fV. LBL-30096

-------------------------------------------------- VY4 R0 o) E—

Lawrence Berkeley Laboratory

UNIVERSITY OF CALIFORNIA

Materials & Chemical
Sciences Division

Low-Frequency NMR and NQR with a ¢d SQUID Amplifier

N.-Q. Fan
(Ph.D. Thesis)

November 1990

Prepared for the U.S, Department of Energy under Contract Number DE-ACQ3-76SFO0O098*
bio Iri JU/ION oP iHi# uOCUiVI™i  ulN*L*cVii i



DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image
products. Images are produced from the best available
original document.



DISCLAIMER

This document was prepared as an account of work sponsored
by the United States Government. Neither the United States
Government nor any agency thereof, nor The Regents of the
University of California, nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of
any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial products process, or
service by its trade name, trademark, manufacturer, or other-
wise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government
or any agency thereof, or The Regents of the University of Cali-
fornia, The views and opinions of authors expressed herein do
not necessarily state or reflect those of the United States
Government or any agency thereof or The Regents of the
University of California and shall not be used for advertising or
product endorsement purposes.

Lawrence Berkeley Laboratory is an equal opportunity employer.



LBL—30096

DE91 011829

Low-Frequency NMR and NQR with a dc SQUID Amplifier

Nong-Qiang Fan
Ph.D. Thesis

Department of Physics,
University of California
Berkeley, CA 94720

and

Materials Sciences Division
Lawrence Berkeley Laboratory
University of California
Berkeley, CA 94720

November 1990

This work was supported by the Director, Office of Energy Research, Office of Basic
Energy Sciences, Materials Sciences Division of the U.S. Department of Energy under
contract number DE-AC03-76SF00098.



Low-Frequency NMR and NQR Spectrometer Based on a dc SQUID

by

Nong-qiang Fan

Abstract

A sensitive Fourier-transform spectrometer based on a dc SQUID (Superconducting
QUantum Interference Device) has been developed for the direct detection of nuclear
magnetic resonance (NMR) in zero applied magnetic field and pure nuclear quadrupole
resonance (NQR) at low frequencies. The motivation to detect zero field NMR and NQR
is to provide a new high resolution spectroscopy technique at frequencies below 200 kHz
to study ultra-weak interactions in chemicals and materials . By comparing the sensitivity
of a SQUID amplifier with that of'a conventional semiconductor amplifier, it is shown that
a SQUID amplifier is essential for the direct detection of low frequency resonant signals.
The spectrometer has a frequency response extending from about 10 to 200 kHz, and a
recovery time (after the magnetic pulse is removed) of about 50 (is. The spectrometer is
used to detect NMR spectra from Pt and Cu metal powders in a magnenc field of 6 mtesla,
and NQR spectra from :D in a tunneling methyl group and 14N in NH4CIO4. Finally, the

zero field NMR spectrum from a quantum tunneling methyl group is calculated.
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CHAPTER 1

INTRODUCTION

In this thesis, I describe a spectrometer involving a dc Superconducting QUantum
Interference Device | (SQUID) for the direct detection of nuclear magnetic resonance?
(NMR) and nuclear quadrupole resonance 2 (NQR) at frequencies below 200 kHz. The
spectrometer is designed to detect three classes of spectra: (i) NMR spectra, which arise
from the interaction of'a nuclear spin with an external magnetic field, (ii) NQR spectra,
which arise from the interaction of the electric quadrupole moment of a nucleus (with spin
[ > 1) with the local electric field gradient, and (iii) zero-field NMR (ZFNMR) spectra3-4,
which arise from the interaction of a nuclear spin with the local magnetic field generated by
neighboring spins. While the applications of low-frequency NMR are relatively restricted,
for example, low-temperature thermometry using Cu or Pt powder,5 low-frequency NQR
and ZFNMR are of considerable interest in chemistry and condensed matter physics. One
example is 2D NQR 4, which can be used to obtain information about organic molecules in
which protons are selectively replaced by deuterons; 5Be, and 14N also have low NQR
frequencies in nearly symmetric environments (for example, 14N in NH4+). In the case of
ZNMR, the frequency is low because the local magnetic fields are typically below | mtesla;
for example, water molecules in hydrated crystals have a frequency of about 42 kHz.

The major difficulty in observing resonance signals at a low-frequency f'is their
small amplitude. At a given temperature, the power coupled to a tuned circuit with quality
factor Q is proportional to Qf3, so that the power available at low frequencies is many
orders of magnitude lower than that from high-frequency resonances at (say) 10's of MHz.
Because of this difficulty, methods have been devised to detect low-frequency NQR and
ZFNMR indirectly. For example, one can derive the quadrupole or dipole-dipole

interactions from a high-field NMR spectrum.6 This technique usually requires a single



crystal; with a powder sample, much of the quadrupole or dipole-dipole information may be
lost because of the broadening of the high-field NMR spectrum by powder averaging.7 An
alternative method is magnetic field cycling3-4'S, which enables one to obtain high
resolution NQR and ZFNMR spectra from powder samples. This technique, however,
determines the zero-field free induction decay (FID) signal point by point; since only one
point is obtained from each field cycling process, the procedure is time-consuming. The
technique also requires the sample to have a long longitudinal relaxation time Ti to ensure
the field cycling process is adiabatic. More recently, a third method of observing ZFNMR
has been introduced in which the sample is rotated rapidly in a high magnetic field and
appropriate sequences of radio frequency (if) pulses are applied.9 To our knowledge, this
technique has not yet been applied to NQR.

Compared with indirect detection techniques, direct detection of NQR and ZFNMR
has several advantages. It allows one to use powder samples, and to obtain the spectra
more quickly, since the entire FID signal is obtained in a single measurement. It enables
one to implement two-dimensional spectral( techniques more easily. However, to detect
the low-frequency signal directly, one needs an extremely low-noise amplifier, and the dc
SQUID correctly configured, is by far the most sensitive available in the frequency range
of'interest. Our spectrometer is based on such a SQUID operated in a flux locked loop
with an externally triggered recover circuit, a configuration similar to that developed by
Friedman eta/.11 to study low-frequency NMR (< 50 kHz) in 3He at millikelvin
temperatures. However, our requirements are more demanding: the signal power available
at liquid 4He temperatures is many orders of magnitude smaller than that at 20 mK.
Furthermore, the transverse relaxation time (To) in a solid is shon, so that the amplifier
must recover very quickly from the rf pulse that initiates the FID. In addition, to excite all
the resonances over a large bandwidth with a single magnetic pulse, the pulse length must
be short and consequently of large amplitude, compounding the difficulties of a short

recovery time. A preliminary report of part of this work has been published previously.12



Chapter 2 compares the sensitivity of SQUID and conventional Amplifier. Chapter 3
Compares the difference in spectra resolution between the high field NMR spectra and two
other kind of spectra: zero field NMR an pure NQR spectra. Chapter 4 describes the
spectrometer based on a DC SQUID and presents some experimental results. Finally,

Chapter 5 deals with the zero field NMR spectra from a tunneling methyl group.



1. J. Clarke, NATO ASI Series Vol. 59, Superconductive Electronics, edited by
M.Nisenoff and H. Weinstock (Springer, Berlin, 1989), p.87.

2. A. Abragram, Principles of Nuclear Magnetic Resonance (Oxford, London, 1961); C.
P. Slichter, Principle ofMagnetic Resonance, 2nd edition (Spring-Verlag, Berlin, 1980).
3. D. P. Weitekamp, A. Bielecki, D. Zax, K. Zilm, and A. Pines, Phys. Rev. Lett. 43, 1791
(1979).

4. D. B. Zax, A. Bielecki, K. W. Zilm, A. Pines and D. P. Weitekamp, J. Chem. Phys. 83,
4877 (1985).

5. D. P. Hudson, H. Morshak, R. J. Soulen, Jr., and D. B. Utton, J. Low Temp. Phys.
20,1 (1975).

6. A. Abragram, ref.(2), Chap. VIL

7. G. F. Pake, J. Chem. Phys. 16, 327 (1948).

8. A. Bielecki, D. B. Zax, K. W. Zilm, and A. Pines, Rev. Sci. Instrum. 57, 393 (1986).

9. R. Tycko, Phys. Rev. Lett 60, 2734 (1988).

10. R. R. Ernst, G. Bodenhausen, and A. Wokaun, Principle of Nuclear Magnetic
Resonance in one and two dimensions (Oxford, New York, 1987).

11. L. J. Friedman, A. K. M. Wennberg, S. N. Ytterboe, and H. M. Bozler, Rev. Sci.
Instrum. 57,410 (1986).

12. N. Q. Fan, M. B. Heaney, J. Clarke, D. Newitt, L. Wald, E. L. Hahn, A. Bielecke, and

A. Pines, IEEE Trans. MAG-25, 1193 (1989).



CHAPTER 2

COMPARING SENSITIVITY OF SQUID AND CONVENTIONAL

AMPLIFIER

Sensitive SQUID preamplifiers have been developed in a wide frequency range:
from magnetometers that operate down to zero frequency to rf amplifiers that operate up to
300 MHzl. These sensitive amplifiers have many applications, for example, they can be
used as preamplifiers in NMR and NQR spectrometers2’3. It is natural, therefore, to ask
how much improvement in sensitivity one can achieve by replacing the conventional
preamplifier in a NMR system with a SQUID preamplifier. To answer this question, we
need to find a figure of merit that can be used to compare these two different classes of
amplifiers. One such a figure of merit is the noise temperature of an amplifier, which is
defined in Sec. I. In that section, I discuss and compare the noise temperatures of SQUID
and conventional amplifiers. In Sec. II, to find out what is the smallest NMR signal one
can detect with or without SQUID amplifiers, I calculate the signal to noise ratio in four
detection schemas: 1) a tuned circuit with a conventional amplifier, 2) an untuned circuit
with a conventional amplifier, 3) a tuned circuit with a SQUID amplifier and 4) an untuned
circuit with a SQUID amplifier. By comparing the signal to noise ratios of these circuits, in
Sec. 111, I conclude this Chapter with the answers to the question as whether a SQUID
amplifier should be used, whether a tuned circuit should be used, and more specifically
why a SQUID amplifier has to be used to detect directly ZFNMR and low frequency

NQR.



I. Noise Temperature of SQUID and Conventional Amplifier

In this section, I first introduce the concept of noise density; then I discuss the noise
temperature of conventional amplifiers and SQUID amplifiers; finally, I compare the noise

temperatures of conventional and SQUID amplifiers.

A. Noise density

I introduce the concept of voltage noise density and current noise density with a
specific example: the Johnson noise from a resistor. Fig. 1(a) shows a resistor with
resistance R at temperature T; the resistor is in an open circuit Because the electric carriers
in the resistor undergo thermal fluctuations, there is a random voltage VN across the
resistor. This noise is the Johnson noise. The time average of VN is zero, < VN >=0. If
the voltage is measured within a bandwidth B, the time average of the square of VN is
proportional to the obser/ation bandwidth, < VN2 > = SyB; the proportional constant Sy
is the voltage noise density. The voltage noise density due to Johnson noise is given by
Nyquist formula,

Sv = 4kBTR. (2.1)
Fig. 1(b) shows the resistor in a closed circuit; the current noise IN due to the Johnson
noise is measured within a bandwidth B. The time average of IN is zero, < IN>=0. The
time average of IN2 is proportional to the observation bandwidth, < IN2 > = Sy B; the
proportional constant Si is the current noise density. The current noise density due to the
Johnson noise is given by formula

Sy = 4kBT/R. (2.2)

The concept of noise density can be extended to the case that the noise is not white,
where < VN2 > and < IN2 > are not directly proportional to the observation bandwidth. In
general, if the voltage noise density is measured from frequency fj to f2, the time average of

VN2 is given by



< VN > = (41"TR)B

—12> = (4kBT/R)B

XBL 9010-4754

Fig. 2.1 (a) Voltage noise and (b) current noise from resistor R at temperature T.



h

<vN2>= Jsv(f)df, (2.3)
fl

where the voltage noise density Sv(f) is a function of frequency. Ifthe observation
bandwidth AB = f2 - fi is small so that Sv(f) is approximately a constant, the time
average of VN2 is again direcdy proportional to the observation bandwidth,

< VN2 > = Sv(f) AB. 24

The voltage noise density is defined formally by the Fourier transform of the *

correlation function VN(0) VNW |
+00

s\z(f)::‘]q% J VN(0) VN(x)exp(j27tfx) dx. 2.5)

The correlation function VN(0) VNAIIS the ensemble average of the product of VN(0) and
VN(x), the voltage noises at time t = 0 and at time t = x, respectively.

Similarly, the current noise density is defined by

+©o

|
SKf) = J IN(0) IN(x) exp(j2jtfx) dx, Q2.6)
-0D

and the correlation noise density of the voltage and current by

4-00

1
SVKD = ~2n J VN(0) IN(X) exp(j27tfx) dx. (2.7)

Again, if the observation bandwidth AB is small,
< IN2 > =Si(f) AB, (2.8)
<VN IN> = Svi(OAB. 2.9
In the rest of this thesis, [ will constantly use AB to represent an observation bandwidth

within which all the noise densities are constants.



Finally, the random noise processes discussed through out this thesis are both

stationary and ergotic. In a stationary process, the ensemble average of a variable A at
time t, A(t), is equal to the assemble average of the variable at time t+x, A(t+x); for
example, VN(0) VN(T) = VN(O VNO+T). In an ergotic. process the ensemble average of a

variable A, A, is equal to its time average, <A>; for example, VNO) VNW = <Vtf(t)>.

B. Noise temperature of conventional amplifier

(a) Definition of noise temperature

Fig. 2.2 shows a circuit in which a resistor with resistance R is connected to the input
of an ideal voltage amplifier. The resistor is at temperature T, and the ideal voltage amplifier
has an infinite input impedance. The noise properties of an amplifier can be modeled by
two independent noise sources as shown in the figure: a voltage noise source (with zero
input impedance ) which generates a random voltage VN with < > determined by the
voltage noise density of the amplifier Sy, < > = Sy AB, and a current noise source
which generates a random current IN with < IN xietermined by the current noise density
of'the amplifier Si, <IN >=IN AB. The time average of the square of the total noise
voltage \fs[£ at the input of the amplifier is

< > = 4kBTRsAB + SyAB+SiRsAB. (2.10)
The first term is due to the Johnson noise from the resistor, the second term is due to the
voltage noise of the amplifier, and the last term is due to the current noise of the amplifier
(the current noise injects into the resistor and generates a voltage noise across the resistor).
The total voltage noise is higher than the Johnson noise from the resistor Rs at temperature
T, but it is equal to the Johnson noise from the resistor at a higher temperature T + TN, that
is < VNL > = 4I<B(T + TN)RSAB, (2.11D)
where TN is defined as the noise temperature of the amplifier. Using Eq. 2.10 and

Eq. 2.11, we find



<VA> =SVB

XBL 9010-4720

Fig. 2.2 Resistor Rs connected to input of amplifier modeled by voltage noise source

and current noise source



4kBTNRs = Sy +Si Rg, Q.12

or

Sy +Si R<

TN=" 4kBRs - (2.13)

The noise temperature TN , which clearly depends on the source impedance Rs, is
optimized if the optimization condition, 9TN /9Rs= 0, is satisfied. The minimal noise
temperature is

"18=(SvSi)1/2/2kB, (2.14)

and the optimization condition can be written as

Rs = RN=(Sv/Si)1/2, (2.15)
where RN is defined as the noise impedance.

In most cases, the source impedance Rs is not equal to the noise impedance RN and
the noise temperature is not optimized. But the noise temperature can be optimized by
matching the source impedance with the noise impedance; this can be achieved by using
either a transformer or a tuned circuit. Figure. 2.3(a) shows a source resistor connecting to
an amplifier via a transformer. Fig. 2.3(b) shows that via a tuned circuit. The transformer
has a turns ratio N; the tuned circuit has a quality factor Q. The impedance at the input of
the amplifier is Z = N2RS for the case with a transformer, and Q = N2RS for the case with a
tuned circuit. The noise temperature of the amplifier in both cases are given by the same
equation,

Sy-+Siz2
TN" 4kBZ (2.16)

The noise temperature is optimized if the optimization condition Z =RN is satisfied, and the
minimal noise temperature T” is reached, 1$ = (SySi )1/2/ 2kB. Therefore, in the case
Rs * RN, the noise temperature can be minimized by using either a tansformer with a turns
ratio N=y RN/RS , or a tuned circuit with a quality factor Q=A/ RN/RS + Because the
amplifier is an ideal voltage amplifier, the minimal noise temperature of an untuned

amplifier is equal to that of a tuned amplifier.
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Fig. 2.3 Resistor Rs connected to input of amplifier (a) via transformer,
and (b) via tuned circuit.

12



b) Noise figure and noise number

Other parametersare are also used sometimes to characterize the sensitivity of an
amplifier, for example, noise figure and noise number. Noise figure (NF), in units of
decibels (dB), is defined by the equation

Sy +Sj R?
NF = 10 Igio[ 1+-4k--T=—~] (dB), (2.17)

where TR = 295 K. The noise figure is related to the noise temperature by
NF = 10 1gi0[ 1+ (TN/TR) | (dB). (2.18)

In the limit TN << TR,
TN=69T1) (K) (2-19)

Figure 2.4 shows the noise contours — noise figures as functions of the input impedance
and signal frequency -- of an amplifier, PAR 113. Table 2.1 lists some converting factors
between the noise figure and noise temperature. The minimal noise temperature of the
amplifier, PAR 113, is about 3 K.

Like noise figure, noise number is also related to the noise temperature; it is defined

by 4
I
nN ~ exp(hco/kBTN) - | (2.20)

which in the keTN >> fico, reducers to

kBTN
nN ~  Rco- Q.2h

Here, HN is the average number of photons ( with energy Rco ) fluctuating in the circuit 5.
The noise power PN within a bandwidth AB is deterimined by ON.
PN = nNRcoAB. 2.22)
Finally, the most sensitive linear phase conserve amplifier is the quantum limited
amplifier; its sensitivity is only limited by the Heisenbeg uncertainty principle. The noise
number of the quantum limited amplifier is

"8 =1: (2.23)

correspondingly, the noise temperature of the quantum limited amplifier is



Source Resistance &)

0.5dB
0.2 dB
0.05 dB
0.05 dB
10 dB
15 dB
20 dB
30 dB
40 dB

Frequency (Hz)

Fig. 2.4 Noise contour of PAR-113.

XBL 9010-4727
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N. F. (dB) TN(K)

0.05 3.4
0.1 6.9
0.2 13.9
0.5 36.0

Table 2.1 Converting factors between noise figure and noise temperature.



16
A~ o (224)

Since the quntum limited amplifier has HN = 1, the noise number characterizes how may

times less sensitive an amplifier is compared with the quantum limited amplifier.

C. Noise temperature of SQUID amplifier

a) Principle of DC SQUID

A clear and complete discussion of DC SQUIDs can be found in Ref. 1. Before
discussing the noise temperatures of SQUID amplifiers, | only summarize some major
properties of DC SQUIDs. As shown in Fig. 2.5(a), a DC SQUID consists of a
superconducting ring with self inductance L and two Josephson junctions. Each junction
has a critical current Iq and is shunted with a resistor ofresistance R. The I -V
characteristic of a SQUID depends on the amount of the flux O in the superconducting
loop; the [ - V curves with O =n Oq and O = (n + 1/2)Oq are shown in Fig. 2.5(b). When
the SQUID is biased properly with a constant current h, as shown in Fig. 2.5(b), the
voltage across the SQUID is a periodic function of O. The V- O curve is shown in Fig.
2.5(c). Assuming the flux in the loop is biased at a constant flux d>b, any changes of flux

Ad>« <bq will induce a change of the voltage across the SQUID AV, and the ratio is

AV
A0 (| = Ve, (2.25)

where V'® is the transfer coefficient. Thus, a SQUID is simply a flux to voltage
transducer. As an example, at the bottom of Fig. 2.5(c), we show a sinusoidal flux signal
with peak to peak value Opp as a function of time; at the left side we show the induced
voltage signal as a function of time. The peak to peak value Vpp is determined by the
transfer coefficient V4,

Vpp = V(p Opp. (2.26)



min Vmax

XBL 9010-4726

Fig. 2.5 (a) Schematic, (b) [ vs. V curves, and (c) Vvs. O curve of SQUID,
showing input signal converted to voltage signal across SQUID.
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b) Noise temperature of SQUID amplifier

The noise properties 6 of a bare SQUID can be characterized by the noise density of
the flux in the SQUID loop So, the noise density of'the circulating current in the loop Sj,
and the correlation noise density between the flux and the circulating current Soj* + The
time average of the square of the flux noise < > and of the circulating noise < IN >»
and the time average of the product of the flux and the current <ONJN> are determined by

the equations

< ON > = SmAB, (2.27)
<JN > =SjAB, (2.28)
<ONJN> = SCDIAB . (2.29)

For a SQUID of optimized performance. So, L"Sj and LSoj are comparable in amplitude.
In almost all applications, signals are coupled into a SQUID via an input coil As
shown in Fig. 2.6, the self inductance of the input coil is Iq, the self inductance of the
SQUID is L, and the mutual inductance between the pick up coil and the SQUID is M.
The mutual inductance M is related to Lj and L by M2 = oc2LiL, where a2 is the coupling
coefficient; the impedance connected to the input coil is Rs+jY. In general, the dynamic
properties (e.g. Vo) and the noise properties (e.g. So, Sj and Soj) ofa SQUID are
influenced by the presence of the input coil and circuit. But one can neglect the influence of
the input coil and the circuit in the limit that the coupling coefficient a2 << 1; in this
approximation, Vo, So, Sj and SOJ are constants.
Because of the input circuit, the total flux noise in the SQUID loop ONE is the sum of

the noise from three sources 7: the flux noise of a bare SQUID ON, the flux noise induced

* As a convention, most authors use parameters Sy, Sj and Svj to characterize a SQUID. These
: . : 2 .
parameters are related to the parameters used in my thesis by the relations: Sy = V<J,So, =  anci

Svj =VoSoj ' These two sets of parameters are completely equivalent



XBL 9010-4724

Fig 2.6 Source impedance Rs + Y connected to input coil Li of SQUID.
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by the circulating current noise IN, and the flux noise induced by the Johnson noise from
the disspative elements Rs in the input circuit ONJ, that is:
PNS= ““N- Rs H(Y+GQ)Lj) + (2.30)

The time average of the square of the total flux noise is

< > - < 0S >- 20) M2<®NJIN>Im"Rs+j(Y+cl)Li)

Rs+(Y-+ooLi) <JN >+< >. (231
where < > <J >and <ONJN> are given by Egs. 2.27, 2.28 and 2.29 respectively,
and the noise due to the Johson noise < > is given by

4kBTRsNr

<Mr>= e ~ AB. (2.32)

Rs+ (Y+ coL; )2

Substituting Egs. 2.27, 2.28, 2.29 and 2.32 into Eq. 2.31, we have

! [ Rls <>+ (coLi)2 5~+ 4kBTRsM2] AB, (2.33)

= ” 7 Rs+ (Y+ coli 2

where

Sn, = So (1+ Y/coLi )2+ 2a2LSct.j (1+ Y/coLi)+ a4L2S;. (2.34)
If we imagine that the total flux noise are induced entirely by the Johnson noise from Rs at
a temperature T+TN , then,
-~ 4kB(TN+T)RsM2

< > =

—~ RO+ (1+Y/coLifs B (2:35)

where TN is the noise temperature of the SQUID amplifier. Comparing Eq. 2.33 and

Eq. 2.35, we have the noise temperature given by

Rz% So+ (coLj)2 So

TN = (2.36)
4kBRsAD

Since a function y = ax+b/x reaches a minimum ymjn = 2 (ab)l/2 when x = (a/b)I™ , then

the noise temperature reaches a minimum, TNmin , when
Rs = coLi (So/So) 17 2.37)

and the minimum noise temperature is given by



a)(S<frS<in)1/2

TNmin - 5y paop

(2.38)

The minimum noise temperature still depends on the value of Y. In the following I
will discuss the minimum noise temperature TNmin in three situations : TNmin of an

untuned amplifier (Y= 0), TNmin of a tuned amplifier at the resonant frequency (Y+ colj

=0), and the absolute minimum noise temperature of a tuned amplifier T, which is

obtained by optimizing TNmin further with respect to Y (STNmin/dY= 0).

(1) Minimum noise temperature of an untuned amplifier (Y= 0)7
Substituting Y =0 into Eq. 2.38 and Eq. 2.34, we have the optimization condition of

an untuned amplifier,

ASet>+ 2a2LSd>j + adL2Sj Y2

Rs = coLi . (2.39)
v S<]> y

and minimum noise termperature

CO[Seo(Sr+ 2crLSc&j + cT1ASH 2

N = 2kBa2l (2.40)

In terms of'the energy sensitivity of a SQUID,

S<p
E= oL (2.41)

the minimal noise temperature of an untuned amplifier is given by

T?n =---G-Oi€-2(1+ 2a2LSd)j/S<D + a4L2Sj/So)112 . (2.42)

kBa

In the limit cr« 1,
Tin=

kBa9 ) (2.43)

and the optimization condition is

Rs = col}j. (2.44)



(2) Minimum noise temperature of a tuned amplifier on resonance (Y+ colj = 0)8

The minimal noise temperature is a function of Y, and in general Y is a
function of frequency. At the resonant frequency of a tuned amplifier, the imaginary part of
the total impedance is zero, that is, Y+ coLi = 0. Substituting 1+ Y/Lj =0 into Eq. 2.34, we
have

So = cc4L2SJ . (2.45)

The minimum noise temperature at the resonant frequency, Eq. 2.38, becomes

Tif (SiS®)1", (2.46)

and the optimization condition becomes

Rs = coLi (a4L2Sj/So)1/2. (2.47)

(3) Absolute minimum noise temperature of a SQUID amplifier OTNmin/dY= 0)7
In the two cases discussed above (Y= 0 and Y+ coLi = 0 ), the minimum noise
temperature is not optimized with respect to Y. Instead of setting Y=0 or setting Y= - coL}

, the TNmin can be optimized further by minimizing So with respect to Y. Since So has

the functional form So = ax2+2bx +c (a = So, b = a2L.Soj, ¢ = a4L.2Sj, and

~A A
x= 1+Y/coLi), it has a minimum So = c -b /a,when the optimization condition x= - b/a is

satisfied. Therefore, if

1+ Y/Lj ——ct LS0J/SO0, (2.48)

So reaches the absolute minimum So

2
o0 .41 2 sJs®- SoJ
S<>—al_ So (2.49)

The optimization condition ( Eq. 2.37) becomes

crL.( SJISQ- SQN)12

Rs = wLr So (2.50)

and the minimum noise temperature (Eq. 2.38) becomes
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TN =~(SjSd,-S*2j)12, (2.51)

where is the absolute minimum noise temperature of an amplifier based on a DC

SQUID. Substituting Y = -1/coC into Eq. 48, we have,

€00

O =T AdSE R

(2.52)

where (0Q is the resonant frequency of the circuit. Equation 2.52 indicates that the lowest

noise temperature occurs off resonance.

D. Comparing noise temperatures of SQUID and conventional amplifiers
The noise densities of a DC SQUID -So, Sj and SOJ -- can be expressed in terms of

dimensionless constants Yo, Yj and Yoj,

So = 2kBTYoL2/R, (2.53)
L2Ss = 2kBT Yj LY/R, (2.54)
LSoJ = 2kBTY0]L2/R, (2.55)

where L is the inductance of the SQUID and R is the shunt resistance of each junction. In
terms of the dimensionless, the minimum noise temperature (Eq. 2.38 and Eq. 2.34)

becomes,

TNmin = Y/°Li )2+ =~ OW T<t)( 1+ Y/coLi)+ a4(Yj/Yo) ]12 T, (2.56)

and those TNmin with special values of Y become

TN" = ™2tTo(Yo+ 2a2 Yo+ adYj)]1/2 T, (Y=0) (2.57)
TNS = (YoYj )12-~ T, (1+ Y/coLi = 0) (2.58)
Tft = (YoYj - YSJ) 12-"~ T, ( 1+ Y/wLi = -a™0j/ Yo) (2.59)

where c00 = R/L is a characteristic frequency of the SQUID (see also Eq. 2.42, Eq. 2.46
and Eq. 2.51). For a SQUID with L =0.4 nH and R =6 Q, 1°=0)0/271 = R/2:tL= 2.4

GHz.



Based on the numerical calculation by C. D. Tesche and J. Clarke, ifa DC SQUID
has parameters (3 = 2IoL/ OQ = | and is moderately noise rounded( IttkeT/IcOo =0.05),

Y<D, YJ and Yoj have following values 9,

Y4, = 8, (2.60)
Yj = 5.5, (2.61)
Yos = 6. (2.62)

Substituting these values into Eq. 2.56, we have

TNmin = > [(1+Y/coLi Y2415 a2(1-+Y/coLiy+ 0.7 a4 11/2-RT. (2.63)

In Fig. 2.7, we plotted TNmin, in units of (co/co®)T, as a function of Y with a2=I1, a2=0.5

and a =0.2. Those TNmin with special values of Y are given by

= A(1+1.5 a2+ 0.7 a4)12-~T, (Y =0) (2.64)

CcC
Tif =6.6-"T, ( 1+ Y/eoLi=0) (2.65)
=2.8 ~T. ( 1+Y/coLi = -0.75a2) (2.66)

(see also Eq. 2.57, Eq. 2.58 and Eq. 2.59).

Here only Tl depends on a2:

0 o
fora - 1.0, TNl =14-"0T; (2.67)
foray=0.5, Trn= 22 © T (2.68)
Co
for a2= 0.2, T\n = 46 —5T. (2.69)

We note that for a2<< 1, Tfjll 1/ a~, so that it is imponant for an untuned amplifier to

have a tight coupling coefficient, but it is not imponant for an tuned amplifier.

The minimum noise temperatures are linearly proportional to the signal frequency and

the bath temperature. The varies minimum noise temperature ( Tfjfl ,T[(jcs and T$ ) as a
function of frequency f, at T =4.2K for the SQUID with L =0.4 nH and R = 8 Q and a2

= 0.5, are given by following equations
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Fig. 2.7 Minimum noise temperature T"min as function of Y.
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>>22 (a0 T = 39K( GHz) = 39mK( — = 39nK( —~ (2.70)
Tjf =6.6 ~1= 12K(GHz)=12mK(MH2) = 12"K(kHz), 2.71)

Tfi =2.8 T =4.9K( GHz) =4.9mK( — =4.9"K( (2.72)

and are plotted in Fig. 2.8. As a comparison, the noise temperature of the quantum limited
amplifier is also plotted in the figure with a shadowed line.

C. Hillbert and J. Clarke 8 measured the noise temperatures of this kind of SQUID at
100 MHz and 4.2 K, and found T#n = 3.8 £0.9K and Tjf§ = 1.7+ 0.5K; both ofthese data
points are plotted in the Fig. 2.8.

To compare the noise temperatures of these SQUID amplifiers with that of
conventional amplifiers, we plotted the noise temperature of PAR 113 as a function of
frequency. P. Styles et. al.*achieved a noise temperature of 7 K with a GaAs FET operated
at 45 MHz and at 4.2 K, which is also plotted in Fig. 2.8.

From Fig. 2.8, it is easy to conclude that SQUID amplifiers have a much lower noise
temperature than conventional amplifiers, especially at low frequencies.

Since the minimum noise temperature ofa SQUID is proportional to T/coO, lower
noise temperatures can be achieved by decreasing the bath temperature T or increasing the
characteristic frequency (0°; co”R/L is increased by decreasing L or increasing R. L is
decreased by making a SQUID with smaller dimensions; R can be increased if at the same
time the junction capacitance is decreased. Indeed, both ofthe approaches — decreasing T
and increasing co0 -- have been used to make SQUIDs with noise temperatures near

quantum limit  H.



T<*= 39 K (f/GHz)
Tr**= 12 K (f/GHz)
TJ, = 4.9 K (f/GHz)

noise temperature (K)

h)y  =0.007 K (f/GHz)

I 10°
frequency (Hz)
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Fig. 2.8 Comparison of noise temperatures of SQUID and conventional amplifier.

SQUID amplifier at 4.2 K:

(a) Minimum noise temperature of untuned amplifier (theoretical value),
(b) Minimum noise temperature on resonance (theoretical value),
(c) Absolute minimum noise temperature (theoretical value),
(d) Tuned amplifier at 100 MHz( C. Hillbert & J. Clarke),
(e) Ununed amplifier at 100 MHz( C. Hillbert & J. Clarke);
Conventional amplifier:
(0 PAR 113 at room temperature (data sheet),

(g) GaAs FET at4.2 K and at 45 MHz (P. Styles et a/.);
Quantum limited amplifier:

(b) Noise temperature of quantum limited amplifier ( TN =hco/ kulnZ).



n. Optimum Signal to Noise Ratio

In this section, I calculate the signal to noise ratio of a NMR signal in four detection
schemes: (i) a tuned circuit with a conventional amplifier, (ii) an untuned circuit with a
conventional amplifier, (iii) a tuned circuit with a SQUID amplifier and (iv) an untuned
circuit with a SQUID amplifier.

In the following calculation, we assume the same sample is used, with a FID signal
characterized by M(t)= MQ exp(jcot-t/T2), where MQ is the initial magnetization, co is the
NMR resonance frequency and T2 is the spin-spin relaxation time of the sample. We also
assume the pickup coil has a cross sectional area A. We optimize the signal to noise ratio
by varying the number of turns of the pickup coil N, and by varying other parameters of the
input circuit that couples signals from the pickup coil ino the preamplifier.

The emf induced by the FID signal is

Vo=jcoNABsS, (2.73)
where Bs = 4jtM is the magnetic field signal induced by the magnetization M. For the
reason of simplicity in the calculation, we define

PO= < Vo>/coLp, (2.74)

where < > indicates a time average over one cycle of the sine wave, and Lp is the self
inductance of the pick up coil. Since VQ is proportional to the variable N and Lp is
proportional to N2, PqQ does not depend on N (assuming the filling factor does not change);
therefore, in the following calculations of the signal to noise ratio, we may consider Lp as a
variable and PQ as a constant.

The meaning of PQ is illustrated by an example in which the pickup coil is a solenoid

with a length 1 which has a self inductance Lp = 47tN2A/fc. With the help of Eq.2.73, we

have PQ = co(A!. KN*/Stt). Since Al is the volume of the coil and is the energy

density, (A2. )(IV”/87t) is the total energy of the signal



U0 = (At )(I"2/8™M). (2.75)
Thus, Pq is related to the total energy of the signal UQ by the equation

PO =D UO. (2.76)

Because the magnetization Mq is proportional to the population difference An of'the
two energy levels involved in the NMR or NQR transition, and An is proportional to the

energy level splitting, An  AE/keT = fico/ksT, we see that Mo is proportional to to and

Po ~ COM

A. Tuned circuit with conventional preamplifier

The tuned circuit, shown in Fig. 2.9, has a resonant frequency (0=1A/LC with a
quality factor Q= coLp/Rs. The resonant frequency is equal to the NMR frequency. The
voltage signal across the circuit is

Vs=QVo, (2.77)
and the impedance is

Z= Q2RS. (2.78)
At the resonant frequency, the total voltage noise across the circuit is

VN=(Sv+SilZ|2+4kBIZIT)I/2ABI/2, (2.79)
where Sy is the voltage noise density of the preamplifier, Si is the current noise density of
the preamplifier, T is the bath temperature of the pick up circuit and AB is the observation
bandwidth.

Although the voltage signal to noise ratio can be used,

(SNR)V=IVs/VN], (2.80)
it is more convenient to use the power signal to noise ratio,

Ps <V$2>/1Z1

SNR=——cemmcereee ,
pN  <VN->/ZI (2.81)

Since the signal power



Fig. 2.9 Tuned input circuit with conventional amplifier.

Sv
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Fig. 2.10 Untuned input circuit with conventional amplifier.



PS=<V$2>/1Z1 (2.82)
we have
Ps=QPO, (2.83)

which is obtained by substituting Eq. 2.77 and Eq. 2.78 into Eq. 82. The larger the Q, the
larger the signal, and the better the signal to noise ratio. If the Q factor is fixed, the best
signal to noise ratio is determined by minimizing the noise power

PN=<Vn2>/IZI (2.84)
or

PN = (Sv/IZI+SiZI+4kBT)AB, (2.85)
which is obtained by substituting Eq. 2. 78 and Eq. 2.79 into Eq. 2.84. Ifthe optimization
condition,

Z= Q2r=VSv/Si, (2.86)

is satisfied, the noise power is minimized, and found to be

PS = (2VSVST”4kBT)AB. (2.87)

It can be expressed in terms of the optimized noise temperature of the amplifier,
=V SvSi/2kB (Eq. 2.14), that is,
PN = 4kB( TN +T)AB. (2.88)

Thus, the best signal to noise ratio is given by

(SNR)0 =

. (2.89)
dke( +T)AB
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B. Untuned circuit with conventional preamplifier

Fig. 2.10 shows the untuned circuit with a conventional preamplifier. The voltage
signal across the coil is

Vs=Vo, (2.90)
and the impedance of the coil is

Z=jcoLp. (2.91)
The voltage noise across the coil is VN=(Sv+S11Z|2) 1/231/2 The power signal to noise ratio

is is given by
Ps <V$2>/171

SNR= T == b7i7 (252)

where the signal power

Ps= <V§2>/171,, (2.93)
or

Ps = QPO, (2.94)
obtained by substituting Eq. 2.90 and Eq. 2.91 into Eq. 2.93. The noise power

PN =<Vn2>/IZI =(SV/IZI+SIIZ])AB. (2.95)

The total noise power is minimized if the optimization condition,

1ZI=VSv/Si, (2.96)
is satisfied and the minimal noise power is

P{] = 2VSVSi"B. 2.97)
Expressing P” in terms of the optimized noise temperature of the amplifier,
T~ =VSvS[/2kB ( Eq*), we have the minimal noise power

P{l = 4kB IN AB’ (2.98)

and the best signal to noise ratio
(SNR)0 =——-- 35--—-- : (2.99)

4kBTNAB



C. Tuned circuit with SQUID preamplifier
Fig. 2.11 shows a tuned circuit with a SQUID amplifier. The tuned circuit has a

resonant frequency 0=1A/(Lp+Lj)C with a quality factor Q=co(Lp+Li)/Rs. The resonant

frequency is equal to the NMR frequency. The total imaginary part of the impedance in the
circuit is Y+ colj, where Y is given by

Y =tolLp - . (2.100)

The time average of the square of the flux signal Os coupled into the SQUID is
< >M2

<<O| >=
=T R+ (Y+ coLi)2 @-10D

The time average of the square of the total flux noise in the SQUID is given by Eq. 2.53,

2 4KB(TN+T)RsM?

0f] > AB, ’ (2.102)
=7oL7= RE (YecoLip

where TN is the noise temperature of the SQUID amplifier. With the help of Eq. 101 and

Eq. 2.102, we have the signal to noise ratio

<02> <Vj >/Rs

NR =
S <92 Z>~ 4KkB(TN+T)AB (2.103)

At the resonant frequency, < >/ Rs is the signal power Ps coupled into the input circuit,

Ps=< V" >/Rs; (2.104)

correspondingly, 4ke(TN+T)AB is the noise power PN in the input circuit,

PN = 4kB(TN+T)AB. (2.105)
We can write the signal power Ps in terms of PqQ and Q,

»QPo.
rs " 1+ LjLp (2.106)

The signal power Ps decreases as the ratio L/Lp increases; therefore, we choose Li/Lp
much smaller than 1, and have

Ps = QPo. (2.107)
To maximize the signal, we chose Q as large as possible (assume that there is no
requirement on the bandwidth within which signals need to be coupled into the SQUID).

At the resonant frequency, if the optimization condition (Eq. 2.47),
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Fig. 2.11 Tuned input circuit with SQUID amplifiei_
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Fig. 2.12 Untuned input circuit with SQUID amplifier.



Rs = coLi (a4L2Sj/S<t>)1/2, (2.108)

is satisfied, the noise temperature in Eq. 2.105 is equal to the minimum noise temperature at

the resonant frequency given by Eq. 2.46,
'INS = (SJSct>)1/2/2kB. (2.109)

Under the optimization condition, the minimum noise power is

PN = 4kB(Tj(fs+T)AB, Q2.110)

and the best signal to noise ratio is

QPo

2.111
4kBaNes+T)AB @0

D. Untuned circuit with SQUID preamplifier
Fig 2.12 shows an untuned circuit with a SQUID amplifier. The time average of'the

square of the flux signal  coupled into the SQUID is obtained from Eq. 2.101 by setting

Rs=0 and Y= coLp,
9 <V2>M2
<0S=>S —— e Q2.112

The time average of the square of the total flux noise in the SQUID is obtained from

Eq. 2.33 and Eq. 2.34 by setting Rs = 0 and Y= coLp,
L2 Sel)

<< &> = » AB,
(Lp+L15

(2.113)

where

S<€ — Sep (1+ Lp/Lj )2+ 20¢*LS<i)j (1+ Lp/Lj)+ (c4L2SJ . (2.114)

With the help of Eq. 2.11, Eq. 2.113 and Eq. 2.114, we have the signal to noise ratio,
<02 > Po

SNR =
< dKjs>  2coc/at  (1+u)2-+2a2(l+uw)LS(0)j/Sc]>+eedL28j/Set> [ (-115)

Sep
where e = and u = Lp/L,

9
In the limit a~ << 1, the SNR becomes
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SNR= 10 ! 2.116
lax/a? (1+u)2 (2.116)

When the optimization condition u =1, or

Lp—Lj, (2.117)
is satisfied, the SNR has the maximal value

P
(SNR B=—"0 (2.118)
8coe/cr

This (SNR)® along with the optimization condition (Eq. 2.117) can also be obtained

by maximizing the flux signal coupled into the SQUID < > . In the limit or << 1,
maximizing SNR is the same as maximizing < Os >, since in that limit
So = §<D (1+ Lp/Lj )2, and the total flux noise in the SQUID given by Eq. 2.113 is a
constant (independent of the parameters of the input circuit),

<dfe>=Sct>AB, (2.H9)

and the SNR is proportional to < Q2 >,

<02 > <02>

A
SNR = — c~hR & < OF>. (2.120)

c C%o >
9
Maximizing < Of > given by Eq. 2.112, we have the same optimization condition as

Eq. 2.117, Lp = Lj. The maximal flux signal is
7 a?l < V2>
<<I>s>max= 4Lp u2 . Q2.121

and the best signal to noise ratio is

< Of *
(SNR )° = ¥ Zmax Po
SoAB 8 coe/a*
which is the same as Eq. 2.118. 2.122)

2
When or is not small, the best signal to noise ratio is obtained by maximizing the

SNR given by Eq. 2.115. The optimization condition is
u = 1+ 2orLSoj/S<fc + a4l.2Sj/So. (2.123)

and the best signal to noise ratio is
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(SNR )° = —~

8coc/a2 * 1+ a2LS0j/So + (1+ 2a2L.Soj/S$ + adL2gj/s<&) ' 2"+ 129

In terms of the minimal noise temperature of an untuned SQUID amplifier Tl (Eq. 2.24),

we have

Po
7@: K(a2), 2.125
(SNR AKBTn ( )

where K(az) is a correction factor,

2 (1+ 2a2LSd>j/S<D + a4L.2S;/Sd,)1/2
K(Ct} 1+ a2LS«i>j/So + (1+ 2a2LS(t,j/S<t) + a4L.2Sj/S<i,)1/2 (2.1206)

a2 (L2Sj/So)-(LS(Dj/S(t})2
28 i+ a2(LS<i)j/Sei)

In terms of V<D, YOJ andYj , we have

9. 1 a2 (YjYYoMYcw/Yo0)2
K =24+ 2.127
@) T c2(Y<pJ/Yo) ' ( )

The correction factor K(or) is almost a constant; for the SQUID discussed in Sec. ID
(Yd=8 YI=55and Y<w=6),

2 a4 2
K(a2) -1/2 =~{1+0.75a2) << 1. (2.128)

Therefore , (SNR )° becomes
Pq/2

(SNR)® =
4AkBTH

(2.129)

In reality, if of not so small, Eq. 2.125 -with K(czr) given by Eq. 2.126- is only an
approximation of the best signal to noise ratio, because of the screening effect: the
inductance L of the SQUID is reduced by the presence of the input circuitl2, and the
reduced inductance L' = LO-crLp/Lj). The SQUID L in Eq. 2.114 and Eq. 2.115 should
be replaced by L', and the change of the SQUID noise parameters (So. Sj and Soj) due to

the change of L should also be taken into account. As our purpose is not to calculate

accurately but to estimate reasonably the best signal to noise ratio (SNR )°, we will

continue the discussion about the (SNR )° of an untuned SQUID amplifier based on Eq.

2.129.



We summarize the signal to noise ratios of the above four circuits (Eq. 2.89, Eq. 2.99,
Eq. 2.111 and Eq. 2.129 by one equation:

(2.130)

where we take Q=1 for an untuned circuit with a conventional amplifier and Q =1/2 for an
untuned circuit with a SQUID amplifier, we have also introduced the concept of the system
noise temperature Tx, which is defined as follows: for an untuned circuit, the system noise
temperature is equal to the preamplifier noise temperature, and for an tuned circuit, the
system noise temperature is equal to the sum of the bath temperature and the preamplifier
noise temperature. The complete definitions of are listed in Table 2.2.

The minimum detectable power Pomin is defined by (SNR )° = 1, or

Pomin- 4kBT"AB/ Q. (2.131)

2
The minimal detectable voltage defined by Pomir™ < Vsmin>/°31"p (c-f- "9- 2.74), or

(< vLn>)1/2 = VAkBT£ABcoLp/Q (2.132)

The minimal detectable energy Uomin is defined by Pomin= wUomin (c.f. Eq. 2.76), or

Uomin — 4kBT£AB/ CoQ, (2.133)

and the minimal detectable magnetization by Uomin =(M {Z)min \'a (c-f- Eq- 2.75), or

/81 4kBTzABV/2
(2.134)

Here V is the effective volume of the sample (V depends on coil geometry and the filling
factor, for a solenoid with filling factor 1, V is equal to the value of the sample). The
larger the product coQV*, the smaller the minimal detectable magnetization Momin. The
minimal detectable NMR signal Momin is proportional to the square root of the system

noise temperature, so that the sensitivity of a NMR spectrometer can be improved by

decreasing the system noise temperature.



Tuned Untuned
Circuit Circuit
(on resonance)

Conventional Tz=T+ TS TE= TS
Amplifier
SQUID —_ T + TTM “« »-plln
Amplifier 1z

Table 2.2 Definition of system noise temperature



EL Conclusion

Whether or not one should use a SQUID preamplifier obviously depends on its effect
on system sensitivity. For an untuned circuit, the system sensitivity always improves as
the noise temperature of the preamplifier is decreased, until the noise temperature reaches its
quantum limit kgT” ~ hco. For a tuned circuit, if the preamplifier noise temperature is
larger than or comparable to the bath temperature, the system sensitivity can be improved
by using a preamplifier with a lower noise temperature, for example, a SQUID
preamplifier. But, on the other hand, if the bath temperature is much larger than the noise
temperature of the preamplifier, the system sensitivity cannot be improved by using a
preamplifier with a lower noise temperature; In this case, the sensitivity only can be
improved by decrease the bath temperature.

As an example we consider the case tof a tuned circuit at 4.2K. If a conventional
preamplifier with a noise temperature 50 K is used, the system noise temperature is 54 K,
dominated by the preamplifier noise. By replacing the preamplifier with a SQUID
preamplifier with a noise temperature of IK, one achieves a system noise temperature of
5 K, which is a factor of 10 improvement in signal to noise ratio. The use of a SQUID
with a noise temperature lower than 1K will not improve the system sensitivity any further.
However, if the bath temperature of the input coil is lowered to 1.5 K, the system noise
temperature changes to 2.5 K , which is another improvement of factor of 2.

Whether one should use a tuned circuit depends on how big the Q factor of the tuned
circuit is . The signal power coupled into a tuned circuit is a factor of Q larger than the
power coupled into the untuned circuit, but the system noise temperature of a tuned circuit
is larger than that of an untuned circuit: by a factor of (1$ +T)/ T$ times larger for a
conventional amplifier, and a factor of (T M+TyT" times larger for a SQUID amplifier.
Therefor, for a conventional amplifier, a tuned circuit has a better sensitivity, if one can

make the Q large enough so that Q > 1+T/TN; otherwise, an untuned circuit is better. For



a SQUID amplifier, ifone can make Q large enough so that Q > T/T*f  (we neglected
because Tt << T in most applications), then a tuned circuit has a better sensitivity;
otherwise, an untuned circuit is better. For the SQUID discussed in Sec. 1.D, using
Eq. 2.70 we can write the condition as Q > 100 MHz/f at T=4.2 K. Applying this
condition to a specific example, at 50 kHz to make a tuned SQUID amplifier more sensitive
than an untuned SQUID amplifier, we need the Q factor larger than 2 x 103, which is
formidably difficult at liquid helium temperature. The condition implies that in sensitivity
the lower the frequency the more favorable it is to an untuned amplifier to obtain the best
sensitivity. .

Finally, why can only a SQUID be used to detect directly ZFNMR and low
frequency NQR spectra ? The reason is that ZFNMR and the NQR spectra from some of
the nuclei ( e.g. 2D) have a very low resonant frequency 13, typically below 200 kHz; at
these low frequencies the ZFNMR and NQR signals are very weak, and a SQUID
amplifier has a much better noise temperature than that of a conventional amplifier (c.f. Fig.
2.8). Because PQ ™ 03, the signal coupled to an untuned circuit is proportional to (D3 and
the signal coupled to a tuned circuit is proportional to Qco3. The lower the resonant
frequency the weaker the signal, because of the requirement that the input circuit has to
cover signals over a large bandwidth ( from a few kHz to 200 kHz), one must use an
untuned amplifier. And because an untuned SQUID amplifier is much more sensitive than
an untuned conventional amplifier at low frequency ( at 50kHz, the noise temperature of
best semiconductor amplifier is more than 103 times higher than that of the best SQUID
amplifier), to detect ZFNMR and low frequency NQR spectra, an untuned SQUID

amplifier is essential.
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CHAPTER 3

COMPARISON BETWEEN HIGH FIELD NMR SPECTRA AND

ZERO FIELD NMR OR PURE NQR SPECTRA

In this chapter I will discuss the difference in spectral resolution between the high
field NMR spectra and two other kind of spectra: zero field NMR and pure NQR spectral.
The high field NMR spectra of a powder sample are broadened mainly by two types of
interactions: the dipole-dipole interaction and the quadrupole interaction. The dipole-dipole
interaction can be measured directly from the zero field NMR spectra; the quadruple
interaction can be measured directly from the pure NQR spectra. I will discuss the dipole-
dipole interaction and the ZFNMR spectra in Sec. I, and the quadrupole interaction and the
NQR spectra in Sec. II. In Sec. 111, I will calculate the transient response of'a quadrupole
system after a rf pulse is applied to the system.

In the following, I will use two frames: the laboratory frame and the molecular frame.
The laboratory frame is fixed in space; the molecular frame is fixed on the molecule of
interest, which rotates along with the molecule. [ will use x°, y° and z° to represent
respectively the unit vectors along the x, y and z axes of the laboratory frame, and X°, Y°
and Z° to represent respectively the unit vectors along axes X, Y and Z of the molecular
frame; | will use Ox, Oy and Oz to represent the components of a vector O in the laboratory

frame, and Ox, Oy and Oz in the molecular frame.



I. Dipole-Dipole Interaction

We consider a system that consists of two nuclei, coupled together by their dipole-
dipole interaction — each spin interacts with the magnetic field generated by the other. The
Hamiltonian of the system is the dipole Hamiltonian,

Hd = fi (Ddt Z»Z7 -3 (Ii-n)(12-n)], 3.D
where n is the unit vector pointing from one spin to other and G)d is a frequency
characterizing the strength of'the dipole-dipole interaction. The frequency
cod = 7172 R2/r3, where 71 and 72 are the gyromagnetic ratios of the two nuclei, and ris the
distance between the two spins. The frequency cod /27t is typically between | kHz and
30 kHz; for example, the distance between the two protons in a water molecular in a
hydrated crystal is about 1.8 A and C0d/2jt is about 28 kHz.

In a molecular frame where the Z axis is along the n direction, the Hamiltonian is
written as

Hd=h Wd[ 1112 -3 lizl2Z]- (3.2)
In the laboratory frame, by substituting the unit vector

n = sin0 cos 4 x° + sin0 sin () y°+ cos0 z° (3.3)

into Eq. 3.1, we can write the Hamiltonian as

Hd=hcod I (-DqT2 Y')q (3.4)
q

where Y (q is the second order spherical harmonic function, and T q is defined as
T = 747U0/5 (Li-12-3 lizl2z), (3.5)
T? = T>/675 (Lizl2++H1+12z), (3.6)

T? =-Vto/5 (Lizl2=). (3.7)



One property of T2 that will be used in the following calculation is the selection rule on

the matrix element (m | Im'"), where | m>and | m') are the eigenstates of [z= liz+ 12z

with eigenvalues m and m' respectively. The selection rule is

(m|T2|m") *0, onlyif m=m'+q. (3.9)

For simplicity, in the following discussion we assume the two spins are identical spin

1/2 nuclei with gyromagnetic ration y.

A. High magnetic field

In a magnetic field HQ, the total Hamiltonian is the sum of the Zeeman Hamiltonian
Hz = - ficoo (1iz+ 12z) and the dipole Hamiltonian H” where 0q is the Larmor frequency,
0Q =y Hgq. In the limit that coQ >> tod, the dipole Hamiltonian can be truncated by Hz. We
define the total angular momentum operator 12= (I1+I2)2 and the z component of the total
angular momenmm [z = liz+i2z.

Without the dipole Hamiltonian, the eigeinstate of the Zeeman Hamiltonian is | m),
which is the eigeinstate of Iz with eigenvalue m. The truncated Hamiltonian is calculated
with the help of Eq. 3.8:

H=(m| Hz+tHd | m)

— mficoo + ﬁcOd;i;,,0 4

(3.9)

Since the Hamiltonian commutes with both 12 and IZi the four energy levels can be
labeled by the eigeinvalues of these two operators. Three energy levels labeled with 1=1
are triplet state; one energy level labeled with [ = 0 is singlet state.

The transitions between different states can be induced by applying a rf magnetic

field Hi to the system. Since the total angular momentum I commutes with the



perturbation Hamiltonian H' = -7R Hp (I1+12), there is no transition between the triplet
states and the singlet state. We can consider the two classes of states separately. The
singlet state has no contribution to NMR spectra. The three triplet statesare| | 1), |1 0)
and | | -1); they are the eigenstates of | with 1=1 and the eigenstates of Iz with eigenvalues

1,0 and -1 respectively. The energies of the three states are:

E]1=(1 1IH|1 1>= Rcoo+ 14% (1-3 cos20),

(3.10)

Eio = = fi g
io=<1 O/H| | 0> O- d (1-3¢0s20), G.11)
EmM=<1-11H!1-1>=-ficoo+ 4 d(1-3 cos20). (3.12)

The energy levels, shown in Fig. 3.1, are shifted by the dipole-dipole interaction. The
amount of the energy level shift depends on the orientation of the molecule relative to the
external magnetic field. As illustrated in Fig. 3.2, the two resonant frequencies also

depend on the molecular orientation,

3cod .

cot=coq+ 4 (1-3 cos70). (3.13)
3cod -

co.=cog- 4 (1-3 cos20). (3.14)

With a powder sample, the spectrum is an average over all the possible molecular
orientations2. The probability of finding a molecular within solid angle dH is dn = d£2 / 4;t.
The probability that the resonant frequency is between co to (o+dco is

I |
dn =[ - 1 dD/dcotl + - 1 dQ/d(o.| ]da), (3.15)

with G+=co andco.=o0). Thus, the spectrum of a powder sample is given by

dn |
~ =~ Idcot/dcosO I'l -I- Idco./dcosO hl]. (3.16)

With the aid of Eq. 3.13 and Eq. 3.14, the equation describing the spectrum becomes

Aco .
L1 30oq (- 360(i2< A 00 < - 3cod4 )
T Ac® > Aco

s V2 (~300d/d< Aco < 3codid ) (3.17)

1°+-W5")2 ( 3c0d/4 < A o0o<3c0d?2).



€0 = con- 1-3 cos20)

Hd=0 Hd™O

XBL 9010-4718

Fig. 3.1 Energy levels of a pair of identical spin 1/2 nuclei.



~—|d %  Zot+4°d
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Fig. 3.2 Spectra of two spins system with molecules in different orientations
relative to external magnetic field.
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It is plotted in Fig. 3.3. Without other broadening mechanisms, the spectrum diverges at
frequencies co = coot 3c0d/4. In reality, the two spins in the molecule are not completely
isolated; they interact with the local magnetic field generated by the spins from other nearby

molecules. This interaction broadens the spectrum and removes the divergence.

B. Zero magnetic field

In zero magnetic field, the total Hamiltonian consists of the dipole Hamiltonian only.
In the molecular frame the Hamiltonian is H = H” = fi cout ~/"2 *3 lizl2z]- Since the
Hamiltonian commutes with 12, the eigenstates can be classified as triplet and singlet.
Only the transitions between the triplet states contribute to the zero field NMR spectrum.
The Hamiltonian also commutes with /z, and the eigenstates of the Hamiltonian are 11, [z )
The singlet state is | 0 0). The triplet states arej | 1), |1 Q) and | 1 -1). The energy levels

of the triplet states are given by

Eli =<1 1| HdI1 1>=-cod2, (3.18)
Eio = <1 o!/Hdil o>= wq. 3.19)
Ei-i = <1 -1 [HA|1 -1> =-C0d/2, (3.20)

and are shown in Fig. 3.4. The resonant transition frequency is 3(Od/2, independent of the
orientation of the molecules. It is important to realize that the spectrum of a powder sample

is the same as that of a single crystal.



C0p

Fig. 3.3 High field NMR spectra of powder sample.
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Fig. 3.4 Energy levels of a pair of identical spin 1/2 nuclei in zero magnetic field.



n. Quadruple Interaction

Nuclei with spin I > | have an electric quadruple moment Q, which, in materials

interacts with the local electric field gradient The interaction Hamiltonian is

HQ=ficoQ[ 3172 -1 (1+1) + (42+1-2)], (3.21)
where COQH= €2qQ/41(2I-D)fi, q is defined by eq= Vzz and T| (0<r| < 1) is

(Vxx -VYY) fV77. VXx. VYY and V77. are the electric field gradients along the principal

axes.

In the laboratory frame, ifT] = 0, the Hamiltonian can be written as

Ho= RcoQl Yq, (3.22)

where Y ” is the second order spherical harmonic function and Qq is defined as

Qr = (P-S122), (3.23)
Qf = £|/6K/5 (1zI+=+]£]lz). (3.24)
qQft =-"6rt5 ( [£2). (3.25)

Q 2 q obeys the selection rule:
(m|Qq m")™N0, onlyif m=m'+q, (3.26)

where | m) and | m') are the eigenstates of 12 with eigenvalues m and m' respectively.

A. High Magnetic Field.

In a magnetic field HQ, the total Hamiltonian is the sum of the Zeeman Hamiltonian
Hz = - yfi Iz HQ and the quadruple Hamiltonian HQ given by Eq. 3.21. We now calculate
the effect of the quadruple interaction on a high field NMR spectrum. We consider only
the case q = 0. In the limit c0Q >> C0Q, the energy level shift due to the quadruple

interaction is calculated with first order perturbation theory. With only the Zeeman



interaction, the eigenstate of the Hamiltonian is also an eigenstate of I and Iz
(Iz=m), which is 11 m). The energy level shift due to the quadruple interaction is
AEm = (ImIHQIIm)

—ficoQQ2 Y2
=—y™-(1-3 c0s20 ) [ 3m2-1(1+1) ]. (3.27

The resonant frequency due to the transition between 11 m) and 11 m-1) is changed by

A C0m= (1-3 c0s20 ) (m -y). (3.28)

This frequency change depends on the orientation of the molecule relative to the external
magnetic field. Therefore, the linewidth of a powder sample is broadened by the
quadrupole interaction. In a high magnetic field, the line shape of'a spin 1=1 due to the
quadrupole interaction is the same as that of two identical spin 1/2 nuclei due to the

dipole-dipole interaction, which is shown in Fig. 3.3.

B. Zero magnetic field

l.1i =0

In zero magnetic field, the total Hamiltonian is equal to the quadrupole Hamiltonian.
If T] = 0, the Hamiltonian is given by

H = Ho=fi coq [ 3 1Z2- KI+1) ], (3.29)
Since H commutes with Iz, the energy level can be labeled with 1z = M. The energy of the
state 11 M ) is given by

Em=<IM | Ho Il M> = fi coq 3M2-1(1+1) ]. (3.30)
The transition frequency from the state 11 M ) to the state 11 M-1 ) is

3co |
<M = M - /\)_ (331)
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2.11 *0
Forri * 0, we consider only the system of nuclei with spin 1=1, the simplest system
with a quadruple interaction. In the representation with basis II 1), II 0>and 11-1),

the Hamiltonian is
C0Q 0 ficoQ '
H= 0 -2c0Q o 3.32)
. ficOQ 0 C0Q

Solving the Hamiltonian, we find the three eigenstates

l+>=(11 1)+11-1>)/V2. (3.33)
1->= (11 1>-11-1>)W2, (3.34)
| 0>=110>; (3.35)

the energy level is given by

E+=coQ (1 +11), (3.36)
E.=coQ (1 -il). 3.37)
Eo = - 2€0Q (3.38)

The three transition frequencies are

20)Qri, 3coqQ (1-11/3 ) and 3coQ (1+r|/3 ).

III. Transient Response

In this section, we calculate the NQR signal from spin 1=1 nuclei after a magnetic

pulse is applied to the nuclei. The energy level of the system is calculated in Sec. I B. The

eigenstates ( IT | >-1 1-1 >)/V2, (11 1)+ 11-1))/V2andllO>

are the eigenstates of 1x, ly. and Iz. respectively, with eigenvalues equal to zero:

Ix(11 [>11-1))/V2=0, (3.39)
by (11 1> 1-1))/V2=0, (3.40)
z110>=0. (3.41)

For convenience, we introduce the symbols:



IX>=(11 1>-11-1))/V2, (3.42)

IY>=11 1>+] 1-1>)/V2, 3.43)
1Z>=110>; (3.44)
Ex = (1- T]) coq, 3.45)
EY = (1+T1) coq, (3.46)
Ez=-2 coq; (3.47)
covx= (Ey- Ex)/K, (3.48)
coxz = (Ex-Ez )/R, 3.49)
coyz = (EY-Ez)/fi. (3.50)

The energy diagram labeled with the new symbols is shown in Fig. 3.5.
If we assume the perturbation magnetic field is
Hi=HI1XX0+H1YYO0+H1ZzZ0, (3.51)
the perturbation Hamiltonian is
H' = 2y fi Hi-I cos cot
=2cos cot (yfi HixIx+7f1 Hiy IY+ yfi Hiz 1z)- (3.52)

In the representation with basis | X ), | Y ) and | Z),

"0 0 01 00 4 'O 10’
00 I Iy= 00 0 | iz= 100
.o o i 00 .0 00

In the limit that the pulse length x is long, 1/x <<coYx, coyz and coxz, we can
calculate the three transitions between the three states separately. The transition between the
states | X ) and | Y ) is calculated by writing the spin operators and the Hamiltonian
operator in the subspace spaned by the bases | X ) and | Y ). The spin operators are given
by

11
oJ (3.54)



Y= EY = 'fuo0( +T1)

fica,,= 2ftcoQr]|

x> Ex = ~coO(l —1)

fioirz = 3ficoQ(1 +r1/3)

= 3ficoQ(l -ri/3)

Z=> Ev = -220)*

x> = ~N= (J11=-|1-1>)
C Y= = M= (11=+] | -1>»
|Z > = |1 0>

XBL 9010-4715

Fig. 3.5 Energy levels of spin | nuclei due to quadrupole imeracnon.
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1= zo. (3.55)

The total Hamiltonian is given by

r Ex 2 yhHiz coscot 1
H=L 2yRHizcoscot Ey ¥ (3'56)

Only the component of Hi along the Z° direction can induce transitions between states
IX)and|Y ). Similarly, only the component of Hj along the X° direction can induce
transitions between states | Y) and | Z), and only the component of Hi along the Y0
direction can induce transitions between states | X) and | Z).
Expressing the wave function at time t in the subspace spanned by | X ) and | Y),
1) =Ci(t) IX>+C2(1v)|Y), (3.57)

we can write the equation of motion as

_d G Ex 2 yti Hiz coscot Ci(v)
iRdT C2(t) 2yRHiz coscot Ey C2(t) (3.58)
In the interaction representation
Ci(t) =exp( i ) Ci( t), (3.59)
C2(t)=exp (i )C2( t), (3.60)
the equation of motion becomes
Ci(t) 0 2 y Hizcoscot exp( icoyxt) Ci(t)
dt | 20 ] 2 y Hizcoscot exp( icoyxt) 0 C2(0)
(3.61)

Assuming the frequency of the pulse co equal to the resonant frequency ooyx, at time

t >> 1/co, we can write Eq. 3.61 approximately as



Ci(t) " 0

‘ yHiz Ci(t) (3.62)
cary - yHiz 0 . C2(1)
Solving the equation, we find the wave function at the end of the pulse is
Ci(x)= cos(YHiz'OCi(0)-isin(YHiZT) C2(0), (3.63)
Q( t) = -isin( YHIZX) Ci(0) + cos( Y Hizx ) C2(0). (3.64)

Thus, in the Schrodinger representation, the wave function at time t, t > X, is given by

Ci(t)= [cos(YHizX)Ci(0)-isin(YHiZx)C2(0)] exp(-i~y-) (3.65)
C2( t )= [-i sin(Y Hiz x) Ci(0) + cos(yHiz x ) C2(0) ] exp (- i ) (3.66)
The total magnetization is

M((t) = NYTfi<T>, (3.67)

where N is the total number of spins and (I) is the expectation value of'the spin operator.
<I> indicates the assemble average of the expectation value (I), obtained by taking
Ci(0) C2°(0) =0 and ICi(0)12 - IC2(0)I2 = - ficoxY/3kBT. Using Eq. 3.65 and 3.66, we
find

ficOXY | tHizx )
- sinl—A——< ) sin( (DYX t) Z°. (3.68)

<>

Thus, the NQR signal is given by

M( ) = % Nyfi OXY G2 vHiZx ) sin( covx ©) 2,

In the laboratory frame, the NQR signal is expressed as
hcoxY
M( ¢t = % NyR cox sin( 2 y Hi cos9 x ) sin( covx t) Zé,
where Z° = sinG sin <) x° + sinG sin q y°+ cosG z°. (3.69)
Similarly, if the pulse has a frequency co = covz and the pulse length t >> 1/ coyz, die

NQR signal is given by



M(t) = % NTRflCOY7 sin( 2 y Hiz x) sin(coYz t) X0. (3.70)

If the pulse has a frequency co = coxz and the pulse length x >> 1/ coxz, the NQR signal is

given by
M( t) = % Nyﬁﬁfc\(f)ﬂr sin( 2 yHiz x) sin(coxz t) YO. (3.71)

In the above calculation, we assume all the molecules are oriented in the same
direction. In the following, we calculate the signal from a powder sample3, assumeing co =
COXY,

X »> 1/ coxz, and Hi is in the z° direction. In the laboratory frame, the NQR signal is
expressed as
fi

M(t) = % Nyfi reoxy sin( 2 y Hi cosQ %) sin( coYx t) Z°, (3.72)

where Z° = sin0 sin (j) x° + sin0 sin () y°+ cos0 z° . Averaging over all orientations, we

have

M(t) = % Nyfi ﬁCOXYl sin(coxY t )Z® | 4N sin( 2 yHiXcos0) sin0 cos (J)df2 x®
+ NI sin( 2yHixcos0)cosOcos(t)dQ y° + y™sin( 2 y Hix cos0) cosO dQz0].

The first two terms in the bracket are zero, and the above expression becomes

2 fitOXY - stn( COX )

M( t) = 3 Nyfi -3 y- sin(coxY t) —— [ cos(coix) - ]Zg, (3.73)

where coi is defined by coj =2 y Hi . The induced magnetization M( t) is in the same

direction as the applied rf magnetic field.
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CHAPTER 4

SPECTROMETER AND SPECTRA

In this Chapter, I begin in Section I by describing the design and the performance of
the SQUID amplifier. Section II is concerned with the construction of the spectrometer.

Section HI presents examples of some data, and Section IV contains concluding remarks.

I. SQUID Amplifier

We designed the SQUID-based amplifier, shown in Fig. 4.1(a), with three major
criteria in mind. First, to detect signals at low frequency, the sensitivity should be as high
as possible. Second, to cover most of the 2D NQR spectra of practical interest, the
bandwidth should extend to at least 200 kHz. Third, to detect signals from a solid sample
with a short T2, the preamplifier should be able to recover quickly (say in a few tens of |is)

after the magnetic pulse has been turned off.

A. SQUID and input circuit

We use our standard design! of planar dc SQUID, which we fabricate in batches of
36 on 50 mm-diameter oxidized Si wafers. Each SQUID consists of a square washer of
Nb with inner and outer dimensions of 0.2 and 0.9 mm. The Josephson junctions are
formed in a plasma discharge in Ar (10% O2), and the counter-electrode is Pb (5% In).
Nominal values of the parameters are: critical current per junction, 5(iA; shunt resistance
per junction, 8W; inductance of SQUID loop, 0.4 nH; inductance of 20-tum spiral input
coil: =120 nH; mutual inductance between input coil and SQUID, 6nH.

The SQUID-based amplifier is shown in Fig. 4.1(a); the SQUID and its input circuit

are immersed in liquid 4He. The sample is placed in the pickup coil (inductance Lp) which
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integrator
set-zero delay reset
output
trigger u

magnetic
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reset
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XBL 906-5593

Fig. 4.1 Schematic drawing of amplifier based on dc SQUID; (b) reset circuit of Fig.

1(a); (c) set-zero circuit of Fig. 1(a); (d) timing sequence of the 1TL signals that control
reset and set-zero circuits.
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is coupled to the input coil (inductance Li) ofthe SQUID. The pickup coils have an
inductance Lp approximately equal to the inductance Lj = 120 nH of'the input coil. The
presence of the resistor Ri = 100 D provides a low-pass filter 2 to reduce the level of
interference reaching the SQUID at frequencies above about 60 MHz. The Nyquist noise
generated in the SQUID by the resistor is negligible, about 10"6 OQHZ'l”*. Because the
entire input flux transformer is superconducting, the SQUID detects changes in the
magnetization of the sample at frequencies down to zero. We choose an untuned circuit, as
opposed to a tuned circuit, first, because we require a wide bandwidth, and, second,
because of the impracticably of obtaining sufficiently large capacitors for use at liquid 4He
temperatures. A discussion of the comparative sensitivity of tuned and untuned circuits is

given in the Appendix.

B. Flux-locked loop

The SQUID is operated in a flux-locked loop [Fig. 4.1(a)], which is a modified
version of that described by Wellstood3 et al. A 500 kHz modulation signal with a peak-to-
peak amplitude of Oy/2 is applied to the SQUID (00 = h/2e is the flux quantum), and the
resulting oscillating voltage across the SQUID is amplified by a room-temperature
transformer with a turns ratio of 15. After further amplification, the signal is lock-in
detected, integrated, and fed back via a resistor Rf = 5kD into a coil coupled to the SQUID
with a mutual inductance Mf= 0.1 nH. For any change of flux DF in the SQUID loop, a
change of feedback current, AI=A(t>/Mf, cancels AO and induces a voltage AV= RfAl =
AORIf/Mf across Rf. Thus, the SQUID amplifier has a transfer coefficient AV/AO = Rf/Mf
= 0.1v/00.

The feedback circuit enables the SQUID to operate at a fixed flux bias provided the
changes in flux do not exceed the slew rate, which is about 2 x 105 OQ/scC at 40 kHz. In
pulsed NMR and NQR applications, however, a large magnetic pulse is applied to the

sample, and despite one's best efforts to minimize the fraction of this pulse coupled into the



SQUID, the integrator is inevitably driven into saturation. After the pulse is turned off, the
integrator remains saturated for a long period. We overcome this problem by shorting the
integrator capacitor with a FET linear switch (Siliconix DG 308) during the pulse, and
opening the switch after the pulse has been turned off. The FET switch is controlled by a
voltage pulse derived from a TTL pulse via an optical coupler (Hewlett Packard 6N135)
that prevents digital noise being injected into the SQUID circuit [Fig. 4.1(b)]. When the
flux-locked loop reaches stable operation, it produces a large voltage step at the output
reflecting the feedback current necessary to flux-lock the SQUID. It is therefore necessary
to provide a set-zero circuit to cancel this step while the free induction decay of the spins is
recorded. This circuit [Fig. 4.1(c)] consists of a sample-and-hold (S/H)4 device (LF198)
with unity gain and an instrumentation amplifier (AD 625). The S/H mode is determined
by a TTL pulse. Before the flux-locked loop reaches stable operation, the S/H device is in
the sample mode, and the output of the instrumentation amplifier is zero since its two inputs
are at the sample voltage. After the flux-locked loop settles into stable operation, the S/H is
switched into the hold mode in which its output is held constant. The output of the
amplifier is then proportional to the changes of the voltage produced by the flux-locked
loop, with the large voltage step subtracted. The integrator reset circuit and the set-zero
circuit are operated by TTL pulses from a delay circuit, which is constructed from three 555
timers.

The SQUID preamplifier is controlled by the timing sequence shown in Fig.4.1(d).
At time t = 0, the magnetic pulse to the sample is turned on; it is turned off at to. During
this time, the flux-locked loop is disabled and the output of the set zero stage is zero. At
time to, even though the pulse is off, the residual signal induced by the pulse still changes
too rapidly for the flux-locked loop to follow. After a funher time to, the time-derivative of
the residual signal is smaller than the slew rate of the flux-locked loop, and at time
t] =to + to, a trigger pulse is sent to the delay circuit, which produces two pulses to enable

the integrator and the set-zero circuit. The time to is about 20|is for a magnetic pulse with



peak-to-peak value of 0.1 mtesla, and about 80(is for a peak-to-peak value of 10 mtesla. At
time tit the switch across the integrator capacitor is opened. The flux-locked loop settles
into stable operation within 20(is, and at t2 = ti + 20(is the S/H circuit is switched to the
hold mode so that data collection can begin. The output of the set-zero produces a signal for
a time t2 ~ 50 ms, which is sufficiently long for the complete data aquisition of the FID
signal from a solid sample. At time t2 + t2> the S/H circuit is switched to the sample mode,
and the output returns to zero. Slightly later, at time ti + X1 the flux-locked loop is disabled

in preparation for another magnetic pulse.

C. Performance

The frequency response of the flux-locked SQUID is flat (= 3dB) from 0 to 200 kHz,
and the equivalent flux noise of the SQUID is typically 6|100HZ'l/2 from 10 kHz to
110 kHz. The noise is higher than the intrinsic SQUID noise ( 2p.O0Hz1/2), probably
because of spurious noise coupled into the SQUID by the transmitter circuit.

We tested the integrator reset and set zero circuits by applying a continuous sinusoidal
signal to the SQUID and monitoring the voltage from the flux-locked loop at both the input
and the output of the set-zero circuit. In Fig.4.2, the upper trace shows the signal at the
input of the set-zero circuit; when the switch across the integrator is opened, the flux-locked
loop reaches stable operation within 20|is, but with a large voltage offset; the lower trace of
Fig.4.2 is the signal at the output of the set-zero circuit, showing the action of the set-zero

circuit, which effectively subtracts the large offset.
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Fig. 4.2 Observed signals at input of set-zero circuit (upper trace) and

output of set-zero (lower trace). Horizontal scale is 20 (is per division.
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. Spectrometer

The spectrometer is shown in Fig. 4.3; the SQUID amplifier described in Sec. I is
represented by a box, with its input, output and trigger labeled. A function generator
(Hewlett Packard 3314A), on receiving a trigger signal from the time base (Stanford
Research Systems DG 535 ), produces a sinusoidal signal that typically contains | to 30
cycles, starting at zero phase. For spin echo experiments, a second function generator is
also used. This pulse is amplified by a power amplifier (ENI 1040L) and coupled to the
transmitter coil via a low pass filter (cutting off at about 300kHz) and 4 stages of cross-
diodes (only one is shown in Fig. 4.3). These diodes present a high impedance to the
transmitter coil when the pulse is turned off, thereby minimizing the noise coupled into the
SQUID during the measurement. The pulse tips the nuclear spins, which precess to
produce a free induction decay signal in the pick-up coil. This signal is amplified by the
SQUID amplifier, which produces an output after receiving a trigger pulse from the time
base , as explained in Sec. LB. The amplified signal is coupled to a spectrum analyzer
(Hewlett Packard 3561 A) and a digital oscilloscope (Tektronix 2430A), both of which are
triggered by the time base and store their data in a Hewlett Packard 9000-216 computer (not
shown in the figure). The computer is also used to control the parameters of the digital
osilloscope, spectrum analyzer, time base and function generators ( e.g. frequency,
amplitude and pulse length ).

We made two cells for the spectrometer: one to detect low field NMR, and the other
to detect low frequency NQR and zero field NMR. One or other of the cells is attached to a
probe on which the SQUID is mounted, and which is immersed in liquid helium in a
cryostat surrounded by a double mu-metal shield. The whole assembly rests on an
vibration-isolation table to minimize microphonic noise. The cryostat and SQUID

electronics are in a shielded room, while the remaining electronics are outside this room to
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Fig. 4.3 Schematic of spectrometer. Circuit shown in circle is for NMR: circle above
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eliminate spurious digital noise. The design and the construction of the low frequency
NMR cell (circled in Fig. 4.3) and the low frequency NQR cell (inset of Fig. 4.3) are

described below.

A. Low-frequency NMR cell

The sample and the various coils are enclosed in a cylindrical superconducting shield
with internal length and diameter of 130mm and 30mm, respectively [Fig. 4.4], The shield
has a wall thickness of3 mm, and was machined from a solid cylinder of lead. The
materials inside the shield were chosen to minimize spurious resonance signals. The
pickup and transmitter saddle coils are wound from 125(im diameter insulated Nb wire and
attached orthogonally to quartz tubes 6.4 mm and 10 mm in diameter respectively. The
tubes are rigidly held apart by spacers. The pickup coils have 2 turns each, and are about
6x8 mm in size with a total inductance of about 150 nH. The leads are twisted together,
glued to the quartz tube and brought out of the cell into a second Pb cell containing the
SQUID. The transmitter coils have 20 turns each, and are about 9x16 mm in size. The
static field is provided by a superconducting solenoid wound from 225 (im diameter Cu-
clad NbTi wire coated with Formvar. A thermal switch enabled us to operate the coil in the
persistent current mode. The magnetic field was attenuated by the Pb tube to a value of
approximately 9.5 mtesla /A. Each sample (0.2 ml) was packed in a 5 mm diameter pyrex
NMR tube, and could be inserted into the middle of the pickup coil through an o-ring seal

at the top of the cryostat.

B. Low-frequency NQR cell

The sample and coils are surrounded by the same Pb cell as in the NMR cell
(Fig. 4.5). The pickup coil consists of a pair of two coils, each consisting of two turns of
125 (im diameter Nb wire, wound in opposition 15 mm apart on a 8.5 mm diameter quartz

tube. We estimate the total inductance of this coil to be 150 nH. The transmitter coil is a
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Fig. 4.4 Cell used to detect low-frequncy NMR.
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30 mm long, single layer solenoid wound from 225 [im diameter Nb wire on a quartz tube
with an outer diameter of 14 mm. The relative positions of the pickup and transmitter coils
are adjusted empirically to achieve a balance of about 50 ppm in the pickup gradiometer.

The sample, typically 0.5 ml, is packed into a § mm diameter pyrex NMR tube.

III. Results

A. Low-field NMR spectra

We have used two metal powders to illustrate the detection of low field NMR. The
first was 195 Pt, which has spin 1/2 and a gyromagnetic ratio of 9.2 kHz/mtesla. At 4.2K,
it has a short Tt (10 ms), because of free electron assisted relaxation,5 and a long T2
(1.1 ms), because of spin exchange interaction 6. Figure 4.6(a) shows the FID, averaged
250 times, in a 6 mtesla magnetic field. In this experiment, a 56 kHz sinewave with a peak-
to-peak amplitude of about 50 (itesla and a duration of 0.4 ms was applied to the sample
every 0.5s. The Fourier transform of a FID averaged 40 times is shown in Fig. 4.6(b); the
resonant peak is somewhat broadened by the inhomogeneity in the magnetic field. We
repeated the experiment in static fields ranging from 3 to 12 mtesla, and found the expected
linear dependence of the NMR frequency.

Figure 4.7 shows the FID of 63Cu and 65Cu in a magnetic field of 6 mtesla averaged
256 times. The NMR frequencies of the two isotopes are too close to be resolved with
such a short value of T2. This result demonstrates that the spectrometer is able to detect

signals from nuclei with T2 as short as 50 |is.

B. Low-frequency NQR spectra
To illustrate the direct detection of low frequency NQR, we have performed

experiments on three samples. Figure 4.8(a) shows the 2D NQR spectrum of the quantum
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Fig. 4.6 (a) FID of 19-Pt in 6mT magnetic field;

(b) Fourier transform of FID in Fig. 6(a).
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Fig. 4.7 FID from Cu metal powder in 6mT magnetic field.
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Fig. 4.8 2D NQR spectrum of tunneling methyl group in
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tunneling methyl group 7 in perdeuterated toluene at 1.2K, averaged 1,000 times. The
pulses applied to the sample were at 44kHz with a duration of 0.2 ms, a peak-to-peak
amplitude of 0.5 mtesla and a repetition rate of 0.2 Hz. Using the same pulse parameters,
we also obtained the 2D NQR spectrum, shown in Fig. 4.8(b), of the tunneling methyl
group in perdeuterated picoline. We believe the multiple splittings in the spectra arise
partly from the magnetic dipole interactions among the 2D nuclei in the methyl group, and
partly from the distorted methyl groups occupying inequivalent sites in solids 8.

In the second experiment, we performed a NQR experiment with a powered
NH4CIO4 sample. To confirm that the signals are due to the 14N NQR, we measured the
signal amplitude as a function of tipping angle, as shown in Fig. 4.9. We fitted the
exprimental data with the expectated function [cos(cox)- sin(cox)/cox]/a>T, given by Eq. 3.73,
and found the gyromagnetic ratio of the nuclei responsible for the signal are within 5% of
that of 14N; the difference is attributed to experimental error.

In the third experiment, we performed a spin echo experiment9 on 14N nuclei in
powdered NH4 CIO4 at 1.2K. Two pulses are applied to the sample: the first is a single
cycle at 45kHz with a peak-to-peak amplitude of 4 mtesla, and the second, a time At later, is
a single cycle at the same frequency with twice the amplitude. The first pulse initiates a
FID, which has a decay constant T2 ofabout | ms (the decay rate, [ T2 1'l, includes
both inhomogeneous and homogeneous contributions). The second pulse initiates a second
FID, and results in an NQR echo which peaks At later. The sequence is repeated three
times per second, and the FIDs and the spin echo are recorded with the digital oscilloscope
and the spectrum analyzer. The spin echo for At =4 ms, averaged 16,000 times, is shown
in Fig. 4.10(a), and its Fourier transform in Fig. 4.10 (b). The spectrum consists of three
peaks, at 17.4 kHz, 38.8 kHz and 56.2 kHz, arising from the 14N nuclear energy levels
shown inset in Fig. 4.10(b). By measuring the magnitude of the echo as a function of At,
as shown in Fig. 4.11, we were able to deduce the decay rate I/T2 due to homogeneous

broadening; we found T2 = 17.6 ms for the 17.4kHz resonant line, T2 = 23.8 ms for the
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Fig. 4.9 Signal amplitude as a function of tipping angle (ore).
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(shown inset) of 14N nuclei in presence of electric field gradient in NFfi CIOA4.
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Fig. 4.11 Spin echo experiment: signal amplitude as a function of delay time.



38.8 kHz resonant line, and T2 = 26.2 ms for the 56.2kHz resonant line. We also measured
the Tj ofthe sample with a stimulated echo experiment 9, in which three pulses are applied
to the sample. As shown in Fig.4.12, by measuring the amplitude as a function of the delay

time between the second and third pulse, we found Ti= 40 ms.
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Fig. 4.12 Stimulated echo experiment: signal amplitude as a function
of delay time between second and third pulse.



IV. Concluding Remarks

We have demonstrated the feasibility of measuring low-frequency NMR and NQR
directly with a SQUID-based spectrometer, and are able to measure FID signals from

samples with T2 as short as 50|is. We observed all three NQR lines from 1144N in NH”

simultaneously by using a short, large amplitude magnetic pulse. We have also obtained
high resolution NQR spectra of 2D nuclei in tunneling methyl groups, revealing detailed
structure which has not previously been observed in high-field NMR spectrum of 2D
nuclei where the linewidth is broad.

The fact that we can detect low-frequency NQR suggests that we should be able to
obtain ZFNMR spectra, which is detected in a similar manner and should produce signals
comparable in amplitude and frequency. Our major difficulty in detecting ZFNMR has
been that many suitable samples have very long Tj (>> 100 sec) at liquid 4He temperatures.
Our choice of NQR samples has been similarly restricted.

Because of the restriction that the sample must be cooled to 4.2K or lower, we are
currently constructing a second spectrometer that will allow us to vary the temperature of
the sample from the bath temperature to 100K or higher while maintaining the SQUID and
input circuit at the bath temperature. This system will not only greatly broaden the choice
of samples, but also enable us to study the temperature dependence of a given resonance.
To reduce the averaging time in obtaining a spectrum, we also hope to improve the
sensitivity of the SQUID amplifier by decreasing the inductance of the SQUID and adding

a second,fcooled transformer.
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CHAPTER 5

ZERO FIELD NMR SPECTRA OF METHYL GROUP

In the last chapter of this thesis, I will discuss the possibility of detecting zero field
NMR directly with our spectrometer. In principle, ZFNMR can be detected the same way
that NQR is detected — if their resonant frequencies are comparable, their signal strengths
are also comparable. In practice, however, it is extremely difficult to find a sample that has
a ZFNMR signal which has a long T2 and short Tj at liquid helium temperature. 1
believe the most promising samples are those molecular solids in which the molecule
contains methyl groups (or ammonia ions) which undergo fast quantum tunneling at liquid
helium temperature. In sec. I, I discuss the motion of a methyl group without taking into
account the nuclear spin wave functions. In sec. II, I discuss the energy levels of a methyl
group with nuclear dipole- dipole interactions taken into account, and calculate the ZFNMR

frequency from a methyl group.

I. Energy Levels of Methyl Groups

A. Free rotation and hindered rotation
To illustrate the symmetry properties of a methyl group, I start this chapter with a
discussion of the simplest case involving a methyl group — the methyl group rotating freely
about its symmetrical axis (the axis passing through the C atom and the center of the
triangle formed by the three H atoms ). The Hamitonian of this one dimensional free rotor
is
(5.1

where J? is the angular momentum of the rotor and [ is its momentum of inertia. The



angular momentum is always along the symmetry axis which I choose to be the Z axis.
The energy levels of the rotor are

fi2
E=M2"T M=0,+1,%2, ... (5.2)

and the eigenstate is IM), the eigenstate of Jz,
JZIM)=MhIM). (5.3)
In spacial representation, the eigenstate is

(D) = ““j=—<<xP (i M())). (5.4)
V 2k

The symmetry of the wave function is classified according its transformation under the
operator C3 which rotates the CH3 group by 120°. Since

C3 (<) = exp (1 27tM/3) T'™M (({)) (5.5)
and exp (i 27tM/3) can take three values (1, £, and £*, where £ = exp [i27t/3]), the wave
functions have three kinds of symmetries:

(1)ifM=3n,n=0,=1,+2,...

C3'FM(q) = "FM (), (5.6)
and (())) has A symmetry;

(1) if M =3n+, n =0, £1, +2,...

C3'FM((t)) = £TM((1)), 5.7
and (<) has Ea symmetry;

(iil)) ifM =3n+2, m =0, +1,+2,...

3 (P) = £* (<P), (5.8)
and (<)) has symmetry.

The energy levels along with their symmetries are plotted in Fig. 5.1. Except for
M = 0, all the energy levels are doubly degenerate.

A methyl group can be considered as a free rotor only in the most ideal situation, for

example, when the methyl group is isolated from all other atoms or molecules in a material.
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Fig. 5.1 Energy levels of CHJ for free and hindered rotation.
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In reality, however, a methyl group is electrically coupled to other atoms or molecules and

the motion of a methyl group is described by the Hamiltonian

(5.9
where the potential term V(<{>) has a three fold symmetry,
C3 V(<p) C3'l = V(<p). (5.10)
The simplest example of V(<{>) is of the form
V(<)) = V3 cos (§)./?' (5.11)

Ifthe barrier IV((J))l is much smaller than fi2/21, the energy levels and the eigenstates can be
calculated by perturbation theory; the motion of the methyl group in this limit are usually
referred to as hindered rotation. Figure 5.1 also shows the energy levels of a methyl group
that undergoes hindered rotation. Compares with the case of free rotation, energy levels
with A symmetry are now no longer degenerate, but those with Ea and Eb symmetries are
still degenerate and they are shifted together by the potential term. This degeneracy is due
to time reversal symmetry and can be lifted only by magnetic fields.

In zero magnetic field, the system is invariant under the time reversal operation K.
Under the operation K,

K 1Ea) =1Eb>, (5.12)

K I Eb> =1 Ea), (5.13)
where | Ea) and | Eb) represent a state with Ea and Eb symmetry, respectively. The
subspace spanned by all the eigenstates within an energy level must be invariant under both
the time reversal operation K and the symmetry operation C3. Such kind of subspace must
contain both | Ea) and | Eb) states; therefore, | Ea) and | Eb) are always degenerate in zero

magnetic field.



B. Torsional vibration and quantum tunneling

The hindered rotation discussed above usually describes the motion of a methyl group
in molecules which are in gas form, where the potential term is small. Ifthe potential term
is not small as in the case for a solid, the motion of a methyl group is best described by
torsional vibration and quantum tunneling.

Torsional vibration describe the case when a methyl group interacts so strongly with
the surrounding atoms and molecules in a solid that the orientations ofits three hydrogen
atoms are almost fixed in space. If we imaging the methyl group as a rigid rotor, the rotor
is so strongly confined that it can not rotate any more; instead, it undergoes torsional
vibration about its equilibrium position. Because the three hydrogen atoms are identical
particles, the rigid rotor has three equilibrium positions. We represent these three states by

lo, &), 1"0, (3) and | u, y), and they can be transformed into each other by the symmetry

operation C3 , that is

C3lu, a)=1D, P), (5.14)
C3 ID, p>=1u,Y>, (5.15)
C3 ID, v) = 1D, a), (5.16)

where u is the quantum number of the torsional vibration. The torsional vibration ofa
methyl group is equivalent to a particle confined in a three-well potential V(<J])), as shown in
Fig. 5.2. Figure 5.2 also shows the vibration energy levels. Since the rigid rotor can be in
one of the three equilibrium positions, the particle in Fig. 5.2 can be in one of the three
wells. Ifthe barriers between the wells are infinite, the particle will be confined in one of
the wells. Because there are three wells, each vibrational energy level is three fold
degenerate. However, if the barrier is finite, the particle can tunneling from one well into
another and the three fold degeneracy is lifted. This is the situation when the methyl group

undergoes quantum tunneling in solids.
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Fig. 5.2 Panicle in three-well potential.



The quantum tunneling of a methyl group at torsional vibration state v can be

described by a tunneling Hamitonian rfp. In the subspace spanned by | u, a), 11), (3)

and 1), y), is given by
0 Av
Hj=- Au 0 Ay (5.17)
Ay Ay 0

Here, the parameter Ay is positive if u is even and negative if u is odd, and Ay decreases as

u increases. The eigenstates of the Hamitonian are

It), A>= (lu,a>+ N),p)+  \v,)/~3, (5.18)
lu, Ea)= (It), a)+ elt), p)+e* It), Y»/V3, (5.19)
11), Eb) = (11), a)+e* 11), 3}t e 11), y» / VX (5.20)

where states 11), A), 11), Ea) and 11), Eb) have A, Ea and Eb symmetries respectively, that

1S

C3lt), A>=  It), A), (5.21)
C3 11), Ea>= e 1), Ea), (5.22)
C3 11), Eb>=¢* 11), Eb ). (5.23)

States 11), A), 11), Ea) and 11), Eb ) have energies -2Ayt Ay and Ay respectively, as shown
in Fig. 5.3. Because of'the time reversal symmetry in zero magnetic field, 11), Ea) and
11), Eb ) are degenerate . The quantum tunneling frequency 0)t is determined by

fi CDt = 3Ay. (5.24)
The quantum tunneling frequency of a methyl CH3 group can be as small as a few kHz and
as large as 200 GHz. The smaller the barrier the larger the tunneling frequency. Figure 5.4
shows that as the barrier decrease from infinity to zero, the motion of the methyl group
changes from pure torsional vibration to quantum tunneling, then to hindered rotation, and

finally to free rotation.
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II. ZFNMR Spectra of Methyl Group

A. Symmetry of spin wave functions

The total wave function of a methyl group is the product of the spacial wave function
IvF) and the spin wave function | X) Since the methyl group CH3 contains three identical
fermions, the total wave function is antisymmetric with respect to the exchange of two
protons. And since the symmetry operation C3 can be achieved by two exchange
operations, the total wave function must be symmetric with respect to C3 operation,

CIITOI X >= 1M1 X>. (5.25)
This equation requires th efollowing combinations of special wave functions and spin wave
functions:
1) if [T]) has A symmetry, | X ) must have A symmetry;
i1) if 1Y) has Ea symmetry, | X) must have Eb symmetry;
iii) if ITO has Eb symmetry, | X ) must have Ea symmetry.

The spacial wave functions are discussed in Sec. I, and the total spin wave functions
are constructed from the wave functions of the three spin 1/2 nuclei. If we use 1+) and | -)

to indicate spin up spin down states, respectively, the wave functions with A symmetry are

given by
A 3/2 3/2) = IDIHIH). (5-26)
A 3/2 1/2) = A9)IDIH) + IDIDIF) + IHH)IHI-))/ V3, 5.27)
A 3/2 -1/2 ) = (+>1)1-> + IHIHI) + 1DIDIH))/V3, (5.28)
A 3/2 -3/2 ) = 1->1)l->. (5-29)

These states have [ = 3/2 and 1" = + 3/2, 1/2, -1/2, -3/2, respectively (I is the total spin and
Iz is the projection of the total spin in Z axis). Wave functions with Ea symmetry are given

by



| Ea 17212 > = (1)+>1+> + e [+>1)l+) + e* 1+)1+>1-) )/V3, (5.30)

[ Ea 12 -172>=(+)->l-) + e IH)-) + e* [>1)+> )/ V3, (5.31)
and are states with [ =1/2 and [ = 1/2, -1/2, respectively. Wave functions with Eb
symmetry are given by

[ Eb 1/21/2) = (-)I+>H> + e* H)l)I+> + e [1+>1> )/ V3, (5.32)

| Eb 12 -1/2> = (#1>1) + ef L>l> + £ 15151 )/V3, (5.33)

and are states with [ =1/2 and I = 1/2, -1/2, respectively.

B. Energy levels of methyl groups due to dipole-dipole interaction

Figure 5.5 shows the energy levels of a methyl group. The energy difference
between vibration states are so large that at liquid helium temperature only the ground state
is occupied; therefore, we concentrate our attention on that energy level. Because of the
quantum tunneling, this energy level is split The new ground state has A symmetry, and
has a total spin 3/2 (four fold degeneracy in spin states). The first excitation states are
doubly degenerate in the spacial wave function with Ea and Eb symmetry, and each of them
has a total spin 1/2 (additional two-fold degeneracy in spin states for each spacial state).

While the dipole- dipole interaction will not influence the states in the first excitation
energy level, the interaction will make the energy level of the ground state split into two
levels, both of which are doubly degenerate. In the following, I will discuss this effect of
the dipole-dipole interaction in detail.

The Hamitonian describing the dipole- dipole interaction is ( c¢.f. Chp. 3, Sec. 1)

Hd=Ra)d S. T (-DqT5 (i,))Y2q(0ij), 1, =1,2.,3, (5.34)
Kj q - z ]
where
R Wd = Y2h2/r3, (5.35)

Y 0q (By) is the second order spherical harmonic function ( By is the angle between the z



axis and the vector pointing from spin i to spin j, in this case, 0jj = 1/2), and

(1,j) is defined by

T2 (i,j) = WS (i -3 lizljz), (5.36)
i€ (ij) = Ty/W5 (lizljtHitljz), (5.37)
77 (i.j) =-V6~5 (litljt). (5.38)

Because ©y =11/2, Y°2(71/2) =-V 5/1titt, Y~ W2) =0 and

Y 2 (tt/2) =V 15/32jtexp(22i0).

(1) First excitation energy level

£2 .
Since T2 (i,j) flips two spins at the same time and results in a change 1Alzl = 2,

this term makes no contribution to the first excitation state where I =1/2 and the maximum

change of [z is 1. To calculate the influence of'the dipole-dipole interaction on the first

excitation states, we need to calculate <0 Eal [ 0OEb),(OEalHdI0 Ea)and (0 EblHd

10 Eb > (cf. Egs. 5.19 and 5.20):
<OEalHdl OEDb) = ficod £.7T2 (i,jXOEalY'?(7t/2)] OEb> =0, (5.39)

<OEalHd! OEa) = ficod £.T? (i,j)<OEalY'0(7t2)] OEa>
KJ e z

fi Cod 0
=- S. T2 (L), (5.40)

A

(OEbIHdI 0Eb)=Rcod S. T? (i,j)< 0 EblY' (jt2)! 0 Eb)
KJ VA Z

heod  Z 79 (i,j
g J)-
) 7y (5.41)
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Fig. 5.5 Energy level splittings due to dipole-dipole interaction.
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Because

<51/2 1/21 { (,)) ! 5 1/2-1/2> =0, (5.42)
I<j z

<51/2 121 Z T? (1,j)!512 1/2)=0, (5.43)
i<j L

<512-121 Z T (4,j) 15 1/2-1/2>=0, (5.44)
Kj z

where 5 = Ea, Eb, we have
Hd =0 (5.45)
within the subspace spaned by the four states in the first excitation energy level. Thus, the

dipole-dipole interaction has no effect on this level.

(2 ) Ground energy level

To calculate the influence of the dipole-dipole interaction on the ground state, we need

to calculate <O AIH<il0 A) (cf. Eq. 5.18). Because

(0 AI {Till) 10 A>=0, (5.46)
we have
<OATHdAIOA)= hcod Z T? (i,j)<0ATY'.0(t/2)! 0 A>
i<j z z
h cod (5.47)
2 Kl oz '

The reduced Hamiltonian is

[ I1T2 + 12T3 + 13 11) -3(liz hz + 3127 13Z + 313Z liz)]- (5.48)

Since | , 1z ] =0, the energy levels can be labeled by 1z, and are given by
3fi cod
E322 =(A3/2 321 1A3/72 32> 4 (5.49)
3R cod
E172 =(A3/2 121 1A32 1/2) 4 (5.50)
E-12=(A 3/2-1/21 H"l A3/2-1/2) 3h4a)d , (5.51)
3R cod

E-32=(A3/2-3/21 Hj| A 3/2-3/2) 4 (5.52)
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and they are plotted in Fig. 5.5. The resonant frequency is determined by
RcoQ = E32 - E-12 = 3fi Q)d/2. (5.53)

For a CH3 group, r = 1.758 A,

G)d27t = 21.1kHz, (5.54)
and

coorzar = 31.6 kHz.
For a NH3D+ ion, r = 1.652

COci2jr = 25.4 kHz, (5.55)
and

c00/27t = 38.1 kHz. (5.56)

Because H are coupled to N and D, this resonant frequency will be split.



LAWRENCE BERKELEY LABORATORY
UNIVERSITY OF CALIFORNIA
INFORMATION RESOURCES DEPARTMENT
BERKELEY, CALIFORNIA 94720





