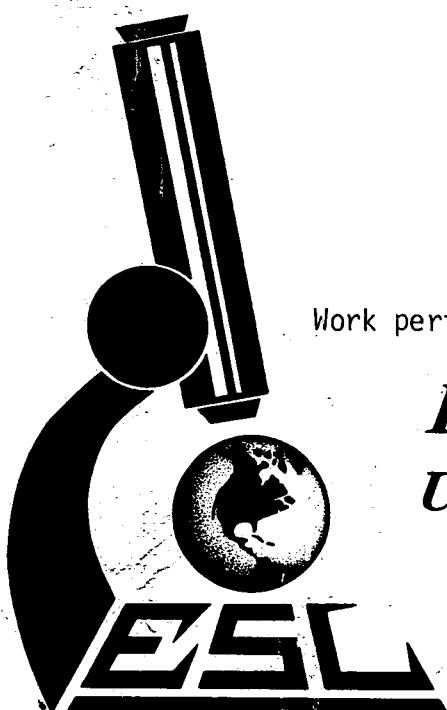


LITHOLOGY AND WELL-LOG STUDY OF CAMPBELL "E-2", GEOTHERMAL TEST WELL,
HUMBOLDT HOUSE GEOTHERMAL PROSPECT,
PERSHING COUNTY, NEVADA

MASTER


Bruce S. Sibbett

W. E. Glenn

August, 1981

Work performed under Contract No. DE-AC07-80ID12079

EARTH SCIENCE LABORATORY
University of Utah Research Institute
Salt Lake City, Utah

Prepared for
U.S. Department of Energy
Division of Geothermal Energy

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

LITHOLOGY AND WELL LOG STUDY OF CAMPBELL "E-2", GEOTHERMAL TEST WELL,
HUMBOLDT HOUSE GEOTHERMAL PROSPECT
PERSHING COUNTY, NEVADA

by

Bruce S. Sibbett

W. E. Glenn

August, 1981

DISCLAIMER

This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

423
950 EARTH SCIENCE LABORATORY DIVISION
UNIVERSITY OF UTAH RESEARCH INSTITUTE
420 Chipeta Way, Suite 120
Salt Lake City, Utah 84108

Prepared for the
DEPARTMENT OF ENERGY
DIVISION OF GEOTHERMAL ENERGY
Under Contract No. DOE/ID/12079

NOTICE

This report was prepared to document work sponsored by the United States Government. Neither the United States nor its agent, the United States Department of Energy, nor any Federal employees, nor any of their contractors, subcontractors or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

NOTICE

Reference to a company or product name does not imply approval or recommendation of the product by the University of Utah Research Institute or the U.S. Department of Energy to the exclusion of others that may be suitable.

TABLE OF CONTENTS

	<u>Page</u>
INTRODUCTION	1
LITHOLOGIC LOG	1
WELL LOGS	7
CONCLUSIONS	15
REFERENCES	16
APPENDIX - Detailed Lithologic Log of Campbell E-2, Humboldt House Thermal Area	17

ILLUSTRATIONS

Figure 1 Location Map	2
Figure 2 Geology of the Campbell E-2 well site and cross sections . . .	3
Figure 3 Log Composite of Geothermal Well Campbell E-2	in pocket
Table 1 Logs Campbell E-2	8
Figure 4 Thermal Gradient	11
Figure 5a Bulk Density vs Neutron Porosity	12
Figure 5b Bulk Density vs Neutron Porosity	13
Figure 5c Gamma Ray vs Neutron Porosity	14

INTRODUCTION

In 1979 Phillips Petroleum Company completed the Campbell E-2 geothermal test well to a depth of 8060 feet (2456.7m) in Section 15, T31N, R33E, to evaluate the geothermal potential of the Humboldt House thermal area on the northwest side of the Humboldt Range, Pershing County, Nevada. The cuttings and well logs were made available for study by the Earth Science Laboratory, University of Utah Research Institute through the DOE/DGE Industry Coupled Program. The well location is shown on Figure 1.

The thermal area is located on the west side of the Humboldt Range (Figure 1), in the Basin and Range physiographic province. The valley fill consists of Quaternary to Tertiary alluvium (Johnson, 1977), lake sediments and volcanic rocks. East of the range front fault, Triassic slates of the Grass Valley Formation and Natchez Pass Formation are thrust over the Triassic Prida Formation and older rocks (Figure 2). The geology of the range was mapped by Silberling and Wallace (1967).

No active hot springs are known in the area, but siliceous and calcareous sinter deposits are exposed in the valley about three miles northwest of the Campbell E-2 well (Garside and Schilling, 1979, p. 61). A 600-foot-thick interval of siliceous sinter was encountered below 700 feet of alluvium in the Campbell E-1 hole (Earth Science Lab., 1979).

LITHOLOGIC LOG

The cuttings of Campbell E-2 were examined in detail with a binocular microscope supplemented by twelve thin sections of selected intervals. The detailed lithologic log is presented in the appendix and a generalized log is

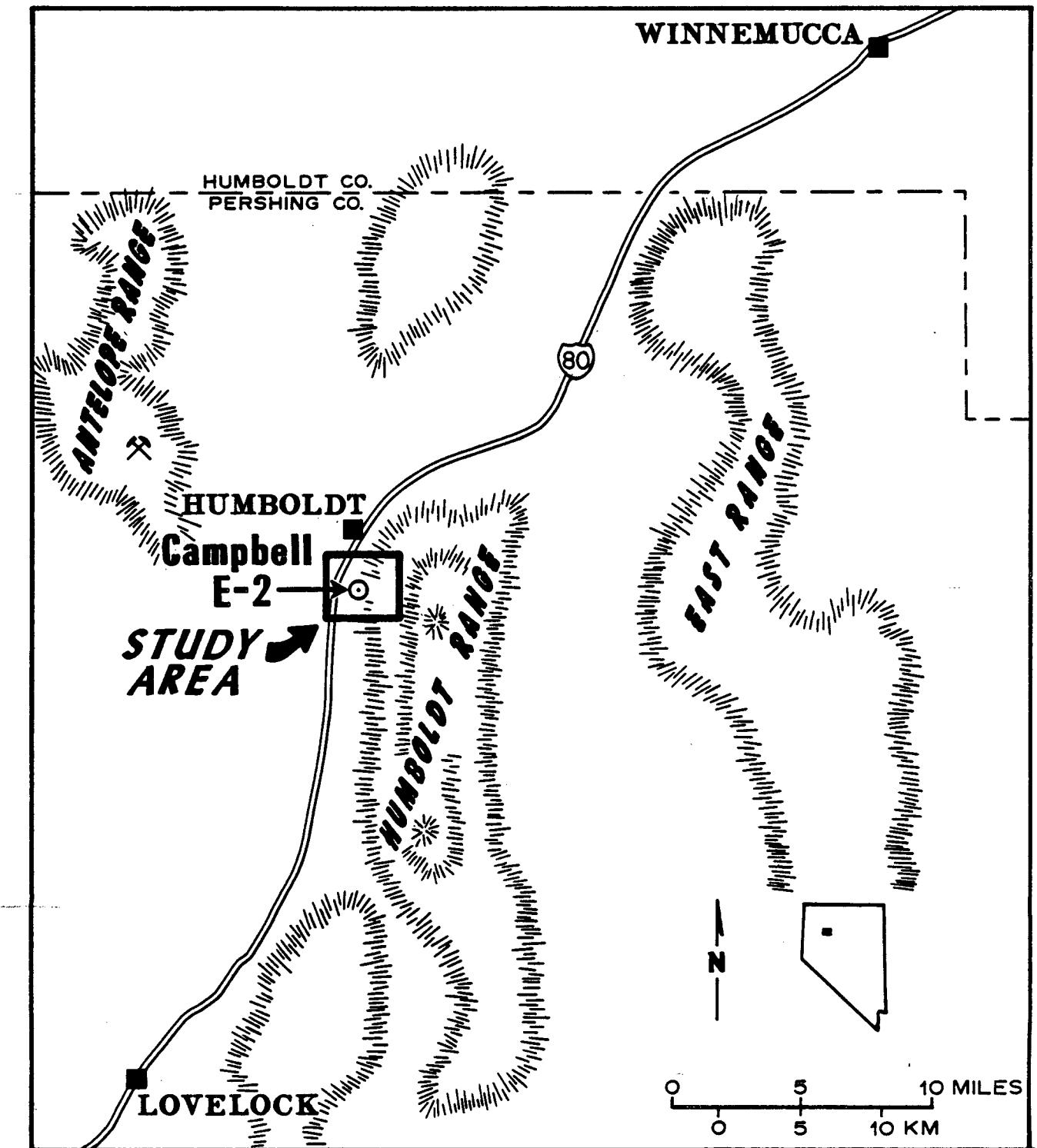


Figure 1. Location map of the Humboldt House geothermal area.

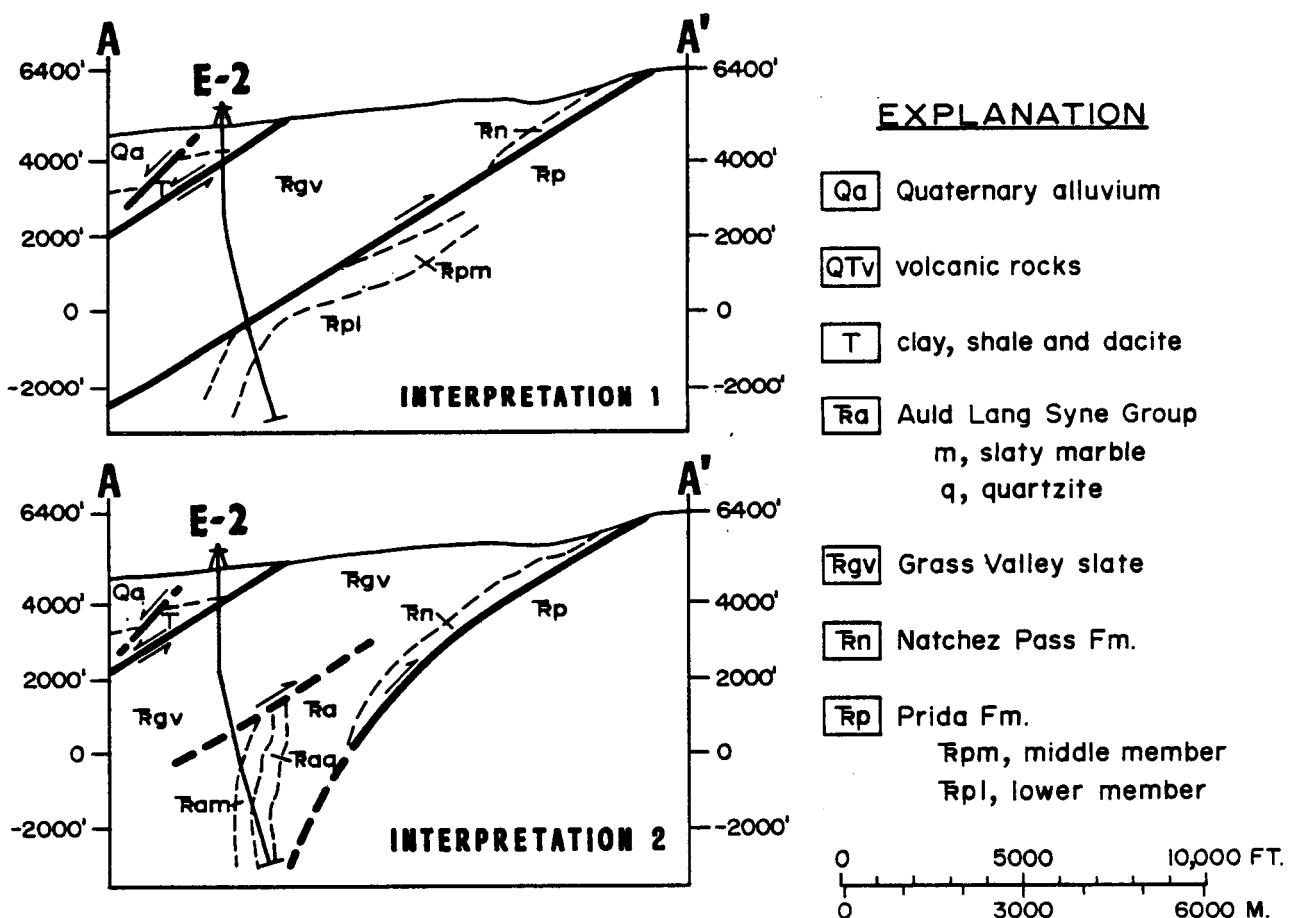
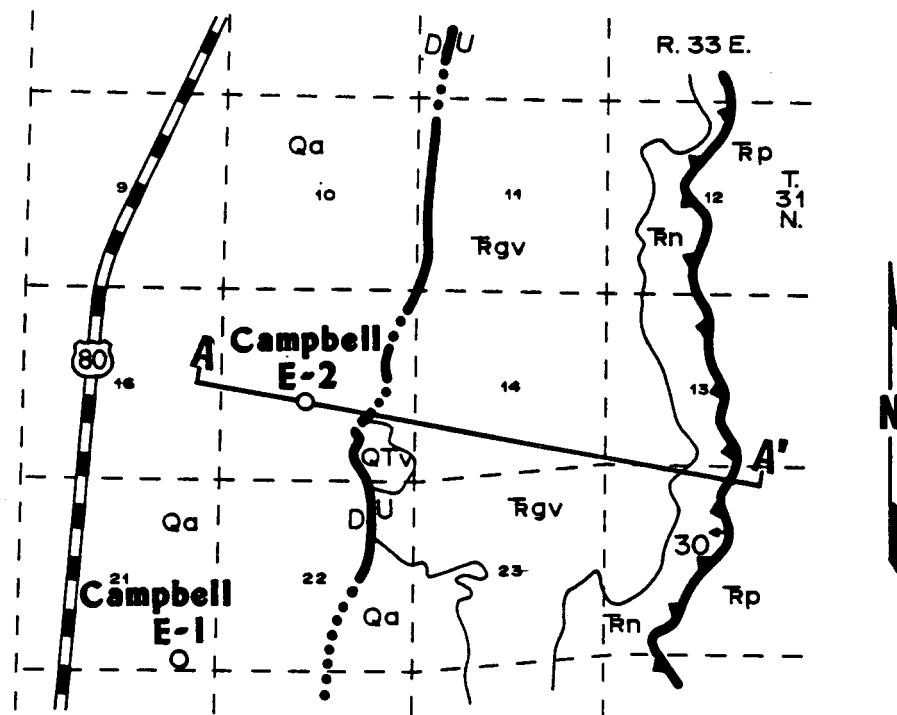



Figure 2. Geology of the Campbell E-2 well site and cross sections. Surface geology from Silberling and Wallace (1967). Interpretation 1 and 2 based on lithologic log and surface geology.

shown with the well logs on Figure 3 (in pocket).

The drill hole penetrated 740 feet (225 m) of gravel and conglomerate (Figure 3). The next 150 feet (45 m) of interbedded mudstone and dacite are probably Tertiary age, followed by about 5,000 feet (1524 m) of gray slate (Figure 3). This formation is probably the Triassic Grass Valley Formation which is exposed east of the well (Figure 2). The range front fault was probably penetrated at the top of the slate at 890 feet, (271.3 m) and below this depth the drill hole is in the Humboldt House horst. This geometry requires the range front fault to dip approximately 33 degrees from its surface trace at an elevation 100 feet (30.5 m) higher than the drill site and 1,500 feet (457.2 m) to the southeast. No evidence of faulting or of alteration which might occur along a major fault was found within the upper 2,000 feet (609.6 m) of the slate.

Within the depth interval of 5,260 to 5,800 feet (1603.2-1767.8 m) the calcite content of the slate increases; below this zone a graphite-rich marble is interbedded with slate. These carbonate rocks and the thick quartzite below cannot be correlated with the lithologies of the Grass Valley Formation (Silberling and Wallace, 1967; Burke and Silberling, 1973) or of the Natchez Pass Formation (Silberling and Wallace, 1969) which underlies the Grass Valley Formation. Two interpretations of the lithologies encountered in the hole are possible. The first interpretation suggest that the slaty marble may be correlative with the middle member of the Prida Formation and the quartzite correlative with the lower member of the Prida Formation (Silberling and Wallace, 1969). Cross section AA' (interpretation 1, Figure 2), illustrates this possibility. Interpretation 1 implies that the Humboldt City thrust was

crossed at 5,260 feet (1603.2 m) and the Natchez Pass and upper Prida Formations are missing due to thrust faulting. The thrust dips 30° in outcrop (Silberling and Wallace, 1967). An average dip of 32° would put the fault at 5,260 feet (1603.2 m) under Campbell E-2. A fault zone at this depth is consistent with data from geophysical logging which indicates significant changes in rock properties over a zone from 5,240 to 5,260 feet (1597.2-1603.2 m) (Figure 3, in pocket).

The lithologies of both the slaty marble and the quartzite appear very uniform in the cuttings, whereas the middle and lower members of the Prida Formation in outcrop have diverse lithologies characterized by carbonate, argillite, siltstone, and metavolcanic rock (Silberling and Wallace, 1969). The sandstones in the lower member are characterized as calcareous (Silberling and Wallace, 1969), but the quartzite in Campbell E-2, which may be the metamorphosed equivalent of the Prida Formation sandstones, is noncalcareous. Assuming the hole intersects the formations at a small angle to the bedding plane, there is no problem with the thick intercepts because the hole would be cut nearly parallel to bedding, but the middle member would have to be crossed to reach the quartzite. The lack of evidence of interbedded lithologies in the cuttings is a problem for the Prida Formation interpretation.

An alternate interpretation suggests that the slaty marble and quartzite may be part of the Auld Lang Syne Group (Figure 2, AA' interpretation 2). The Auld Lang Syne Group, as exposed in the Antelope mining district west of the valley, contains both quartzite and limestone beds (Johnson, 1977, p. 46). The general description of the slates in the Antelope district is consistent with the slate in Campbell E-2. The Grass Valley is the lower formation in

the Auld Lang Syne Group. Quartzite and carbonate units occur in the upper formations of the group. Interpretation 2 suggests that the Grass Valley Formation is thrust over upper Auld Lang Syne rocks in the Campbell E-2 hole.

The calcareous slate and slaty marble between a depth of 5260 and 6080 feet (1603-1853 m) contains a significant amount of graphite as indicated by binocular microscope and thin section study of the cuttings. X-ray defraction of insoluable residue of cuttings from 5340 feet (1627.6 m) and 5910 feet (1801.4 m) confirmed the present of graphite. Graphite is an electrical conductor and the high graphite content in these rocks corresponds to a highly conductive zone on the resistivity log (Figure 3).

Relatively resistive zones in the lower part of the conductive interval correlate with clean marble, while the highly conductive zones correlate with carbon and graphite-rich rocks. The calcareous slate probably has low permeability, and the neutron porosity log shows no significant change across the contact at 5,240 ft (Figure 3). As noted below, the neutron "porosity" is almost entirely water in hydrated minerals. Permeability, therefore, doesn't seem to be a major factor in the conductive zone. The graphite zone may be responsible for low resistivity anomalies indicated by surface methods. Other anomalously conductive zones are known in carbonaceous limestones and shales and their metamorphic equivalents in Nevada (Howard Ross, personal communication).

Surface electrical methods may not be able to distinguish between thick conductive zones due to carbonaceous material and those due to thermal fluids. Caution should be used in interpreting electrical exploration surveys where

these type of rocks may be present.

WELL LOGS

A fairly complete set of well logs was obtained in the Campbell E-2 well from near surface to 5530 ft (1685.5m). Below this depth, only resistivity and temperature logs were obtained; a summary of well logs obtained in Campbell E-2 is given in Table 1. Most of the well log data were digitized and are plotted in Figure 3 (in pocket). The log composite (Figure 3) includes the drilling rate from the mud log and lithologic log abridged from the data given in the Appendix. The bit size and casing record for the well are also shown on the log composite beside the caliper log. The log quality appears quite good except that the induction log becomes saturated in the resistive quartzite and the single arm caliper obtained with the nuclear tools does not accurately depict the borehole diameter and exhibits some drift with depth. The caliper log obtained with sonic log in the upper part of the well also appears inaccurate.

A few distinct correlations between the lithology and well logs are apparent in Figure 3. The Tertiary clay/shale unit (Ts) between 740 and 870 ft (225.6 and 265.2 m) is well marked by lower resistivity, higher SP and interval travel time than surrounding rock units. The dacite in the Ts unit in this interval does not have any distinct geophysical response. The well logs agree with the top pick from drill chips for the Ts unit but suggest that the base of the unit is closer to 920 ft. At this depth a difference in the underlying slate was noted in the chip samples. The upper few meters of the slate may be weathered and fractured to generate a response similar to the Ts units.

TABLE 1 LOGS
CAMPBELL "E" NO. 2

DATE	COMPANY	TYPE OF LOG	INTERVAL LOGGED FT.	REMARKS
1-5 to 3-5-79	Energy well logging service	Energy log with lithology	45-8061 (13.7-2457.0m)	Drill Rate, mud temp., CO ₂ H ₂ S Lithology
1-19-79	Go wireline services	B.H.C. Sonic & GR	165-1919 (50.3-584.9m)	
1-19-79	Go wireline services	Dual induction-laterolog with linear correlation log (SP)	165-1927 (50.3-587.3m)	$R_m = 9.7$ $R_{mf} = 6$, @ 58°F, 14.4°C $R_{mc} = 10$, MRT = 130°F, 54.4°C
2-16-79	Go wireline services	Comp. Density Neutron & Caliper & GR	1559-5530 (a) (475.2-1685.5m)	SS Calib. for Neutron Log.
2-16-79	Go wireline services	Dual induction-laterolog with linear correlation log (SP)	1559-5530 (475.2-1685.5m)	MRT = 236°F, 113.3°C $R_m = 7$, @ 50°F, 10°C $R_{mf} = 5.1$, @ 53°F, 11.7°C $R_{mc} = 7.2$, @ 50°F, 10°C
2-17-79	Go wireline services	B.H.C. Sonic & GR	1414-5514 (a) (431.0-1680.7m)	
3-6-79	Go wireline services	Dual induction-laterolog with linear correlation log (SP)	5303-8060 (1616.4-2457.0m)	$R_m = 9.0$, @ 150°F, 65.6°C R_{mf} & R_{mc} N/A MRT = 312°F, 155.6°C
3-7-79	Agnew and sweet	Temperature	100-8061 (30.5-2457.0m)	
4-30-79	Agnew and sweet	Temperature	100-8055 (30.5-2455.2m)	

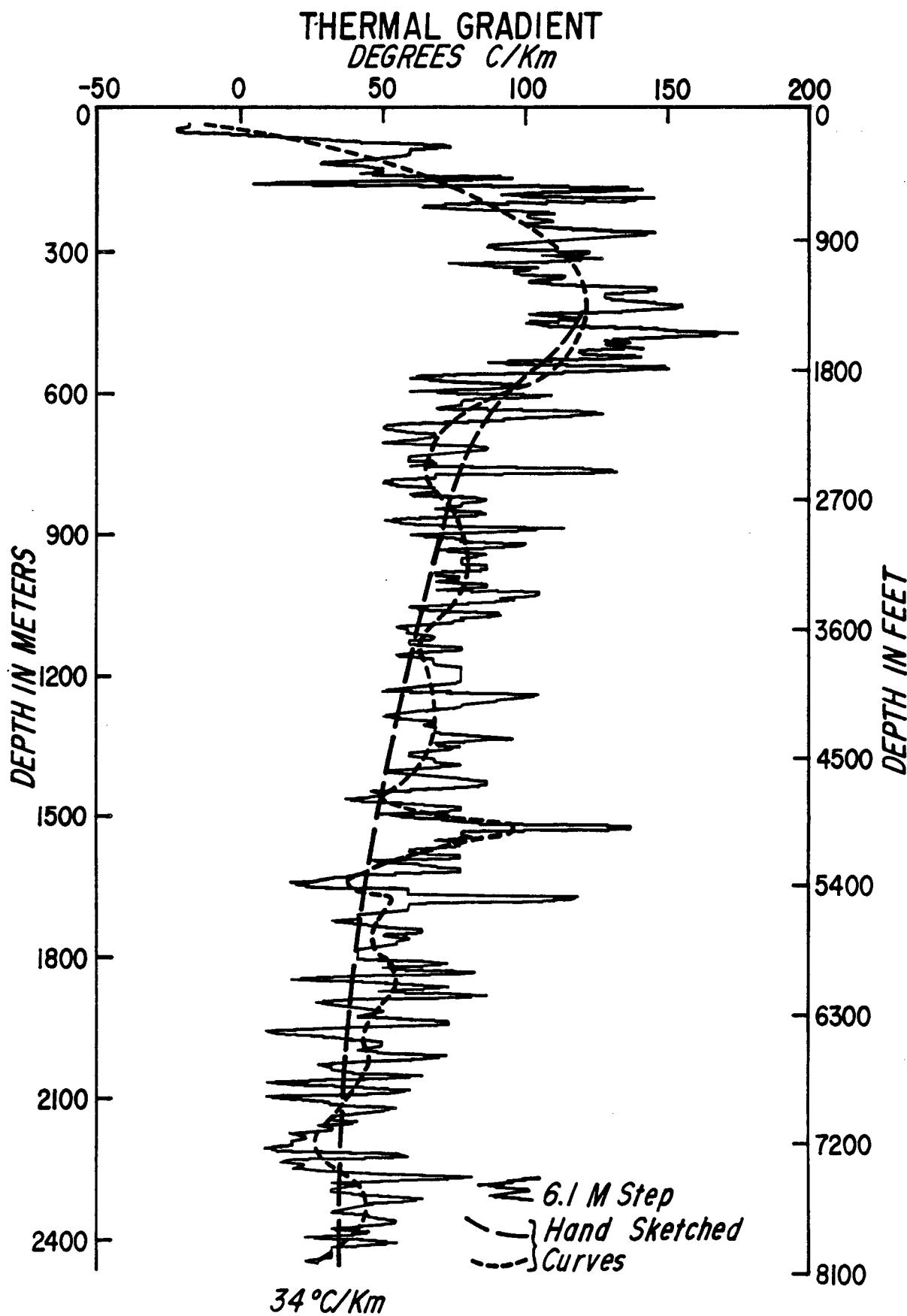
(a) Individual logs were made for 2"=100' and 5"=100' scales.

The Grass Valley slate from 280 to 1600 m exhibits little variation in lithology or geophysical log response. Some highs in the SP log correlate with pyrite in the cuttings.

The top of the calcareous slate is defined by a drop in the neutron porosity, by lower resistivity, higher SP and lower gamma ray (Figure 3). This contact at a depth of 5260 feet (1603 m) is the most distinct geophysical break in the hole. As discussed above, the low resistivity is probably due to the high graphite content and fractures rather than increased porosity because bulk density is unchanged and the neutron porosity is lower. There is only a trace of pyrite in the cutting so the low resistivity is not due to sulfides.

Only the resistivity, SP and temperature logs continue into the slaty marble and thick quartzite at depth. The logs show little difference between the calcareous slate and marble. However, the marble is interbedded with slate. The lower resistivity may be due, in part, to greater fracturing of the calcareous slate and marble and, in part, to the graphite in the slate. The drilling rate was higher throughout most of this interval, again suggesting the presence of more fractures in this interval.

The quartzite below 6230 ft (1898.9 m) has such a high resistivity that the induction logs appear saturated over most of the interval. The few lower resistivity breaks suggest the presence of small fractures at these depths. The latite dike in the quartzite appears to correlate with one of these fractured intervals. The quartzite has a distinct and predictable lower gamma ray response and neutron porosity.


Of the two temperature logs shown in Figure 3, the log on 3/7/79 was

obviously obtained before the well temperature equilibrated. The log obtained on 4/30/79 appears to have nearly reached the equilibrium subsurface temperature profile. Qualitatively, if the earlier temperature log can be interpreted in terms of a temperature injection profile, the log suggests some permeability below 5000 ft (1524.0 m), in particular associated with fractures within the calcareous slate, and below 7400 ft (2255.5 m) in the quartzite. The positive SP deflections at some of the fractured intervals either suggests that the formation water has less dissolved solids than the drilling fluid or indicates streaming potential. The mud resistivity logs indicate less than 1000 ppm TDS in the mud for all three logging runs, which makes it difficult to accept the first interpretation.

At depth, temperature gradients determined from the later temperature profile approach a uniform $34^{\circ}\text{C}/\text{km}$ value which is close to the normal Basin and Range value. The thermal conductively of the slates may be half that of the quartzite and therefore a good part of the change in gradient with depth may be due to change in rock type and thermal conductivity (Figure 4). It would be useful to make thermal conductivity measurements on rock chips from this drill hole.

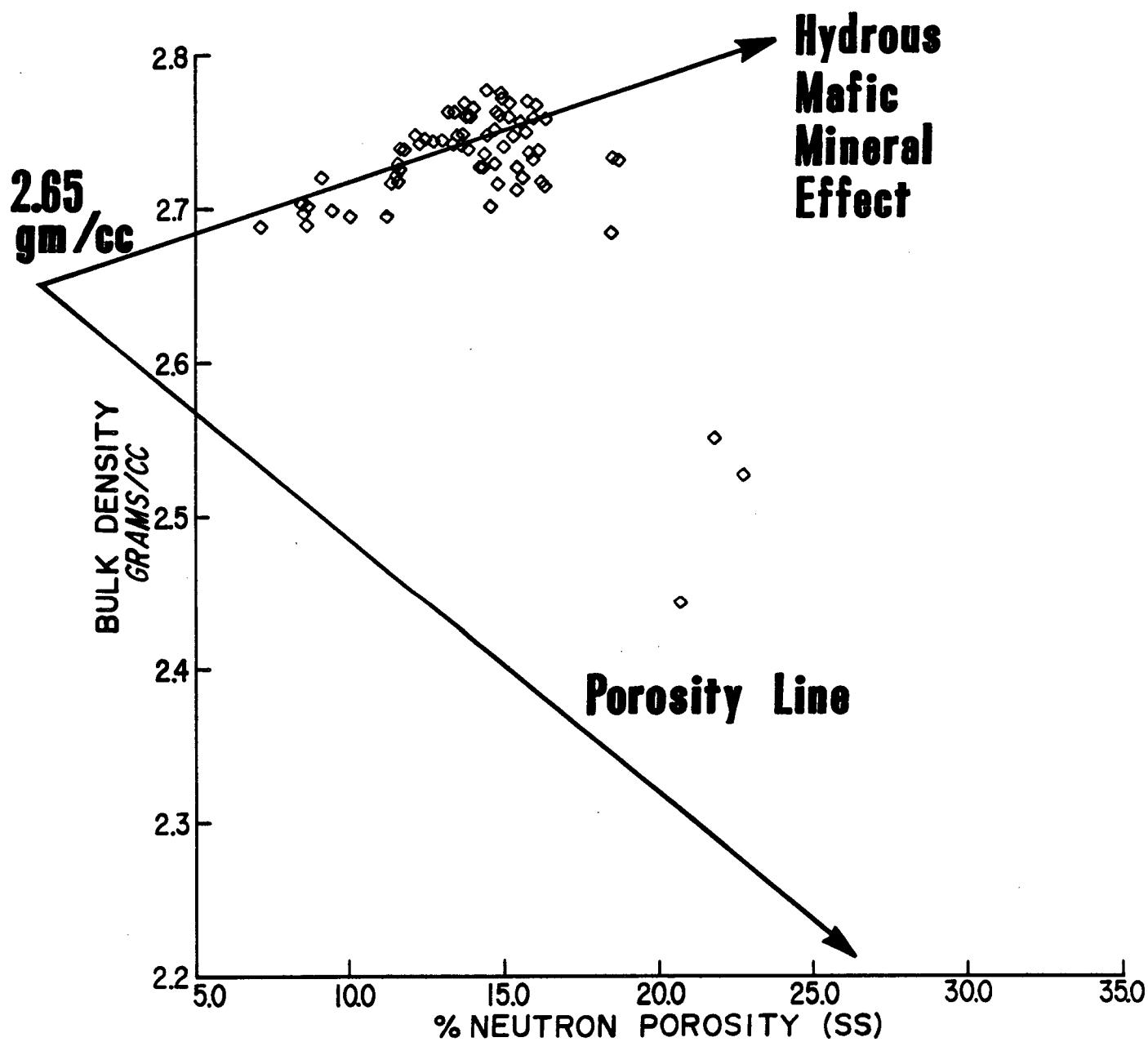
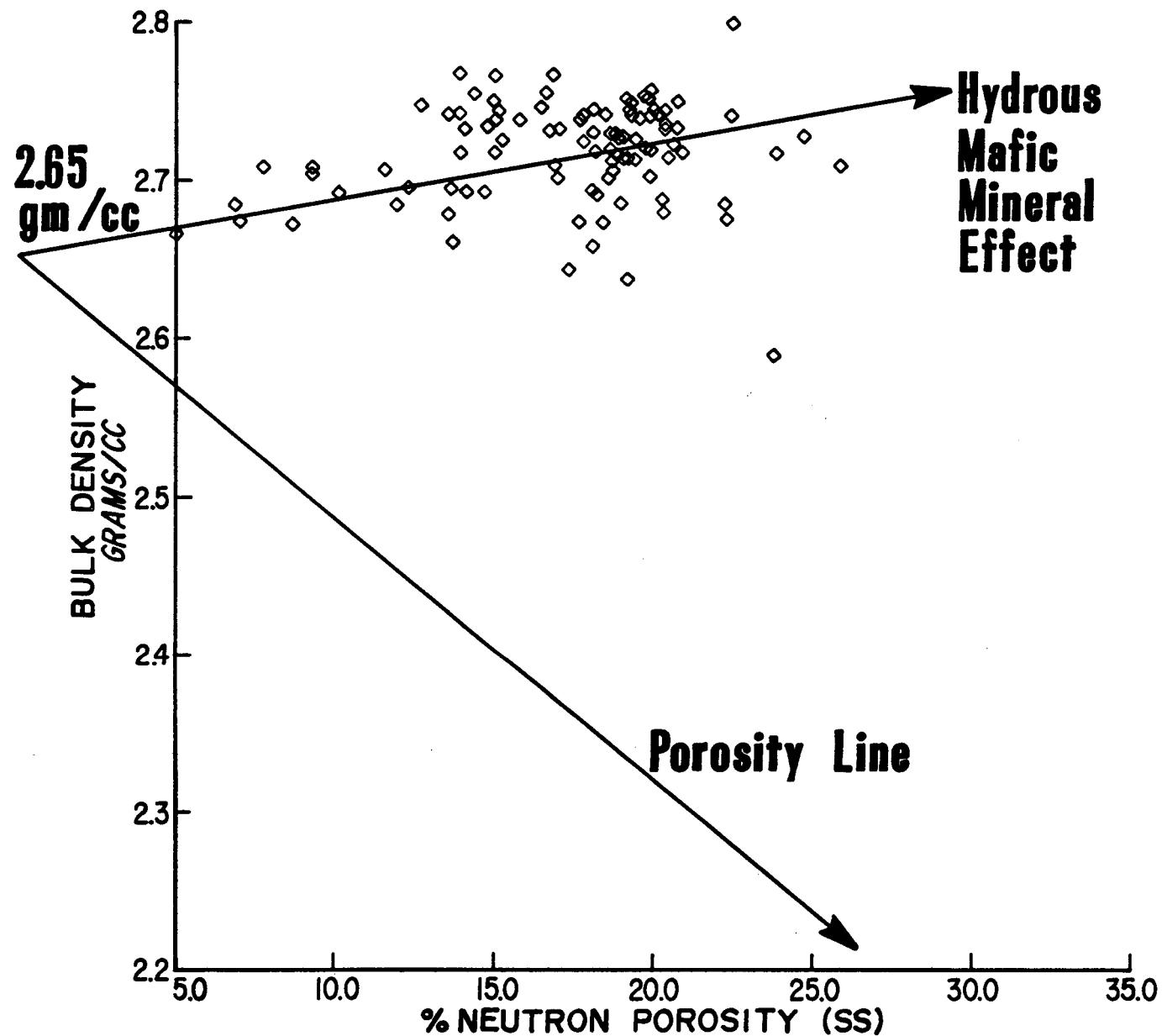

Figure 5 a, b, and c are three cross plots of log data. The cross plots show the effect of hydrous, and largely mafic, minerals on the well log. In the neutron-density cross plots the data do not follow a trend that would be expected if the rock were composed of a non-hydrous mineral component having a bulk density near 2.65 gm/cc and a hydrous mineral component having a bulk density greater than 2.65 gm/cc. The hydrous mineral component appears to be different in the two intervals plotted. The shallower interval has a greater

FIGURE 4
CAMPBELL E-2

FIGURE 5a
CAMPBELL E-2

BULK DENSITY VS NEUTRON POROSITY

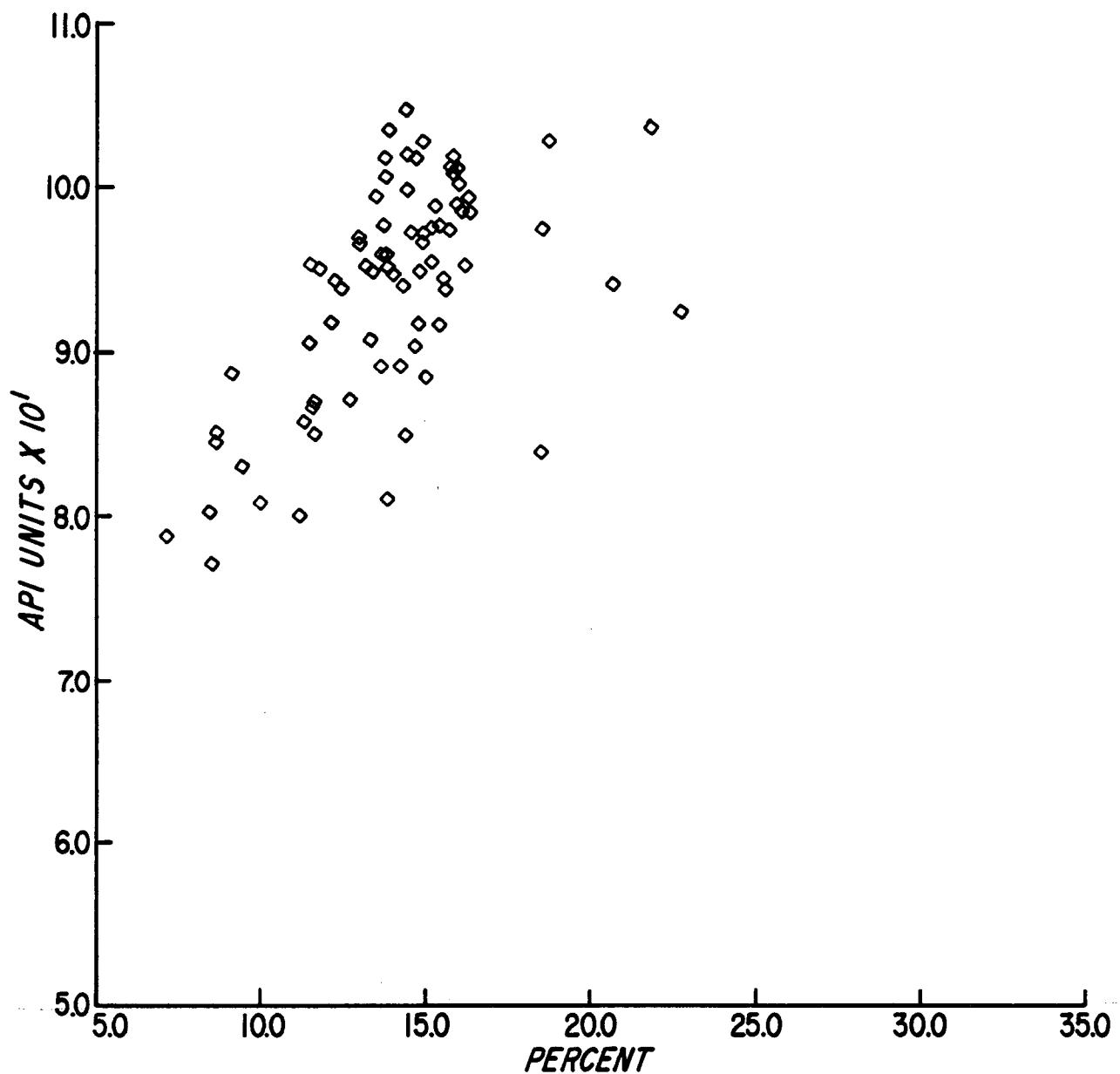


4902.00-5198.00 FEET AT
4.00 DEPTH UNIT INTERVALS

Rev/HH-006

FIGURE 5b
CAMPBELL E-2

BULK DENSITY VS NEUTRON POROSITY



3202.00-3598.00 FEET AT
4.00 DEPTH UNIT INTERVALS

Nev/HH-007

FIGURE 5c
CAMPBELL E-2

GAMMA RAY VS NEUTRON POROSITY

4902.00 - 5198.00 FEET AT
4.00 DEPTH UNIT INTERVALS

Nev/HH-008

neutron "porosity" variation and a probable lower hydrous mineral density than the deeper interval. This result suggests that either the hydrous minerals are dehydrated with depth or additional hydrous minerals are developed by hydrothermal alteration, that is, clay minerals in the upper interval are replaced in part by micas in the lower interval. The gamma ray neutron porosity cross plot in Figure 5c shows a correlation between higher "porosity" and higher gamma ray response. This result again supports the interpretation that potassium rich, hydrous minerals such as clays and micas contribute to the observed neutron and bulk density log responses.

CONCLUSIONS

In light of the cuttings and geophysical logs from the Campbell E-2 hole, it seems unlikely that a geothermal reservoir exists in the horst block of the Humboldt House area. All known sinter deposits occur in the graben block in the valley, northwest and southwest of Campbell E-2. The range front fault, which may serve as a conduit for deeply circulating fluids, dips to the west and intersects the hole at 890 feet (271.3 m). The presence of sinter deposits and the deeper extension of the fault to the west suggest that the geothermal system may be located to the west of the Campbell E-2 hole.

The Grass Valley Formation and the Auld Lange Syne Group in general are fine-grained argillaceous and slaty rocks. These rocks have a very low intergranular permeability and may not be competent enough to maintain a significant fracture permeability necessary for a geothermal reservoir rock.

REFERENCES

Burke, D. B., and Silberling, N. J., 1973, The Auld Lang Syne Group of Late Triassic and Jurassic(?) age, north-central Nevada: U.S. Geol. Survey Bull. 1394-E, 14 p.

Earth Science Laboratory, 1979, Phillips Petroleum geophysical data on Humboldt House, Nevada, open-file release December 13-14, Salt Lake City, Utah.

Garside, L. J., and Schilling, J. H., 1979, Thermal waters of Nevada: Nevada Bur. Mines and Geol., Bull. 91, 163 p.

Johnson, M. G., 1977, Geology and mineral deposits of Pershing County, Nevada: Nev. Bur. Mines and Geol., Bull. 89, 115 p.

Silberling, N. J., and Wallace, R. E., 1967, Geologic map of the Imlay Quadrangle, Pershing County, Nevada: U.S. Geol. Survey, Map GQ-666.

Silberling, N. J., and Wallace, R. E., 1969, Stratigraphy of the Star Peak Group (Triassic) and overlying Mesozoic rocks, Humboldt Range, Nevada: U.S. Geol. Survey Prof. Paper 592, 50 p.

APPENDIX

DETAILED LITHOLOGIC LOG OF CAMPBELL E-2
HUMBOLDT HOUSE THERMAL AREA

DEPTH	GRAPHIC LOGS										DESCRIPTIONS		
	ALTERATION					1. WEAK 2. MOD. 3. STRONG	2ndary quartz veins	Fault gouge & slicker	GRAPHIC GEOL.	Tr. TRACE 1. WEAK 2. MOD. 3. STRONG			
	Limonite	Iron	Pyrite	Chalcocite	Pyrrhotite					VEINLETS			
20													
40													
60													
80													
100'													
200													
300	Tr.												
320	Tr.												
340	Tr.												
360	Tr.												
380	Tr.												
400	Tr.												
500	Tr.												
600	Tr.												
620	Tr.												
640	Tr.												
660	Tr.												
680	Tr.												
700	Tr.												
720	Tr.												
740	Tr.												
760	Tr.												
780	Tr.												
800	Tr.												
820	Tr.												
840	Tr.												
860	Tr.												
880	Tr.												
900	Tr.												
920	Tr.												
940	Tr.												
960	Tr.												
980	Tr.												
1000	Tr.												

DRILL HOLE Campbell E #2 Phillips Petro.
 LOCATION Sec. 15, T. 31 N. R. 33 E., Humboldt House

LOGGED BY Sibbett

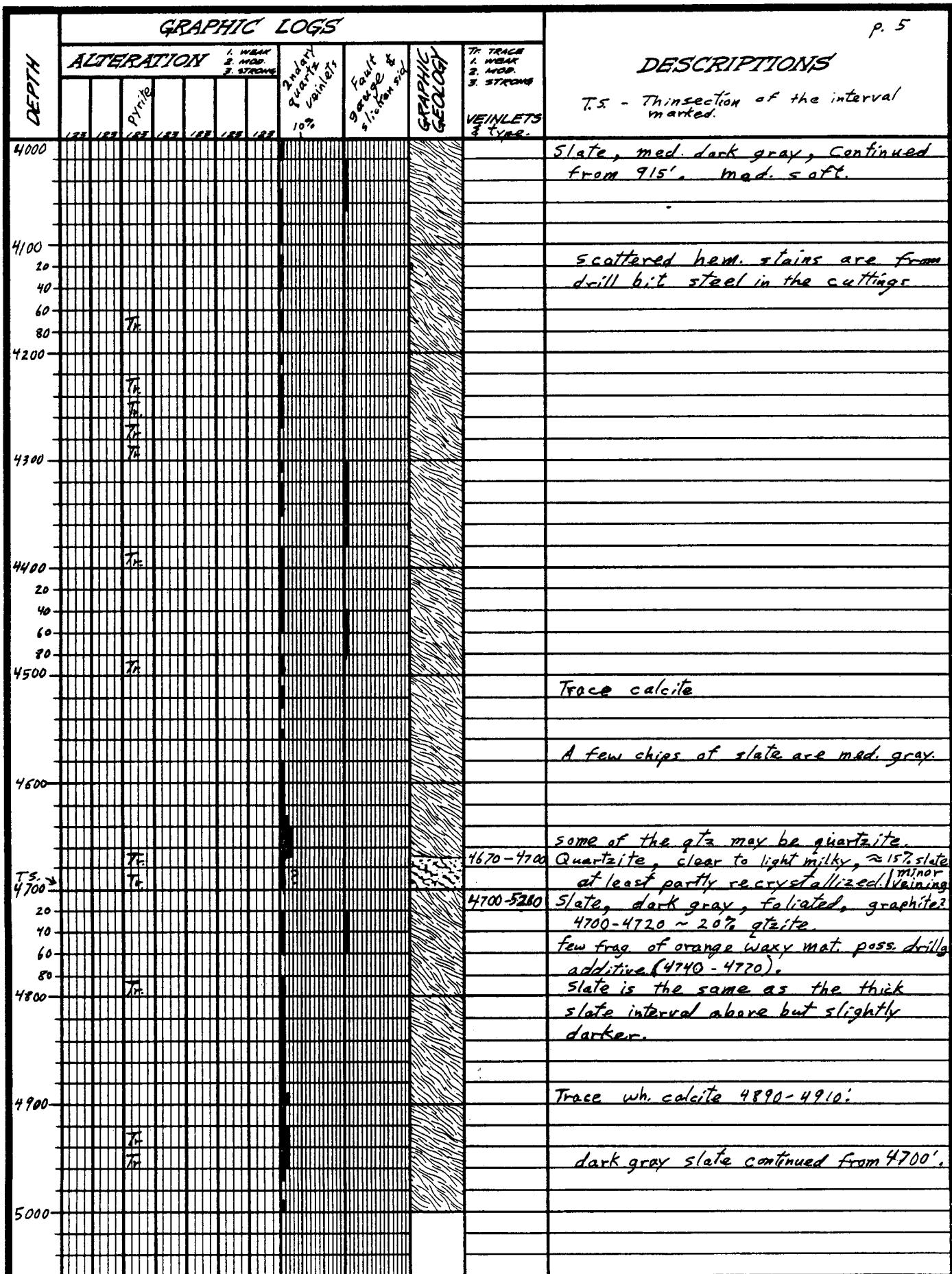
DEPTH	GRAPHIC LOGS										VEINLETS	DESCRIPTIONS		
	ALTERATION					WEAK 2. MOD 3. STRONG	Zoned Quartz veinlets	Foliation gouge & sicken side	GRAPHIC GEODES	TRACE 1. WEAK 2. MOD 3. STRONG				
	hem.	Pyrite	Py.	Py.	Py.	Py.								
1000	122	123	123	123	123	123	1070							
20														
40														
60														
80														
1100														
1200	Ts.													
1300	Ts.													
20														
40														
60														
80														
1400	Ts.													
1500	Ts.													
1600	Ts.													
20														
40														
60														
80														
1700														
1800	Ts.													
1900														
20														
40														
60														
80														
2000														

DRILL HOLE Campbell E #2 Phillips Petro.
LOCATION Humboldt House, Pershing Co., Nev.

LOGGED BY Sibbett

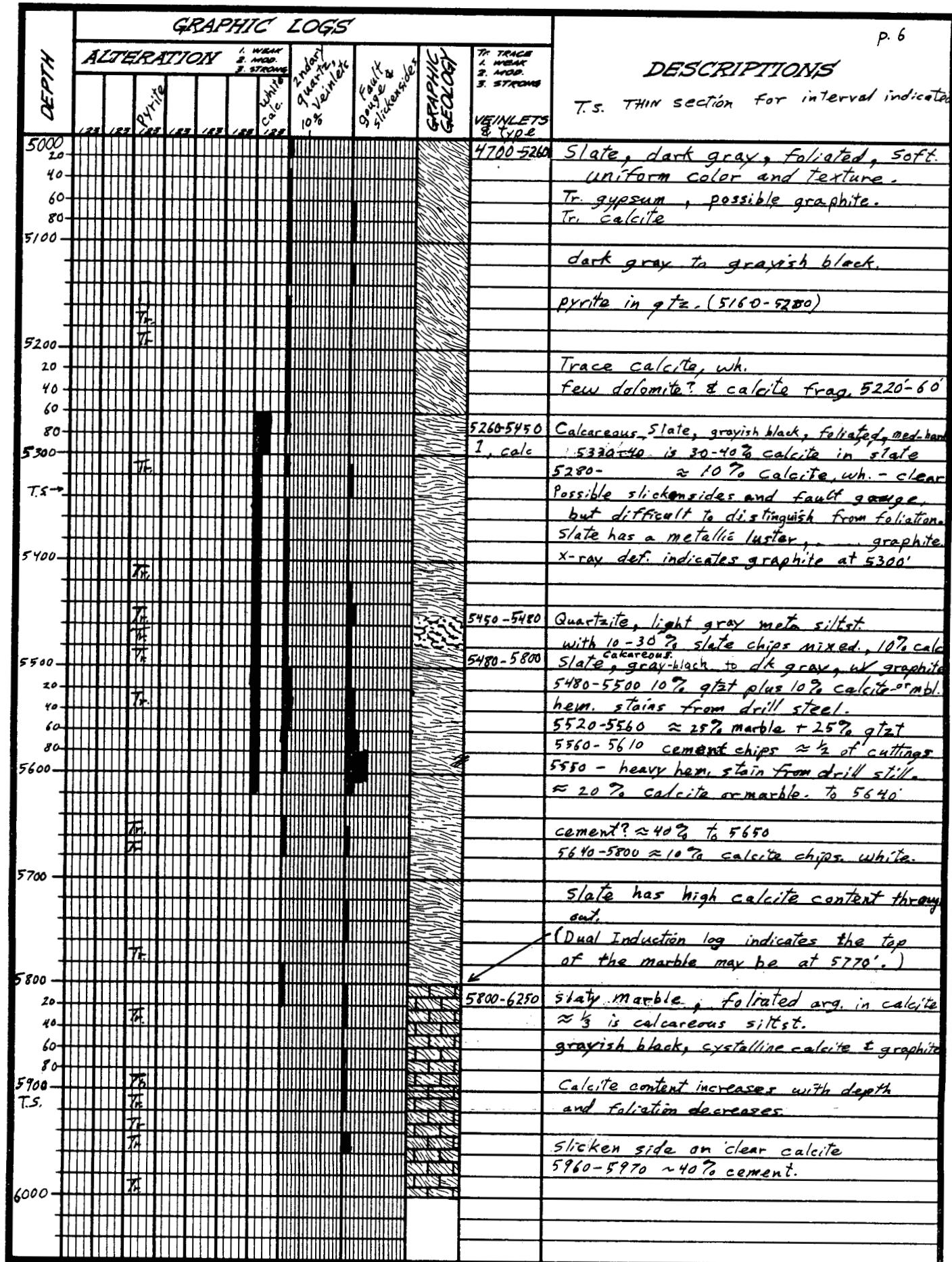
p. 3

DEPTH	GRAPHIC LOGS							DESCRIPTIONS	
	ALTERATION		1. WEAK 2. MOD. 3. STRONG	2nd alter. 10% veinlets	GRAPHIC GEOLOGY	TH. TRACE 1. WEAK 2. MOD. 3. STRONG	VEINLETS		
2000	Pyrite							Slate, med. dk gray (continued from 915')	
2100								foliation planes not folded. very uniform slate	
2200								Trace of calcite in slate.	
2300								Med. dark gray slate (continued)	
2400								The slate is soft and therefore low grade slate, but the mica and foliation is moderately well developed.	
2500	Th					I. gtz		pyrite not in the gtz .	
	Tr					I. gtz			
	Tr					I. gtz			
2600	Th					Tr. gtz			
2700	Th					Tr. gtz		wrinkled foliation surfaces.	
2800	Th					I. gtz		Pyrite occurs as free frag. or in slate chips.	
2900	Th					I. gtz			
3000	Th					I. gtz		Slate continued from 915', and is unchanged, very uniform with only gtz content varying.	


DRILL HOLE Campbell F #2 Phillips Petro-
LOCATION sec. 15, T. 31 N., R. 33 E., Humboldt House, Nev.

LOGGED BY Sibbett

DEPTH	GRAPHIC LOGS										VEINLETS & TYPE	DESCRIPTIONS	
	ALTERATION			1. WEAK 2. MOD. 3. STRONG		INDIRECT QUARTZ VEINS		Fault gouge & slickens.		GRAPHIC GEOL.			
3000	125	125	125	125	125	125	125	10%				1 2 1/2	Slate, med. dark gray and mod.
3020												1 9 1/2	soft, continued from 915'.
3040												1 9 1/2	
3060												1 9 1/2	
3080												1 9 1/2	Trace calcite, white, fine grained
3100												1 9 1/2	
3120												1 9 1/2	
3140												1 9 1/2	
3160												1 9 1/2	
3180												1 9 1/2	
3200												1 9 1/2	
3220												1	
3240												1	
3260												Tr. gtz	milky gtz
3280												Tr.	
3300												Tr.	
3320												Tr. gtz	
3340												Tr.	Foliation plane rippled in 2 directions
3360												Tr.	
3380												Tr. gtz	
3400												Tr.	Milky to clear gtz
3420												Tr.	There is no alteration of the slate around the gtz veinlets.
3440													
3460													
3480													
3500													
3520													
3540													
3560													
3580													
3600													
3620													
3640													
3660													
3680													
3700													
3720													
3740													
3760													
3780													
3800													
3820													
3840													
3860													
3880													
3900													
3920													
3940													
3960													
3980													
4000													


DRILL HOLE, Campbell E #2 Phillips Petro.
LOCATION Sec. 15, T. 31 N., R. 33 E., Humboldt House, Nev.

LOGGED BY Sibbett

DRILL HOLE Campbell E #2 Phillips Petro.
LOCATION Sec. 15, T. 31N., R. 33E., Pershing Co., Nev.

LOGGED BY Sibbett

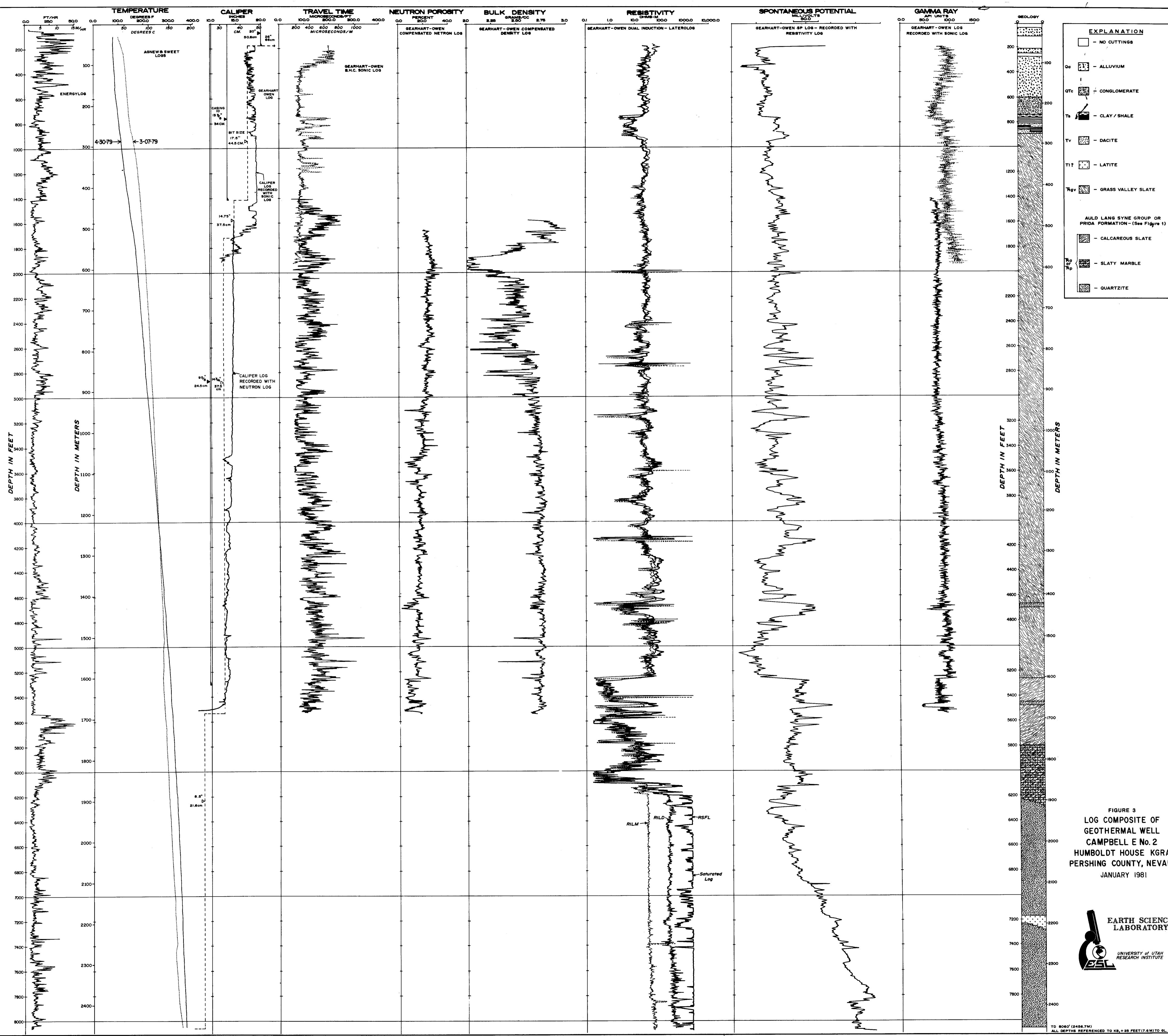
DRILL HOLE Campbell F #2 Phillips Petro.
LOCATION Sec. 15, T. 31N, R. 33E, Humboldt House

LOGGED BY Sibbett

p.7

DEPTH	GRAPHIC LOGS										DESCRIPTIONS	
	ALTERATION			1. WEAK 2. MOD. 3. STRONG								
	1200	1220	1240	1260	1280	1300	1320	1340	1360	1380		
6000												
6100												
6200												
6300												
T.s.												
6400												
6500												
6600												
6700												
6800												
6900												
7000												

DRILL HOLE Campbell E #2 Phillips Petro.
LOCATION Sec. 15, T. 31 N, R. 33 E., Humboldt House, Nev.


LOGGED BY Sibbett

DEPTH	GRAPHIC LOGS										VEINLETS	DESCRIPTIONS
	ALTERATION					1. WEAK 2. MOD. 3. STRONG	Pseudo- gouge 25% / cleat sides 25% 50%	GRAPHIC GEOL.	TR. TRACE 1. WEAK 2. MOD. 3. STRONG			
	Pyrite	Chlor.	Cal/c.	Cal/c.	Cal/c.							
7000												
7100												
7150												
7200												
7250												
7300												
7400												
7500												
7600												
7700												
7800												
7900												
8000												
8100												
8200												
8300												
8400												
8500												
8600												
8700												
8800												
8900												
9000												
9100												
9200												
9300												
9400												
9500												
9600												
9700												
9800												
9900												
10000												
T.D. 60												

DRILL HOLE Campbell E #2 Phillips Petro.
LOCATION Sec. 15, T. 31 N., R. 33 E., Humboldt, Nev.

P. 8

LOGGED BY Sibbett

