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1-GWh DIURNAL LOAD-LEVELING SUPERCONDUCTING MAGNETIC
ENERGY STORAGE SYSTEM REFERENCE DESIGN
APPENDIX C

DEWAR AND STRUCTURAL SUPPORT

BY

J. G Bennett and F. D. Ju

ABSTRACT

The mechanical aspects of the dewar to contain a
1-GWh superconducting coil in a 1.8 K helium bath and the
means for supporting the coil and dewar against the rock
of an underground excavation created for just that

purpose are presented.

I. INTRODUCTION
Several self-imposed limitations on the 1-GWh Superconducting Magnetic

Energy Storage (SMES) components have dictated the preliminary design

procedures presented here. Among these limitations 1s the single-~cavity
concept and the associated geometric constraint.

concept, the large ax.al loads near the ends of the solenoid must be taken

With the single-cavity

as

a shear load on the rock~cavity walls. For this reason and for reasons of

redundancy, the inner helium vessel 1is segmented. Thus, based on an

approximate maximum strain criteria for the high-purity aluminum in the

to accumulate
The

stacked conductors, the conductor-bearing stresses are assumed

to about 84 MPa (12,200 psi) before transmitting this load to the rock.
vessel is used as structural support for the conductor between the attachment
points to the rock.

The design 1is restricted to commercially available structural materials

of common shapes rather than a predication based on a materials development

program in 'unobtainium." The parameter studies, however, that have led to

the design have been quite general with regard to material properties.



Conaideration has also been given to construction technology and techniques

currently available. The designs considered are buildable with present or

easily developed technology.
These combined constraints have dictated that conventional design and

analytical methods be utilized. A basic cross section of a 13-segment dewar
cavity is shown in Fig. C-l1. Dimensicns may vary, but they are representative
of the 1-GWh concept. Features illustratad in Fig. C-1 are meant to indicate
how the component part is or will be designed but are not meant to represent

detail.

II. DESIGN OF THE HELIUM VESSEL AS A LOAD-CARRYING MEMBER

A. The Shell Concept
Figure C~2 shows a preformed rippled shell with the inflection point at

the point of tangency to the supporting member. 4 free-body diagram of the
shell section from the midspan to the point of tangency at the support,
Fig. C=3, allows the following equilibrium equations to be written in terms of

the support forces per unit length; V and S, and support moment per unit

length, M

S cos 8 4+ Vsin 6 + pR[1l - cos (¢ - B)],

Ngg
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Mgg = Mg - gR(cos ¢ - cos 0) - ;R(sin ¢ - ein 0) + pR2[1 ~ cos (4 - 8)],

and

Also,



V= PR sin $ ,

where p 1s the pressure loading the shell must carry,
Nij = the shell stressz resultants, and

Mij = the shell moment resultants,
all of which are defined with respect to the middle surface of the shell.

An expression 1s now formed for the complementary energy, U*, per unit

length for the cylindrical shell as the membrane plus the bending energy and

elastic behavior is assumed.

' 1 ¢ 1 ¢
U* = U = —— | NZ.RdO + —— M2.Rd6 ,
2Eh “o 99 2(1 - v3)p jo o8

where
U = the strain energy per unit length of the shell,
E = Young’s modulus of elasticity,
h = the shell thickness,
v = Poisson’s ratio, and
Eh3
D =- = the flexural stiffness of the shell.
12(1 - v?)

Substitution of the =xpressions for Ngg and Mgg into this expression and
performance of the indicated integration gives an equation for U%*.

Castigliano’s theorem! is applied to the result.

Because the meridional displacement along the shell arc length is zero at

midspan and at the support, then

The resulting equation is



(% +'% sin 2¢) + pR (8in ¢ - ¢ cos ¢ --% cos ¢ sin 2¢)]

+ [g (sin ¢ - ¢ cos ¢) + (S-pR cos q;)(g + ¢cos 2 ¢~ % sin 2¢)] = 0 (C-1) .

Also, the slope at the support and at wmidspan 18 required to be zero.

Therefore,

oU*

which results in

M¢ + (g - pR cos ¢) (sin ¢ - ¢ cos ¢)JR =0 {C-2)

By expressing S as
S = pR cos ¢ + 5% ,

2
where € = (%J and p is the radial magnetic pressure, Fqs.(C-1) and(C-2)can be

solved for s* providing all terms of order eZ are neglected. Then

G%)z ¢ sin ¢ cos 6

1+ 0(e?) (C-3)

L
6
Nee =pR [1 -
+

$2 %¢sin2¢-25102¢

and



i - e
Mg = L (0)? P82 sin ¢ (——pn #8007 )+ 0(e?) .+ (C-4)
6 ¢2 + 5 ¢ sin 2¢ - 2 sin? ¢

Ultimately, the shell will be designed by considering the combined normal
stresses, which are maximum at the tangent to the support; that is, 6 = ¢.
The effects of the axial magnetic loading end cooldown stresses on the vessel
design must also be considered. Before considering the vessel as a whole,
howvever, the results thus far obtained, that 1s, the effects of the radial
magnetic loading 1mposed only on the outer vessel wall, designed as & shell,
must be examined.

For a thin shell, the maximum normal hoop stress from combined bending

moment and membrane force 1s approximately

s - Noo , Mg
00 = g 'Rz

For consideration of the magnetic pressure loading only, a stress design
requirement can be imposed such that Ggg < °design = 2/3 0, where ¢ is the

low temperature yield strength value. 22¥

Combining Eqs. (C-3)and(C-4) with 6 + ¢ gives

(h)2 in 2
17£09) SR £Ce)

pR
%gg < [1-
max

where

£(9) = ¢2 + %-¢ sin 2¢ - 2 sin? ¢ .

If the definitions



¢ sin 2¢

G(¢) B_—f_(ﬂ_— »

H < 81n ¢ (8in ¢ = ¢ cos ¢)
(¢) 0] s

and

%A 998 = allowable stress in the shell
max

are used, Eq.(C-5)can be rewritten as

2
N =.%? {1 --%5 Q%) G(¢)} % pH(¢) - (C~6)

This equation can now be solved for h(R, ¢), the shell thickness. Because the
first term 1in Eq.(C-6)1is positive for positive pressure and 1s the membrane
stress and the second term is the bending contribution, to insure the maximum

stress 1is used, the sum of the membrane and absolute values of the bending

stress are combined to give

2 1/2
~op + (D] + (Lo, - IoH($)]12 + 258
h(R, $) = ) (c-7)
PC(H)
6R

Thus far, no geometric constraint has been incorporated into Eq.(C-7).
For a given geometric configuration, Fig. C~2, the support spacing s, half-

angle ¢, shell unsupported radius of curvature R, and support radius r, are

related by

s =2(R +r) sin ¢ .



Let n = %-, so that

- -8 ) . -
¢ = sin (2R(1 + n)) (c-8

for a given design, Eqs.(C-7)and(C-8)must be satisfied simultaneocusly. To see
the influence of various parzmeters on shell thicknesses and volume, the
parameters in Eq.(C-7) will be varied and Eq.(C~-8)will be plotted over the
result for a specific value of n. This graphical solution gives a good method
for examination of the effect of changing the parameters for a specific
design.

The total shell volume can be shown to be

V = nDHh (R, ) ?i%? ,

where

D = the coil diameter and

H = the shell height.
Figures C-4 and C-5 illustrate typical parameter studies, where the following
parameters representative of a typical end segment in the multisegmented dewar
concept were used.

SMES diameter D = 132 m

Shell height H = 2 m

Radial magnetic pressure p = 20.7 MPa

Material properties used = A304-LN austenetic stainless steel

Allowable stress o, = 510 MPa

Young’s modulus of elastfcity, E = 20.7 GPa

n=r/R = 0.55

Figure C-4 shows the 8hell thickness of Eq. (C-7) solved for wvarious
half-angles ¢ and ripple radii R. As can be seen, as the half-angle becomes
small, the thickness increases rapidly to accommodate the increased bending

stresses at the support point of tangency. The geometric comstraints for



h
x
i}
1
il
H

potential vessel geometries, Eq. (C-8) are shown for three support spacings
and for n = 0.55 on Fig. C~4.

Figure C-5 shows the same study with V(R, ¢), the shell volume, plotted.
Note that the volume function shows a slight minimum at around ¢ = 300- Study
of both figures indicates that larger half-angles are beneficial in reducing
the shell thickness and volume.

One should not be confused by Figs. C-4 and C-5. Their potentisl

usefulness may be seen by considering a specific example.

let
r=0.5m
and
r
— = 055 * R = 0.91 m;
R
for

s = 2 m and

2

= 45.2° ,
21 + 0-55)0-91) 45

¢ = sin~! (

then from Fig. C-4 h = 0.25 cm and from Fig. C~5 V = 0.7 m.
The wvalue of n =r/R = 0.55 requires a O0.7-m length of shell to be

supported. This length of support does not lead to a reasonable design. The

trends for all values of n will be the same.
Figures C-4 and C-5 are not restricted to n = 0.55. One further example

will illustrate this pointe.



Let

r= 0.2 m,

s = 2 m,

and

307;

©-
W

then from the gecmetric constraint Eq.(C-8),

R=1.8 m and

3

= 0.11.

From Figs. C-4 and C-5,

h = ] cm

and

v > 1,8 m3.

if desired, the curves for n = 0.11 and s = 2 ® can be plctted over
Figs. C~4 and C-5. By this example, one pcint has been located on the curve.

These exanmples are given to illustrate the meaning of Figs. (-4 and C-5,
not to imply their utility as design tools. Theilr real value 1s o examine

rhe effect that the various parameters have on the sheil thickness aund volume.



It is clear from a study of Figs: C-4 and C-5 that closely spaced supports,
implying less unsupported span, are also a means of reduciag shell volume,
particularly for smaller half-angles. Costwise, structural material is wmoved
from the shell to the support, and the total material cost will depend on the
relative cost of support material as compared with shell material.

For higier values of half-angle, the geometric constraint curves of
Figs. C=4 and C-5 come together for large values of ¢ and the trade-off of
shell material for support material is not as important. The advantage of the
wider support spacing is in having room available for ease in comstruction and
final assembly in the tunnels. A support spacing of about 2 m on centers 1is
judged to be about wminimum for assembly without having to resort to

uncoanventional construction techniques.

B. Cooldown Stresses in the Rippled Shell
Consider the cooldown of the preformed rippled shell structuve anchored

periodically as shown 1in Fig. C-2. The shell will not shrink freely upon
cooling because of the anchor comstraints. The membrane forces and couples
that will occur as the shell is cooled will cause a flattening and stretching
of the shell. Furthermore, if the shell can unwrap from the support at point
C of Fig. C-2, these stresses will be different from the case for which point
C is constrained to remain in contact with the support.

The assumption is made that at point A the displacement and slope of the
shell are constrained to remain zerc. From this assumption the case for which
unwrapping can occur is formulated. The resulting equations can be reduced to
the case fcr which point C remains in contact with the support with zero slope

by letting r, the support radius of curvature, approach zero.

Mathematical Model
Because of the symmetrical condition, only a section of the shell needs

to be considered. Figure C-6 shows the section AB where A 1s the anchor point
such that there is no displacement nor rotation thereof. The point B is the
symmetrical point, where the continuity conditioms for displacement and slope
require that the 1lateral displacement be equal to the lateral thermal

contraction and that the slope 18 =zero. The point C is a functionally

discontinuity point.

10



Figurs C-6 shows the free-body diagram for the formulation. The membrane
complementary energy of order (h/R)2. as compared to the bending complementary
energy, is assumed to be negligible. The material is assumed to be 1linearly

elastic, and the energy equation is written as

vt U =—2L [ M@)2as, (c-9)

2(1 - v&)p S

where
M(s) = the moment function along the arc lengths, s,

Eh2

~—ossmimm— = the shell flexural stiffness,
12(1 ~ v?)

v = Poisson’s ratio,
U%# = the complementary energy per unit shell length, and

U = the strain energy per unit shell length.

For the free~body diagram 1in Fig. C~6, the following equations of
equilibrium can be written for 0 < 8 € ¢ and S between B and C,

M(s) = - My + Py(1 - cos 6)R + QR sin 6 (c-10)

and for O € 6 <¢p and S betweenr A and C ,

M(s) = - Mg + P [R(1 - cos ¢) + r(cos & - cos ¢) ]

+ QB [R sin ¢ + r(sin ¢ ~ sin 8)] , (C-11)

where Qg 1s zero from symmetry considerations. The Qg is kept, however, to
determine the displacement in the direction of Qg at position B.
Equations (C-9), (C-10), and (C-:1) can be used to apply Castigliano’s

theorem.! Because all static constraints have corresponding zero slopes and

11



displacements, they are nonworking and the classical Castigliano’s theorem

resuits.

v
M. = ABp = 0 Cc-12
Wy lgyuo = 2687 0 - (c-12)

au
apBIQB=0 = 6Py = R + ep sin ¢ , (C-13)

and

=8Qg (C-14)

where ep 1s the total thermal strain over the temperature range of cooldown.
Performing the operations indicated by Eqs.{C-12), (C-13), and(C~14)on

Egs.(C-9),(C-10), and(C~11)will give two equations that can be solved for

unknowns Mg and Pp and one equation for 6Qg invelving Mg and Pg. The

quantities of interest are given here as the membrane force and couple at B.

3
py = £ o sin ¢ (C-15)
12r2 £(9)
and
b3 [1—(1-{—)§12¢-%cos¢]
Mp = ToR °T sin ¢ — ) (c-16)
£(9)
where
12



- 2
£(¢) =% (1 --;—5] +%-§cos 2¢

1 r r r\2 sin? ¢
- -5t ] =1l ~=) =2 -1
+asin2¢(1 5R+R2) ( R) : (C~17)
Also, from symmetry and equilibrium considerations
Q=Q% =0 ,
PAEPB ’
and
Eh3 %“L(l'%)ﬂ_:?"msq’
My = 15 o 810 ¢ [ ~ ] (C-18)
£(¢)

The maximum tensile stress will occur at A and for small h/R. This

stress can be expressed as

P 6M
%90 “f,é"‘—é
h2
or
Eben sin ¢
T h r ry sin
cee E-—‘_—.——- [-ﬁ + 6 (i + (1 -E) —E—i ~ COS ¢)] ° (C-lg)
12Rf ()

13




To examine the effects of cooldown alone on the shkell, Eq. (C-19) 18 evaluated

for the following geometric parameters.

r
ne=a 0.25

and

S = the support spacing = 2 m ,

and for the material properties of steel and aluminum,

Egrpg = 208 GPa ,

EpLominuy = 73 GPa

-3
€p_sTEEL = 296 x 107 ,

and

-3
€r-aLUMINUM = 4-13 *x 10

Average values of &y are chosen for cooldown from 273 to O K.

Table C-I gives the results for various thicknesses h ard half-angles ¢.
Table C-I reflects the fact that for aluminum, the total thermal strain
increases by about l.4 times, whereas the elastic modulus is about one-third
that of steel. This results in an overall thermal stress reduction of about
one-half for aluminum over that for steel. Table C-I also illustrates two
geometric effects. First, increasing the halfi-angle decreases the magnitude
of the cooldown stresses for the so-called "straightening out" effecte.

Second, increasing the thickness increases the magnitude of the cooldown

stresses for the stiffening effect.

14



TABLE C-I
MAXIMUM STRESS AT POSITION A IN MPa
Thickness h (m)

Steel Aluminum
4° 0.01 0.02 0.03 0.01 0.02 0.03
20 88.9 180.5 274.8 43.8 88.9 135.4
25 69.6 141.0 214.1 34.3 69.5 105.5
30 5607 114.5 173.5 27.9 5644 85.5
35 47.3 95.4 labe4 23.3 47.0 71.1
40 40.1 80.9 122.2 19.8 39.8 60.2
45 34.4 69.3 1047 17.0 34.2 51.6
50 29.8 60.0 90.5 14.7 29.5 4446
90 10.0 20.1 30.3 4.9 9.9 14.9

To convert the above values to psi, multiply by 145.04.

These results are intended to illustrate the effects of cooldown and to
show that the stresses must be accounted for in the design. In the analysis
presented, the shell 1is assumed to be able to unwrap from the support. The
construction of the dewar will be simplified if supports are put in place
first and then the shell 1is attached between the adjacent supports. This
design is the nonunwrapping case analyzed in a previous section wiih pressure
loading. The present thermal stress analysis reduces to this case if r + 0 in

Eqs. (C-17)and (C-19), Equation(C~19)becomes

Ehen sin ¢
0gg = ————— [% +6 [Ei:—“’ - cos ¢)] (C-20)
2Rf ()

and Eq.{(C~17)now becomes

2
%+ sin4 2¢ _ sin¢ ¢ (c-21)

£(9) =

LA

TV - W

15



and
20£(9) = £(4)

with £(¢) as defined previously for Eq.(C~5). The combined radial pressure

loading and cooldown stresses can now be examined.

C. Shell Stresses from Combined Cooldown and Radial Magnetic Pressure

Loading
Equations (C-6) and(C~20)can be combined with attention given to the signs

from the free body diagrams to give the following result:

2 Ehen sin ¢
12R? 12R £(9)
and
Eher sin ¢
+ ABS {— T 6 (Sig ®_ cos ¢) - pH(®)] . (C-22)
12R £(¢)

where the result has not heen simplified to identify the terms physically.
Equation (C-22) 18 the equation for the maximum stress from combined cooldown
and pressure loading in the shell at point C in Fig. C-2. The first term
represents the membrane stress in the shell that arises because of the
pressure loading. Note the appearance of the expected pR/h term plus a
geometric correction. -The second term is the membrane stress that arises from
cooldown. The first half of the third term is the bending cooldown stress,
and the last half of the third term is the bending stress caused by the
pressure. The absolute value of both bending contributions 1s taken to insure
that the maximum tensile stress 1s obtained. Because of the different
positive bending moments assumed in the derivations, the difference between
these bending terms must be used. Physically, this is indicative of the fact

that the bending because of cooldown 1s somewhat reduced by applying the

16



pressure. Both the thermal and pressure loadings produce membrane tensions

that are additive.

Equation (C-22)has been studied parametrically to determine if an optimum
shell design can be achieved. For this study, the value of support spacing s
was held constant at 2 m and support radius r at 0.2 m. For a given
unsupported radius, R, the half-angle is then fixed by Eq.(C-8). Figure C-7
shows the surface that results from plotting ogq4 versus 1/R versus h under the
above constraints.

It 18 1interesting to note that the surface exhibits a saddle point for
emall values of 1/R. In general, the trends noted from the two previous
studies are also clearly evident here. The stresses decrease with increasing
unsupported curvature and initially decrease as the thickness 1s increased;
however, because the thermal bending strain begins to iominate for very thick
members, the strass correspondingly increases. There doee not appear to be a
curvature that will give a minimom volume; but once the curvature is selected,
there is a thickness that will give a minimum stress. The minimum volume will
be given by the minimum thickness corresponding to the design stress and the
specified unsupported curvature. The conclusion of this study 1s that the
half-angle and curvature should be picked to correspond with ease of
construction and to be large enough to reduce the maximum stress below the
design stress. A study of the data reveals that for a radial pressure loading
of 2.07 MPa, a 2-m support spacing, and a 0.2-m support radius, a minimum
half-angle of about 16° with a meximum unsupported radius of curvature of
around 3 m is required to reduce the maximum stress to around 520 MPa. 1In the
1-GWh SMES, radial pressures are between 2.5 and 5.7 MPa so that rather
large unit half~-angles will be required.

All studies thus far have been to determine the boundaries of the design.
The vessel must also carry the axial component of the magnetic loading between
To investigate the final design, the resultant axial magnetic

supports.
loading 18 dincluded. This loading 1is assumed to be carried by the vessel

acting as a beam between supports.

D. Closed Helium Vessel Design Considerations

Consider the cross section shown in Fig. C-8. The segmented dewar

sections are designed based on this cross section. The requirement that the

outer wall will act as a shell as far as the radial cowmponent of the magnetic

17



loading 1s concerned will mean that a certain amount of stand-off distance,
which will be at least one-tenth the unsupported radius of curvature, will be
required for the conductors from the top and bottom closures and from any
cross shear connections. The inmer wall carries only the helium hydrostatic
pressure radially and could be very thin except that the imner wall also acts
as a shear web member for the vessel acting as a beam.

Three assumptions are made. These are (1) that the interior of the
vessel 18 filled with the conductors and cooling channels with the remaining
space filled with material such as plastic where needed for spacing and load
transfer purposes, (2) that based on an approximate strain limit in the
conductors, the stress in the conductors is allowed to accumulate to about
105 MP2 before carrying the load to the vessel walls, and (3) that stability
of the walls exists against any web deformation.

Based on field calculations, the l3-segment helium vessel will carry a
vertical 1load component of about 21 MN/m of peripheral length. Because the

vessel 1is continucus, the maximumm direct shear force, V, and the bending

moment, M, at the support can be written as

and

where w 1s the vertical load per unit length. The combined stresses from all
effects have been investigated both at the support and the midspan”'Where the
thermal effects are all additive. The stresses have always bzen fcund to be a
maximum at the support at location A of Fig. C-8. A differential element at
location A of Fig. C-7 is assumed to be stressed as shown in Fig. C-9, where
Ogg = the shell stress from the radial magnetic and thermal loading, O,y = the
bending stress from the axial magnetic loading (support moment), and T,z = the
shear stress from the axial magnetic loading (direct shear).

The design 1s based on the principal stress computed from the assumed

stress distribution at A being less than the design stress, which is taken to

18




TABLE C-TI
LOW-TEMFERATURE DESIGN PARAMETERS

Aluminum Steel
Alloy A304-LN
Yield strength, MPa 414 771
Stress, MPa 276 517
Shear, MN 20 20
Moment, MN-m 6.32 6.32
Thermal strain, eg 4.15x1073 2.97x1073
Material cost $/m3 $4 880 17 300
$/1b 0.80 1.00

be two-thirds the low-temperature yield value of the material. The parameters

in Table C-II are pertinent with regard to the results presented.
The values quoted

of 0.2 m,

The design shear and moment values vary with geometry.

in Table C-II are for the case of a support radius of curvature

unsupported radius of curvature of 1.8 m, half-angle of 45°, and support

spacing of 2 m.

To examine the effects of the various contributions of each component to

the stresses on Element A, two identical geometries for the aluminum and steel

were constructed. Figure C-10 shows typical curves obtained for maximum

outer wall thicknesses for two closure thicknesses.

As can be seen

principal stress versus

Figure C-11 shows a typical result from a point comparison.

from Fig. C-11, the only components of stress affected by the material

properties are those contributions from the thermal effects. Note that the

thermal effects in the aluminum are less predominant.

Note also that for this particular geom=2try the maximum principal stress

in the aluminum is above the design stress while that for the steel is below.

For a given pgeometry, the stresses 1in the aluminum can be decreased by

increasing wall thicknesses until thermal effects begin to dominate and then
by increasing the top and bottom closure thicknesses to reduce the bending and

shear stress contribution. Attempts to find a reasonable design for aluminum

for the 2-m support spacing lead to extremely thick designs and technological

problems in field welding and construction. The alternative is to reduce the

19



support spacing and thus the loadings. The economic trade-off is vessel

material for support material. This trade~off should be investigated in the
future because of the very attractive unit price of aluminum as opposed to
steel. See Table C~II. At this time, however, no futher consideration 1is
given to the aluminum vessel design.

Tables C-III and C-IV give the sizes of 2 typical 13-segment and
25-segment dewar design of A304-LN austenetic stainless steel. All vessel
widths were taken to be 0.1 m. Although there appears to be some economic
advantage 1in keeping the segments as tall as possible, the a.ditional internal
structure required to transfer the load to the bottom of the vessel may offset
some of the apparent savings. These comparisons are given to show how to

proceed toward an optimized cost design once a specific reference point has

been established.

For comparison, Table C-V gives the sizes of a 25-segment design for
aluminum. The evident saving in material cost provides a strong incentive for

developing the technoloyy for field welding of thick aluminum sections.

TABLE C-III
A304-LN STAINLESS STEEL 13-SEGMENT VESSEL

Vessel Geometry(w = 0.1 m) Single Costs
‘ "~ Segment $106
Radial Vo lume
Design of Single
Segment Pressure R r H ¢ hy h: h, Material Segment Total
Number MPa m m m deg cm cm cm m3
1 &7 2.5 1.21 0.2 2.2 45 1.0 2.0 1.6 27.6 0.48 0.96
2 & 8 3.7 1.21 0.2 1.7 45 1.0 9.2 3.4 39.2 0.68 1. 36
3&9 4.0 1.21 0.2 1.8 45 1.0 7.2 3.1 37.7 0.65 1.30
4 & 10 4.7 1.21 0.2 2.0 45 1.0 5.2 2.8 37.9 0.66 1.31
5 & 11 5.4 1.21 0.2 2.3 45 1.0 3.8 2.5 39.7 0.69 1.37
6 & 12 5.5 1.21 0.2 2.9 45 1.0 2.4 2.0 42.0 0.73 le45
13 5.7 1.21 0.2 18.2 45 1.0 1.0 1.4 203.7 33.52 3.52
Total $11.3x106
*
ht = hy
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TABLE C-IV

A304-LN STAINLESS STEEL 25-SEGMENT VESSEL

Vessel Geometry(w = 0.1 m) Single Costs
Segment $106
Radial Volume
Design * of Single
Segment Pressure R r H ¢ hy he hg  Material Segment Total
Number MPa m m m_deg cm _cm cm n3
1,2,13,14 2.5 1.21 0.2 1.46 45 1.0 3.2 1.6 19.4 0.34 1.34
3,4,15,16 3.7 1.21 0.2 1.21 45 1.0 7.6 2.6 24.6 0.43 1.70
5,6,17,18 4.0 1.21 0.2 1.26 45 1.0 5.4 2.8 24.9 0.43 1.72
7,8,19,20 4.7 1.21 0.2 1.36 45 1.0 5.4 2.6 25.9 0.45 1.79
9,10,21,22 5.4 1.21 0.2 1.51 45 1.0 5.4 2.5 27.6 0.48 1.91
11,12,23,24 5.5 1.21 0.2 1.81 45 1.0 3.2 2.2 28.5 0.49 1.97
25 5.7 1.21 0.2 18.2 45 1.0 1.0 1.4 203.7 3.52 3.52
Total $14.0x106
*
hy =y
TABLE C-V
ALUMINUM 25-SEGMENT VESSEL
Vessel Geometry(w = 0.1 m) Single Costs
Segment $10°
Radial Volume
Design . of Single
Seguent Pressure R T H ¢ hy h hy  Material Segment Total
Number MPa m m m deg cm cm cm m3
1,2,13,14 2.5 1.21 0.2 1.46 45 1.0 13.7 2.27 31.0 0.151 0.605
&
3,4,15,16 3.7 1.21 0.2 1.21 45 1.0 23.5 3.22  36.0 0.176 0.703
5,6,17,18 4.0 1.21 0.2 1.26 45 1.0 22.5 3.55 37.7 0.184 0.736
7,8,19,20 4.7 1.21 0.2 1.36 45 1.0 253 3.65 41.6 0.203 0.812
9,10,21,22 5.4 1.21 0.2 1.51 45 1.0 25.3 3.97 46.3 0.226 0.904
11,12,23,24 5.5 1.21 0.2 1.81 45 1.0 17.9 3.96 49.7 0.243 0.970
25 5.7 1.21 0.2 18.2 45 1.0 1.0 2.58 302.5 1.48 1.48
Total  $6.21x10%
*
htzhb
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E. The Box~-Beam Concept
An alternate approach for the helium vessel 1is to design the cross

section as a box beam with methods similar to those used for aircraft wings.
The results of this section can also be used to estimate the stresses in the
vessel of the previous section for the ring at the upper and lower closures.
The potential fcr designing the conductors as load-carrying members has also

been included in the formulation so that such a design could be studied.

F. Formulation of the General Problem
Figure C-12 shows a cross section between supports of the most general

geometry considered. Figure C-13 shows a typical helium vessel segment cross
section to which the formulation can apply.

The support 1s assumed to be elastic; and the beam is divided into two
regions, supported and unsupported, as in the shell formulation. In chis
manner, the same cases are treated for the shell. Also an additional
consideration of a possible elastic support is included 1f different geometric
and material properties are maintained in each region.

Figures C-14 and C-15 show the n-th radial beam segment and the e.fects
considered in each region. Constant curvatures are assumed in each region.
The interface pressures in each region are assumed to be uniform to correspond
to uniform magnetic loading in each region. If the equations are formulated
for solution to the beams as shown, them both the conductor-beam and
dewar-beam interactions can be studied. The equations for each beam are
assembled into a matrix form, and displacement: at their midspan are made
compatible.

From a free-body diagram of thé n-th unsupported region for 0 < P < ¢ of
Fig. C-16, the following equations of equilibrium can be written.

M(V) = M, + Ry sin? (3] + RGR, sin ¥ - 2T,R, sin? (§) ,
T(y) = Fg sin? C%) + B¢ sxa Y+ T¢cos Yoo, (C-23)

and
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V(v) -%FRsinw—T¢sin Y+ Rycos y ,

where

R¢ = g ficticious load normal to the beam introduced at ¢ = 0,
M¢ = the resultant moment at ¢ = 0,

T¢ = the resultant beam axial force at ¢ = O,

M(y) = the resultant moment at Yy,

T(y) = the resultant beam axial force at y,

V(y) = the resultant beam direct shear force at ¥,

= 22" " DR, -t + (PR, - {0 Dy, + 1,

p£1 +1 . the force per unit length on the i-th beam caused by the

(1 + 1)-th,

pr) = the force per unit length on the 1-th beam caused by the
radial component of the magnetic field,
t_ = the half thickness of the n-th beam, and

n

Rn = the beam radius of curvature.

From the free-body diagram of the n-th beam in Fig. C-17, the following

equilibrium equations can be written for the supported region 0 < 0 <g¢.
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M(0) = M¢ -?rrn sin? (—g—) A(P)Fp - -% Fan sin ¢ sin (¢ = 6)

+ Fpr, sin? [%) cos (¢ ~ 0) + B(¢)R¢ - R¢1-,:l sin (¢ - 8)

C(¢)T¢ - T¢rn cos (¢ -~ 6) ,

Fp {% sin ¢ sin (¢ - 8) - sin? (g] cos (¢ = 0)}

fn

T(8)
8
+ Ty cos (¢ - 8) +Ry sin (4 - 6) +¥_ sin (5)

x [sin (¢ --g—] cos (¢ - 0) ~ cos (¢ -g] sin (¢ - B)] s (C=24)

V(b) = Fg [ 81n2 Lg) sin (¢ - 8) +-;-sin $ cos (¢ - B)]

—9:_ sin (g) {sin (q; -g] sin (¢ - 8) + cos (¢ -Ee) cos (¢ - 6)}

+R¢cos (¢—6)-T¢sin (¢ -8 ,

and where 7;, = thn + 1)(rn -ty) - plgB)r:u - Ign - (tg + )

Fxgn * 1) = the force per unit length in the support region on the n-th
beam caused by the (n + 1l)-th, and

r, = the beam radius of curvature in the support region.

The usual strain energy expression in the beam is formed by
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2 2
v.) MWL oA g T4(¥)dey

L) TET T Yy, T ZAG %) 2AE
M2(p)ds 292 T2(8)d L
e t e et ), g (c-25)
22 886 22 8 6 32 88

where
U = strain energy in the beam,
d%; = Rdy,
a = geometric shear stress correction factor,
df, = rds,
E = Young’s modulus of elasticity,
G = shear modulus of elasticity,
A = cross sectional area,

I
and the subscript,s,denotes the possibility of having different properties in

moment of inertia about the centroidal bending axis of the beam,

the supported region.

Because of the possible relative shortmess of the beam segment as
compared with the beam thickness for the vessel, the effects of direct shear
deformation have been included in the straln energy expression.

For elastic behavior, Castigliano’s theorem! can be applied in the

following manner. (1) From symmetry requirements on axial displacement at

Y= 0 and 6 = ¢,

*
au _ au 0 (C=26)

‘

T lrg0 " 3T [xp0 7O

where U% is the complementary energy stored in the beam.
The result of carryimg out the operations implied by Eqs.{C-26)}and(C-23)

for the equilibrium Eqs.(C-24)and(C-25), can be written as
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A(OM, + B()Ty + C($)Fg +D($)F, = 0 . (c-27)

{2) Prem the symmetry requirements on the slope of the beam axis,

au* au

M, [R,=0 M, |R.=0
oIRg=0  MyIR =0
which gives

E(9)My + F($)T4 + G(9)Fg + HOF =0 . (C-28)

(3) For assumed zero displacement normal to the beam at 6 = ¢, the center of

span displiacement normal to the beam, u, at ¢ = 0 can be written as

_ oU=* _au (C-29)

8R¢ R¢=0 8R¢ R¢=O

which gives

u = W(¢)M¢ + A(¢)T¢ + Y($)Fp + Z(¢)7r . (©-29)
Using?r = Fp and solving Egs. (C-27)and (C-28) simul taneously gives
M¢ = P($)Fg
(C-30)

Tq, = Q(¢)FR ’

and Eq.(C-29)as
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u = Y(§)Fy + 2(F + PP + X($QAPIFR -+ . (C-31)

All the equations can be written for each beam. To maintain the most
flexibility for studying the conductor-vessel system, the equations can be
solved numerically. The details are relatively straightforward, and Eq.(C-31I)

for each beam can be assembled in the form

[A]{x} = (B} , (C-32)

where

- - L X W) (n_l) T
{x} - {u,p{z),p§3),p§4)o.-pn .Snz 1),p[(’n 1),F§2) FD }

and where the following assumptions are used:

pén -1) o chpén - 1)’

A (c-33)

and

ch = the number of conductors stacked vertically om the dewar. Note
that in writing Eq. (C-33), the assumption is made that radial magnetic loading
in the vertical stack can be approximated with a uniform 1load distribution.
Enforcing compatibility at the midspan allows Eq. (C-32) to be solved for the
vector {x}. Once the innerface pressures are kmown, Eq. (C-30)can be solved
for the moment and axlal load in each beam.

This model attempts to keep all important effects without resulting in

excessively large systems of equations or long computational times.
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G. Thermal Effects
Once expressions are obtained for the strain energy 1in the beam, the

effects of cooldown follow the same development as for the doubly curved
shell. Figure C-18 shows the cooldown kinematics involved. Application of

Castgliano’s theorem ! gives

JU*

—— = (R + r) sin ¢ET,

and

1

3R = dYT ’

where dyp 1s the midspan displacement normal to the beam. The first two
relationships yield equations that can be solved for unknowns M¢ and T¢, and

then the third can be solved for the midspan displacement.

H. Typical Results fro.: Box—Beam Studies

A number of studies were conducted with a computer code to evaluate
numerically the model described. All of these studies attempted to maintain
relatively straight beam segments because of the difficulty that would be
involved in construction of a highly curved cross section.

The main problem that arises when relatively straight members are
considered 18 the 1large thermal stresses in the stiff vessels. Table C-VI
gives the design parameters used to generate Figs. C-19 and C-20. These
parameters are typical of those for a helium vessel end segment. Figure C-19

shows the cooldown stresses in a box-beam steel vessel as a function of the

unsuppuited radius of curvature.
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TABLE C-VI
BOX-BEAM DESIGN PARAMETERS FOR FIGS. C~19 AND C-20.

Vessel
Material Steel
Young’s modulus, GPa 207
Poisson’s ratio 0.3
Coefficient of thermal expansion, k! 1.01x10™>
Cross-gectional moment of inertia, n’ 3.68x1073
Cross-sectional area, m? 5.9x10~2
Height, m 2.0
Width, m 0.11
Conductor
Material Copper/aluminum
Young’s modulus, GPa 138
Poisson’s ratilo 0.27
Coefficient of thermal expansion, k! 1.1x10™
Cross-sectional moment of inertia, m“ 1.7x10"10
Cross-sectional area, m? 5.9x1072
Number of conductors radially 5
Number of conductors stacked vertically 20
Geometry
Support spacing, m 2
Support radius of curvature, m 0.5
Unsupported radius of curvature, m 1000+4
0.05~»12.7

Balf-angle, degrees

As 1/R approaches =zero, the maximum stress 1s observed to approach the

value for a rod clamped between supports, that 1is, o = Eeq. As 1/R 1is

increased, thus increasing the half-angle and the depth of the ripple, the

maximum stress increases slightly because there 18 some curvature and the

bending stress increases; but there 1s mnot enough curvature to allow the

straightening effect to relieve the axial stresa. As 1/R 1s 1increased even
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further, the beam can straighten and the maximum stress decreases. Note that

when 1/R 1s 0.25, the stress has decreased to about 390 MPa, a value that is
still rather large. For this case the half-angle 1is about 12.7°, and the beanm
is no longer considered straight enough to be easily constructed.

The difficulty "of constructing a highly curved complex cross section as

shown in Fig. C-12 means that the box-beam concept is of questiorable value.
Simple cross sections as shown in Fig. C-7 and flexible conductors should be

more easily constructed. To see the desired effect of 1increasing curvature,
consider the calculated maximum stresses 1in the comparatively f£flexible
conductor, shown in Fig. C-20. As 1/R increases, the flexible conductor

straightens readily and relieves the thermal stresses.

III. SUPPORT STRUT STRUCTURE-HELIUM VESSEL TO ROCK WALL

A. Tunnel Bridge Concept
Several support concepts were investigated.

The concept of using both

walls of the rock tunnel to carry a portion of the magnetic loading 1is

appealing from the rock mechanics point of view. Figure C-21 shows

schematically the basic concept. Axial load components are supported off both

walls while radial components are carried only to the outer wall. 7Ta thia

concept, the axial loads are allowed to accumulate 1in the vessel-conductor

structure to 21.1 MN/m before segmenting the dewar and carrying this component

to the rock. The axial support .ruts are visualized as a series of hinged

plates 1 m wide and 2 m on centers that bridge the tunnel. The radial

supports are located between the axial members as in Fig. C-22. The effects

studied; and although the
in the

of this loading system on the rock structure was
resulting stresses and displacements in the rock are less than those
single-wall support design, there 18 no clear advantage to the concept.
Furthermore, the concept suffers from the following.
1. Thick load-bearing plates and rock bolting are required for both
walls.
2. MHeat 1Intercepts are required for both sides of the axial support; the
rock wall and vacuum vessel Iinner face design 1is complicated for both

walls; and warming pipes for the concrete liner and rock inmer face

are required for both walls.
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3. The radial cooldown motions of the dewar must be accommodated at the
dewar-axial strut inmerface.
With no clear advantage and a number or disadvantages, the concept 1is of

questionable value.

B. A-Frame,Single-Wall, Low-Conductivity Strut Concept

One alternative to bridging the tunnel with support structure 1is to
support all the loads off the outer wall with a low-conductivity strut or
array of struts. A number of different designs of such a strut are poassible.

The design is shown in Fig. C~23. The basic elemente of the design are an

extruded member for attachment of the helium-vessei sections (weld plates),
low~conductivity G-10CR or reintorced fiber glass polyester plates with heat
intercepts, friction connection plates and bolts, and a bearing and support

plate for attaching the strut to the rock wall.
The details of the design of the bolted through friction connections are

standard practice2’3 in machine design and only the results are discussed
here. The basis for the design of the G-10CR reinforced epoxy plates is

presented.
The plate design is based on a maximum stress criteria in accordance with

the properties of G-10CR shown in Table C-VII.

TABLE C-VII
G-10CR MATERIAL "ROPERTIES AS A FUNCTION OF TEMPERATURE

Tensile Compressive Shear
Temperature, K Strength, MPa Strength, MPa 3trength, MPa
t t* c c¥ *
F] F2 F F3 Fiz
295.0 415.1 395.0 -375.0 -355.2 178.0
76.0 824.6 787.0 -833.5 -795.0 398.0
4.0 861.8 862.1 ~802.1 -821.0 411.0

1 indicates the warp direction
2 indicates the f£f1i1l1 direction

*No data available for £fill direction--these properties are assumed based on
95%2 of the warp directional vzlues with suaear value at one-half minimum

compressive strength.
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Seven conditions are assumed to apply. These are:

l. The reinforzing material is oriented such that the warp direction 1is

aligned with the resultant applied load vector. The 1 and 2 axes define the

warp and £111 directions of the reinforcement as shown in Fig. C-24.

2. The average stress, in the St. Venant sense, 1is computed from the

plane stress elasticity solution as

P V.xy
- R + A
A I

and
v 2
A H
T =—(——'y2) ’
xy 21 4
where
Og = normal stress in the x direction,
oy = normal stress in the y direction,
Txy = shear stress,
I = moment of inertia about the z axis,
A = cross sectional area,
Pp = the normal of x component of the applied loading, and
V4 = the shear or y component of the applied load.

3. Stresses are computed from this solution along lines x = constant at
the locations of the heat intercepts and thus at known temperatures.

4. Transform the computed stress state to the principal lamina

directions--0,, Ggs Tyge
5. The fallure envelope is defined by
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o) < FE or o; < F{ ,

02 < FS or 0'2 < F(Z:’
and
T12 <F12 &

where FE, etc., are the strength data given in Table C-VII.

6. These are further restricted such that

o < 0.95 Fﬁ or oy < 0.95 F§,
max max

o < 0.95F or ¢ < 0.95 FS
zmax 2 Zmax ’

and

T < 0.95 F .
lzmax 12

7. The plate 1is stepped in width such that Ll will be of thickness Tl
based on the temperature interpolated material properties from Table C-VII,
and L2 of thickness T2, etc., see Fig. C-25.

Applying the above set of conditions leads to a set of equations for

three thicknesses, where-the largest ty must be taken, as

P 12v,xy 12v 2
tg -1 {[-—3 +-——-—A—-) cos? ¢+—A (%—— y2) cos ¢ sin ¢)]}
0.95 F§ oF © " B3 n3
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th) = 2 2
2 {(-4+———) sin? ¢ = —= (- = y2) cos ¢ sin 9]}
0.95 F']f or ¢ H 13 ) 03 (4 ) ’
and
12 Pp  12Vuxy 6V, ) )
3 " 0.95 F12 {-(-.?T +-———§——) sin ¢ cos ¢ +-;;; (cos® ¢ - sin ¢)} .
where

the FE OT € s taken to be the tensile or compressive strength depending upon

the final sign of the terms in the brackets.
Various configurations have been examined and are discussed.

shows the results of a sample calculation for the three thicknesses at the xz

Figure C-26

Fig. C-24, that 1s computed for the various stress states vertically
l.5~m-long strut.

plane,
along the room~temperature end at 295 K for a 2.2-mhigh,

The largest thickness in this case is 0.256 m at y = - l.1 m and 18 determined

by the fill direction strength criterion in the plane ¢ = 13.35
One obvious selection for strut heights is to have each strut support a

helium vessel segment. For example, in the l3~segment concept, there would be

By assuming l.5~m=length struts and temperature stations as shown
Ll = 0.435 m, L2 = 0.480 m, and L3 = 0.585 m, the required
Table C-"III shows the

13 struts.
on Fig. C-24 for
G-10CR volume can be computed for this concept.
results of this computation. A 2-m circumferential support spacing for 104

struts for each segment is used for these computations.

There is no obvious reason to have a separate strut for each segment. If

the top and bottom six segments are supported by continuous struts 12.9 m in

height with the central section supported by a single 18.2-m<long strut, then
the results given in Table C-IX are obtained,

Computations of the remaining portions of the strut design are based on

the cross section of Fig. C-25 and follow standard engineering design

practice. All stainless steel parts were designed to a shear strength of

275 MPa and all bolts are assumed to be preloaded to 90%¥ of their proof

strength. Two vcws of 38-mm-diam bolts on 175-cm centers are used on all

The joints are all designed as friction connections and a
used between the G-~10CR and stainless

connectionse.
coefficient of friction of 0.6 was
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G~10CR 13-SEGMENT SUPPORT STRUT MATERIAL REQUIREMENTS

TABLE C-VIII

cost is about $14.0 million.

Total
Single G-10
Warp Strut Geometry Strut Volume
Loadin% Orient- G-10 for all
Segment V R ation 6 H T1 T2 T3 Volgme Seggents
Number Hﬁ MN degrees m m m m m m
1&7 46.4 11.0 * 13.3 2.2 0.076 0.080 0.256 0.486 101.1
2 &8 46.4 12.6 % 15.2 1.7 0.098 0.118 0.420 0.586 121.9
3&9 46.4 l4.4 *17.2 1.8 0.090 0.105 0.370 0.551 114.6
4 & 10 46.4 18.8 * 22.1 2.0 0.075 0.087 0.290 0.488 101.5
5& 11 46.4 24.8 % 28.1 2.3 0.058 0.072 0.220 0.433 90.1
6 & 12 46.4 31.9 £ 345 2.9 0.039 0.052 0.167 0.404 84.0
13 0 207.0 0 18.2 0.014 0.015 0.032 0.58 60.3
673.5
TABLE C-IX
G-10CR 3-SEGMENT SUPPORT STRUT MATERIAL REQUIREMENTS
Total
Single G~10
Warp Strut Volume
Loading Orient- Strut Geometry Gl10 for all
Segment  V, Pp ation © H Tl T2 T3 Volgme Seggents
Number MN MN degrees m m m m m m
1&6 278.4 113.5 22.2 12.9 0.068 0.069 0.16 2.02 210.0
7 & 12 278.4 113.5 =22.2 12.9 0.068 0.069 0.16 2.02 210.0
13 0 207.0 0 18.2 0.014 0.015 0.032 0.58 60.3
Total 480.3
steel. Table C-X shows the result of this design. The total strut material
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TABLE C-X

3-SECTION SUPPORT STRUT MATERTAL COSTS
Estimated

Stainjess Stainless Total
Steel Steel No. of b Total Segment
610 Weld Plate Conl:ection 8earing  38-mm Total G-10CR Stainless Total Single Costs
Sexnent  Volnme 3;:]-:::ure Cl?;nﬁe Cl:te ;i;ghGSt;ength ‘S;t1eel (s:osts at  Steel Fastera!er Strut 104 Struts
Bl ume rade ol ume 8/k Cost:
Numbers m? m? m? m? Bolts m? Slu’g S(I,(s]’s %;(s]gs ?1,35 g\;umference
1-6 2.02 0.52 0.433 0.18 592 1.1 32.4 19.3 1.8 63.8 6.6
13 0.58 0.73 0.612 0.23 406 1.57 9.3 27.2 8.3 44.8 4.7
7-12 2.02 0.52 0.433 0.16 592 N1 32.4 19.3 11.8 63.5 6.6
Total 17.9

a
Fastener costs assumed to include all lengths of bolts plus nuts and washers at an average cost of $20/fastener.

b
Density for high glass content taken as 2 g/cm3.

IV. THE WIRE-ROPE CABLE DESIGN AND ASSOCIATED SUPPORT CONCEPT

A. Design Considerations for a Load-Carrying Cable

Wire-rope desigp 1is a very complex process from a theoretical point of
view. References 6 through 8 give some selected analyses of stresses of
fairly complex designs, all of which have various restrictive assumptions that
are necessary to obtain a solutionm. Perhaps the most observant statement
comes from a discussion from Ref. 8, "... it has become quite evident to us
over the years that wire-rope manufacture is an art, not a science." The
increasing body of literature in the area will invalidate this observation.
Structurally, a design of a conductor that 18 very flexible, yet
self-supporting, is ideal for SMES application. For this reason the design of
such a conductor has been investigated.

For a reference design of this nature, the following assumptions are
made.

l. The cable is flexible enough that bending stresses in the unsupported
region are negligible, and the cable takes on a true cylindrical shape.

2. The maximum stresses in the cable occur as it passes over the support

where the bending moment can be calculated from
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where
Ee
r = the support radius, and
I = the moment of inertia an individual wire in the cable has about

= the equivalent cable modulus of elasticity,

an axis through its centroid.

B. Cable Statics
Consider Fig. C-27 which shows the geometry involved and Fig. C-28 which

shows a free body diagram of the element under its magnetic body loading,
p(B), where p(B) is the force per unit length normal to the cable. From
equilibrium, if the cable is flexible enough, the curve for a loading normal
to the cable will be a portion of a circle; and the tension in the cable will
be given by T = p(B)R- The inflection point in the cable as it passes over
the support is assumed to be at the point of contact with the support. Under
load, the cable will wrap around the support and the maximum normal stress at

the support caused by the tensile load plus bending over the support is

(B) E.c
o =P R, e |
max A T
where
¢ = radius of the wires in the cable,
A = cross=-sectional area of the cable, and

E, = the cable equivalent modulus of elasticity.

If n 1s the . mber of wires in the cable, then A = nncz, and

(B) E. C
Oray = L (C=34)
nnc? r

This equation can be put into the form of a design equation as,
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g {
3~ 24P T oy (C-35)

)| -

Now, incorporation of the geometric constraint on the arc length and support

spacing S is such that

S=2 R+r)sin ¢ ,

where ¢ = the support half-angle. Equation(C-35)can then be written in terms

of the geometry, S and ¢, as

1 3 S Opax , p(B)r
E c {m 1 } 3 ce + W 0 . (C"36)

As an example, a 50-kA conductor in a 4.2-T field can be considered, and the

solution to Eq.(C-36)can be obtained with the following parameters.

p(B) = 210 kN/m

S=2nm
R=1.21m
r=02m

¢ = 45°

Onax = 510 MPa

E, = 62.1 GPa
Eq.(C-36) is cubic, the first positive pairs of real rcots which
As n 1s increased further, there

Because
are physically admissible occur for m = 373.
are two possible values of the radius c that represent a physically admissible
solution. The larger value of c represents the sclution for which the maximum
stress in Eq.(C-34) is dominated by the second term, that is, by bending,

whereas for the smaller value of c, Eq.(C~34) is dominated by the membrane

term.
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The solution for n = 373 is that for which the bending contribution nd
membrane stresses are most nearly‘equal. For this case, 373 wires of 2.2-mm
diameter would compose a suitable wire rope i1in keeping with the design
assumptions.

Figures C-29 and C-30 show the two physically admissible solutions from
Eq.(C-36). The analysies suffers several shortcomings. First, the realities of
wire-rope manufacture may preclude making a cable of 373 wires or greater.
This point needs more investigation. Second, the frictional losses assoclated
with such a conductor are unknown and may be large. This question aisc needs
further investigation, probably experimentally. Other materials ealsc should
be investigated for a potential load=-carrying conductor design.
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Fig. C-3. Free-body diagram for the shell equations.
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Fig. C-6. Free-body diagram for cooldown stress in the preformed shell wall.
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Fig. C-7. Hoop stress versus unsupported curvature versus thickness from Eq.(22).
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Fig, C-12. Horizontal cross section of the doubly curved box~bsam vessel concept,
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Fig., C-13. Typical vessel cross section for the box=beam concept.
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Fig. C-14. Unsupported region for nth copper clad conductor.

Fig. C-15. Supported region for nth copper clad conductor.

Fig. C-16. Free-body diagram from ¢ = 0 to ¥ = ¢ for the unsupported region.
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