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ABSTRACT 

A de ta i led  e l e c t r i c a l  r e s i s t i v i t y  survey o f  54 l ine-kin was completed a t  

the Cos0 Hot Springs KGRA i n  September 1977. This survey has defined a 

bedrock r e s i s t i v i t y  low a t  l e a s t  4 sq m i  (10 sq km) i n  extent  associated w i th  

the geothermal system a t  Coso. The boundaries o f  t h i s  low are general ly wel l  

defined t o  the nor th  and west b u t  no t  as we l l  t o  the  south where an 

approximate southern 1 i m i  t has been determined. The bedrock r e s i s t i v i t y  low 

merges w i t h  an observed r e s i s t i v i t y  low over gravel f i l l  east  o f  Cos0 Hot 

Springs 

A complex hor izontal  and verti.ca1 r e s i  s t i  v i  ty s t ruc tu re  o f  the surveyed 

area has been defined which precludes the use o f  layered-earth o r  two- 

dimensional i n te rp re t i ve  models f o r  much o f  the surveyed area. I n  general the 

survey data ihd lca te  t h a t  a 10 t o  20 ohm-meter zone extends from near surface 

t o  il depth greater than 750 meters w i t h i n  the geothermal system. This Zone i s  

bordered t o  the nor th  and west by bedrock r e s i s t i v i t i e s  greater than 200 

ohm-meters and t o  the south by bedrock r e s i s t i v i t i e s  greater than 50 ohm- 

meters. A combination o f  observed increases in :  1) f rac tu re  density (higher 

permeabil i ty),  2) a l t e r a t f o n  (high clay conterlt), and 3) temperatures (higher 

dissolved s o l i d  content of ground water) w i t h i n  t h e  bedrock low expla in  i t s  

presence 
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INTRODUCTION 

On behal f  o f  the U. S. Department o f  Energy, D iv is ion  o f  Geothermal 

Energy, a detai  1 ed surface geological and geophysical i nvest l  ga t i  on o f  the 

Cos0 Hot Springs KGRA (Fig. 1) was undertaken by the Earth Science Laboratory, 

Univers i ty  o f  Utah Research Ins t i t u te .  The object ives o f  t h i s  work were 1) t o  

co l  1 e c t  data needed f o r  detai  1 ed eval u a t i  on and i nte rp re ta t i  on o f  the resul  t s  

o f  the d r i l l i n g  o f  CGEH-1 (Galbraith, 1978), and 2) t o  help determine possible 

s i t e s  f o r  f u tu re  d r i l l  tests.  Surface invest igat ions included geologic and 

a l t e r a t i o n  mapping a t  a scale o f  1:24,000 (Hulen, 19781, a low-a l t i tude 

aeromagnetic survey (Fox, 1978), and an i n l  i ne d i  pol  e-di pol  e reSi s t i  v i  ty 

survey. This repor t  describes only the resu l t s  o f  the r e s i s t i v i t y  surveyd 

E a r l i e r  studies o f  the e l e c t r i c a l  proper t ies o f  rocks w i t h i n  the Cos0 

area were made by Furgerson (1973) and by Jackson and others (1977). 

Furgerson' s studies consi sted o f  Schlumberger r e s i  s t i v i  ty  soundings and 

r o v i  ng-di pol e r e s i s t i v i t y  mapping. Jackson' s work i ncl  uded Schl umberger 

r e s i  s t i  v i  ty  soundi ngs, audio-magnetotel 1 u r i c  (AMT) r e s i  s t i  v i  ty  soundings , and 

t e l l  u r i c  r e s i s t i v i t y  mapping. Both studies, by desi gn , were reconnai ssance i n  

nature. I n  contrast, the  present work was done t o  map hor izonta l  and ve r t i ca l  

r e s i s t i v i t y  s t ructure i n  d e t a i l  i n  an attempt t o  determine possible 

co r re la t i on  w i t h  the geothermal system and t o  he lp de l ineate the  extent  o f  the 

geothermal system. 
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FIELD PROCEDURES 

The f i e l d  survey was performed under contract  by Mining Geophysical 

Surveys o f  Tucson, Arizona . An i n l  i ne, d i  pol e-di pol e e l  ectrode geometry was 

used (Fig. 2). The survey provides reso lu t ion  both o f  hor izontal  and of 

ve r t i ca l  r e s i s t i v i t y  contrasts because the f i e 1  d procedure generates both 

hor izonta l  prof i 1 i ng and ve r t i ca l  soundi ng measurements . Measurements were 

made a t  d ipo le separations, n x a, o f  n = 0.5, 1, 2, 3,  4, 5 and 6, where - a 

equals the d ipo le length. A g r i d  o f  three north-south l i n e s  and s i x  east-west 

l i n e s  was surveyed t o  map the r e s i s t i v i t y  s t ructure o f  a 41 sq kin (16 sq m i )  

area. A t o t a l  o f  54 line-km of l i n e  was surveyed i n  20 f i e l d  days, 40.8 

line-km using a= 300 m dipoles and 13.2 l ine-km using at150 m dipoles (see 

P la te  11). 

Measurements were made i n  the time-domain mode. Instrumentation 

consisted o f  a Data Control Systems model IPR-E receiver  (Newmont-type) and a 

Geotronics model FT-2OA’ transmitter. The signal  -to-noi se r a t i o  general ly was 

good even f o r  s ignals below 1 mv. Repeat measurements were made by 

i nterchangi ng current  and potent i  a1 U i  pol es t o  determi ne the accuracy bf 

measurements. These repeat measurements are shown on the data pseudosectlons 

i n  Figures 4-13. Percentage di f ferences were ca lcu lated f o r  each o f  121 

repeat measurements: the mean and standard deviat ions are 8.2% and 8.8% 

respectively. 

past  experience w i t h  r e s i s t i v i t y  surveys, t h i s  amount o f  e r r o r  i s  qu i te  

I n  view o f  the wide range o f  observed r e s i s t i v i t y  values and o f  

reasonable. 

4 
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SUkVEY RESULTS 

In te rp re ta t i on  o f  R e s i s t i v i t y  Pseudosectiqns 

Line 1 (300 m dipoles, Fig. 4) i s  an east-west r e s i s t i v i t y  cross section 

9.6 km irl length extending from a p o i n t  west o f  Sugarloaf Mountain t o  a p o i n t  

east of Cos0 Hot Springs (see Plate 11 f o r  l i n e  locat ions).  Nest of Sta. 13 

apparent r e s i  s t i  v i  t i e s  are high a t  shor t  electrode separations , presumably 

showing volcanic rocks over ly ing 50 t o  100 ohm-meter basement rock. Low 

apparent-res1 s t i  v i  ty values a t  greater electrode separations i n  t h i  s area are 

less than t r u e  ( i n t r i n s i c )  r e s i s t i v i t y  values p a r t l y  because o f  the extreme 

r e s i s t i v i t y  con t ras t  between the volcanic rocks and the  basement rock$ (see 

Fig. 3 )  and because o f  the e f f e c t  o f  hor izontal  changes i n  r e s i s t i v i t y  aldng 

the 1 ine. Low apparent r e s i s t i v i t y  probably associated w i t h  the gkathermal 

system extends f r o m 5  3 t o  Sta. 25, a distance o f  3.6 km. ResistiviQ' 

values l e s s  than 10 ohm-meters i r l  t h i s  i n t e r v a l  are i n te rp re ted  t o  be an 

e f f e c t  o f  a f a u l t  zone subparal lel t o  the l i n e  as shown on the geologic map of 

P la te  I. East o f  Sta. 25 the 10 ohm-meter and lower values are r e l a t e d  t o  

gravel f i l l  . The lack o f  an increase i n  apparent r e s i s t i v i t y  with depth 

indicates t h a t  the thickness o f  the conductive gravel l a y e r  i s  greater than 

500 m, assuming a r e s i s t i v i t y  con t ras t  e x i s t s  between the gravel and 

under ly i  ng bedrock. 

A two-dimensional computer model o f  this l f n e  from Sta. 8 t o  Sta. 24 

(Fig. 14) shows the In te rpre ted  r e s l s t i v i t y  structure.  A Woddimens'ibnal 

model i s  a v a l i d  dssumption if r e s i s t i v i t y  features extend a t  near ly r i g h t  

angles from the l i n e  fo r  a distance o f  3 dipoles t o  either side o f  the l i n e  angles from the l i n e  fo r  a distance o f  3 dipoles t o  either side o f  the l i n e  
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i n te rpre ta t ion  of the r e s i s t i v i t y  structure.  Points o f  d i f ference between 

computed and observed values are p a r t l y  the r e s u l t  o f  non-two-dimensfonal 

s t ructure along the l i n e  such as the subparal lel f a u l t  zone. The western end 

o f  t h i s  model approximates the r e s i s t i v i t y  s t ructure between SuQaVloaf 

Mountain and the three r h y o l i t e  domes immediately t o  the north (see Plate 11 

f o r  l i n e  lcoat ion).  A geologic section through t h i s  area would probably show 

it r h y o l i t e  neck extending t o  depth below the 3000 ohm-meter r h y o l i t e  layer. 

While t h i s  sect ion would be geological ly more accurate the ind icated 

r e s i s t i v i t y  s t ructure i s  more accurate w i t h  respect t o  current  flow. Since 

the necks o f  the r h y o l i t e  domes are three-dimerlsional , i .e., inver ted cones o r  

funnel shaped, and more r e s i s t i v e  than t h e i r  host  rock the e l e c t r i c a l  current  

ac tua l l y  f lows around rather  than through them. Since a two-dimehsional 

computer model i s  no t  l i m i t e d  i n  s t r i k e  length a r e s i s t i v e  zone t h a t  

represents a neck would appear as a r e s i s t i v e  d ike through which current  would 

be forced t o  flow. A three-dimensional model t h a t  l i m i t e d  the s t r i k e  length 

o f  the r e s i s t i v e  zone would be more accurate both geophysically and 

geological ly. 

L ine 2. (300 m dipoles, Fig. 5) i s  a northLsouth r e s t s t i v i t y  cross sect ion 

9.6 kin i n  length. Low r e s i s t i v i t i e s  apparently re la ted  t o  the  geothermal 

system extend from Sta. 9 t o  Sta. 23, a distance o f  4.2 km. North o f  Sta. 23 

r e s i s t i v i t y  increases rap id l y  whi le  south o f  Sta. 9 the r e s i s t i v i t y  begins t o  

increase more slowly, and the low r e s i s t l v i  anomaly cannot be sald t o  be cut 

o f f  although AMT measurements taken a t  7.5 Ht i n  t h i s  area show appacent 



r e s i s t i v i t i e s  greater than 50 ohm-meters a t  the southern end o f  L ine 2 

(Jackson; personal communication) . 
The in terpreted r e s i s t i v i t y  s t ructure between Sta. 8 and Sta. 32 was 

determined by two-dimensional computer modeling (Fig. 15) . A comparison of 

computed and observed valyes i ndicates a reasonable i nte rp re ta t i  on . The p lus  

20 ohm-meter values a t  depth i n  the Sta. 14 t o  Sta. 17 i n te rva l  i s  another 

example o f  the e f f e c t  o f  hor izontal  r e s i s t i v i t y  changes. I n  t h i s  instance an 

increase i n apparent r e s i s t i v i t y  w i t h  increasing d ipo l  e separation was 

generated as the t ransmi t t ing and receiv ing dipoles were moved from low t o  

higher r e s i s t i v i t y  zones. The two 15 ohm-meter zones, Sta. 9 t o  Sta. 10 and 

Sta. 13 t o  Sta. 14, extending t o  depth, are in te rpre ted  t o  be f a u l t  zones. An 

in te res t i ng  and important feature i s the apparent r e s i s t i v i t y  'I ow which 

approaches the surface i n  the Sta. 12 t o  Sta .  14 i n te rva l  . This low i s  

immediately adjacent t o  the Dev i l ' s  Kitchen surface fumarole a c t i v i t y  arld i s  

l i k e l y  due t o  ho t  f l u i d s  and open f ractures associated w i th  t h i s  a t t f v i t y .  

L ine 2 ,  (150-m dipoles, F'ig. 6)  was run t o  add deta i  1 t o  the  rc2sistiv.S ty 

s t ructure observed on the 300-m d ipo le  l ine .  The data essent ia l l y  represent a 

c loser  look a t  the upper three separations o f  the 300-m dipo le data and 

present a more accurate p i c tu re  o f  the complex near-surface res is t i v ' i  ty 

structure. Near-surface apparent r e s i s 5 i v i t y  i s  mainly high, w i t h  marked 

decrease a t  depth. In terpreted depth t o  lower r e s i s t i v i t y  rock averages 90 m. 

The in te rva l  12.5 t o  13.5 shows low near-surface r e s i s t i v i t y  again 

corresponding w i t h  the Devi 1 I s  Kitchen area . 
Line 3 i s  an east-west r e s i s t i v i t y  p r o f i l e  across the  CCEH-1 dr i l l -C i t t t .  

9 
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The r e s i s t i v i t y  s t ruc tu re  on t h i s  l i n e  i s  s i m i l a r  t o  t h a t  observed on l i n e  1. 

Observed r e s i s t i v i t y  values l ess  than 20 ohm-meters between Sta. 7 and Sta. 12 

are re1 ated t o  the geothermal system and t o  a major north-northeast-trendi ng 

f a u l t  zone defined by Lines 4 and 6 t o  the north. A p lus 30 ohm-meter zone 

extends t o  depth between Sta. 12 and Sta. 16. Low r e s i s t i v i t y  values east o f  

Sta. 17 are re la ted  t o  geothermal a c t i v i t y  along the Cos0 Hot Springs f a u l t  

zone and t o  gravel f i l l  in te rpre ted  t o  be th i cke r  than 500 m a t  the extreme 

eastern end o f  the l i n e .  

Line 4 was run across an apparent north-northeast-trendi ng f a u l t  zone 

noted by shearing i n  outcrop. A two-dimensional computer model (Fig. 16) 

shows the i n te rp re ta t i on  o f  the r e s i s t i v i t y  s t ruc tu re  observed on t h i s  l i ne .  

The 450 q wide, 20 ohm-meter zone extending t o  depth between Sta. 7 and Sta. 

10 i s  in te rpre ted  t o  be an expression o f  the f a u l t  zone i n  c r y s t a l l i n e  

basement rock. This f a u l t  zone i s  one o f  the major north-northeast-trending 

structures observed i n  the area (see Plate I ) .  

Line 5 i s  an east-west r e s i s t i v i t y  sect ion with cha rac te r i s t i cs  s i m i l a r  

t o  the Sta. 8 t o  Sta. 24 i n t e r v a l  on Line 1. A two-dimensional computer model 

o f  the l f n e  i s  shown as Fig. 17. The 10 ohm-meter zone shown on t h i s  model 

represents the geothermal system near i t s  southern edge . 
Line 6 was run t o  determine i f  the f a u l t  zone mapped on Line 4 extends t o  

he near-surface, low r e s i s t i v i t y  zone between Sta. the south towards CGEh'-1. 

8 and Sta. 9 i s  in te rpre ted  t o  be the southern extension o f  t h i s  structure. 

10 
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Line 7 was run west o f  the r h y o l i t e  domes t o  t e s t  f o r  possible low 

iJ r e s i  s t i  v i  ty  , west-northwest-trendi ng fau l  t zones , and t o  determi ne the 

r e s i s t i v i t y  s t ructure associated w i th  the fumarole a t  the southwestern end o f  

Sugar1 oaf Mountai n. Near-surface, h i  gh r e s i  s t i  v i  ty V a l  ues between Sta. 3 and 

Sta. 8 are associated w i th  subsurface volcanics whi le  the low r e s i s t i v i t y  zone 

a t  depth i n  t h i s  i n te rva l  o f  less  than 20 ohm-meters i s  caused i n  p a r t  by 

hor izontal  decreases i n  r e s i s t i v i t y  outside t h i s  in te rva l .  I n  p a r t i c u l a r  the 

Sta. 1 t o  Sta. 3 i n te rva l  shows a zone o f  low r e s i s t i v i t y ,  less  than 20 

U 

Y 

ohm-meters , associated w i th  the fumarol e. Thi s 1 ow-resi s t i  v i  ty tone probably 

extends from the surface t o  depth. I f  a conductive f a u l t  zone i s  associated 

w i th  t h i s  fumarole, i t s  s t r i k e  has no t  been established. Y 

A near-surface , h i  gh-resf s t i  v i  ty 1 ayer o f  p l  us 100 ohm-meters materi a1 

.thickens t o  the nor th  from Sta. 8 t o  the northern end o f  the l i n e  and i s  

associated w i t h  c rys ta l  1 i ne ba ment rock. R e s i s t i v i t y  values less  than 100 

ohm-meters a t  depth i n  t h i s  i erval  probably r e f l e c t  an increase i n  water 

content o f  the basement rocks below the water table. 

v 

u 
Line 8 i S 'a 150-m d ipo le 1 i n e  run a1 ong the eastern edge o f  Devi l  ' s  

Kitchen. Apparent r e s i s t i v i t y  ,values greater than 100 ohmbmeters r e f l e c t  

w varying thicknesses o f  over ly ing volcanic material.  A t  Sta. 11 the high 

r e s i s t i v i t y  r h y o l i t e  zone probably extends t o  depth. The 8 ohm-meter anomaly 

below t h i s  s ta t ion,  a t  n=6, i s  another example o f  a r e s i s t i v i t y  reversal due 

3 t o  hor izonta l  changes i n  r e s i s t i v i t y  a shown on Figure 3. The near-surface 

zone o f  less  than 20 ohm-meters below Sta. 16 i s  re1 ated t o  the a1 tered rock 

a t  Dev i l ' s  Kitchen whi le  the somewhat higher r e s i s t i v i t i e s  a t  depth ind ica te  

d 
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t h a t  the a l t e r a t i o n  i s  l i m i t e d  t o  the near-surface. Donald Uhite, o f  the USGS 

(personal communication) has noted t h a t  the a l t e r a t i o n  a t  D e v i l ' s  Kitchen i s  a 

near-surface process i nvol v i  ng oxidat ion o f  H2s vapors product ng ti2s04 when 

mixed w i t h  ground water which at tacks the surrounding rocks. This chemical 

model i s  c l e a r l y  supported by the observed r e s i s t i v i t y  pattern. The 9 

ohm-meter anomaly i n  the Sta. 20 t o  Sta. 21 i n te rva l  i s  associated w i t h  the 

f a u l t  zone t h a t  l i e s  subparal lel t o  Line 1 and the 6 ohm-meter anomaly t o  the 

nor th  i s  probably re la ted  t o  a pa ra l l e l  structure. A comparison o f  t h i s  l i n e  

w i th  the 150 m d ipo le Line 2 (Fig. 6 )  shows t h a t  they are s imi lar ,  i nd i ca t i ng  

a t  l e a s t  600 m o f  east-west s t ruc tu ra l  con t i nu i t y  between these l ines.  The 

obvious east-west s t ruc tu ra l  cont ro l  o f  the less than 10 ohm-meter anomalies 

on l i n e  8 explains the lack o f  good co r re la t i on  between the computed and the 

observed r e s i s t i v i t y  values on Line 1 (Figs. 4 and 14). As a resu l t ,  a 

north-trending, two-dimensional, 10 ohm-meter near-surface zone i s  no t  a V a l  i d  

model f o r  the Sta.  16 t o  Sta. 20 E i n te rva l  on Line 1. 

- Line 9 i s  a 150 m d ipo le l i n e  run along the  southern edge o f  Devi l  's 

Kitchen. The pervasive 30 t o  50 ohm-meter values are somewhat surpr is ing as 

lower values, comparable t o  those observed on Line 8 and associated w i t h  

a1 terat ion,  were expected. The higher values suggest t h a t  the a1 te ra t i on  

exposed a t  the southern edge o f  Dev i l ' s  Kitchen i s  a lso the southern l i m i t  of 
a l t e r a t i o n  which i s  apparently l i m i t e d  t o  the immediate area o f  H2s gas 

emanation. This observation i s  again consistent w i t h  White's model o f  the 

a l t e r a t i o n  process. The 30-50 ohm-meter zone i s  re la ted  t o  the 

topographical ly subdued rhyol  i t e  dome a t  the southern edge o f  the Devi 1 's 

Kitchen and represents an area of r e l a t i v e l y  higher r e s i  s t i v i  ty, which extends 



Y 
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t 6  depth, w i t h i n  the overa l l  bedrock r e s i  s t i  v i  ty 1 ow. A r e s i s t i v i t y  cont rast  

i s  observed a t  Sta. 13 which corresponds t o  a mapped fau l t .  The lower 

r e s i s t i v i t i e s  t o  the east are re la ted  t o  basement rock and ind ica te  a 

cont inuat ion o f  the bedrock r e s i s t i v i t y  low i n  t h i s  area. 

W 
Horizontal Res is t i v i t y  Structure 

The hor izontal  r e s i  s t i  v i  ty  s t ructure o f  the surveyed area i s d i  scussed 

w i th  reference t o  the data shown i n  p lan view on Plates I1 through VI. These 

Plates are overlays t o  the geologic base map, P late I .  
w 

,P1 ate I I shows the in terpreted near-surface r e s i  s t i  v i  t y  d is t r ibu t ion .  

lu Locations o f  r e s i s t i v i t y  contacts and i n t r i n s i c  r e s i s t i v i t y  Val ues were taken 

d i r e c t l y  from two-dimensional computer models f o r  Lines 1 through 5 and were 

in te rpre ted  by inspect ion f o r  the other 1 ines. Catalogs o f  theoret ica l  

‘u r e s i  s t i  v i  ty  model s show t h a t  the diagonal contour patterns are associated w i th  

near v e r t i c a l  r e s i  s t i  v i  ty contrasts and t h i  s associat ion was used t o  i nterpre t  

Lines 6 through 9. The region o f  1,000-7,000 ohm-meters r e s i s t i v i t y  i n  the 

western po r t i on  o f  the survey coincides w i th  outcrop o f  r h y o l i t e  domes. 

R e s i s t i v i t y  values over c rys ta l  1 i ne basement outcrop range from 10 ohm-meters, 

j u s t  west o f  Cos0 Hot Springs and j u s t  east  o f  Devi l  ‘s Kitchen, t o  over 500 

ohm-meters i n  the northern and northwestern par ts  o f  the area. Basement 

r e s i s t i v i t y  values general ly decrease t o  the south and east. 

‘u 

Y 

Plate I11 i s  a contour map o f  f i r s t  separation, n=l, apparent r e s i s t i v i t y  * 
values. Almost a l l  o f  the surface geothermal manifestat ions i n  the Cos0 area 

occur w i t h i n  the 20 ohm-meter contour l i ne .  O f  p a r t i c u l a r  i n t e r e s t  i s  the  

narrow zone o f  less  than 10 ohm-meters pa ra l l e l  t o  Line 1 a t  the center o f  the 
u 

\ 
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map. Detai led geologic mapping ind icates t h a t  t h i s  zone corresponds w i th  a 

major east-northeast-trendi ng fau l  t zone (P1 a te  I ) . The strong simi 1 a r i  ty 

between the i nterpreted r e s i  s t i  v i  ty , P1 ate I I ,  and the apparent res i  s t i  v i  ty , 
Pla te  111, ind icates the l i m i t e d  e f f e c t  of l a t e r a l  r e s i s t i v i t y  averaging a t  

CI’ 

w n= l  . 
Plate I V  shows the in terpreted t rue  r e s i s t l v i t y  s t ructure a t  an 

approximate depth o f  300 meters. This i n te rp re ta t i on  i s  supported by 

two-dimensional computer model i ng o f  i ndi v i  dual 1 i nes, where a two-dimensional 

approximati on i s reasonable, and by inference from cata l  ogs o f  two-dimensional 

r e s i s t i v i t y  models (Ludwig, 1967) and three-dimensional models (Hohmann, 

v 

Y 
1975). The 1000-7000 ohm-meter zone i s  the i n f e r r e d  r o o t  system o f  the 

rhyol i t e  domes. Resi s t i  v i  t i e s  shown on t h i  s P1 ate are general 1 y 1 ower 

r e l a t i v e  t o  those shown i n  P la te  I1 and r e f l e c t  the increase i n  pore f l u i d  
iu - 

below the water table. Depth t o  the water tab le  i s  probably 50 t o  100 m 

w i t h i n  the surveyed area. The western edge o f  the 10-20 ohm-meter zone 

14 
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feature have not  been determined. 

Computed models o f  Lines 1, 2 and 5 (Figs. 14, 15 and 17) show 20 

ohm-meter r e s i  s t i  v i  ty values w i  t h i  n the geothermal system f o r  the depth range 

300 t o  1000 m. Increasing the i n t r i n s i c  r e s i s t i v i t y  values o f  the computer 

models from 20 t o  50 ohm-meters, below 300 m generates higher 

apparent-resi s t i  v i  ty values than those observed a t  the greater d i  pol e 

separations. The Induct ion Elect ro log o f  CGEH #1 shows r e s i s t i v i t y  values 

gradually increasing from 10 ohm-meters t o  50 ohm-meters f o r  the 300 t o  1000 m 

depth i n te rva l .  

Of the r e s i s t i v i t y  s t ructure a t  depth w i t h i n  the geothermal system, then i t  

appears t h a t  50 ohm-meters i s  the upper l i m i t  o f  i n t r i n s i c  r e s i s t i v i t y  f o r  the 

system t o  a lOU0 m depth. This conclusion i s  consistent w i th  the model 

resu l t s  where a gradual increase i n  r e s i s t i v i t y  t o  50 ohm-meters a t  a depth of 

1000 m i s  permissable. 

I f  the r e s i s t i v i t y  l o g  o f  CGEH-1 i s  taken as representative 

P la te  V shows the contoured apparent r e s i s t i v i t y  values observed a t  a 

d ipo le  separation o f  n=3. The apparent- res is t iv i  ty  s t ruc tu re  shown on t h i s  

p la te  i s  l ess  complex than the in te rpre ted  r e s i s t i v i t y  s t ructure o f  P late I V  

a t  a comparable depth. A t  the t h i r d  separation, v e r t i c a l  and l a t e r a l  

r e s i s t i v i t y  values are averaged over a l a rge r  volume o f  rock which resu l t s  i n  

gradational changes i n  the apparent r e s i s t i v i t y  values. The r e s i s t i v i t y  low 

defined by the 20 ohm-meter contour l i n e  covers a 4 sq m i  (10 sq km) area and 

i s  open t o  the east and southeast. To the east the bedrock low merges with 

low r e s i s t i v i t y  values o f  the g rave l - f i l l ed  bas inseast  o f  Cos0 Hot Springs. 

The extent  o f  the bedrock low t o  the southeast i s  n o t  del ineated by t h i s  

15 



survey. Although no t  f u l l y  defined by the r e s u l t s  o f  t h i s  survey, the 

i n f e r r e d  southern l i m i t  o f  the low i s  supported by the r e s u l t s  of AMT 

soundings i n  t h i s  area (D .  6. Jackson, personal communication). The 

unsurveyed bedrock area i s  2 t o  3 sq m i  (2-5 sq km) i n  extent. 

Lf4 
Y 

c4 

w 

Y 

v 

yr 

I n  the absence o f  any obvious change i n  rock type, t h i s  bedrock 

r e s i s t i v i t y  low i s  probably caused by a combination o f  observed increases i n :  

1) f racture densi ty ( h i  gher permeabi 1 i ty 1 ,  2 ) hydrothermal a1 t e r a t i  on ( h i  gher 

c lay  content) and/or, 3 )  temperature ( h i  gher d i  ssol ved sol i d  content) . The 

resu l t s  of recent de ta i led  geologic mapping by Hulen (1978) and shallow 

temperature measurements by LaSchack (1977) support t h i s  conclusion. The 

signi f icance o f  t h i s  i n te rp re ta t i on  should be judged i n  l i g h t  o f  the r e s u l t s  

o f  recent work by Moskowitz and Norton (1977) which has shown t h a t  low 

r e s i s t i v i t i e s  associated w i t h  geothermal anomal i e s  are "a complex funct ion o f  

f l u i d  c i r c u l a t i o n  patterns, f l u i d  composition, and the d i s t r i b u t i o n  o f  

conducti ve mineral s produced by the reac t ion  between c i  r c u l a t i  ng f l u i d s  and 

rocks." They p o i n t  ou t  t h a t  i n  many cases low near-surface r e s i s t i v i t y  

anomal i es cannot be e n t i  r e l y  accounted f o r  by ho t  c i  r c u l  a t i  ng sal i ne f 1 u i  ds 

and t h a t  observations o f  h igh thermal gradients associated w i t h  

low-resi s t i  v i  ty  anomal i es are no t  unique i nd ica t i  ons o f  a h i  gh-energy 

geothermal resource a t  sha l l  ow c rus ta l  depths . 
Pla te  V I  a contour map o f  s i x t h  separation, n=6, apparent r e s i s t i v i t y  

values demonstrates the e f fec ts  o f  l a t e r a l  changes i n  r e s i s t i v i t y .  Overlaying 

t h i s  map on the map o f  f i r s t  separation values, P la te  111, shows t h a t  the 

p o s i t i o n  o f  r e s i s t i v i t y  highs and lows are  general ly reversed. The low, less 

0 
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than 20 ohm-meters on Plate V I ,  west o f  l i n e  2, i s  produced by the extreme 

contrast  i n r e s i s t i v i t y  between the rhyol  i t e  and host  rock . The t ransmi t t ing  U 
Y 

and receiv ing dipoles f o r  s ixth-separat ion measurements were 1.8 km apar t  and 

1 ocated i n re1 a t i  ve ly  lower r e s i s t i v i t y  host rock which causes t h i  s apparent 

low a t  depth. The p lus  2U ohm-meter values observed i n  the center o f  P late U 

V I ,  near Devi l  ' s  Kitchen, were caused by the reverse s i t u a t i o n  where the 

U 

transmi tti ng and recei  v i  ng dipoles were 1 ocated i n re1 a t i  vel y h i  gher 

r e s i s t i v i t y  tones. Referr ing again t o  Figure 3,  t h i s  reversal  i n  apparent 

r e s i s t i v i t y  w i t h  increasing d ipo le separation i s  shown t o  be mainly the r e s u l t  

o f  hor izonta l  changes i n  r e s i s t i v i t y  ra ther  than v e r t i c a l  . 

Y 
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SUWlARY AND CONCLUSIONS 

This survey has defined a bedrock r e s i s t i v i t y  low a t  l e a s t  4 sq m i  (10 sq 

mi) and up t o  6 sq m i  (15.5 sq km) i n  extent associated w i th  the geothermal 

system a t  Coso. The boundaries o f  t h i s  low are general ly wel l  defined t o  the 

north and west by 5- t o  10-fold increases i n  r e s i s t i v i t y  compared t o  

r e s i s t i v i t i e s  observed w i th in  the low. The extent o f  the anomaly i s  no t  as 

wel l  defined t o  the south bu t  r e s i s t i v i t y  values general ly increase i n  t h i s  

d i rec t i on  and the approximate southern l i m i t  has been determined. The bedrock 

r e s i s t i v i t y  low merges w i th  an observed r e s i s t i v i t y  low over gravel f i l l  east 

o f  Cos0 Hot Springs. 

A complex hor izontal  and v e r t i c a l  r e s i s t i v i t y  s t ructure o f  the surveyed 

area has been defined which precludes the use o f  layered-earth o r  

two-dimensional i n te rp re t i ve  models f o r  much o f  the surveyed area. 

the survey data ind ica te  t h a t  a 10 t o  20 ohm-meter zone extends from near 

I n  general 

surface t o  a depth greater than 750 meters w i th in  the geothermal system. A 

combination of observed increases i n :  1 )  f rac tu re  densi ty (higher 

permeabil i ty),  2) a l t e r a t i o n  (high c lay  content),  (Hulen, 1978) and 3) 

temperatures (higher d i  ssolved sol i d  content o f  ground water) w i t h i n  the 

bedrock low explain i t s  presence. 

Addit ional r e s i s t i v i t y  work would be necessary t o  f u l l y  def ine the extent 

o f  the bedrock low t o  the southeast. Deta i led l ines ,  using 150-111 dipoles, i 
would he1 p t o  fu r the r  del ineate mdjor north-northeast and west-northwest 

s t ruc tu ra l  features w i t h i n  the  low. 
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