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We report local density calculations of parameters defining extended Hubbard Hamiltonians for La,CuOy,
La;NiO4, and K,CuFy, and solve these models for small clusters. These results suggest qualitative differences
among the three compounds in regard to spin system, carriers, and carrier — spin interactions.

1. INTRODUCTION

The La;CuQy parent of the original high—T super—
conductors is one of a number of isostructural com—
pounds which exhibit similar electronic and magnetic
properties. It would be useful to examine other of these
materials in search of features which by comparison to
La;CuO4 might either preclude or suggest the possibil—
ity of high~T. superconductivity. We report here
electronic structure calculations for La,NiO4 and
K;CuF4 carried out in a manner similar to previous
work! on the cuprate. Specifically, we have used local
density theory to obtain parameters defining effective
Hamiltonians which are then solved for various sized
clusters including electron—electron interactions.

2. PARAMETERS

We have used the linear muffin—tin orbitals®
(LMTO) method to obtain the band structure for the

three materials, and extracted the one—electron para—
meters in Table I from the X—point LMTO matrices.
Here R is the ratio of the apical T—L distance to the in—
plane T-L distance [T (transition metal) = Cu, Ni; L
(ligand) = O, FJ, the t's are L(2p)—T(3d) and L(2p)—
L(2p) hopping parameters, and the ¢’s are (electron)
orbital energies. Subscripts x,y, and z denote both
location of the ligand atom and orientation of the p
orbital; while dy = x2-y? and d, = 3z2-r? for the
transition metal atoms. Orthogonal Wannier functions
were used for the T(3d) and L(2p) states, for which
simple geometric relations such as t(pxdx) = v3 t(pxdz)
no longer hold.

The fluoride lattice comstant is about 8% larger
than those of the two oxides, contributing to more
localized L(2p) states, and thus generally smaller t’s for
K,CuF, in the Table. The apical ligand is closer to Cu
in K3;CuF,, however, leading to larger values of t(p.d;)
and t(pxpz) > t(Pxpy) in this case.

Total energy calculations yield T(3d) Coulomb
interactions Ugq ~ 8 eV for all three compounds.
Addition energies E(da*1)-E(d®) [n=9 (8) for Cu (Ni))
show a similar ~ 1 eV rise in movinrg from La,CuQ4 to
K,CuF as in Table [. These lie about 2 eV higher than
the band~-structure derived e¢(dx) values in the Table,
and provide an upper bound for these parameters. We
have not yet petformed comparable calculations for the
ligaﬁd states; however, take the cuprate values! Up=6
eV and Upq = 1 eV in all cases.

TABLE I
Hopping parameters t and energies ¢ (in eV).
La,CuOy LayNiOy K,CuFy

R 1.28 1.12 0.94
t(pxdy) 1.43 1.57 0.99
t(pxdz) 0.71 1.00 0.72
t(pds) 0.67 1.08 1.30
t(pxpy) 0.70 0.61 0.31
t(PxPz) 0.58 0.61 0.45
e(dx)—€(px) 0.7 1.5 2.1
€(dz)~€(px) 1.1 2.0 2.3
€(pz)—€(px) 1.2 0.3 0.1




Beyond the scalar Uy, the remaining matrix nature
of the T(3d) Coulomb interaction is essential for d8 Ni.
Our calculations of the Slater F? and F*+ parameters
using T(3d) functions from the solid agree closely with
free—atom values. We presume solid—state effects to
reduce these values by x 20%, as suggested by
Antonides and Sawat.zky,3 leading to a dy,d, exchange
interaction of # 1 eV in both Cu and Ni compounds.

3. CLUSTER CALCULATIONS

An extended Hubbard Hamiltonian was developed
from the above parameters and used to investigate a
T—Le cluster. The small cluster size is compensated
somewhat by a periodic treatment of the ligand states.
Still, the results presented in Table IT should only be
used comparatively.

Each of the materials shows an insulating gap Egap,
calculated as the difference between the first electron
ionization and affinity levels. The nickelate gap is = 1
eV larger than the others. The calculated intrinsic hole
properties are intuitive: R > 1 should give by (x2-y2)
symmetry; R < 1, a; (3z22-r2) symmetry. Similarly, the
d8® ground state of the nickelate gives the expected ab;
Hund's rule triplet.

We presume the first ionization levels in our calcu—
lations for the stoichiometric compounds to be repre—
sentative of states assumed by added holes in the doped
materials. In all cases we find such added holes to have

4 more than 70% L(2p) character, and to

b, symmetry,
have strong (> 1/, eV) interactions with the intrinsic

spin lattice. However the cuprate and nickelate have

TABLE II
Results of T—Lg Cluster Calculations
LagCuO4 La.'zNiO4 KzCUF4

ground state by aib; ay
spin 1/2 1 1/2
Egap(eV) 2.1 3.0 2.2
1st ionization b1b1 3.[b|b[ a,bl
spin 0 1/2 1

L(2p) 84% 7% 72%

antiferromagnetic interactions between doped and
intrinsic holes, whereas the corresponding fluoride

‘interaction appears to be ferromagnetic. Conversely,

the cuprate and the fluoride have spin !/, lattices
whereas the nickelate lattice is spin 1.

4. DISCUSSION

There is as yet no evidence that K,CuF4 can be
doped to superconductivity, while it has been claimed?
that one phase of La;«StyNiO¢ is superconducting.
The existence or absence of high—T. superconductivity
in these materials is of interest given the qualitative
differences found here (many intuitively clear) between
these compounds and the isostructural cuprate. In
regard to the spin system formed by the intrinsic holes,
the nickelate has different spin (1 vs. 1/2); the fluoride,
different symmetry (a; vs. by). The fluoride spin system
is also known® to be ferromagnetic. Our results also
suggest a ferromagnetic interaction between carriers and
these intrinsic spins, as contrasted to antiferromagnetic
interactions in the oxides.
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