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1-GWh DIURNAL LOAD-LEVELING SUPERCONDUCTING MAGNETIC

ENERGY STORAGE SYSTEM REFERENCE DESIGN

APPENDIX C

DEWAR AND STRUCTURAL SUPPORT

BY

J. G. Bennett and F. D. Ju

ABSTRACT

The mechanical aspects of the dewar to contain a
l-<5Wh superconducting coil in a 1.8 K helium bath and the
means for supporting the coil and dewar against the rock
of an underground excavation created for just that
purpose are presented.

I. INTRODUCTION

Several self-imposed limitations on the 1-GWh Superconducting Magnetic

Energy Storage (SMES) components have dictated the preliminary design

procedures presented here. Among these limitations is the single-cavity

concept and the associated geometric constraint. With the single-cavity

concept, the large ax<.al loads near the ends of the solenoid must be taken as

a shear load on the rock-cavity walls. For this reason and for reasons of

redundancy, the inner helium vessel is segmented. Thus, based on an

approximate maximum strain criteria for the high-purity aluminum in the

stacked conductors, the conductor-bearing stresses are assumed to accumulate

to about 84 MPa (12,200 psi) before transmitting this load to the rock. The

vessel is used as structural support for the conductor between the attachment

points to the rock.

The design is restricted to commercially available structural materials

of common shapes rather than a predication based on a materials development

program in "unobtainium." The parameter studies, however, that have led to

the design have been quite general with regard to material properties.



Consideration has also been given to construction technology and techniques

currently available. The designs considered are buildable with present or

easily developed technology*

These combined constraints have dictated that conventional design and

analytical methods be utilized* A basic cross section of a 13-segment dewar

cavity is shown in Fig. C-l. Dimensions may vary, but they are representative

of the 1-GWh concept. Features illustrated in Fig. C-l are meant to indicate

how the component part is or will be designed but are not meant to represent

detail.

II. DESIGN OF THE HELIUM VESSEL AS A LOAD-CARRYING MEMBER

A. The Shell Concept
Figure C-2 shows a preformed rippled shell with the Inflection point at

the point of tangency to the supporting member. A free-body diagram of the

shell section from the midspan to the point of tangency at the support.

Fig. C-3, allows the following equilibrium equations to be written in terms of

the support forces per unit length, V and S, and support moment per unit

length, Ms

N e Q = S cos 6 + V sin 6 + pR[l - cos (<f> - 6)],

Nx6

M e e « Mg - SR(cos <J> - cos 6) - VR(sin <J> - sin 6) + pR
2[l - cos (<j> - 6)],

and

^ x = Mx6 = ° *

Also,



V - pR sin

where p is the pressure loading the shell must carry,

NJJ - the shell stress resultants, and

Hj. • the shell moment resultants,

all of which are defined with respect to the middle surface of the shell.

An expression is now formed for the complementary energy, U*, per unit

length for the cylindrical shell as the membrane plus the bending energy and

elastic behavior is assumed*

where

U = the strain energy per unit length of the shell,

E •» Young's modulus of elasticity,

h *> the shell thickness,

v = Poisson's ratio, and

Eh3
= the flexural stiffness of the shell.

12(1 - v2)

Substitution of the expressions for N Q Q and M Q Q into this expression and

performance of the indicated integration gives an equation for U*.

Castigliano's theorem'- is applied to the result.

Because the meridional displacement along the shell arc length is zero at

midspan and at the support., then

3U*
= 0

3S

The resulting equation is



1 rh,2 r r* I \ , 1
—• [—) IS [— + — sin 2<()J + pR (sin 4> - 4> cos 4> - — cos 4> sin

£ ( s i n 4> - <J> cos $) + (S-pR cos <j>)(-| + 4> cos 2 <|> - i- s i n 2<J.)] - 0 (C-15 •

Also, the slope at the support and at midspan is required to be zero*

Therefore,

3M '

which results in

MA + (S - pR c o s ij)) ( s i n 4> - 4> c o s <f>)R - 0 • (C-2)

By expressing S as

S = pR cos <j> + eS* ,

jj 2
where e = [—J and p is the radial magnetic pressure, Fqs.(C-l) and(C-2)can be

K.
solved for s* providing all terms of order e2 are neglected. Than

- (-Jz <|) sin 4> cos 8
PR [l 5 _ J ___] + 0(e2) (C-3)

<t>2 + — 4> s i n 26 - 2 s i n 2 <b
2

and



I r M p2F2 8 i n # ( «™ t - * c o s ° ) + 0( ,2) . (C-4)
6 R V- + 4- 16 s in 2* - 2 s i n 2 <j>

Ultimately, the shell will be designed by considering the combined normal

stresses, which are maximum at the tangent to the support,' that is, 6 - <}>.

The effects of the axial magnetic loading end cooldown stresses on the vessel

design must also be considered. Before considering the vessel as a whole,

however, the results thus far obtained, that is, the effects of the radial

magnetic loading imposed only on the outer vessel wall, designed as e. shell,

must be examined*

For a thin shell, the maximum normal hoop stress from combined bending

moment and membrane force is approximately

Nee . 6Mee
± —-

For consideration of the magnetic pressure loading only, a stress design

requirement can be imposed such that a e e < aHesi = 2^^ a» w n e r e a i s

low temperature yield strength value. m a x

Combining Eqs. ( C-3) and (C-4) with 6 •*• $ gives

£ I \IZ ] [ %] (0-5,
max T

where

= *2 + j 4> s in 2<ji - 2 s i n 2

If the def ini t ions



c m - • s l n

„ . v a s i n <p ( s i n <j> - <j> c o s
9

4 and

0A " a69 = allowable stress in the shell
max

are used, Eq.(C-5)can be rewritten as

(C-6)

This equation can now be solved for h(R,<j>), the shell thickness. Because the

first term in Eq.(C-6)is positive for positive pressure and is the membrane

stress and the second term is the bending contribution) to insure the maximum

stress is used, the sum of the membrane and absolute values of the bending

stress are combined to give

-a A + |pH(+)| + ([oA -

(C-7)

6R

Thus far, no geometric constraint has been incorporated into Eq. (C-7)

For a given geometric configuration, Fig. C-2, the support spacing s, half-

angle <f>, shell unsupported radius of curvature R, and support radius r, are

related by

s = 2(R + r) sin (j> .



Let n - £ , so that

• ' ̂  koV^ • (c-8>

For a given design, Eqs.(C-7)and(C-8)must be satisfied simultaneously. To see

the Influence of various parameters on shell thicknesses and volume, the

parameters in Eq.(C-7) will be varied and Eq.(C-8)will be plotted over the

result for a specific value of n. This graphical solution gives a good method

for examination of the effect of changing the parameters for a specific

design*

The total shell volume can be shown to be

V - TrDHh(R,<j>)
sin

where

D * the coil diameter and

H • the shell height.

Figures C-4 and C-5 illustrate typical parameter studies, where the following

parameters representative of a typical end segment in the multisegmented dewar

concept were used*

SMES diameter D « 132 m

Shell height H = 2 m

Radial magnetic pressure p = 20.7 MPa

Material properties used •> A304-LN austenetic stainless steel

Allowable stress <?A = 510 MPa

Young's modulus of elasticity, E = 20.7 GPa

n = r/R « 0.55

Figure C-4 shows the shell thickness of Eq. (C-7) solved for various

half-angles <j> and ripple radii R. As can be seen, as the half-angle becomes

small, the thickness increases rapidly to accommodate the increased bending

stresses at the support point of tangency. The geometric constraints for



potential vessel geometries, Eq. (C-8), are shown for three support spacings

and for n * 0.55 on Fig. C-4.

Figure C-5 shows the same study with V(R,<j>), the shell volume, plotted.

Note that the volume function shows a slight minimum at around <\> * 30 • Study

of both figures indicates that larger half-angles are beneficial in reducing

the shell thickness and volume.

One should not be confused by Figs. C-4 and C-5. Their potential

usefulness may be seen by considering a specific example.

Let

0.5 m

and

- = 0.55 + R = 0.91 m;
R

for

s = 2 m and

then from Fig. C-4 h ^0.25 cm and from Fig. C-5 V - 0.7 m.

The value of n = r/R = 0.55 requires a 0.7-m length of shell to be

supported. This length of support does not lead to a reasonable design. The

trends for all values of n will be the same.

Figures C-4 and C-5 are not restricted to n « 0.55. One further example

will illustrate this point.



Let

r = 0.2 m,

s = 2 m,

and

- 30°,

then from the geometric constraint Eq.(C-8),

R = 1.8 m and

n = o.ll.

From Figs. C-4 and C-5,

h - 1 cm

and

V = 1.8 mz

if desired, the curves for n -•= 0.11 and s = 2 m can be plotted over

Figs. C-4 and C-5. By this example, one point has been located on the curve.

These examples are given to illustrate the meaning of Figs. C-4 and C~5,

not to imply their utility as design tools. Their real value is to examine

the effect that the various parameters have on the shell thickness and volume.



It is clear from a study of Figs. C-4 and C-5 that closely spaced supports,

implying less unsupported span, are also a means of reducing shell volume,

particularly for smaller half-angles* Cosewise, structural material is moved

from the shell to the support, and the total material cost will depend on the

relative cost of support material as compared with shell material*

For higher valuer of half-angle, the geometric constraint curves of

Figs* C-4 and C-5 come together for large values of $ and the trade-off of

shell material for support material is not as important. The advantage of the

wider support spacing is in having room available for ease in construction and

final assembly in the tunnels. A support spacing of about 2 m on centers is

judged to be about minimum for assembly without having to resort to

unconventional construction techniques.

B. Cooldovn Stresses in the Rippled Shell

Consider the cooldown of the preformed rippled shell structure anchored

periodically as shown in Fig. C-2. The shell will not shrink freely upon

cooling because of the anchor constraints. The membrane forces and couples

that will occur as the shell is cooled will cause a flattening and stretching

of the shell. Furthermore, if the shell can unwrap from the support at point

C of Fig. C-2, these stresses will be different from the case for which point

C is constrained to remain In contact; with the support.

The assumption is made that at point A the displacement and slope of the

shell are constrained to remain zero* From this assumption the case for which

unwrapping can occur is formulated. The resulting equations can be reduced to

the case for which point C remains in contact with the support with zero slope

by letting r, the support radius of curvature, approach zero.

Mathematical Model

Because of the symmetrical condition, only a section of the shell needs

to be considered. Figure C-6 shows the section AB where A is the anchor point

such that there is no displacement nor rotation thereof. The point B is the

symmetrical point, where the continuity conditions for displacement and slope

require that the lateral displacement be equal to the lateral thermal

contraction and that the slope is zero. The point C is a functionally

discontinuity point.



Figure C-6 shows the free-body diagram for the formulation* The membrane

complementary energy of order (h/R)2, as compared to the bending complementary

energy, is assumed to be negligible. The material is assumed to be linearly

elastic, and the energy equation is: written as

U* . u / M(s)2 dS , (C-9)
2(1 - V2)D S

where

M(8) « the moment function along the arc lengths, s,

Eh2

D • — • the shell flexural stiffness,
12(1 - v2)

v • Poisson's ratio,

U* » the complementary energy per unit shell length, and

U - the strain energy per unit shell length*

For the free-body diagram In Fig. C-6, the following equations of

equilibrium can be written for 0 < 9 < $> and S between B and C,

M(s) - - MB + PB(1 - cos 6)R + QBR sin 8 > (C-10)

and for 0 < 6 <<j> and S between A and C ,

M(s) - - MB + PB [R(l - cos 4>) + r(cos 6 - cos <j>) J

+ QB [R sin 4> + r(sin <J> - sin 6)1 , (C-ll)

where Qg is zero from symmetry considerations. The Qg is kept, however, to

determine the displacement in the direction of QB at position B.

Equations (C-9), (C-10), and (C-ll) can be used to apply Castigliano's

theorem.1 Because all static constraints have corresponding zero slopes and

11



displacements, they are nonworking and r.he classical Castigliano's theorem

results*

3U
A6B

3U .

au

where e T is the total thermal strain over the temperature range of cooldovn.

Performing the operations Indicated by Eqs.(C-12), (C-13), and(C-14)on

Eqs. (C-9),(C-10), and (C-ll) will give two equations that can be solved for

unknowns Mg and Pg and one equation for 6Qg involving Mg and Pg. The

quantities of interest are given here as the membrane force and couple at B«.

PB = _5iL £T J^LJ (C-l5)
2

f(4)

and
ri sin if r
g;J —r-Z ~ 5 cos

sin

£(•>

where

12



R2

Also, from symmetry and equilibrium considerations

QA - QB - 0 ,

£+

The maximum tensile stress will occur at A and for small h/R. This

stress can be expressed as

or

PA , 6MA

EbeT sinT [_ + 6 (- + (1 - -J —JZ - cos *)] . (c-19)

13



To examine the effects of cooldown alone on the shell, Eq.(C-19) is evaluated

for the follcnrlng geometric parameters.

n . £ . o.25
R

and

S • the support spacing • 2 m ,

*

and for the material properties of steel and aluminum,

ESTEEL " 2 O 8 G P a '

EALUMINUM ' 7 3 G P a

eT-STEEL - 2.96 x 10~3

and

eT-ALUMINUM * 4*15 X 1 0

Average values of ê . are chosen for cooldown from 273 to 0 K.

Table C-I gives the results for various thicknesses h and half-angles (J>.

Table C-I reflects the fact that for aluminum, the total thermal strain

increases by about 1.4 times, whereas the elastic modulus is about one-third

that of steel. This results in an overall thermal stress reduction of about

one-half for aluminum over that for steel. Table C-I also illustrates two

geometric effects. First, increasing the half-angle decreases the magnitude

of the cooldown stresses for the so-called "straightening out" effect.

Second, increasing the thickness increases the magnitude of the cooldown

stresses for the stiffening effect.

14
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20

25

30

35

40

45

50

90

0.01

88.9

69.6

56.7

47.3

40.1

34.4

29.8

10.0

MAXIMUM

Steel

0.02

180.5

141.0

114-5

95.4

80.9

69.3

60.0

20.1

TABLE

STRESS AT
C-I
POSITION A IN

Thickness h (m)

0.03

274.8

214.1

173.5

.144.4

122.2

104.7

90.5

30.3

0.01

43.8

34.3

27.9

23.3

19.8

17.0

14.7

4.9

MPa

Aluminum

0.02

88.9

69.5

56.4

47.0

39.8

34.2

29.5

9.9

0.03

135.4

105.5

85.5

71.1

60.2

51.6

44.6

14.9

To convert the above values to psl, multiply by 145.04.

These results are Intended to Illustrate the effects of cooldovm and to

show that the stresses must be accounted for In the design. In the analysis

presented, the shell is assumed to be able to unwrap from the support. The

construction of the dewar will be simplified if supports are put in place

first and then the shell is attached between the adjacent supports. This

design is the nonunwrapping case analyzed in a previous section with pressure

loading* The present thermal stress analysis reduces to this case if r * 0 in

Eqs.(C-17)and(C-19). Equation(C-19)becomes

[ | ( , ) ] (C-20)
2Rf(<(.)

and Eq.(C-17)now becomes

15



and

with f(if>) 33 defined previously for Eq.(C-5). The combined radial pressure

loading and cooldown stresses can now be examined*

C. Shell Stresses from Combined Cooldown and Radial Magnetic Pressure

Loading

Equations(C-6) and(C-20)can be combined with attention given to the signs

from the free body diagrams to give the following result:

°ee
PR ,. h2

1 2 R 12R f (((,)

and

Ehe T s in< |> , .
+ ABS { 6 ( l n y - cos <j>} - pH($)} , (C-22)

12R f (j)

where the result has not been simplified to identify the terms physically.

Equation (C-22) is the equation for the maximum stress from combined cooldown

and pressure loading in the shell at point C in Fig. C-2. The first term

represents the membrane stress in the shell that arises because of the

pressure loading. Note the appearance of the expected pR/h term plus a

geometric correction. -The second term is the membrane stress that arises from

cooldown. The first half of the third term is the bending cooldown stress,

and the last half of the third term is the bending stress caused by the

pressure. The absolute value of both bending contributions is taken to insure

that the maximum tensile stress is obtained. Because of the different

positive bending moments assumed in the derivations, the difference between

these bending terms must be used. Physically, this is indicative of the fact

that the bending because of cooldown is somewhat reduced by applying the

16



pressure* Both the thermal and pressure loadings produce membrane tensions

that are additive*

Equation(C-22)has been studied parametrically to determine if an optimum

shell design can be achieved* For this study, the value of support spacing s

was held constant at 2 m and support radius r at 0.2 m* For a given

unsupported radius, R, the half-angle is then fixed by Eq.(C-8). Figure C-7

shows the surface that results from plotting OQQ versus 1/R versus h under the

above constraints.

It is Interesting to note that the surface exhibits a saddle point for

small values of 1/R. In general, the trends noted from the two previous

studies are also clearly evident here* The stresses decrease with increasing

unsupported curvature and initially decrease as the thickness is increased;

however, because the thermal bending strain begins to Jominate for very thick

members, the stress correspondingly Increases. There does not appear to be a

curvature that will give a minimum volume; but once the curvature is selected,

there is a thickness that will give a minimum stress. The minimum volume will

be given by the minimum thickness corresponding to the design stress and the

specified unsupported curvature. The conclusion of this study is that the

half-angle and curvature should be picked to correspond with ease of

construction and to be large enough to reduce the maximum stress below the

design stress. A study of the data reveals that for a radial pressure loading

of 2.07 MPa, a 2-m support spacing, and a 0.2-m support radius, a minimum

half-angle of about 16° with a maximum unsupported radius of curvature of

around 3 m is required to reduce the maximum stress to around 520 MPa. In the

1-GWh SMES, radial pressures are between 2.5 and 5.7 MPa so that rather

large unit half-angles will be required.

All studies thus far have been to determine the boundaries of the design.

The vessel must also carry the axial component of the magnetic loading between

supports. To investigate the final design, the resultant axial magnetic

loading is included. This loading is assumed to be carried by the vessel

acting as a beam between supports*

D. Closed Helium Vessel Design Considerations

Consider the cross section shown In Fig. C-8. The segmented dewar

sections are designed based on this cross section. The requirement that the

outer wall will act as a shell as far as the radial component of the magnetic

17



loading is concerned will mean that a certain amount of stand-off distance*

which will be at least one-tenth the unsupported radius of curvature, will be

required for the conductors from the top and bottom closures and from any

cross shear connections* The inner wall carries only the helium hydrostatic

pressure radially and could be very thin except that the inner wall also acts

as a shear web member for the vessel acting as a beam*

Three assumptions are made* These are (1) that the interior of the

vessel is filled with the conductors and cooling channels with the remaining

space filled with material such as plastic where needed for spacing and load

transfer purposes, (2) that based on an approximate strain limit in the

conductors, the stress In the conductors is allowed to accumulate to about

105 MP? before carrying the load to the vessel walls, and (3) that stability

of the walls exists against any web deformation*

Based on field calculations, the 13-segmep.t helium vessel will carry a

vertical load component of about 21 MN/m of peripheral length. Because the

vessel is continuous, the maximumm direct shear force, V, and the bending

moment, M, at the support can be written as

and

M
12

where w is the vertical load per unit length. The combined stresses from all

effects have been investigated both at the support and the midspan where the

thermal effects are all additive* The stresses have always baen found to be a

maximum at the support at location A of Fig. C-8. A differential element at

location A of Fig. C-7 is assumed to be stressed as shown in Fig. C-9, where

OQQ = the shell stress from the radial magnetic and thermal loading, czz - the

bending stress from the axial magnetic loading (support moment), and T * the

shenr stress from the axial magnetic loading (direct shear).

The design is based on the principal stress computed from the assumed

stress distribution at A being less than the design stress, which is taken to

18



TABLE C-II

LOW-TEMPERATURE DESIGN PARAMETERS

Aluminum

Alloy

414

276

20

6.32

4.15xlO"3

$4 880

0.80

Steel

A304-LN

771

517

20

6.32

2.97xlO"3

17 300

1.00

Yield strength, MPa

Stress, MPa

Shear, MN

Moment, MN-m

Thermal strain, eT

Material cost $/m3

$/lb

be two-thirds the low-temperature yield value of the material. The parameters

in Table C-II are pertinent with regard to the results presented.

The design shear and moment values vary with geometry. The values quoted

in Table C-II are for the case of a support radius of curvature of 0.2 m,

unsupported radius of curvature of 1.8 m, half-angle of 45°, and support

spacing of 2 m.

To examine the effects of the various contributions of each component to

the stresses on Element A, two identical geometries for the aluminum and steel

were constructed. Figure C-10 shows typical curves obtained for maximum

principal stress versus outer wall thicknesses for two closure thicknesses.

Figure C-ll shows a typical result from a point comparison. As can be seen

from Fig. C-ll, the only components of stress affected by the material

properties are those contributions from the thermal effects. Note that the

thermal effects in the aluminum are less predominant.

Note also that for this particular geomatry the maximum principal stress

in the aluminum is above the design stress while that for ths steel is below.

For a given geometry, the stresses in the aluminum can be decreased by

Increasing wall thicknesses until thermal effects begin to dominate and then

by increasing the top and bottom closure thicknesses to reduce the bending and

shear stress contribution. Attempts to find a reasonable design for aluminum

for the 2-m support spacing lead to extremely thick designs and technological

problems in field welding and construction. The alternative is to reduce the

19



support spacing and thus the loadings. The economic trade-off is vessel

material for support material. This trade-off should be investigated in the

future because of the very attractive unit price of aluminum as opposed to

steel. See Table C-II. At this time, however, no futher consideration is

given to the aluminum vessel design.

Tables C-III and C-IV give the sizes of a typical J3-segment and

25-segment dewar design of A304-LN austenetic stainless steel. All vessel

widths were taken to be 0.1 m. Although there appears to be some economic

advantage in keeping the segments as tall as possible, the additional internal

structure required to transfer the load to the bottom of the vessel may offset

some of the apparent savings. These comparisons are given to show how to

proceed toward an optimized cost design once a specific reference point has

been established.

For comparison, Table C-V gives the sizes of a 25-segment design for

aluminum. The evident saving in material cost provides a strong incentive for

developing the technology for field welding of thick aluminum sections.

TABLE C-III

A304-LN STAINLESS STEEL 13-SEGMENT VESSEL

Vessel Geometry(w = 0.1 mi

Segment
Number

1 & 7

2 & 8

3 & 9

4 & 10

5 & 11

6 & 12

13

Radial
Design
Pressure
MPa

2.5

3.7

4.0

4.7

5.4

5.5

5.7

R
m

r
m

1.21 0.2

1.21 0.2

1.21 0.2

1.21 0.2

1.21 0.2

1.21 0.2

1.21 0.2

H
m

2.2

1.7

1.8

2.0

2.3

2.9

deg

45

45

45

45

45

45

"i
cm

t
cm

18.2 45

1.0 2.0

1.0 9.2

1.0 7.2

1.0 5.2

1.0 3.8

1.0 2.4

1.0 1.0

cm

1.6

3.4

3.1

2.8

2.5

2.0

1.4

Single
Segment
Volume
of

Costs
$106

Single
Material Segment Total

m3

27.6

39.2

37.7

37.9

39.7

42,0

203.7

Total

0.48

0.68

0.65

0.66

0.69

0.73

33.52

0.96

1.36

1.30

1.31

1.37

1.45

3.52

$11.3xlO6
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TABLE C-IV

A304-LN STAINLESS STEEL 25-SEGMENT VESSEL

Segment
Number

1,2,13,14

3,4,15,16

5,6,17,18

7,8,19,20

9,10,21,22

11,12,23,24

25

Radial
Design
Pressure
MPa

2.5

3.7

4.0

4.7

5.4

5.5

5.7

1

1

1

1

1

1

1

R
m

.21

.21

.21

.21

.21

.21

.21

Vessel

0

0

0

0

0

0

0

r
m

.2

.2

.2

.2

.2

.2

.2

1

1

1

1

1

1

Geometry (w

H
m

.46

.21

.26

.36

.51

.81

18.2
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E. The Box-Beam Concept

An alternate approach for the helium vessel is to design the cross

section as a box beam with methods similar to those used for aircraft wings.

The results of this section can also be used to estimate the stresses in the

vessel of the previous section for the ring at the upper and lower closures*

The potential for designing the conductors as load-carrying members has also

been included in the formulation so that such a design could be studied'

F. Formulation of the General Problem

Figure C-12 shows a cross section between supports of the most general

geometry considered* Figure C-13 shows a typical helium vessel segment cross

section to which the formulation can apply.

The support is assumed to be elastic; and the beam is divided into two

regions, supported and unsupported, as in the shell formulation* In this

manner, the same cases are treated for the shell* Also an additional

consideration of a possible elastic support is included if different geometric

and material properties are maintained in each region*

Figures C-14 and C-15 show the n-th radial beam segment and the effects

considered in each region* Constant curvatures are assumed in each region*

The interface pressures in each region are assumed to be uniform to correspond

to uniform magnetic loading in each region* If the equations are formulated

for solution to the beams as shown, then both the conductor-beam and

dewar-beam interactions can be studied* The equations for each beam are

assembled into a matrix form, and displacement- at their mldspan are made

compatible.

From a free-body diagram of the n-th unsupported region for 0 < ip < <j> of

Fig. C-16, the following equations of equilibrium can be written.

M<10 - M + + FRRn sin
2 (|) + R ^ sin * - 2 1 ^ sin2 (|) ,

T0|>) = F R sin
2 (|) + B + bia * + T^cos * , (C-23)

and
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- i. F R sin <|) - T^ sin <J> + R^ cos

where

R. • a ficticious load normal to the beam introduced at <}> - 0,

M, « the resultant moment at <f> - 0,

T. • the resultant beam axial force at <j> » 0,

M(IJJ) •= the resultant moment at i|»,

T(i|>) = the resultant beam axial force at ip,

V(i(i) = the resultant beam direct shear force at lp,

FR

>i ' = the force per unit length on the i-th beam caused by the

P£ ; = the force per unit length on the i-th beam caused by the

radial component of the magnetic field,

tQ «• the half thickness of the n-th beam, and

RQ = the beam radius of curvature.

From the free-body diagram of the n-th beam in Fig. C-17, the following

equilibrium equations can be written for the supported region 0 < 9 <<j>.
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M(6) - M, - y r r n s i n 2 ( | ) A(«(.)FR - I FRrn sin * sin <* - 8)

+ FRrn s in 2 ( | ) cos <<j> - 6) + B(4>)R^ - R ^ sin (<j. - 8)
R r n

- T.rn cos (* - 6) ,

T(8) «= FR {-i sin $ sin (<(> - 6) - sin2 (-|) cos ($ - 6)}

+ T . cos (<J> - 6) + R, sin (<j> - 8) + 9 ^ sin (—)

x [sin (<t> - — ) cos (<|> - 8) - cos (<j> - — ) sin (<|) - 8) ] , (C-24)

V(8) = F R [ sin
2 (-£] sin (<() - 9) + — sin <j> cos (<|> - 8) j

- ̂ . sin (—) {sin [ty - —) sin (<)) - 8) + cos (<j> - — ] cos (<}> - 8)}

+ R A cos (()) - 8) - T . sin ($ - 8) ,

and where ̂  = F<» + » ( r n - tn) - P f >rn - (« " D ( r n + tn) .

F^n ' = the force per unit length in the support region on the n-th

beam caused by the (n + l)-th, and

rR = the beam radius of curvature in the support region.

The usual strain energy expression in the beam is formed by
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u «
2EI ^ 2AG

M2(iJ;)d£2 a
2V2(6) , T2(6)d*2

where

U = strain energy in the beam,

a = geometric shear stress correction factor,

E « Young's modulus of elasticity,

G » shear modulus of elasticity,

A = cross sectional area,

I = moment of inertia about the centroidal bending axis of the beam,

and the subscript,s,denotes the possibility of having different properties in

the supported region*

Because of the possible relative shortness of the beam segment as

compared with the beam thickness for the vessel, the effects of direct shear

deformation have been included in the strain energy expression.

For elastic behavior, Castigliano's theorem* can be applied in the

following manner. (1) From symmetry requirements on axial displacement at

\|> = 0 and 8 = ()>,

^ L - o " ° •

where U* is the complementary energy stored in the beam.

The result of carryimg out the operations implied by Eqs.(C-26)and(C-23)

for the equilibrium Eqs.(C-24)and(C-25), can be written as
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- 0 . (C-27)

(2) From the symmetry requirements on the slope of the beam axis,

il

which gives

£ - 0 . (C-28)

(3) For assumed zero displacement normal to the beam at 6 - <f>, the center of

span displacement normal to the beam, u, at tj/ « 0 can be written as

u =
3U*. 3U

(C-29)

which gives

^ + + Y((j))FR +

Using?r = FR and solving Eqs. (C-27)and(C-28) simultaneously gives

(C-30)

and Eq.(C-29)as
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X(<|))Q(4.)]FR

All the equations can be written for each beam* To maintain the most

flexibility for studying the conductor-vessel system, the equations can be

solved numerically. The details are relatively straightforward, and Eq.(C-3i)

for each beam can be assembled in the form

[AJ{x> - <B> , (C-32)

where

and where the following assumptions are used:

cvpn

(C-33)

and

N « the number of conductors stacked vertically on the dewar. Note

that in writing Eq. (C-33), the assumption is made that radial magnetic loading

in the vertical stack can be approximated with a uniform load distribution*

Enforcing compatibility at the midspan allows Eq. (C-32) to be solved for the

vector {x>. Once the innerface pressures are known, Eq. CC-3Q)can be solved

for the moment and axial load in each beam*

This model attempts to keep all important effects without resulting in

excessively large systems of equations or long computational times*
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G. Thermal Effects

Once expressions are obtained for the strain energy in the beam, the

effects of cooldown follow the same development as for the doubly curved

shell* Figure C-18 shows the cooldown kinematics involved. Application of

Castgllano's theorem 1 gives

— - - (R + r) sin
9

and

3U*

where dyT is the midspan displacement normal to the beam* The first two

relationships yield equations that can be solved for unknowns M, and T ., and

then the third can be solved for the midspan displacement.

H. Typical Results frou Box-Beam Studies

A number of studies were conducted with a computer code to evaluate

numerically the model described* All of these studies attempted to maintain

relatively straight beam segments because of the difficulty that would be

involved in construction of a highly curved cross section*

The main problem that arises when relatively straight members are

considered Is the large thermal stresses in the stiff vessels* Table C-VI

gives the design parameters used to generate Figs* C-19 and C-20* These

parameters are typical of those for a helium vessel end segment* Figure C-19

shows the cooldown stresses in a box-beam steel vessel as a function of the

unsupported radius of curvature*
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TABLE C-VI

BOX-BEAM DESIGN PARAMETERS FOR FIGS. C-19 AND C-20.

Vessel

Material

Young's modulus, GPa

Poisson's ratio

Coefficient of thermal expansion, K

Cross-sectional moment of inertia, m

Cross-sectional area, m2

Height, m

Width, m

-1

Steel

207

0.3

1.01x10-5

3.68*10-3

5.9x10

2.0

0.11

-2

Conductor

Material

Young's modulus, GPa

Poisson's ratio

Coefficient of thermal expansion, K

Cross-sectional moment of inertia, m1*

Cross-sectional area, m2

Number of conductors radially

Number of conductors stacked vertically

Copper/aluminum

138

0.27

1.1x10-5
-101.7x10

5.9xlO~2

b

20

Geometry
Support spacing, m

Support radius of curvature, m

Unsupported radius of curvature, m

Half-angle, degrees

2

0.5

1000+4

0.05+12.7

As 1/R approaches zero, the maximum stress is observed to approach the

value for a rod clamped between supports, that is, a • E&p. As 1/R is

increased, thus increasing the half-angle and the depth of the ripple, the

maximum stress increases slightly because there is some curvature and the

bending stress increases; but there is not enough curvature to allow the

straightening effect to relieve the axial stress. As 1/R is increased even
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further, the beam can straighten and the maximum stress decreases. Note that

when 1/R is 0*25, the stress has decreased to about 390 MPa, a value that is

still rather large. For this case the half-angle is about 12.7°, and the beam

is no longer considered straight enough to be easily constructed.

The difficulty of constructing a highly curved complex cross section as

shown in Fig. C-12 means that the box-beam concept is of questionable value*

Simple cross sections as shown in Fig. C-7 and flexible conductors should be

more easily constructed. To see the desired effect of increasing curvature,

consider the calculated maximum stresses in the comparatively flexible

conductor, shown in Fig. C-20. As 1/R increases, the flexible conductor

straightens readily and relieves the thermal stresses.

III. SUPPORT STRUT STRUCTURE-HELIUM VESSEL TO ROCK WALL

A. Tunnel Bridge Concept

Several support concepts were investigated. The concept of using both

walls of the rock tunnel to carry a portion of the magnetic loading is

appealing from the rock mechanics point of view. Figure C-21 shows

schematically the basic concept. Axial load components are supported off both

walls while radial components are carried only to the outer wall. T.j this

concept, the axial loads are allowed to accumulate in the vessel-conductor

structure to 21.1 MN/m before segmenting the dewar and carrying this component

to the rock. The axial support cruts are visualized as a series of hinged

plates 1 m wide and 2 m on centers that bridge the tunnel. The radial

supports are located between the axial members as in Fig. C-22. The effects

of this loading system on the rock structure was studied; and although the

resulting stresses and displacements in the rock are less than those in the

single-wall support design, there is no clear advantage to the concept.

Furthermore, the concept suffers from the following.

1. Thick load-bearing plates and rock bolting are required for both

walls.

2. Heat intercepts are required for both sides of the axial support; the

rock wall and vacuum vessel Inner face design is complicated for botb

walls; and warming pipes for the concrete liner and rock inner face

are required for both walls.
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3* The radial cooIdown motions of the dewar must be accommodated at the

dewar-axial strut innerface.

With no clear advantage and a number or disadvantage", the concept Is of

questionable value.

B. A-Frame,Single-Wall, Low-Conductivity Strut Concept

One alternative to bridging the tunnel with support structure is to

support all the loads off the outer wall with a low-conductivity strut or

array of struts* A number of different designs of such a strut are possible.

The design is shown in Fig* C-23. The basic elements of the design are an

extruded member for attachment of the helium-vessex sections (weld plates),

low-conductivity G-10CR or reintorced fiber glass polyester plates with heat

intercepts, friction connection plates and bolts, and a bearing and support

plate for attaching the strut to the rock wall.

The details of the design of the bolted through friction connections are

standard practice2*3 in machine design and only the results are discussed

here. The basis for the design of the G-10CR reinforced epoxy plates is

presented.

The plate design is based on a maximum stress criteria in accordance with

the properties of G-10CR shown in Table C-VII.

TABLE C-VII

G-10CR MATERIAL TROPERTIES AS A FUNCTION OF TEMPERATURE

Tensile Compressive Shear
Temperature, K Strength, MPa Strength, MPa Strength, MPa

T?t wt* -c -c* v *
rl F2 Fl r2 F12

295.0 415.1 395.0 -375.0 -355.2 178.0

76.0 824.6 787.0 -833.5 -795.0 398.0

4.0 861.8 862.1 -802.1 -821.0 411.0

1 indicates the warp direction
2 indicates the fill direction

No data available for fill direction—these properties are assumed based on
95% of the warp directional values with s.liear value at one-half minimum
compressive strength.
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Seven conditions are assumed to apply* These are:

1. The reinforcing material is oriented such that the warp direction is

aligned with the resultant applied load vector. The 1 and 2 axes define the

warp and fill directions of the reinforcement as shown in Fig. C-24.

2. The average stress, in the St. Venant sense, is computed from the

plane stress elasticity solution as

PR

0,

and

where

ox = normal stress in the x direction,

a = normal stress in the y direction,

T_, = shear stress,

I = moment of inertia about the z axis,

A = cross sectional area,

PJJ = the normal of x component of the applied loading, and

VA = the shear or y component of the applied load.

3. Stresses are computed from this solution along lines x = constant at

the locations of the heat intercepts and thus at known temperatures.

4. Transform the computed stress state to the principal lamina

directions—o^, c^, "£]?•

5. The failure envelope is defined by
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Fl o r

o r

and

T12 < F12 '

where F*, etc, are the strength data given in Table C-VII.

6. These are further restricted such that

a, < 0.95 F^ or a, < 0.95 F?,
max

2 < 0.95 7\ or a2
Tnax max

a2 < 0.95 7\ or a2 < 0.95
x

and

T,? < 0.95 F,
max

7. The plate is stepped in width such that LI will be of thickness Tl

based on the temperature interpolated material properties from Table C-VII,

and L2 of thickness T2, etc, see Fig. C-25.

Applying the above set of conditions leads to a set of equations for

three thicknesses, where-the largest t^ must be taken, as

12V.

0.95 F^ o r c H H3 H3
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0.95 F£

and

sin * cos * + ^ (cos2 * - sin
H3

where

the F^ o r c is taken to be the tensile or compressive strength depending upon

the final sign of the terms in the brackets.

Various configurations have been examined and are discussed. Figure C-26

shows the results of a sample calculation for the three thicknesses at the xz

plane, Fig. C-24, that is computed for the various stress states vertically

along the room-temperature end at 295 K for a 2.2-m-high, 1.5-m-long strut.

The largest thickness in this case is 0.256 m at y = - 1.1 in and is determined

by the fill direction strength criterion in the plane <f> = 13.3°.

One obvious selection for strut heights is to have each strut support a

helium vessel segment. For example, in the 13-segment concept, there would be

13 struts. By assuming 1.5-m-length struts and temperature stations as shown

on Fig. C-24 for LI = 0.435 m, L2 = 0.480 m, and L3 = 0.585 m, the required

G-10CR volume can be computed for this concept. Table C-T*III shows the

results of this computation. A 2-m circumferential support spacing for 104

struts for each segment is used for these computations.

There is no obvious reason to have a separate strut for each segment. If

the top and bottom six segments are supported by continuous struts 12.9 m in

height with the central section supported by a single 18.2-m-J.ong strut, then

the results given in Table O T X are obtained,

Computations of the remaining portions of the strut design are based on

the cross section of Fig. C-25 and follow standard engineering design

practice. All stainless steel parts were designed to a shear strength of

275 MPa and all bolts are assumed to be preloaded to 90% of their proof

strength. Two rcws of 38-mm—diam bolts on 175—cm centers are used on all

connections. The joints are all designed as friction connections and a

coefficient of friction of 0.6 was used between the G-10CR and stainless
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TABLE C-VIII

G-10CR 13-SEGMENT SUPPORT STRUT MATERIAL REQUIREMENTS

Segment
Loading

t& MN

Warp
Orient-
ation 6
degrees

Strut Geometry

H
m

2.2

1.7

1,8

2.0

2.3

2.9

18.2

Tl
m

0.076

0.098

0.090

0.075

0.058

0.039

0.014

T2
m

0.080

0-118

0.105

0.087

0.072

0.052

0.015

T3
m

0.256

0.420

0.370

0.290

0.220

0.167

0.032

Single
Strut
G-10
Volume

m

0.486

0.586

0.551

0.488

0.433

0.404

0.58

Total
G-10
Volume
for all
Segments
m

101.1

121.9

114.6

101.5

90.1

84.0

60.3

673.5

Segment
Number

1 & 6

7 & 12

13

TABLE C-IX

G-10CR 3-SEGMENT SUPPORT STRUT MATERIAL REQUIREMENTS

Loading
VA
MN

278.4

278.4

0

PR
MN
113.

113.

207.

5

5

0

Warp
Orient-
ation 6
degrees

22.2

-22.2

0

H
m

12.

12.

18.

9

9

2

Strut Geometry
Tl
m

0.068

0.068

0.014

T2
m

0.069

0.069

0.015

T3
m

0.16

0.16

0.032

Single
Strut
G10
Volyme
m

2.02

2.02

0.58

Total

Total
G-10
Volume
for all
Segments
m

210-0

210.0

60.3

480.3

steel. Table C-X shows the result of this design. The total strut material

cost is about $14.0 million.
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TABLE C-X

3-SECTION SUPPORT STRUT MATERIAL COSTS

Estimated
Stainless Stainless Total
Steel Steel No. of h Total Segment
Weld Plate Connection Bearing 38-rm Total G-10CR Stainless Total Single Costs

G-10 Structure Plate Plate High Strength Steel Costs at Steel Fastener Strut 104 Struts
Segment Volume Volume Volume Volume SAE Grade 8 Volume $8/kg Costs Costsa Cost Circumference

.Numbers '•>' » ' mj m ' Bolts m' tlO1 tlO' HO' tip' t ip'

'"6 2-02 0.52 0.433 0.16 592 1.11 32.4 19.3 11.8 63.5 6.6

1 3 0-58 0.73 0.612 0.23 406 1.57 9.3 27.2 8.3 44.8 4.7

1'K 2.02 0.52 0.433 0.16 592 1.11 32.4 19.3 11.8 63.5 6.6

Total 17.9

aFastener costs assumed to Include all lengths of bolts plus nuts and washers at an average cost of $20/fastener.

Density for high glass content taken as 2 g/cm3.

IV. THE WIRE-ROPE CABLE DESIGN AND ASSOCIATED SUPPORT CONCEPT

A. Design Considerations for a Load-Carrying Cable

Wire-rope design is a very complex process from a theoretical point of

view. References 6 through 8 give some selected analyses of stresses of

fairly complex designs, all of which have various restrictive assumptions that

are necessary to obtain a solution. Perhaps the most observant statement

comes from a discussion from Ref. 8, "... it has become quite evident to us

over the years that wire-rope manufacture is an art, not a science." The

Increasing body of literature in the area will invalidate this observation.

Structurally, a design of a conductor that is very flexible, yet

self-supporting, is ideal for SMES application. For this reason the design of

such a conductor has been investigated.

For a reference design of this nature, the following assumptions are

made.

1. The cable is flexible enough that bending stresses in the unsupported

region are negligible, and the cable takes on a true cylindrical shape.

2. The maximum stresses in the cable occur as it passes over the support

where the bending moment can be calculated from
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M -

where

E e - the equivalent cable modulus of elasticity,

r - the support radius, and

I = the moment of inertia an individual wire in the cable has about

an axis through its centroid.

B. Cable Statics

Consider Fig. C-27 which shows the geometry involved and Fig. C-28 which

shows a free body diagram of the element under its magnetic body loading,

p' B', where p^B^ is the force per unit length normal to the cable. From

equilibrium, If the cable is flexible enough, the curve for a loading normal

to the cable will be a portion of a circle; and the tension in the cable will

be given by T = p^ 'R. The inflection point in the cable as it passes over

the support Is assumed to be at the point of contact with the support. Under

load, the cable will wrap around the support and the maximum normal stress at

the support caused by the tensile load plus bending over the support is

max

where

c = radius of the wires in the cable,

A = cross-sectional area of the cable, and

E g = the cable equivalent modulus of elasticity.

If n is the . inber of wires in the cable, then A = mrc2, and

«(B)p EOC

This equation can be put into the form of a design equation as,
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Now, incorporation of the geometric constraint on the arc length and support

spacing S is such that

S - 2 (R + r) sin <J> ,

where 4> = the support half-angle* Equation(C-35) can then he written in terms

of the geometry, S and <J>> as

As an example, a 50-kA conductor in a 4.2-T field can be considered, and the

solution to Eq.(C-36)can be obtained with the following parameters*

p(B) = 210 kN/m

S = 2 m

R = 1.21 m

r = 0.2 m

<|> = 45

°max = 5 1 0 M P a

E e = 62.1 GPa

Because Eq.(C-36) is cubic, the first positive pairs of real roots which

are physically admissible occur for n • 373. As n is increased further, there

are two possible values of the radius c that represent a physically admissible

solution. The larger value of c represents the solution for which the maximum

stress in Eq.(C-34) is dominated by the second term, that is, by bending,

whereas for the smaller value of c, Eq.(C-34) is dominated by the membrane

term.
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The solution for n * 373 is that for which the bending contribution end

membrane stresses are most nearly equal. For this case, 373 wires of 2.2-im

diameter would compose a suitable wire rope in keeping with the design

assumptions•

Figures C-29 and C-30 show the two physically admissible solutions frcia

Eq.(C-36). The analysis suffers several shortcomings. First, the realities of

wire-rope manufacture may preclude making a cable of 373 wires or greater*

This point needs more investigation. Second, the frictlonal losses associated

with such a conductor are unknown and may be large. This question also needs

further investigation, probably experimentally. Other materials also should

be Investigated for a potential load-carrying conductor design.
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Fig, C-l. Basic dimensions and cross section of 13-segment vessel concept.
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Fig. C-3. Free-body diagram for the ahell equations.
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Fig. C-4. Shell thickness versus half-angle for r/R = 0.55.
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Fig. C-5. Shell volume versus half- angle for r/R = 0.55.



Fig. C-6. Free-body diagram for cooldown stress in the preformed shell wall.
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Fig. C-7. Hoop stress versus unsupported curvature versus thickness from Eq.(22)
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Fig. C-9. Differential element at
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Fig. C-10. Maximum principal stress
versus outer wall thickness for an
aluminum and steel design.
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Fig. C-12. Horizontal cross section of the doubly curved box-bea^ vessel concept,
treating the conductors as doubly curved beams.
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Fig. C-13. Typical vessel cross section for the box-beam concept.
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Fig. C-14. Unsupported region for nth copper clad conductor.
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Fig. C-15. Supported region for nth copper clad conductor.

A

Fig. C-16. Free-body diagram from ip = 0 to ij) = (f for the unsupported region.
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Fig. C-17. Free-body diagram from 0 = 0 to 6 = <j> for the supported region.
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Fig. C-18. Kinematics of cooldown.
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Fig. C-19. Cooldown stress for a shallow stiff vessel.
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Fig. C-20. Cooldown stress in a flexible conductor.
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Fig. C-21. Basic cross section of the bridged-cavity concept.
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Fig. C-22. Bridged-cavity concept with separate radial and axial support systems.
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Fig. C-23. Low-thermal conductivity support components.
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Fig. C-24. Geometry and variable definition for G-10 CR plate design.
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Fig. C-25. Strut cross section and variable definition.
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Fig. C-26. Typical results obtained from evaluating Eq.(34)at the room tempera-
ture end showing the strut thickness at y = 0 required to satisfy the calculated
stress state at various positions along the y-axis.
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Fig. C-27. Geometry and variable de-
finition for the wire-rope study.

Fig. C-28. Free-body diagram of a
flexible wire rope under magnetic
loading.
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Fig. C-29. Single-wire radius and cable cross-sectional area from Eq.(37)as a
function of the number of wires in the cable for a cable dominated by bending
stress.
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Fig. C-30. Single-wire radius and cable cross-sectional area from Eq.(37)as a
function of the number of wires in the cable for a cable dominated by membrane
stress.
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