

CONF-890718-1P

UCRL- 101356
PREPRINT

Received by OSTI
AUG 11 1989

COMPARISON OF THE ELECTRONIC STRUCTURE OF
 La_2CuO_4 , La_2NiO_4 , and K_2CuF_4

J. B. Grant and A. K. McMahan
Lawrence Livermore National Laboratory
University of California
Livermore, CA 94550

This paper was prepared for submittal to the proceedings of the
International M²S-HTSC Conference
Stanford, CA
July 23-28, 1989

June 1989

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be made before publication, this preprint is made available with the understanding that it will not be cited or reproduced without the permission of the author.

Lawrence
Livermore
National
Laboratory

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

COMPARISON OF THE ELECTRONIC STRUCTURE OF La_2CuO_4 , La_2NiO_4 , and K_2CuF_4

J. B. Grant and A. K. McMahan

Lawrence Livermore National Laboratory, University of California, Livermore, California 94550

We report local density calculations of parameters defining extended Hubbard Hamiltonians for La_2CuO_4 , La_2NiO_4 , and K_2CuF_4 , and solve these models for small clusters. These results suggest qualitative differences among the three compounds in regard to spin system, carriers, and carrier - spin interactions.

1. INTRODUCTION

The La_2CuO_4 parent of the original high- T_c superconductors is one of a number of isostructural compounds which exhibit similar electronic and magnetic properties. It would be useful to examine other of these materials in search of features which by comparison to La_2CuO_4 might either preclude or suggest the possibility of high- T_c superconductivity. We report here electronic structure calculations for La_2NiO_4 and K_2CuF_4 carried out in a manner similar to previous work¹ on the cuprate. Specifically, we have used local density theory to obtain parameters defining effective Hamiltonians which are then solved for various sized clusters including electron-electron interactions.

2. PARAMETERS

We have used the linear muffin-tin orbitals² (LMTO) method to obtain the band structure for the three materials, and extracted the one-electron parameters in Table I from the X-point LMTO matrices. Here R is the ratio of the apical T-L distance to the in-plane T-L distance [T (transition metal) = Cu, Ni; L (ligand) = O, F], the t's are L(2p)-T(3d) and L(2p)-L(2p) hopping parameters, and the ϵ 's are (electron) orbital energies. Subscripts x, y, and z denote both location of the ligand atom and orientation of the p orbital; while $d_x \equiv x^2 - y^2$ and $d_z \equiv 3z^2 - r^2$ for the transition metal atoms. Orthogonal Wannier functions were used for the T(3d) and L(2p) states, for which simple geometric relations such as $t(p_x d_x) = \sqrt{3} t(p_x d_z)$ no longer hold.

The fluoride lattice constant is about 8% larger than those of the two oxides, contributing to more localized L(2p) states, and thus generally smaller t's for K_2CuF_4 in the Table. The apical ligand is closer to Cu in K_2CuF_4 , however, leading to larger values of $t(p_z d_z)$ and $t(p_x p_z) > t(p_x p_y)$ in this case.

Total energy calculations yield T(3d) Coulomb interactions $U_d \approx 8$ eV for all three compounds. Addition energies $E(d^{n+1}) - E(d^n)$ [n=9 (8) for Cu (Ni)] show a similar ≈ 1 eV rise in moving from La_2CuO_4 to K_2CuF_4 as in Table I. These lie about 2 eV higher than the band-structure derived $\epsilon(d_x)$ values in the Table, and provide an upper bound for these parameters. We have not yet performed comparable calculations for the ligand states; however, take the cuprate values¹ $U_p \approx 6$ eV and $U_{pd} \approx 1$ eV in all cases.

TABLE I
Hopping parameters t and energies ϵ (in eV).

	La_2CuO_4	La_2NiO_4	K_2CuF_4
R	1.28	1.12	0.94
$t(p_x d_x)$	1.43	1.57	0.99
$t(p_x d_z)$	0.71	1.00	0.72
$t(p_z d_z)$	0.67	1.08	1.30
$t(p_x p_y)$	0.70	0.61	0.31
$t(p_x p_z)$	0.58	0.61	0.45
$\epsilon(d_x) - \epsilon(p_x)$	0.7	1.5	2.1
$\epsilon(d_z) - \epsilon(p_x)$	1.1	2.0	2.3
$\epsilon(p_z) - \epsilon(p_x)$	1.2	0.3	0.1

Beyond the scalar U_d , the remaining matrix nature of the T(3d) Coulomb interaction is essential for d^8 Ni. Our calculations of the Slater F^2 and F^4 parameters using T(3d) functions from the solid agree closely with free-atom values. We presume solid-state effects to reduce these values by $\approx 20\%$, as suggested by Antonides and Sawatzky,³ leading to a d_x, d_z exchange interaction of ≈ 1 eV in both Cu and Ni compounds.

3. CLUSTER CALCULATIONS

An extended Hubbard Hamiltonian was developed from the above parameters and used to investigate a T-L₆ cluster. The small cluster size is compensated somewhat by a periodic treatment of the ligand states. Still, the results presented in Table II should only be used comparatively.

Each of the materials shows an insulating gap E_{gap} , calculated as the difference between the first electron ionization and affinity levels. The nickelate gap is ≈ 1 eV larger than the others. The calculated intrinsic hole properties are intuitive: $R > 1$ should give b_1 (x^2-y^2) symmetry; $R < 1$, a_1 ($3z^2-r^2$) symmetry. Similarly, the d^8 ground state of the nickelate gives the expected a_1b_1 Hund's rule triplet.

We presume the first ionization levels in our calculations for the stoichiometric compounds to be representative of states assumed by added holes in the doped materials. In all cases we find such added holes to have b_1 symmetry,⁴ more than 70% L(2p) character, and to have strong ($\geq 1/2$ eV) interactions with the intrinsic spin lattice. However the cuprate and nickelate have

TABLE II
Results of T-L₆ Cluster Calculations

	La ₂ CuO ₄	La ₂ NiO ₄	K ₂ CuF ₄
ground state	b_1	a_1b_1	a_1
spin	1/2	1	1/2
E_{gap} (eV)	2.1	3.0	2.2
1 st ionization	b_1b_1	$a_1b_1b_1$	a_1b_1
spin	0	1/2	1
L(2p)	84%	77%	72%

antiferromagnetic interactions between doped and intrinsic holes, whereas the corresponding fluoride interaction appears to be ferromagnetic. Conversely, the cuprate and the fluoride have spin $1/2$ lattices whereas the nickelate lattice is spin 1.

4. DISCUSSION

There is as yet no evidence that K₂CuF₄ can be doped to superconductivity, while it has been claimed⁵ that one phase of La_{2-x}Sr_xNiO₄ is superconducting. The existence or absence of high-T_c superconductivity in these materials is of interest given the qualitative differences found here (many intuitively clear) between these compounds and the isostructural cuprate. In regard to the spin system formed by the intrinsic holes, the nickelate has different spin (1 vs. 1/2); the fluoride, different symmetry (a_1 vs. b_1). The fluoride spin system is also known⁶ to be ferromagnetic. Our results also suggest a ferromagnetic interaction between carriers and these intrinsic spins, as contrasted to antiferromagnetic interactions in the oxides.

ACKNOWLEDGEMENTS

This work was performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract W-7405-Eng.-48.

REFERENCES

1. A.K. McMahan, R.M. Martin, and S. Satpathy, Phys. Rev. B 38 (1988) 6650.
2. O.K. Andersen, Phys. Rev. B 12 (1975) 3060; H.L. Skriver, The LMTO Method (Springer, Berlin, 1984)
3. E. Antonides and G.A. Sawatzky, in: Transition Metals 1977, eds. M.J.G. Lee, J.M. Perz, and E. Fawcett (Inst. Phys., Bristol, 1978), pp. 134-138.
4. There are nearby ionization states with added holes of a_1 symmetry, however, in both Cu materials. See, also, J.F. Annett, R.M. Martin, A.K. McMahan, and S. Satpathy, Phys. Rev. B, in press.
5. Z. Kakol, J. Spalek, and J.M. Honig, J. Solid State Chem., submitted.
6. I. Yamada, J. Phys. Soc. (Jpn.) 33 (1972) 979.