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COMPARISON OF THE ELECTRONIC STRUCTURE OF LajCuOi, LajNiO*, and K2CuF4
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We report local density calculations of parameters defining extended Hubbard Hamiltonians for LajCuO^, 
LajNiOi, and KjCuF*, and solve these models for small clusters. These results suggest qualitative differences 
among the three compounds in regard to spin system, carriers, and carrier — spin interactions.

1. INTRODUCTION
The La:Cu04 parent of the original high—Tc super­

conductors is one of a number of isostructural com­
pounds which exhibit similar electronic and magnetic 
properties. It would be useful to examine other of these 
materials in search of features which by comparison to 
La2Cu04 might either preclude or suggest the possibil­
ity of high—Tc superconductivity. We report here 
electronic structure calculations for LajNiCu and 
K2CUF4 carried out in a manner similar to previous 
work1 on the cuprate. Specifically, we have used local 

density theory to obtain parameters defining effective 
Hamiltonians which are then solved for various sized 
clusters including electron-electron interactions.

2. PARAMETERS
We have used the linear muffin—tin orbitals 

(LMTO) method to obtain the band structure for the 
three materials, and extracted the one-electron para­
meters in Table I from the X-point LMTO matrices. 
Here R is the ratio of the apical T—L distance to the in— 
plane T-L distance [T (transition metal) = Cu, Ni; L 
(ligand) = 0, F], the t’s are L(2p)-T(3d) and L(2p)- 
L(2p) hopping parameters, and the e's are (electron) 
orbital energies. Subscripts x,y, and z denote both 
location of the ligand atom and orientation of the p 
orbital; while d* = xJ—y2 and dz = Gz^-r2 for the 
transition metal atoms. Orthogonal Wannier functions 
were used for the T(3d) and L(2p) states, for which 
simple geometric relations such as t(pxdx) = ^3 t(pxdz) 
no longer hold.

The fluoride lattice constant is about 8% larger 
than those of the two oxides, contributing to more 
localized L(2p) states, and thus generally smaller t’s for 
K2CuF4 in the Table. The apical ligand is closer to Cu 
in K2CuF4, however, leading to larger values of t(pzdz) 
and t(pxpz) > t(pxpy) in this case.

Total energy calculations yield T(3d) Coulomb 
interactions Ud s 8 eV for all three compounds. 
Addition energies E(dn*1)—E(dn) [n=9 (8) for Cu (Ni)] 
show a similar » 1 eV rise in moving from La2Cu04 to 
K2CuF4 as in Table I. These lie about 2 eV higher than 
the band—structure derived e(dx) values in the Table, 
and provide an upper bound for these parameters. We 
have not yet performed comparable calculations for the 
ligand states; however, take the cuprate values1 Up ~ 6 

eV and UPd a 1 eV in all cases.

TABLE I
Hopping parameters t and energies e (in eV).

La2CuC>4 La2Ni04 K2CuF4

R 1.28 1.12 0.94
t(Pxdx) 1.43 1.57 0.99
t(Pxdz) 0.71 1.00 0.72
t(pzdz) 0.67 1.08 1.30
‘(PxPy) 0.70 0.61 0.31
t(PxPz) 0.58 0.61 0.45
£(dx)—r(Px) 0.7 1.5 2.1
£(dz)-c(px) 1.1 2.0 2.3
f(PzMPx) 1.2 0.3 0.1



Beyond the scalar Ud, the remaining matrix nature 
of the T(3d) Coulomb interaction is essential for ds Ni. 
Our calculations of the Slater F3 and F4 parameters 
using T(3d) functions from the solid agree closely with 
free-atom values. We presume solid-state effects to 
reduce these values by « 20%, as suggested by

O

Antonides and Sawatzky, leading to a dx,d* exchange 
interaction of s 1 eV in both Cu and Ni compounds.

3. CLUSTER CALCULATIONS
An extended Hubbard Hamiltonian was developed 

from the above parameters and used to investigate a 
T—L« cluster. The small cluster size is compensated 
somewhat by a periodic treatment of the ligand states. 
Still, the results presented in Table II should only be 
used comparatively.

Each of the materials shows an insulating gap Egap, 
calculated as the difference between the first electron 
ionization and affinity levels. The nickelate gap is s 1 
eV larger than the others. The calculated intrinsic hole 
properties are intuitive: R > 1 should give bt (xJ—y3) 
symmetry; R < 1, at (Sz3—r3) symmetry. Similarly, the 
d* ground state of the nickelate gives the expected aibi 
Hund’s rule triplet.

We presume the first ionization levels in our calcu­
lations for the stoichiometric compounds to be repre­
sentative of states assumed by added holes in the doped 
materials. In all cases we find such added holes to have 
bi symmetry,^ more than 70% L(2p) character, and to 

have strong (> eV) interactions with the intrinsic 
spin lattice. However the cuprate and nickelate have

TABLE II
Results of T-L« Cluster Calculations

La2Cu04 LajNiOi K2CuF4

ground state bi atbi at
spin 1/2 1 1/2
Egap(eV) 2.1 3.0 2.2

1st ionization bibi atbibt a^i
spin 0 1/2 1
L(2p) 84% 77% 72%

antiferromagnetic interactions between doped and 
intrinsic holes, whereas the corresponding fluoride 
interaction appears to be ferromagnetic. Conversely, 
the cuprate and the fluoride have spin ‘/j lattices 
whereas the nickelate lattice is spin 1.

4. DISCUSSION
There is as yet no evidence that KjCuF^ can be 

doped to superconductivity, while it has been claimed0 
that one phase of La^StjNiO* is superconducting. 
The existence or absence of high—Tc superconducti vity 
in these materials is of interest given the qualitative 
differences found here (many intuitively clear) between 
these compounds and the isostructural cuprate. In 
regard to the spin system formed by the intrinsic holes, 
the nickelate has different spin (1 vs. 1/2); the fluoride, 
different symmetry (at vs. bi). The fluoride spin system 
is also known to be ferromagnetic. Our results also 
suggest a ferromagnetic interaction between carriers and 
these intrinsic spins, as contrasted to antiferromagnetic 
interactions in the oxides.
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