

Conf - 901125-16

PREPARATION OF $YBa_2Cu_3O_x$ SUPERCONDUCTOR VIA TERNARY PRECURSORS*

U. Balachandran, R. A. Russell, S. L. Morissette, T. J. Brent, and R. B. Poeppel

Materials and Components Technology Division
Argonne National Laboratory
Argonne, IL 60439

ANL/CP--70597

March 1991

DE91 011121

The submitted manuscript has been authored by a contractor of the U. S. Government under contract No. W-31-109-ENG-38. Accordingly, the U. S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U. S. Government purposes.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Paper submitted for publication in the Proceedings of The Second International Ceramic Science and Technology Congress and The American Ceramic Society's Electronics Division Meeting, Orlando, FL, November 12-15, 1990.

*Work supported by the U. S. Department of Energy, Conservation and Renewable Energy, as part of a program to develop electric power technology, under Contract W-31-109-Eng-38; and by the National Science Foundation, Office of Science and Technology Centers under Contract DMR88-09854.

MASTER
DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

PREPARATION OF $\text{YBa}_2\text{Cu}_3\text{O}_x$ SUPERCONDUCTOR VIA TERNARY PRECURSORS

U. Balachandran, R. A. Russell, S. L. Morissette, T. J. Brent, and
R. B. Poeppel

Materials and Components Technology Division
Argonne National Laboratory, Argonne, IL 60439

The $\text{YBa}_2\text{Cu}_3\text{O}_x$ (123) superconductor has been prepared by a new method using the ternary precursors BaCuO_2 and $\text{Y}_2\text{Cu}_2\text{O}_5$. The BaCuO_2 is prepared by calcining a mixture of BaCO_3 and CuO at a temperature of $\approx 850^\circ\text{C}$ in flowing oxygen at reduced total pressure, followed by ambient-pressure heating at $\approx 925^\circ\text{C}$. The $\text{Y}_2\text{Cu}_2\text{O}_5$ is synthesized by a solid-state reaction between Y_2O_3 and CuO in ambient pressure at $\approx 950^\circ\text{C}$. A stoichiometric mixture of BaCuO_2 and $\text{Y}_2\text{Cu}_2\text{O}_5$ is heated to $\approx 950^\circ\text{C}$ to form 123. The reaction between $\text{Y}_2\text{Cu}_2\text{O}_5$ and BaCuO_2 is very fast and results in nearly phase-pure 123 in a short period.

INTRODUCTION

High-temperature ceramic superconductors are normally prepared via solid state reaction from a mixture of precursors such as oxides, carbonates, and/or nitrates. The mixed precursors are calcined in ambient-pressure air or O_2 at 900-950°C for 50-100 h with intermittent grindings [1]. The intermittent grinding is used to promote homogenization of the powder. Atmospheric contaminants such as CO_2 , H_2O , and residual carbon strongly affect the transition temperature (T_c), critical current density (J_c), and width of the superconducting transition of $\text{YBa}_2\text{Cu}_3\text{O}_x$ (123) superconductors [2-7]. Barium carbonate (BaCO_3) is a commonly used barium source in bulk

processing of 123. During calcination of the precursor, simultaneous decomposition of BaCO_3 and reaction among the three constituent oxides form 123. The CO_2 released by decomposition of BaCO_3 reacts with 123 and forms nonsuperconducting BaCuO_2 , Y_2O_3 , CuO , $\text{Y}_2\text{Cu}_2\text{O}_5$, and Y_2BaCuO_5 (211), depending on temperature [8]. The presence of these non-superconducting phases, especially at grain boundaries, lowers the J_c [9]. Heating the precursor that contains BaCO_3 either in flowing O_2 under a reduced total pressure (partial vacuum) or in an inert atmosphere enhances the decomposition of BaCO_3 , minimizes the level of CO_2 in the atmosphere surrounding the powder, and improves the quality of superconductor [10-14].

Even though the quality of the superconductor powder produced by reduced-pressure calcination is improved over the conventionally processed material, these powders may have small amounts of retained carbon. Carbon has an appreciable solubility in 123 [2,4,5]. During synthesis, it is often necessary to hold the powders at temperatures $\approx 950^\circ\text{C}$ or higher for long periods to remove the residual carbon. Higher temperatures result in the formation of liquid phases and some nonsuperconducting phases such as 211 and BaCuO_2 .

Use of BaCuO_2 , a carbon-free source of Ba, in the preparation of 123 will eliminate this problem. BaCuO_2 has been used by few investigators [15-17]. In all of the earlier studies, the BaCuO_2 was prepared either in ambient pressure air or O_2 . Ruckenstein et al. [17] used small quantities (≈ 0.5 g) of BaCuO_2 , $\text{Y}_2\text{Cu}_2\text{O}_5$, Y_2O_3 , and CuO and studied the kinetics of the reaction leading to the formation of 123. In this work, we report a technique for synthesizing large quantities of 123 using BaCuO_2 and $\text{Y}_2\text{Cu}_2\text{O}_5$ as precursors. We have prepared BaCuO_2 by calcining a mixture of BaCO_3 and CuO in flowing O_2 in reduced total pressure to facilitate the removal of the evolved CO_2 from the system.

EXPERIMENTAL

Stoichiometric amounts of BaCO_3 and CuO to form ≈ 400 g of BaCuO_2 were wet-milled for ≈ 20 h in methanol using ZrO_2

grinding media. The resultant slurry was pan-dried in air, ground in an agate mortar, heated to $\approx 850^{\circ}\text{C}$ in flowing O_2 at a pressure of ≈ 2 mm Hg, and held for 24-h. The vacuum was discontinued after the 24 h hold at $\approx 850^{\circ}\text{C}$, ambient-pressure O_2 was passed over the powder, and the temperature was raised to $\approx 925^{\circ}\text{C}$ for 12 h. This calcination procedure, as determined by X-ray diffraction (XRD) and differential thermal analysis (DTA), resulted in phase-pure BaCuO_2 .

To obtain ≈ 400 g of $\text{Y}_2\text{Cu}_2\text{O}_5$, stoichiometric amounts of Y_2O_3 and CuO were mixed as above and heated in flowing O_2 at ambient pressure to $\approx 980^{\circ}\text{C}$ for 20 h. The phase purity of the $\text{Y}_2\text{Cu}_2\text{O}_5$ was confirmed by XRD and DTA. Stoichiometric amounts of BaCuO_2 and $\text{Y}_2\text{Cu}_2\text{O}_5$ were mixed and heated to $\approx 950^{\circ}\text{C}$ in ambient-pressure O_2 for times ranging 5 to 70 h. The reacted powder was characterized by XRD, DTA, and optical and scanning electron microscopy. Reactions between BaCuO_2 and $\text{Y}_2\text{Cu}_2\text{O}_5$ were monitored by thermal analysis at a heating rate of $3^{\circ}\text{C}/\text{min}$ in ambient-pressure O_2 .

RESULTS AND DISCUSSION

In Fig. 1, curve (a) shows the weight change measured by thermogravimetric analysis (TGA) while heating stoichiometric amounts of BaCuO_2 and $\text{Y}_2\text{Cu}_2\text{O}_5$ in ambient-pressure O_2 . For comparison, the TGA trace obtained in heating a mixture of Y_2O_3 , BaCO_3 , and CuO is shown by curve (b). The total weight loss observed while heating BaCuO_2 and $\text{Y}_2\text{Cu}_2\text{O}_5$ precursor to $\approx 1000^{\circ}\text{C}$ was $\approx 1.3\%$; onset of this weight loss, as seen in Fig. 1a, occurs at $\approx 940^{\circ}\text{C}$. BaCuO_2 and $\text{Y}_2\text{Cu}_2\text{O}_5$ react and form 123 at $\approx 940^{\circ}\text{C}$ [16,17]. The value of x in $\text{YBa}_2\text{Cu}_3\text{O}_x$ is measured as 6.35 at 950°C in ambient-pressure O_2 [18]. Therefore, the small observed weight loss shown by curve (a) is due to loss of O_2 from the 123 phase at these high temperatures. The 123 powder processed from the BaCuO_2 and $\text{Y}_2\text{Cu}_2\text{O}_5$ precursors was shown to be phase-pure by XRD.

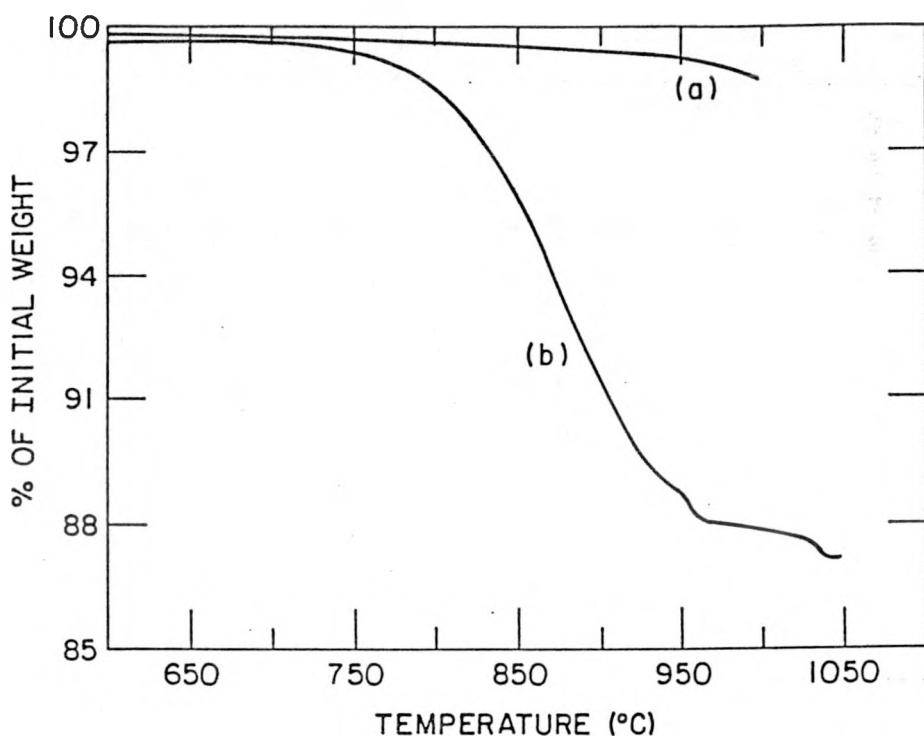


Figure 1 Change in mass observed by thermogravimetric analysis during ambient-pressure heating of precursors: (a) BaCuO_2 and $\text{Y}_2\text{Cu}_2\text{O}_5$ mixture; (b) Y_2O_3 , BaCO_3 , and CuO mixture.

For mixed precursors containing Y_2O_3 , BaCO_3 , and CuO , as seen from curve (b), the weight loss attributable to CO_2 evolution begins at $\approx 750^\circ\text{C}$; the total weight loss measured in this precursor is $\approx 13\%$. The powder mixture turned into a hard cake upon cooling from $\approx 1000^\circ\text{C}$. There was a color gradient from the surface (black) to the center (greenish) of the hard cake. XRD indicated the surface to be 123, whereas the core contained 211 and BaCuO_2 , as well as minor amounts of 123. During ambient-pressure heating of the precursors that contains BaCO_3 , the removal of evolved CO_2 from core regions is severely limited, especially by the formation of 123 at the surface. The partial pressure of CO_2 in the core region may exceed the thermodynamically calculated equilibrium value and cause

decomposition reactions. At 900°C in O₂ under ambient pressure, the equilibrium partial pressure of CO₂ at which 123 becomes unstable is \approx 2% [8]. Because each gram of Y₂O₃, BaCO₃, and CuO precursor mixture evolves \approx 0.25 L of CO₂, it is conceivable that the local CO₂ partial pressure in the core region exceeded this limit and resulted in 211 and BaCuO₂.

Endothermic or exothermic reactions, i.e., melting events, associated with impurity phases were identified by DTA [1]. In Fig. 2, curve (a) shows the DTA traces obtained while mixtures of BaCuO₂ and Y₂Cu₂O₅ are heated. The only observed event was an endotherm with an onset at \approx 1015°C. According to available phase diagrams [19,20], 123 is the only compound between BaCuO₂ and Y₂Cu₂O₅. Therefore, the endotherm in curve (a) is due to peritectic melting of 123. XRD on powder heated to 1025°C and cooled revealed the presence of 123, 211, BaCuO₂, and CuO. These phases were formed as a result of the peritectic reaction. XRD of large batches (\approx 200 g) of powders obtained by heating BaCuO₂ and Y₂Cu₂O₅ at \approx 950°C for 5 h in ambient-pressure O₂ showed phase-pure 123 with no secondary phases. No changes were detected by heating the powder mixtures for longer times.

The DTA trace obtained by heating the precursor that contains Y₂O₃, BaCO₃, and CuO is shown by curve (b) of Fig. 2. There are three endotherms present in this DTA trace. The endotherm with onset at \approx 850°C represents the transformation of γ -BaCO₃ to the hexagonal β -form [6,21]. The formation of a liquid phase in compositions along the 123–CuO join has been investigated by Aselage and Keefer [21]. They observed the onset of melting in 123–CuO at \approx 940°C. BaCuO₂ and 211 were detected in addition to 123 and CuO in the melted and cooled samples, indicating the endotherm at \approx 940°C is not a simple eutectic. A eutectic melting will result in 123 and CuO in the cooled sample. Therefore, the endotherm with onset at \approx 940°C in curve (b) is due to a ternary peritectic reaction between 123 and CuO that forms 211 and liquid. The endotherm with onset at \approx 1015°C is, of course, the result of incongruent melting of 123 to 211 plus a

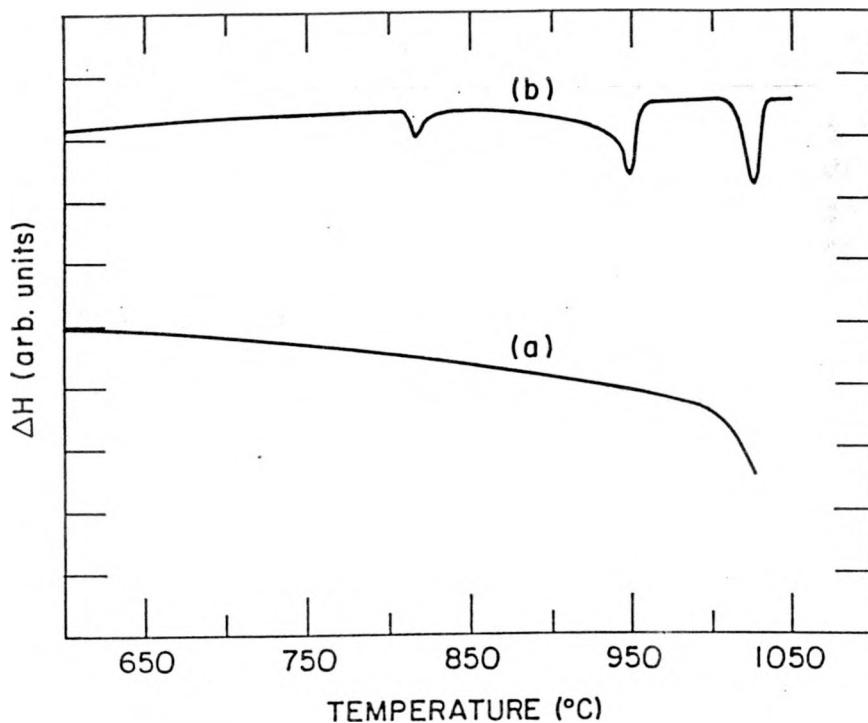


Figure 2 Differential thermal analysis traces during ambient-pressure heating of precursors: (a) BaCuO_2 and $\text{Y}_2\text{Cu}_2\text{O}_5$ mixture; (b) Y_2O_3 , BaCO_3 , and CuO mixture.

liquid. From Fig. 2, we see that when Y_2O_3 , BaCO_3 , and CuO mixtures are heated, the result is several intermediate compounds and transient melts in addition to 123.

Ruckenstein et al. [17] reported that the reaction among Y_2O_3 , BaCO_3 , and CuO was initially very fast but slowed considerably after about 20 min at 940°C in ambient pressure. $\text{Y}_2\text{Cu}_2\text{O}_5$, BaCuO_2 , and 211 were observed as intermediate phases. To achieve homogeneity and phase purity, the Y_2O_3 , BaCO_3 , and CuO precursor mixtures are subjected to multiple calcination in ambient pressure at $900\text{--}950^\circ\text{C}$ for 50-100 h with intermittent mixing and grinding. Long calcination times and high temperatures lead to larger particle sizes and wide particle-size distributions. 123 prepared by calcining mixtures of Y_2O_3 , BaCO_3 , and CuO four times at $\approx 925^\circ\text{C}$ in ambient-pressure

conditions exhibit the endotherm with onset at $\approx 940^{\circ}\text{C}$, which is caused by peritectic melting of 123 and CuO [10]. As mentioned earlier, one way to avoid this problem is to use a partial vacuum during calcination of precursors that contain carbonates [10-14]. An alternate technique, as shown in this work, is to use BaCuO₂ and Y₂Cu₂O₅ as precursors and to process in ambient-pressure condition. Ruckenstein et al. [17] used BaCuO₂ and Y₂Cu₂O₅ and studied the reaction kinetics, but the sample sizes were ≈ 0.5 g. In the present study, we have shown that large batches of phase-pure 123 can be formed by using BaCuO₂ and Y₂Cu₂O₅ as precursors. Both react very rapidly at $\approx 950^{\circ}\text{C}$ in ambient-pressure oxygen, and no intermittent mixing or multiple calcinations are needed.

CONCLUSIONS

Phase-pure 123 superconductor has been prepared by heating the ternary precursors BaCuO₂ and Y₂Cu₂O₅ in ambient-pressure oxygen at $\approx 950^{\circ}\text{C}$. BaCuO₂, which is difficult to synthesize under ambient-pressure conditions, is easily prepared in phase-pure form in flowing O₂ under reduced total pressure. Y₂Cu₂O₅ is synthesized by a solid-state reaction between Y₂O₃ and CuO in ambient-pressure at $\approx 950^{\circ}\text{C}$. The reaction between BaCuO₂ and Y₂Cu₂O₅ is very rapid and forms 123 without the additional formation of intermediate compounds or transient liquids. The electrical properties of sintered pellets made from this 123 powder are currently under investigation.

ACKNOWLEDGMENTS

This work was supported by the U.S. Department of Energy, Conservation and Renewable Energy, as part of a program to develop electric power technology, under Contract W-31-109-Eng-38; and by the National Science Foundation, Office of Science and Technology Centers, under Contract DMR88-09854. One of the authors (UB) thanks K. C. Goretta for valuable discussions.

REFERENCES

1. K. C. Goretta, I. Bloom, N. Chen, G. T. Goudey, M. C. Hash, G. Klassen, M. T. Lanagan, R. B. Poeppel, J. P. Singh, D. Shi, U. Balachandran, J. T. Dusek, and D. W. Capone II, "Calcination of $\text{YBa}_2\text{Cu}_3\text{O}_{7-x}$ powder," *Mater. Lett.*, **7**, 161-164 (1988).
2. P. K. Gallagher, G. S. Grader, and H. M. O'Bryan, "Some effects of CO_2 , CO, and H_2O upon the properties of $\text{YBa}_2\text{Cu}_3\text{O}_7$," *Mat. Res. Bull.*, **23** (10), 1491-1499 (1988).
3. E. K. Chang, E. F. Ezell, and M. J. Kirschner, "The effect of CO_2 in the processing atmosphere of $\text{YBa}_2\text{Cu}_3\text{O}_x$," *Supercond. Sci. Technol.*, **8**, 391-394 (1990).
4. T. B. Lindemer, C. R. Hubbard, and J. Brynestad, " CO_2 solubility in $\text{YBa}_2\text{Cu}_3\text{O}_{7-x}$," *Physica C.*, **167**, 312-316 (1990).
5. T. M. Shaw, D. Dimos, P. E. Batson, A. G. Schrott, D. R. Clarke, and P. R. Duncombe, "Carbon retention in $\text{YBa}_2\text{Cu}_3\text{O}_{7-x}$ and its effect on the superconducting transition," *J. Mater. Res.*, **5** (6), 1176-1184 (1990).
6. Y. Gao, K. L. Merkle, C. Zhang, U. Balachandran, and R. B. Poeppel, "Decomposition of $\text{YBa}_2\text{Cu}_3\text{O}_{7-x}$ during annealing in CO_2/O_2 mixtures," *J. Mater. Res.*, **5** (7), 1363-1367 (1990).
7. Y. Gao, Y. Li, K. L. Merkle, J. N. Mundy, C. Zhang, U. Balachandran, and R. B. Poeppel, " J_c degradation of $\text{YBa}_2\text{Cu}_3\text{O}_{7-x}$ superconductors sintered in CO_2/O_2 ," *Mater. Lett.*, **9** (10), 347-352 (1990).
8. H. Fjellvag, P. Karen, A. Kjekshus, P. Kofstad, and T. Norby, "Carbonatization of $\text{YBa}_2\text{Cu}_3\text{O}_{6+x}$," *Acta Chem. Scand.*, **A42**, 178-184 (1988).

9. D. Shi, D. W. Capone II, G. T. Goudy, J. P. Singh, N. J. Zaluzec, and K. C. Goretta, "Sintering of $\text{YBa}_2\text{Cu}_3\text{O}_{7-x}$ compacts," *Mater. Lett.*, **6**, 217-221 (1988).
10. U. Balachandran, R. B. Poeppel, J. E. Emerson, S. A. Johnson, M. T. Lanagan, C. A. Youngdahl, Donglu Shi, K. C. Goretta, and N. G. Eror, "Synthesis of phase-pure orthorhombic $\text{YBa}_2\text{Cu}_3\text{O}_x$ under low oxygen pressure," *Mater. Lett.*, **8** (11,12), 454-456 (1989).
11. N. Uno, N. Enomoto, Y. Tanaka, and H. Takami, "Synthesis of superconducting oxides by vacuum calcination method," *Jpn. J. Appl. Phys.*, **27** (6), L1003-L1006 (1988).
12. I. Iguchi, A. Sugishita, M. Yanagisawa, S. Hosaka, Y. Yokoyama, and H. Asano, "Structural and superconducting properties of $\text{YBa}_2\text{Cu}_3\text{O}_{7-x}$ formed under oxygen pressure control," *Jpn. J. Appl. Phys.*, **27** (6), L992-L995 (1988).
13. J. J. Rha, K. J. Yoon, S. L. Kang, and D. N. Yoon, "Rapid calcination and sintering of $\text{YBa}_2\text{Cu}_3\text{O}_x$ superconductor powder mixture in inert atmosphere," *J. Am. Ceram. Soc.*, **71**, C328-329 (1988).
14. K. W. Lay, "Formation of yttrium barium cuprate powder at low temperatures," *J. Am. Ceram. Soc.*, **72**, 696-698 (1989).
15. J. Chunlin, C. Chunannmeng, W. Kuihan, I. Sultan, Z. Guiyi, Z. Guofan, Q. Cuenfu, B. Weiming, F. Zhangno, and X. Quin, "Directed reaction process producing single-phase superconducting compound $\text{YBa}_2\text{Cu}_3\text{O}_{7-x}$," *Solid State Commun.*, **65** (8), 859-863 (1988).
16. J. Choy, W. Choe, and Q. W. Choi, "Preparation of 90 K superconductor $\text{YBa}_2\text{Cu}_3\text{O}_{7-x}$ via oxide precursors BaCuO_2 and $\text{Y}_2\text{Cu}_2\text{O}_5$," *Mat. Res. Bull.*, **24**, 867-874 (1989).

17. E. Ruckenstein, S. Narain, and N. L. Wu, "Reaction pathways for the formation of the $\text{YBa}_2\text{Cu}_3\text{O}_{7-x}$ compound," *J. Mater. Res.*, **4** (2), 267-272 (1989).
18. T. B. Lindemer and A. L. Sutton, Jr., "Review of nonstoichiometry in $\text{YBa}_2\text{Cu}_3\text{O}_{7-x}$," Oak Ridge National Laboratory Report ORNL/TM-10827, November 1988.
19. R. S. Roth, K. L. Davis, and J. R. Dennis, "Phase equilibria and crystal chemistry in the system Ba-Y-Cu-O," *Adv. Ceram. Mater.*, **2** (3B), 303-312 (1987).
20. G. Wang, S. J. Hwu, S. N. Song, J. B. Ketterson, L. D. Marks, K. R. Poeppelmeier, and T. O. Mason, "950°C subsolidus phase diagram for Y_2O_3 -BaO-CuO system in air," *Adv. Ceram. Mater.*, **2** (3B), 313-326 (1987).
21. T. Aselage and K. Keefer, "Liquidus relations in Y-Ba-Cu-oxides," *J. Mater. Res.*, **3** (6), 1279-1291 (1988).