values of variance o° of about 1-3, the
_integral scale for K(x) changes from 0.767 to 0.433 times the scale for Y(x). For the

Gaussian correlation the difference between the K(x) and Y(x) scales is much smaller.

1.2 —
.
Gaussian covariance
S 0.8 —
g
4 -
g Exponential covariance
P 04 —
00— T | ' | ™ |
0.0 2.0 40 6.0

Variance of Log(K)

Figure 11. Ratio of the spatial integral scales (Equation B.3) as a function of the variance of
log (K) for the two autocorrelation structures.
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The calculations of integral scale show that for the exponential structure of
autocovariance of Y(x), the autocorrelation function (B.2b) for K(x) can be approximated

by the exponential function p, =exp(—x/ A,) with the integral scale A; equal to:

A, = Aexp(-02720%). ' B.4
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