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SIMULATION OF TANK DRAINING PHENOMENA WITH THE NASA SOLA-VOF CODE

by

R. S. Hotchkiss

ABSTRACT

The NASA SOLA-VOF code is a modified version of the SOLA-VOF 
computer program, specifically designed to calculate the fluid dy­
namics involved in baffled and unbaffled tank draining problems.
It solves the time dependent finite-difference equations that gov­
ern the two-dimensional motions of fluids with a free surface upon 
which surface tension forces can act. The VOF method of tracking 
the free surface provides an algorithm by which multivalued free 
surface calculations with surface tension are easily performed.

Calculations can be made in either planar or cylindrical ge­
ometries with a variety of boundary conditions. The surface ten­
sion boundary condition is modeled by an applied surface pressure 
and wall adhesion effects are specified by a wall contact angle.

Complete descriptions are given of the code structure, of 
procedures for running and setting up the code, of the variables 
used and of test problems that show the excellent agreement be­
tween the calculations and experiments of tank draining problems.
A complete computer listing is included in an appendix.

I. INTRODUCTION

Statement of the Problem
The free surface dynamics of many common fluids in normal gravity environ­

ments are relatively insensitive to surface tension effects. However, in low 
gravity applications or in fluids possessing very large surface tension coeffi­
cients, the forces induced by surface tension become important influences upon 
the surface motion.

The SOLA-VOF technique, developed by Hirt and Nichols,* was initially de­

signed to provide a relatively simple, yet powerful, means of computing flows of 
fluids with multivalued free surfaces or two materials separated by a multivalued
interface in two dimensions. The SOLA-VOF code, however, has been expanded to

2
include the effects of surface tension in either of these types of flows.
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The surface tension model was developed initially for application to the 
draining problems of liquid propellants from tanks in space vehicles. This prob­
lem involves the draining of various liquid propellants from a hemispherically 
bottomed cylindrical tank in very low gravity environments; environments in which 
surface tension may significantly influence the flow. In fact, in low gravity 
environments the surface tension forces are so influential on the draining char­
acteristics of a tank that a residual amount of fluid can be trapped in the tank

3 4as a result of surface tension alone. * Studies of these flows are therefore 
important in order to comprehend the extent of the residual volumes of propellant 
in the fuel tanks and the amount of additional payload to a space vehicle that 
the residual volume implies. Further, studies of mechanisms to reduce the resid­
ual volumes assist the design of propellant tanks that are capable of reducing

5
the additional payload or eliminating it entirely.

For this purpose, the NASA SOLA-VOF code has been designed. It is a general 
purpose, one-material time-dependent computer code capable of solving the equa­
tions of motion for incompressible, viscous fluids with free surfaces upon which 
surface tension forces exist. These flows can exist in the presence of obstacles 
and variable geometries such as the hemispherical section of the tank.

Although the code can be used to calculate a wide variety of problems,
NASA SOLA-VOF contains modifications that allow its use to study flows in a hemi- 
spherically bottomed cylindrical tank of radius R = 1 with an outlet of radius r 
=0.1. (Note: these units are nondimensional and may be dimensionally scaled to 
any size tank having an outlet to tank radius ratio of 0.1. All variables used 
in this report are nondimensional unless otherwise specified. Section VIII de­
scribes the scaling procedures to dimensionalize the results.) The code can be 
used to study flows characterized by Weber numbers (We) in the range 0.001< We<<» 
and Bond numbers (Bo) in the range 0 < Bo < ®. The ranges given here are those 
that can be accomplished in a reasonable amount of computer time; otherwise, 
there is no real lower limit to We. The definition of We used here is 0.0001/a 
based on the tank dimensions with a being the surface tension per unit length. 
Likewise, Bo is defined as g/a where g is the acceleration of the environment. 
These flows can also be computed in the presence of a disk type baffle located in 
the tank above the outlet as desired.

The solution from the code provides a history of free surface motion in ad­
dition to a final value of residual volume. The code further automatically pro­
vides a graphical interpretation of this history in addition to the detailed nu­
merical results at any desired instant of time.
2



II. METHODOLOGY

The formulation of finite-difference equations, boundary conditions, and 
stability criteria of the basic method are thoroughly discussed in App. A and 
will not be further discussed here. The reader is encouraged to study this ap­
pendix to gain a thorough understanding of the method.

The basis of the SOLA-VOF technique is the solution of the Navier-Stokes 
equations, the incompressible mass equation, and a transient transport equation 
for the convection of F, the fractional volume of fluid on a variably spaced mesh 
of cells spanning the region of interest. These equations are advanced through 
time in discrete time steps to provide the transient evolution of the flow field.

The major difference between the VOF method reported in App. A and the NASA 
SOLA-VOF code is the addition of surface tension along the free surface and the 
effects of wall adhesion. In this method surface tension is modeled as a pres­
sure applied at the free surface. This surface pressure Ps is a function of the 
surface tension force per unit length a, and the local curvature at the point of 
application and is defined by

P$ = -aK (1)

in which K is the curvature of the surface and is given by

K = Kxy + Kcyl (2)

in which is the principal radius of curvature in the x-y plane and is 
the principal radius of curvature in the azimuthal direction. R^ = ® in planar 
coordinates . Given a surface function G = f(x) or G = f(y) the planar curvature 
is given by ^

K xy ' 2 3/2 
[1 + (G ) ]

(3)

tThe customary absolute value sign has been omitted from the numerator because
the sign of g" determines the proper sign of the curvature K .

xy
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in which the primes denote differentiation with respect to the independent varia­
ble. If G denotes a single-valued surface height function dependent only on x
(i.e., nearly horizontal), Eq. (3) would give K . If G, on the other hand, wasxy
given as G = f(y), a single-valued height function of y alone (i.e., a nearly
vertical surface), then (3) would also give K . As already noted, the VOF meth-xy
od can accommodate multivalued surfaces, thus in the computing mesh the surface 
height function is really given by G = f(x,y) and Eq. (3) does not globally ap­
ply. Fortunately, however, a local evaluation of G (i.e., in a given surface 
cell) can be made on the basis of the local single valuedness of G, i.e., locally 
either G = f(x) or G = f(y). The method by which this is discerned is the es­
sence of surface tension in the NASA SOLA-VOF code. Figure la shows a locally 
near horizontal surface (G = f(x)) passing through surface cell (i,j). The cur­
vature in cell (i,j) can be computed from (3) by evaluating G at the three points 
indicated. G is evaluated by summing the height of fluid at the center and adja­
cent columns. This procedure requires no knowledge of whether the fluid is above 
or below the surface, although in the example shown it is assumed to be below the 
surface and the heights are evaluated relative to the bottom of the j-1 row of 
cells. The procedure is^

G-j+i = AVFR
j+1
£ Fi+1 ,z 6yJi 

A=j-1

Gi = AVFCX =
j+1

Fi £ ^yji
£=j-l

i-1 = AVFL =
j+1
1

£=j-l
Fi-1 ,£ (4)

^The superscript * appearing with a capitalized name denotes the FORTRAN name as­
sociated with such a variable in the code.
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II
then G ,^* _ F (AVFR - AVFCX) (AVFCX - AVFL) 1 . 1

“11/2(6^ + 6xi+j) ‘ l/2(6Xi + 6x._j) J 1/2 <6xi>

where <6xi> = 1/2 Sx-j^ + + 1/2 <Sxi+j ,

. .. «' .. 1 T (AVFR - AVFCX) . (AVFCX - AVFL) 1
andG -GP - ? [1/216x7 + 6xj+j) + l/2(6x, + Gx,^) J (5)

and (3) can be evaluated.
A similar evaluation is made for near vertical surfaces (G = f(y)) in the 

vicinity of cell (i,j) as shown in Fig. lb. In this case, fluid heights are 
summed along rows in a manner completely analogous to that above. This procedure 

is

Vi ■AVFT -

i+i

I
£=i-l A, j+1 <$x.

*

G. = AVFCY 
J

i+1

I
A=i-1

SL

*

G. , = AVFB 
u ^

i+1

I
4=1-1

A,j-1 6x, (6)

now

r" rPp* _ f (AVFT - AVFCY) (AVFCY - AVFB) 1 . 1
b - bPK -Li/2(6yj + 6yj+1) ' l/2(6yj + J 1/2 <6yj>

where <6yj.> = 1/2 Sy^j + 5yj + 1/2 5yj+1 »

and
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G= f(y)

AVFT

AVFCY

G = f(x)

Fig. 1. (a) The near horizontal surface requires that columns be locally summed
to provide the surface heights necessary to determine the planar curva­
ture. The cylindrical radius of curvature is also shown, (b) The ver­
tical surface requires that rows be locally summed to provide the sur­
face heights necessary to determine the planar curvature. The cylin­
drical radius of curvature is also shown.
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(7)G * 1 f (AVFT - AVFCY) , (AVFCY - AVFB) 1
" 2 Ll/ZUyj + «syj+i) l/2T6yTT^7^T J

for the evaluation of (3).
The problem with these two procedures is that when one is computing in cell 

(i,j), how does one know which of the two to use. In other words, how does one 
know if the fluid surface is more nearly horizontal or mobe nearly vertical.
This question is readily answered by partially doing both procedures. From (4), 
the surface slope at cell (i,j) with respect to the horizontal can be made, name­

ly

dG D * = (AVFR - AVFL)
dx " l/26xi_1 + 6xi + l/26x.+1

(8)

From (6), the surface slope at cell (i,j) with respect to the vertical is simi­
larly,

dG mrv* = (AVFT - AVFB)
dy " ^ " l/26yj_1 + Syj + l/26yj+1 (9)

A comparison of (8) with (9) reveals the answer to the question posed. If |PFY|
> |PFX| the surface is more horizontal than vertical and (5) is used. Similarly 
if |PFX| > |PFY|, the surface is more vertical than horizontal and (7) is used. 
Equation (3) can now be fully evaluated, and in turn can be used to solve for the 
surface pressure P$ in cell (i,j). The value of g" in (3), determined by (5) or 

(7) provides the proper sign for K to be used in (1). Thus, fluid inside a lo-
ii xy

cally convex surface with G <0 will be influenced by a positive surface pres­
sure; fluid inside a locally concave surface with g" > 0 will experience a nega­

tive surface pressure.
The only remaining variable to be evaluated to fully define Pg in (1) is the 

KCy.| term in (2). The orientation of the surface in cell (i,j) is now known and 
it is a simple matter to determine upon which side of the horizontal or vertical 
surface the fluid is located. If the surface is nearly horizontal and PFY > 0,

7



fluid is above the surface; if PFY < 0, fluid is below the surface. Similarly 
for a near vertical surface, PFX > 0 implies that the fluid is to the right and 
PFX < 0 implies that the fluid is to the left of the surface. Further, for a 
near horizontal surface, PFX = tan 0 where 0 is the angle the surface makes with 
the horizontal. Likewise for near vertical surfaces PFY = tan 0, only now 0 is 
the angle between the surface and the vertical. Both of these situations are de­
picted in Figs, la and lb. To solve for the cylindrical component of curvature

/ 1 s i n 0 iin the near horizontal case i.e., K . =-5— =------- \is straightforward since
\ y cyl rcyl /

rcyl 1S 9^ven which is the distance in the x direction from the axis to

the center of cell (i,j). In this case the sign of the curvature depends upon
PFX; if PFX < 0, as shown, K , is positive (and implies a negative surface pres-

y 1 cos 0
sure), and vice versa. For the near vertical case, K . = -5-----= -—- . Now

cyl cyl rcyl
rCy-j depends upon which side of the surface the fluid is located. If fluid is to 

the left, rcyl = x._h + F1j. 6xi; if fluid is to the right rcyl = x.+h - F.^ 6xi. 

The sign of K ^ is again determined by PFX the same as before.

With these quantities determined, the curvature K in (2) can be evaluated 
and used in (1) to determine the surface pressure which is used in the code as an 
applied pressure in the surface cell in which it is computed.

Wall adhesion effects are modeled simply with the contact angle CANGLE. As 
the surface slope is being determined at a boundary from (4) or (6), the value of 
AVFT, AVFB, AVFR or AVFL is set consistent with CANGLE. For example, suppose the
surface cell at the boundary is considered as shown in Figs. 2a and 2b with fluid
assumed to be below the surface. A surface pressure is desired for this cell and 
will be calculated in the same manner as previously outlined except in this case, 
the surface must make an angle CANGLE, with the wall. Equations (4) and (6) are 
computed as usual except the values of AVFR and AVFT are set as follows:

AVFR = AVFCX + | (6xi + 6xi+1)/TANCA

AVFT = AVFCY - | (6y . + 6y .+1) TANCA

where TANCA = tan (CANGLE). The remainder of the procedure remains the same. 
Similar adjustments are made to the appropriate combination of the variables

8



Fictitious Cel Is

CANGLE

AVFL AVFCX AVFR

Wall Boundary

Wal Boundary

<> AVFT
CANGLE

li AVFCY

AVFB

(b)

Fig. 2. (a) Wall adhesion for the locally near horizontal case is modeled by
setting the value of AVFR such that CANGLE is the angle between the 
wall and the surface, (b) Wall adhesion for the locally near vertical 
case is modeled by setting the value of AVFT such that CANGLE is the 
angle between the wall and the surface.
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AVFL, AVFR, AVFB, AVFT depending on the location of an obstacle or a wall (i.e., 
whether it be above, below, left or right of the surface cell).

The surface tension scheme together with the standard VOF method can be used 
to move an initially flat horizontal interface to an equilibrium position con­
sistent with the contact angle and Bond number (i.e., a miniscus). Yet, to do 
so, in order to establish initial conditions for a calculation, would require 
considerably more calculational time than solving for the initial surface distri­
bution directly. An ordinary differential equation for the static equilibrium 
displacement from an initially horizontal surface is found by minimizing the to­
tal potential energy. If such a surface displacement is given by Ys = f(r), 0 < 
r < 1, then the differential equation is:

- Bq Ys - 2 cos (CANGLE) = 0

s

subject to the conditions Ys (r = 0) = 0 and Yg (r = 1) = tan (CANGLE). Further 
since the volume of fluid must remain constant during the minimization

r\
Volume = 2ir / rYs dr = 0

*/0

A recursion solution to this equation can be obtained by substituting Z =
Y s in the differential equation above and differencing the resulting

equations. The difference equations become

(CANGLE)

10



I

and since Y s \/l - Zc2 
s

sj = Y sj-1
Sr ( sj-1

v/rr Zsj-12 y
JJL

1 - ZSJ2
(10)

and the volume equation becomes YSUM = 0 with

YSUM =
N-l
I

j=l
rj vsj Sr + i y$n

(id

where N = the number of partitions across the interval 0 < r < 1, and 
5r = the partition spacing.

The method by which (10) is solved is:
(a) choose a value of Ye(0) = - 2 co| jgAI|GLE^ for Bn > 0; if Bn = 0, set

(b)

(c)
(d)

(e)

(f) 
(9) 

(h)

Ys(0) 0 Jo

calculate the Z j = 1, N, Z (0) = 0J J ^
if ZsN > 1 replace Y (j = 0) with Y (j = 0) x 1.05 and repeat step b

compute the Y j = 1, ..., N 
^ J

if IZ."sN “ cos (WANGLE)| > e go on to step f, otherwise STOP 

compute YSUM
reset Y$(0) = Y$(0) - ^

return to step b and repeat the sequence until convergence is reached.
NOTE: If B =0, step e is skipped and after step f the convergence test is 

made |YSUM| < £. If this is violated, proceed to step g, then return only to d 
and repeat this sequence.

Equations (10) and (11) were formulated on the basis of cylindrical coordi­
nates. The equations and procedures for their solution are perfectly valid, how­
ever, for plane coordinates if the r and 2ir factors are replaced by unity and 
every appearance of 2 cos (CANGLE) is replaced by cos (CANGLE). In either case 
the resulting distribution of Ys can be uniformly augmented to any desired ini­
tial surface position and used to determine the set of F. .'s in every column of

' *J
cells for the mesh selected. This is done by interpolating between the nearest

11



est values of the Y . to find a surface height at the center of each column of
sj

cells and setting the value of F(i,j) in each column accordingly.

III. NASA SOLA-VOF STRUCTURE

The NASA SOLA-VOF code is written in subroutine form such that each subrou­
tine performs an individual task in the calculation. The subroutine names are 
symbolically selected to indicate the function that each performs. For the most 
part, each routine is positioned in the code in the calculational order pre­
scribed in App. A for the solution of the governing equations.

Each subroutine is listed below in the order of its appearance. A brief de­
scription is included to describe the major functions of each subroutine.
SOLA-VOF (main program)

(a) Reads and prints the input and output data.
(b) Contains the calling sequences to the other subroutines and thus pro­

vides cyclic control over the calculation.
(c) Computes the time step, DELT, used each cycle and increments the time 

with this value, t -»■ t + DELT.
(d) Increments the cycle number by one each cycle.
(e) Provides a shutdown procedure in the event that a solution cannot be 

obtained that satisfies mass conservation.
FILMST (FILM SeT-up)

(a) Provides the necessary buffers, links, and logical units for the use of 
local graphics software. This routine must be written specifically for 
each graphics system.

MESHST (MESH SeT-up)

(a) Generates the computing mesh from the input data established in NAME- 
LIST/MSHSET/.

(b) Evaluates all of the necessary geometric variables that are used 
throughout the code.

(c) Computes the relaxation factors (BETA(i,j)) that are used in the pres­
sure iteration.

(d) Sets up obstacles by defining obstacle cells as having
BETA(i,j) = - 1.0. Obstacle definition, in general, must be coded by 
hand for each problem.

12



SETUP (general set-up)
(a) Initialize constants necessary to the calculation.
(b) Computes the scaling factors and centering shifts required for graphics 

output.
(c) Calls the ICON subroutine to provide an initial surface configuration 

for either cylindrical or planar geometry consistent with the contact 
angle and centerline symmetry boundary conditions. ICON is the routine 
that initializes the F(i,j) arrays for the entire mesh for the tank 
draining problem.

(d) Computes the initial hydrostatic pressure distribution to initialize 
the P(i,j) pressure array.

(e) Initializes marker particle number.
(f) Sets up the initial velocity with U(i,j) = UI and V(i,j) = VI every­

where in the mesh.
ICON (Initial surface CONfiguration)

(a) Computes the solution of the two point boundary value problem for the 
initial equilibrium position of the free surface. The parameters of 
the equation are the contact angle (CANGLE) and the Bond number (BOND).

(b) Computes the fractional volume of fluid in each cell F(iJ) based upon 
the free surface position.

(c) Plots and prints initial surface configuration.
BC (Boundary Conditions)

(a) Sets the values of appropriate variables at rigid free slip, no slip, 
continuative outflow, and periodic boundaries.

(b) Sets the values of appropriate variables around the boundary establish­
ed by the free surface.

(c) Allows for special boundary condition inclusions, such as inflow bound­
aries; these must be included by hand as needed for each problem in 
general. However, for the tank draining problem, the set-up is fixed 
for inflow or outflow at the tank outlet.

TILDE
(a) Computes an explicit solution for each of the momentum equations.

(i.e., new values of velocities are obtained from the time n values of 
pressure, convective and diffusive accelerations.) These tilde values 
will be advanced to time n+1 values in the pressure iteration.

13



PRESIT (PRESsure ITeration)
(a) Iterates the velocity and pressure field such that mass is conserved in 

each cell of the mesh (i.e., |D(i,j)| < EPSI), except surface cells.
(b) Computes a surface cell pressure adjustment based on the applied sur­

face pressure, yet mass conservation in the surface is not iterated, it 
is set by application of the free surface boundary conditions.

PARMOV (PARticle MOVement)
(a) Computes the movement of marker particles in the velocity field just 

found.
(b) Provides the necessary bookkeeping to allow marker particles that exit 

the mesh to be replaced by newly input particles. (NOTE: Particle 
initializations must be done by hand in the SETUP subroutine.)

VFCONV (Volume Fraction CONVection)
(a) Computes the solution to the equation

3 F
gf + V * ^JF = 0

(b) Computes and stores for printout any errors in volume (i.e., loss or 
gain) during the calculation of step (a).

PETACL (PETA interpolation factor Calculation)
(a) Used only for surface cells.
(b) Determines the slope of the surface in surface cells.
(c) Determines the cell flag, NF(i,j) to indicate the interpolation neigh­

bor of the surface cell. (The interpolation neighbor is the cell adja­
cent to the surface cell containing fluid and with which surface cell 
pressures are interpolated to provide the proper value of Ps at the 
surface.)
NF = 1, implies a neighbor to the left.
NF = 2, neighbor to the right.
NF = 3, neighbor on the bottom.
NF = 4, neighbor on the top.
Thus, the above information describes the orientation of the surface 
(whether vertical or horizontal) and on which side of this surface 
fluid exists.

(d) Computes the surface pressure PS(i,j) caused by surface tension in sur­
face cells.

14



(e) Computes the factor PETA(i,j) that is a measure of the nondimensional 
distance from the cell center to the surface along the cell midline to­
ward the interpolation neighbor.

DRAW (Generates graphics output of problem data)
(a) Draws velocity vector and free surface distributions.
(b) Draws the mesh during CYCLE = 0.
(c) Provides particle plots as requested.

FRAME
(a) Draws a frame around graphics output (the frame size is scaled to the 

mesh size).
DRWOBS (DRaW OBStacles)

(a) Draws lines around all obstacles. In addition, the hemisphere on the 
bottom is drawn as a reference.

PLTPT (PLoT a PoinT)
(a) Provides the graphics system call to plot a single point (xl,yl).
(b) Computes and plots the symmetric point to be plotted if the flag ISYMPL 

is on. (Symmetry is always assumed to exist only about the y axis.)
DRWVEC (DraW a VECtor)

(a) Provides the graphics package system call to draw a line between points 
(xl,yl) and (x2,y2).

(b) Computes and plots the symmetric form of a given line if ISYMPL is 
turned on (i.e., = 1).

A simplified flow diagram showing the calling sequence of the routines is 
presented in Fig. 3.

IV. PRIMARY FORTRAN VARIABLES
(

The primary variables used in the program, other than those in the NAMELIST 
input blocks, are listed below. The algebraic form of the variable used in the 
finite difference equations is given with a brief description.

VARIABLE DESCRIPTION

BETA(I,J) (0
/i i \ Relaxation facto

6t( 1 2 + 1 2 )

CYCLE Cycle number.

15



START

Have Pressures 
Converged

to STOP?

TILDE

PRESIT

VFCONV

PARMOV

PETACAL

PETACAL

MESHST

Read Input

SETUP 
t=cycle=0

cycle=cycle
t=t+At

Fig. 3. Flow chart of the NASA SOLA-VOF code.
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CURV(K)
2 2 d b/dX^

3/2[1 + (dG/dX)2]

CURV 1 + 1
Rxy Rcyl

CURVCY Rcyl

CURVY(K)

CURVXY
d2G/dY2

[1 + (dG/dY)2]372

D(I,J) V • u
DELT 6t
DELX(I) 6x.i

DELY(J) 6yj

F( I jJ)

FLG

FN(I,J)

FUX u 3u/3x
FUY v 8u/8y
FVX U 3v/3x
FVY v 3v/3y
GP G'

GPP G"

Theoretical curvature of kth segment of ini­
tial surface with respect to x direction 
(ONLY FOUND IN ICON).
The numerical sum of the principal curva­
tures.
Azimuthal curvature for cylindrical geom­
etry.
Theoretical curvature of kth segment of ini­
tial surface with respect to y direction. 
Numerical curvature with respect to either x 
or y direction.
The divergence of the velocity field.
Time step.
The mesh spacing of the ith cell along the x 
axi s.
The mesh spacing of the jth cell along the y 
axis.
The volume of fluid per unit volume of cell 
(i,j) at time level n+1.

A flag that indicates convergence of pres­
sure iteration if = 0, nonconvergence if =
1.

The volume of fluid per unit volume of cell 
(I ,J) at time level n.
The flux of u momentum in the x direction.
The flux of u momentum in the y direction.
The flux of v momentum in the x direction.
The flux of v momentum in the y direction.
The derivative of the surface height with 
respect to either x or y depending on sur­
face slope.
The second derivative of surface height with 
respect to either x or y depending on sur­
face slope.
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HCL Height of the surface at the centerline of
the tank.

HWALL Height of the surface at the wall of the
tank.

I BAR The number of real cells in the x direction.

I MAX IBAR+2 The number of real plus fictitious cells (2)
in the x direction.

IM1 IMAX-1 The value of I at the last real cell in the
x direction.

IP(k) The index of the cell in the x direction
containing particle k.

ITER The iteration number.
JBAR The number of real cells in the y direction.

JMAX JBAR+2 The number of real plus fictitious cells (2) 
in the y direction.

JM1 JMAX-1 The value of J at the last real cell in the
y direction.

JP(k) The index of the cell in the y direction 
containing particle k.

NAME The problem title that is read in as input
in a 20A4 format.

NF(I,J) The flag of surface cell (I,J) indicating 
the location of its interpolation neighbor.

P(I,J) The pressure of cell (I,J) at time level
n+1.

PETA(I,J) The ratio of the distance between cell cen­
ters to the distance between the surface and
center of the interpolation cell.

PN(I,J) The pressure of cell (I,J) at time level n.

PS(I,J) -SIGMA • CURV The surface pressure computed from the sur­
face tension coefficient and curvature.

RDX(I) l/6x.
RDY(J) i/6yi
RX(I)

J
1/Xi

RXI(I) l/xi.
RYJ(J) 1/YJ.

J

18



SF Scale factor for plotting.
SIGMA o = .OOOl/WEBER The surface tension force per unit length 

for the tank draining problem.
T Time
TANCA tan (CANGLE) Tangent of the contact angle.

U(I,J) The x direction velocity on the right side 
of cell (I,J) at time n+1.

UN(I,J) The x direction velocity on the right side 
of cell (I,J) at time n.

V(I,J) The y direction velocity at the top of cell 
(I,J) at time n+1.

VCHGT The accumulated loss or gain of F from inac­
curacies in numerical solution of F advec-
tion.

VINIT 2tt/3 Initial nondimensional volume of hemispheri­
cal bottom of tank.

VISX The viscous accelerations in the x direc­
tion.

VISY The viscous accelerations in the y direc­
tion.

VN(I,J) The y direction velocity at the top of cell 
(I,J) at time n.

VOLBAR VOLUME/VINIT The ratio of the fluid volume in the tank to
that of the hemispherical bottom.

VOLUME The volume of fluid in the tank.

x(D X.i
The x distance to the right edge of cell

xi(D XI. The x distance to the center of cell (I,J).
XP(k) The x coordinate of particle k.

XSHFT The shift along the plotting absicca to cen­
ter the plot frame on film.

Y(J) Yj The y distance to the top of cell (I,J).

YJ(J) YJj The y distance to the center of cell (I,J).

YP(k) The y coordinate of particle k.

YS(K) The solution height of the initial surface 
at segment k (used in ICON).
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YSHFT The shift along the plotting ordinate to 
center the plot frame on film.

ZS(K) sine The sin of the angle of deviation from hori­
zontal of the kth segment of the surface 
(used in ICON).

V. INPUT VARIABLES

All of the input data to the NASA SOLA-VOF code are in NAMELIST blocks with 
the exception of the problem title NAME which is a 20A4 format. The NAMELIST 
variables occur in two blocks. The first block is /XPUT/ and contains all of the 
physical parameters necessary to specify and run the problem. The second block 
/MSHSET/ contains the geometrical information necessary for the creation of the
variable mesh and the number of cells used in it.

The following is a list of all the input variables and a description of
each.

NAMELIST /XPUT/
CELT The time step used either to start the prob­

lem (must be chosen in accord with stability 
criteria) or to run the problem with a con­
stant time step.
The kinematic viscosity of the fluid.
= 0 for plane geometry.
= 1 for cylindrical geometry.
The convergence criterion for the pressure 
iteration (i.e., |V • uj < EPSI). This is 
typically set to 10~3 for most problems 

scaled such that velocities are of the order 
of unity.
|V*u/DZR0| < EPSI is the true convergence 
test. DZRO = 1.0 satisfies the criterion 
above for the selection of EPSI. However, 
DZRO can be used to accommodate any desired 
magnitudes of velocity while keeping EPSI on 
the order of 10"3.

Acceleration of gravity or environment in x 
directi on.

NU
CYL

EPSI

DZRO

GX

20



GY
UI

VI

VELMX

TWFIN
PRTDT

PLTDT

OMG

ALPHA

WL,WR,WT,WB

PARTN

Acceleration in y direction similar to GX. 
The initial U velocity to be set everywhere 
in the mesh.
The initial V velocity to be set everywhere 
in the mesh.
The maximum velocity to which all velocity 
vectors in the mesh will be scaled upon 
plotting.
Time when to finish the calculation.
Print time step (i.e., time interval between 
prints on paper).
Plot time step (i.e., time interval between 
plots on film).
The overrelaxation coefficient for the pres­
sure iteration. Typically OMG = 1.8 but can 
be picked 1.0 < OMG <2.0.
The parameter that specifies the relative 
amount of centered or donor cell differenc­
ing of the advective flux terms.
ALPHA = 0 for centered differencing.
ALPHA = 1 for donor differencing. Fraction­
al values between 0 and 1 can also be used. 
Stands for wall left, right, top, and bot­
tom, respectively. These flags set the de­
sired wall boundary condition. Each of the 
parameters can assume the following values 
= 1 for rigid free-slip wall 
= 2 for rigid no-slip wall 
= 3 for continuative outflow boundary 
= 4 for periodic boundary. NOTE: Inflow 
boundaries must be prescribed by hand in the 
special boundary condition section of sub­
routine B.C.
The number of marker particles to be placed 
in the flow field.
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CWTDJRST

MOVY

DTMVP
AUTOT

FLHT

ISYMPL

WEBER

BOND

ISRFIO

CAN6LE

We

Bo

Cycle when to tape dump, time to restart. 
Can be neglected in the NASA SOLA-VOF code 
as there is no tape dump capability.
= 0 if no movie is desired 
= 1 if a movie is desired.
Problem time interval between movie frames. 
Automatic time step flag 
= 0 specifies that the constant DELI previ­
ously given is used for the calculation.
= 1 specifies that the time step DELI will 
automatically be computed based on the sta­
bility condition

DELI = MIN (rg—L
6y

MAX1 '’MAX1/
Fluid height (i.e., the initial vertical po­
sition of a horizontal surface). Subroutine 
ICON finds a miniscus solution about this 
height. (For tank draining problems this 
can also be termed the initial fill height. 
Since the tank radius is R = 1 in this code, 
the value of FLHT is just set to the number 
of desired fill heights.)
= 0 no symmetry plots 
= 1 film frames are drawn as a symmetric 
plot about the vertical axis.
Weber number
WEBER = .0001/SIGMA for the tank draining 
problem.
BOND number. GY = SIGMA x BOND is set from 
this specification and overrides the value 
of GY previously set.
= 0 no surface tension effects are included 
in calculation
= 1 turns on surface tension forces.
The contact angle between the fluid and tank 
wall. (Specified in degrees.)
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VOUT The outflow velocity (is predetermined to be 
= - 1.0 for all tank draining problems).
Set VOUT = + 1.0 to perform inflow or tank 
filling calculations.

IBAFF = 0 means no obstacles are placed in the
tank for a baffle (i.e., unbaffled draining) 
= 1 places the baffle obstacles in the flow 
field. For best results, the baffle must be 
used in a mesh that has mesh lines at x = 
.625, y = 0.4, and y = 0.56.

NAMELIST /MSHSET/
NKX The number of submeshes used to compose the complete mesh that spans

the x direction.
XL The x coordinate of the left edge of a submesh. Must be specified for

NKX submeshes.
XC The x coordinate of the convergence point of a submesh. Must be speci­

fied for NKX submeshes.
XR The x coordinate of the right edge of a submesh. Must be specified for

NKX submeshes.
NXL The number of cells to be placed between coordinates XL and XC in a

submesh. Must be specified for NKX submeshes.
NXR The number of cells to be placed between coordinates XC and XR in a

submesh. Must be specified for NKX submeshes.
DXMN The minimum value of fix^ that occurs in a submesh on each side of the 

convergence point XC. Must be specified for NKX submeshes.
The following input numbers generate the mesh in the y direction and are

analogous to the x values previously specified.
NKY The number of submeshes in the y direction that compose the complete

mesh.
YL The y coordinate of the left edge of a submesh as one views the submesh

in the direction of the negative X axis.
YC The y coordinate of the convergence point of a submesh as one views it

in the direction of the negative x axis.
YR The y coordinate of the right edge of the submesh, as one views it in

the direction of the negative X axis.
NYL The number of cells in a submesh between locations YL and YC.
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The number of cells in a submesh between locations YC and YR.
The minimum value of 6y. that occurs in a submesh on each side of the 
convergence point.
The y coordinate of the center of the hemisphere at the tank bottom. 
This should be set at a value of 1.0 plus the height of the neck of the 
outlet. For the test problems already done, this value was chosen to 

be = 1.1.
The variable mesh is constructed by linking a group of submeshes together to 

achieve any desired distribution of cell spacing. This is done in the same man­
ner in both directions. The number of cells is specified in each submesh on each 
side (i.e., to the left and to the right) of the convergence point. Both cells 
directly adjacent to the convergence point have a cell spacing equal to the mini­
mum value specified in the input as DXMN or DYMN. The cell spacing is then ex­
panded quadratica1 j ^rom the convergence point cell to the left and right edges 
of the submesh in accordance with the number of desired cells on either side. If 
a uniform cell spacing on the left (right) has a cell size that is less than the 
minimum size input as DXMN or DYMN, a uniform spacing is then used on the left 
(right). The number of cells to the left and to the right of the convergence 
point need not be equal but there must be at least one on both sides.

When two or more submeshes are linked together, it is imperative that the 
location of the left edge of the right submesh be the same as the location of the 
right edge of the left submesh.

An example of the proper format to be used to specify a mesh spanning the x 
dimension LW < X < RW with n submeshes is

NKX = n, XL = LW, XL2, XL3, ...XLn, XC = XCi, XC2, .... XCn,
XR = XL2, XL3, ..., RW, NXL = NLj, NL2, ..., NLn,
NXR = NRls NR2, ..., NRn, DXMN = DXMNj........... DXMNn

in which NL-j represents the number of cells to the left of XC-j and NR-j is the 
number of cells to the right of XC-j in each submesh i, i = 1, ..., n.

VI. SETTING UP A PROBLEM

Since the NASA SOLA-VOF code has been modified for the tank draining prob­
lem, there are no special inclusions needed to run these problems. In general, 
however, special sections may be added by hand for inflow boundaries and any oth­
er special boundary conditions not provided (in the B.C. subroutine) and to ini­

NYR
DYMN

YCENTR
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tialize obstacles (in the MESHST subroutine). The hemispherical tank section is 
included in the code with a procedure that compares the distance from the hemi­
spherical center (0,YCENTR) to the center of each cell i,j (XI., YJ.) with R = 1.

’ J
If the distance is greater than 1, the cell flagged with BETA(iJ) = -1.0 for an 
obstacle cell; if the distance is less than 1, the cell is assumed to contain 

fluid. Other than this, all that is required is to initialize the NAMELIST/XPUT/ 
and NAMELIST/MSHSET/ variables. Once these variables are determined it is imper­
ative that the PARAMETER statement at the very beginning of the code be modified 
to provide the proper storage requirements for the problem selected. The PARA­
METER statement has the form

PARAMETER(IBAR2 = 13, JBAR2 = 38, NPRTS = 1, MSHX =4, MSHY = 4).
The variables named in this statement are used to set the dimensions of the 

COMMON blocks at compile time and cannot be used as variables elsewhere in the 
code. The values specified in the parameter statement are easily determined from 
the input data

IBAR2 = NXL + NXR + 2 
JBAR2 = NYL + NYR + 2 
NPRTS = PARTN 
MSHX = NKX 
MSHY = NKY

The dimensions can be larger than these equations specify but never smaller.
Due to the 32 bit word length of the UNIVAC 1104 computer, the code NASA 

SOLA-VOF has been modified to allow DOUBLE PRECISION computing. This feature 
provides 64 bit computing, similar to that of a CDC-7600, the computer on which 
the code was developed. A requirement of this feature regarding input data is 
that floating point input numbers must be specified in double precision.

Thus, the setup procedure for running the NASA SOLA-VOF code is very 
straightforward and simple. For tank draining problems, one can easily use the 
mesh setup data provided in the next section of this report for the baffled and 
unbaffled cases. There is, of course, no restriction on the mesh used for the 
unbaffled problem, only geometric requirements. In this case, it is crucial to 
place a vertical grid line at X = 0.1 which is the radius of the outlet and to 
have a smooth variation of DELX across the mesh due to the accuracy requirements 
outlined in App. A.
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The mesh provided for the baffled draining problem is another matter and 
should be used for all baffled problems. If finer resolution is desired a scaled 
analog of this mesh is required. The reason is because of the position of the 
baffle relative to the outlet. The general prescription of defining the annular 
opening from the mesh data provided allows no cells to resolve the space between 
the baffle and hemispherical tank wall. A special condition is provided in sub­
routine MESHST to flag cell (8,5) as a fluid cell and thus provide a single cell 
resolution of the annular space. A more desirable situation is to have at least 
two cells across such an opening, yet the cost of such a desire for the tank 
draining problem is great both in terms of storage and computer time. Any 
changes to the mesh for baffled problems should be accompanied by either a remov­
al or alteration of the statement IF(IBAFF.GT.0.AND.I.EQ.8.AND.J.EQ.5) GO TO 140 

in the obstacle setting section of the MESHST.

VII. TEST PROBLEMS

Five test cases were performed to demonstrate the utility of the NASA SOLA- 
VOF code for tank draining problems. Test cases 1 and 2 are unbaffled problems 
while cases 3,4, and 5 are for baffled tanks. A summary of the parameters in­
volved in each problem is given in Table I. It should be noted that a few of the 
test cases were recomputed with a contact angle of 1°. No apparent differences 
(from calculations with 5° contact angle) were observed in the solutions so ob­
tained. Thus, there appears to be a calculational insensitivity to small contact 
angles except for flows strongly dominated by surface tension.

The remainder of this section will be devoted to the discussion of the test 
cases and a comparison, where possible, of calculated with experimental results.

A. Case 1
The input data for this calculation are given in Table II. These data are 

arranged as a NAMELIST data set with the first part of the data being the /XPUT/ 
block and the latter part, the /MSHSET/ block. The symmetrically drawn mesh gen­
erated by the /MSHSET/ data is shown in Fig. 4a in which calculations are per­
formed only on the right half.

The initial free surface position that results from the ICON subroutine is 
shown in Fig. 4b. A comparison of the initial free surface as determined by the 
F = 0.5 contour line can be made with Fig. 4c. (Note: All free surface plots 
that are produced by the code utilize the F = 0.5 contour line to approximate the
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TABLE I

TEST PROBLEM PARAMETERS

Case Number 1 2 3 4 5

Weber 1.06 0.01 1.52 4.05 9.12

Bond -5 0 0 0 0

Initial Fill Height 3 2 2 2 2

Contact Angle 5° 5° 5° 5° 5°

Baffle No No Yes Yes Yes



(a) (b)

(e)

Fig. 4. Sequence of plots for Case 1. (a) Symmetrically plotted mesh used, (b)
initial surface from ICON, (c) free surface plot at t = 0, (d) surface 
configuration at t = 154, (f) surface configuration at vapor ingestion 
showing residual volume at t = 241.
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TABLE II

NAMELIST INPUT DATA FOR EACH TEST CASE

NftSft TftNK DRAINING TEST PROBLEM - COURSE MESH -CASE 1DE1-T=1.0d-04 NU=0. 0 CYL=1.0 EPSI = .001 D2RO=1.0 GX=0.0 GY=0.0 UI = 0. 
ui=0.0 uelmx=1.0 twpin=500.0 prtdt=99999.0 pltdt=1.0 omg=1.8 alpha 
HL=1 WR=1 NT=1 WB=1 PARTN=0. MOUY= 0 DTMUP=1.5 
AUTOT—1■ FLHT=3.0 ISYMPL=1
isrp10=1 heber=1.06 »ond=-5.0 uout=-1.0 cangle=5.0
XPUT
nkx=£ xl=0. .£ xc=.l .95 xr=.£ 1.0 nxl=1 8 nxr=1 1 dxmn=.1 .0u 
nky=1 yl=0. yc=1.8 yr=3.6 nyl=18 nyr=18 dymn=0.1 ycentr=1.1MSHSET

NASA TANK DRAINING TEST PROBLEM - COARSE MESH- CASE £
delt=1.0b-04 nu=0.0 cyl=1.G epsi=.001 dzro=1. gx=0. gy=0. ui=0. 
ui=0. uelmx=1. twfin=500.0 prtdt=99999. pltdt=1.0 omg=1.8 alpha=1.
HL=l WR=1 WT=1 WB=1 PARTN=0. MOUY=0 DTMUP=1.5 AUTOT=l. FLHT=£.0 ISYMPL=1
isrf10=1 heber=.01 bond=0.0 uout=-1.0 cangle=5.0XPUT
NKX=1 XL= 0. XC=0.5 XR=1.0 nxl=5 nxr=5 dxmn=0.1
nky=1 yl=0. yc=1.8 yr=3.6 nyl=18 nyr=18 dymn=0.1 ycentr=1.1
MSHSET

NASA TANK DRAINING TEST PROBLEM - COURSE MESH -CASE 3
delt=1.0d-04 nu=0.0 cyl=1.0 epsi=.001 dzro=1. gx=0. gy=0. ui=0. 
ui=0. uelmx=1. twfin=500.0 prtdt=99999. pltdt=1.0 omg=1.8 alpha=1. 
WL=1 WR=1 WT=1 WB=1 PARTN=0. MOUY=0 DTMUP=1.5 AUTOT=l. FLHT=£.0 ISYMPL=1 IBAFF=1
isrf10=1 weber=1.5£ bdnd=0.0 uout=-1.0 cangle=5.0XPUT
nkx=3 xl=0. .£ .6£5 xc=.1 .41£5 .81£5 xr=.£ .6£5 1.0 
nxl=1 £ £ nxr=1 £ £ dxmn=.1 .106£5 .09375 
nky=3 yl=0. .4 .56 yc=.£ .48 £.08 yr=.4 .56 3.6 
nyl=£ 1 15 nyr=£ 1 15 dymn=.1 .08 .101333
YCENTR=1.1 
MSHSET

NASA TANK DRAINING TEST PROBLEM - COURSE MESH --CASE 4
delt=1.0d-04 nu=0.0 cyl=1.0 epsi=.001 dzro=1. gx=0. gy=0. ui=0. 
ui=0. uelmx=1. twfin=500.0 prtdt=99999. pltdt=1.0 omg=1.8 alpha=1. 
wl= 1 hr=1 nt=1 hb=1 partn=0. moi,-,y=0 dtmup=1.5AUTOT=l. FLHT=£.0 ISYMPL=1 IBAFF=1
isrf10=1 heber=4.05 bond-0.0 vout=-1.0 canglee5.0
XPUT
nkx=3 xl=0. .£ .6£5 xc=.1 .41£5 .81£5 xr=.£ . 6£5 1.0 
nxl=1 £ £ nxr—1 £ £ dxmn=.1 .106£5 .09375 
nky=3 yl=0. .4 .56 yc=.£ .48 £.08 yr=.4 .56 3.6 
nyl=£ 1 15 nyr=£ 1 15 dymn=.1 .08 .101333
YCENTR=1.1 
MSHSET

NASA TANK DRAINING TEST PROBLEM --- COURSE MESH ---CASE 5
delt=1.0d-04 nu=0.0 cyl=1.0 epsi=.001 dzro=1. gx=0. gy=0. ui=0. 
ui=0. uelmx=1. twfin=500.0 prtdt=99999. pltdt=1.419 omg=1.8 alpha=1.
HL=1 WR=1 WT=1 WB=1 PARTN— 0. MOUY=l DTMUP=1.419 AUTOT=l. FLHT=£.0 ISYMPL=1 IBAFF=1
isrf10=1 •meber=9.1£ bond=0.0 uout=-1.0 cangle=5.0
XPUT
nkx=3 xl=0. .£ .6£5 xc=.l .41£5 .81£5 xr=.£ .6£5 1.0 
nxl=1 £ £ nxr=1 £ £ dxmn=.1 .106£5 .09375 
nky=3 yl=0. .4 .56 yc=.£ .48 £.08 yr=.4 .56 3.6 
nyl=£ 1 15 nyr=£ 1 15 dymn=.1 .08 .101333YCENTR=1.1 
MSHSET

29

II O



free surface; a procedure that is completely satisfactory for such calculations 
as these.) Figures 4d-4f show the free surface configuration at selected times 
with the last frame at the time vapor ingestion occurs, which shows the residual 
volume remaining in the tank. Table III is a list of the residual volumes com­
puted for each case. A careful inspection of Fig. 4 will reveal the fact that 
the angle made between the wall and surface in the free surface plots (beginning 
with Fig. 4c) is not the contact angle previously reported. This consequence is 
only an artifact of the computer generated drawing since no special procedure was 
built into the graphics routines to accurately convey the wall-surface intersec­
tion. Thus, one must make a mental extrapolation of the surface near the wall to 
visualize the proper contact angle.

Figure 5 shows a history of the centerline and wall positions based on the 
nondimensional time t. The curve for the centerline shows a few surface waves 
superimposed upon a near linear decline while the curve for the wall displays a 
stepwise appearance. The centerline curve is an accurate representation of the 
surface history at the cylindrical axis. The wall curve, however, represents the 
location of the top of the last wall surface cell as a function of time. This 
method of defining the wall contact point was chosen for simplicity and conven­
ience, and is admittedly a coarse approximation. The wall surface location is a 
rather arbitrary point to define due to the fact that the surface is modeled by 
fractional values of F and the application of a contact angle boundary condition 
at the wall. To be consistent with various optical methods used experimentally 
to determine wall-surface interface, a more complicated method would have to be 
devised.

A comparison of the Case 1 calculations with the experiment reported in [6] 
is made in Fig. 12. There is generally excellent agreement between the two, al­
though the calculation shows more sloshing than the experiment. Part of this 
sloshing phenomena is due to the coarse mesh used to perform the calculation.
The rather large cells near the centerline prevent the precise evaluation of the 
surface pressure (i.e., curvature) necessary to retard the growth of the surface 
convexity.-*"

1* Since the completion of the NASA SOLA-VOF code, the ongoing development of the 
SOLA-VOF code has produced changes in the fluxing terms of the F equation that 
significantly improve the comparison presented. A finer mesh can also improve 
the accuracy at the centerline. However, it is not the only source of error. 
Concerned investigators are advised to follow the current developments of the 
SOLA-VOF code.
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TABLE III 

RESIDUAL VOLUME 

[VOLBAR = VRES/(27r/3)]

Case 1 0.42

Case 2 0.46

Case 3 0.51

Case 4 0.69

Case 5 0.77
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Fig. 5. Centerline and wall contact point histories for Case 1.
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As previously mentioned, the contact point at the wall shows the conse­
quences of the simple contact point definition, however, the curve shows the cor­
rect average slope and can therefore be useful for some engineering purposes.

B. Case 2
Case 2 calculations were made with the input data given in Table II. A se­

quence of the resulting free surface plots is shown in Fig. 6. Figures 6a and 6b 
show the solution of the equilibrium position differential equations and the ini­
tial surface represented by the F = 0.5 contour, respectively. The remaining 

figures show the surface at selective times including the time at which vapor in­
gestion occurs (Fig. 6f) and the residual volume in the tank (see Table III).
Figure 7 shows the history of the centerline and wall contact point positions as 
previously discussed. Here, one sees the sloshing that takes place in this zero 
gravity, surface tension dominated flow. No experimental results are available 
for comparison with this calculation.

C. Cases 3, 4 and 5
The three baffled draining cases exhibit such similarity that they are pre­

sented together. Figure 8 shows the typical flow pattern for the three cases.
Although Fig. 8 contains plots of the Case 4 calculation, the other two cases ex­
hibit only slight differences in free surface position at the times given.

Figure 8a shows the mesh used to calculate all of these cases with the baf­
fle represented by the cross-hatched area. The data used for the mesh are speci­
fied in Table II. (Note that the only differences in Table II for Cases 3-5 is 
the Weber number and the data used to set up a movie run for Case 5.) Figures 
8b-8f show a sequence of surface positions at various times. These cases exhibit 
no sloshing and the only major difference in them is shown in Fig. 8f in which 
the time at which vapor ingestion occurs is given for each of the cases. This 
figure shows the fluid column just prior to vapor ingestion. Figures 9-11 exhib­
it the centerline and wall contact point behavior of Cases 3-5. The wall contact 
point does not move in any of the cases, while the centerline histories indicate 
a steady decline of the surface with a very rapid vapor ingestion. The typical 
residual volume pattern as shown in Fig. 8f indicates that fluid is trapped by 
wall adhesion on top of the baffle and along the wall. The free surface contours 
that appear in this figure across the annular space between the disk baffle and 
the hemispherical bottom are a result of the numerical errors that occur from the 
single cell across the space. It is usually more desirable to place two or more
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(f)

Fig. 6. Sequence of plots for Case 2. (a) Equilibrium surface solution from
ICON, (b) free surface plot at t = 0, (c) free surface at t = 40, (d) 
free surface at t = 80, (e) free surface at t = 100, (f) residual vol­
ume at vapor ingestion t = 139.
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Fig. 8. Sequence of plots for Case 4 but typical for Cases 3 and 5. (a) Mesh
used for baffled cases, (b) initial surface from ICON, (c) surface con­
figuration at t = 30, (d) free surface at t = 70, (e) free surface at t 
= 100, (f) surface configuration just prior to complete vapor ingestion 
at t = 129 (Case 3), t = 117 (Case 4), and t = 112 (Case 5).
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Fig. 9. Centerline and wall contact point histories for Case 3.
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Fig. 10. Centerline and wall contact point histories for Case 4.
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Fig. 11. Centerline and wall contact point histories for Case 5.
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cells between obsacles to resolve the flow through such a region. However, in 
these cases, the flow dynamics are dominated by the tank outlet and a coarse res­
olution can be used with little error.

The residual volumes for these three cases are listed in Table III and plot­
ted in Fig. 13. The experimental results are from [7]. The apparent lack of 
agreement between the calculated and experimental values is readily explained by 
the fact that a time delay in the experimental apparatus was included in the de­
termination of the experimental values. When the true drain time is determined 
by subtracting the time delay of the experimental apparatus, multiplied by the 
volumetric flow rate and the product is subtracted from the initial volume, the 
experimental data points of Fig. 13 significantly shift to the right. Thus, a 
much better agreement is actually obtained than that presented.

VIII. SIMILITUDE OF TANK DRAINING PROBLEMS

Because all of the tank draining problems are performed nondimensionally, it
is necessary to scale the results to obtain dimensional quantities.

2 2 3The Weber number is customarily defined as We = Q /ir or , in which 
2

Q = AV = ir r V, the volumetric flow rate 
R = the tank radius 
V = the outflow velocity, and 
r = the outlet radius.

Calculationally, (i.e., in the code) these quantities are all nondimensional and
set to the predetermined values R = 1.0, r = 0.1, and V = -1.0. Thus, in this

2
case. We = .0001/a. Similarly, the Bond number Bo = gR /a becomes Bo = g/a.I

We define a nondimensional quantity X as the dimensional quantity X divided 
by the scale of that quantity XQ, then X = X X0. Hence all that is needed to 
fully dimensionalize the calculational results are the length and time scales, L0 
and T , respectively.

The length scale is determined by the radius of the tank being modeled 
(i.e., Lq = R ); a time scale is then obtained from either the known outflow ve-

L V
locity T = -2- or the known volumetric flow rate 

0 V

L03Q Lq3 tt(O.I)2 1 .01 it Lq3
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Fig. 12. Comparison of Case 1 results with the data of Symons [6].
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Fig. 13. Comparison of baffled draining results (Cases 3-5) with the data of 
Symons [7].
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Now all quantities can be scaled to their appropriate values by

s' = 3 L0 T0-2

a' = a L/ T„'2
' 3 -1Q = .01 tt T 1 

x oo
X' = X L0 

and so on.
Variables input to the code or variables output by the code should always be 

interpreted with this predetermined nondimensionality in mind.
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ABSTRACT

Several methods have been previously used to approximate free bounda­
ries in finite-difference numerical simulations. In this paper a simple, 
but powerful, method is described that is based on the concept of a frac­
tional volume of fluid (VOF). This method is shown to be more flexible and 
efficient than other methods for treating complicated free boundary config­
urations. To illustrate the method, a detailed description is given for an 
incompressible hydrodynamics code, SOLA-VOF, that uses the VOF technique to 
track free fluid surfaces.



1. INTRODUCTION
In structural dynamics, it is customary to employ Lagrangian coordi­

nates as the basis for numerical solution algorithms. In fluid dynamics, 
however, both Lagrangian and Eulerian coordinates have been used with con­
siderable success. Because each coordinate representation has unique ad­
vantages and disadvantages, the choice of which representation to use de­
pends on the characteristics of the problem to be solved. In this paper 
the emphasis is on Eulerian formulations for problems involving free bound­
aries. In particular, problems where the free boundaries undergo such 
large deformations that Lagrangian methods cannot be used.

Free boundaries are here considered to be surfaces on which discontin­
uities exist in one or more variables. Examples are free surfaces, material 
interfaces, shock waves, or interfaces between fluid and deformable struc­
tures. Three types of problems arise in the numerical treatment of free 
boundaries: (1) their discrete representation, (2) their evolution in 
time, and (3) the manner in which boundary conditions are imposed on them. 
In Sec. II, a short review is given of different methods that have been 
used for embedding free boundaries in finite-difference or finite-element 
grids. A comparison of the relative advantages and disadvantages of these 
methods leads to a new technique that is simple yet powerful. This method, 
the volume of fluid (VOF) method, is described in Sec. III. In Sec. IV, 
details of the VOF method are described as it has been implemented in an 
Eulerian hydrodynamics code. The new code, SOLA-VOF, is illustrated in 
Sec. V with various examples that show the strength of the VOF technique 
for treating problems involving highly complicated free surface flows.



Finally, in Sec. VI, a short summary is provided that emphasizes the advan­
tages of the new code.
II. FREE BOUNDARY METHODS

Discrete Lagrangian representations for a fluid are conceptually sim­
ple, because each zone of a grid that subdivides the fluid into elements 
remains identified with the same fluid element for all time. Body and sur­
face forces on these elements are easy to define, so it is relatively 
straightforward to compute the dynamic response of the elements. In an 
Eulerian representation the grid remains fixed and the identity of individ­
ual fluid elements is not maintained. Nevertheless, it is customary to 
view the fluid in an Eulerian mesh cell as a fluid element on which body 
and surface forces may be computed, in a manner completely analogous to a 
Lagrangian calculation. The two methods differ, however, in the manner in 
which the fluid elements are moved to new positions after their new veloci­
ties have been computed. In the Lagrangian case the grid simply moves with 
the computed element velocities, while in an Eulerian or Arbitrary-Lagran- 
gian-Eulerian [1] calculation it is necessary to compute the flow of fluid 
through the mesh. This flow, or convective flux calculation, requires an 
averaging of the flow properties of all fluid elements that find themselves 
in a given mesh cell after some period of time. It is this "averaging 
process," inherent in convective flux approximations, that is the biggest 
drawback of Eulerian methods. Convective averaging results in a smoothing 
of all variations in flow quantities, and in particular, a smearing of sur­
faces of discontinuity such as free surfaces. The only way to overcome 
this loss in resolution for free boundaries is to introduce some special 
treatment that recognizes a discontinuity and avoids averaging across it.
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As already noted, the process of embedding a discontinuous surface in 
a matrix of computational cells involves three separate tasks. First, it 
is necessary to devise a means of numerically describing the location and 
shape of the boundary. Second, an algorithm must be given for computing 
the time evolution of the boundary. Finally, a scheme must be provided for 
imposing the desired surface boundary conditions on the surrounding compu­
tational mesh. The first two problems are related, because the method of 
description will govern the choice of evolution algorithm. On the other 
hand, the application of boundary conditions is largely independent of how 
the surface is defined.

In the remainder of this section, we shall concentrate on the repre­
sentation and evolution problems. We shall also restrict this discussion 
to two-dimensional situations, except for a few remarks concerning analo­
gous three-dimensional methods.
A. Height Functions

A simple means of representing a free boundary is to define its dis­
tance from a reference line as a function of position along the reference 
line. For example, in a rectangular mesh of cells of width fix and height 
5y one might define the vertical height, h, of the free boundary above the 
bottom of the mesh in each column of cells. This would approximate a curve 
h = f(x,t) by assigning values of h to discrete values of x. This method 
does not work well when the boundary slope, dh/dx, exceeds the mesh cell 
aspect ratio fiy/fix, and does not work at all for multiple valued surfaces 
having more than one y value for a given x value. This is a severe limita­
tion because many simple shapes, such as bubbles or drops, cannot be treat-
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ed. However, when it can be used, this representation is extremely effi­
cient, requiring only a one-dimensional storage array to record the surface 
height values. Likewise, the evolution of the surface only requires the 
updating of the one-dimensional array (see, for example. Ref. 2).

In the case of a free fluid boundary, the time evolution of the height 
function is governed by a kinematic equation expressing the fact that the 
surface must move with the fluid.

_3h
3t + u it!3x = v 0)

where (u,v) are fluid velocity components in the (x,y) coordinate direc­
tions. It should be noted that Eq. (1) is Eulerian in the horizontal di­
rection, but Lagrangian-like in the vertical direction, which is more or 
less normal to the surface. Finite-difference approximations to this equa­
tion are easily made [2].

The height function method is directly extendable to three-dimensional 
situations [3] for single-valued surfaces describable by, e.g., h = 
f(x,y,t).

B. Line Segments
A generalization of the height function method uses chains of short 

line segments, or points connected by line segments (e.g.. Ref. 4). Coor­
dinates for each point must be stored and for accuracy it is best to limit 
the distance between neighboring points to less than the minimum mesh size 
6x or 6y. Therefore, slightly more storage is required for this method, 
but it is not limited to single valued surfaces.



The evolution of a chain of line segments is easily accomplished by 
simply moving each point with the local fluid velocity determined by inter­
polation in the surrounding mesh. In this sense the line segment method 
resembles a Lagrangian mesh line. It is more flexible, however, because 
individual segments may be readily deleted or added as required for optimal 
resolution. Since the segments are linearly ordered, the deletion-addition 
process presents no logical problems.

Unfortunately, there is one serious difficulty with the line segment 
method. When two surfaces intersect, or when a surface folds over on it­
self, segment chains must be reordered, possibly with the addition or re­
moval of some chains. If such intersections are anticipated, the reorder­
ing process may not be difficult. In the general case, however, the detec­
tion of intersections and determining how a reordering should be done is 
not a trivial task.

The extension of the line segment method to three-dimensional surfaces 
is also nontrivial [5]. Linear ordering used for two-dimensional lines 
does not work for three-dimensional surfaces. Thus, the determination of 
neighboring points defining the local surface configuration requires a ma­
jor effort. Similarly, the determination of surface intersections and ad­
dition-deletion algorithms is considerably more complex.
C. Marker Particles

Instead of defining a free surface directly, one can also work with 
the regions occupied by fluid. For example, marker particles can be spread 
over all fluid occupied regions with each particle specified to move with 
the fluid velocity at its location [6]. Clearly, storage requirements in-
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crease significantly with this method, because of the large increase in the 
number of point coordinates that must be stored. Surfaces are defined to 
lie at the "boundary" between regions with and without marker particles. 
More specifically, a mesh cell containing markers, but having a neighboring 
cell with no markers, is defined to contain a free surface. The actual lo­
cation of the free surface must be determined by some additional computa­
tion based on the distribution of markers within the cell.

Marker particle methods offer the distinct advantage of eliminating 
all logic problems associated with intersecting surfaces. This is primari­
ly a consequence of the fact that while particles have to be ordered with 
well-defined neighbors when marking surfaces, they do not have to be well 
ordered when marking regions. The marker particle method is also readily 
extendable to three-dimensional computations, provided the increased stor­
age requirements can be tolerated [7].

In retrospect, it appears that a method that defines fluid regions 
rather than interfaces offers the advantage of logical simplicity for situ­
ations involving interacting multiple free boundaries. While the marker 
particle method provides this simplicity, it suffers from a significant in­
crease in required computer storage. It also requires additional computa­
tional time to move all the points to new locations. It is natural, there­
fore, to seek an alternative that shares the region defining property with­
out an excessive use of computer resources. Such a method is described in 
the next section.
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III. THE VOLUME OF FLUID (VOF) METHOD
In each cell of a mesh it is customary to use only one value for each 

dependent variable defining the fluid state. The use of several points in 
a cell to define the region occupied by fluid, therefore, seems unnecessari­
ly excessive. Suppose, however, that we define a function F whose value is 
unity at any point occupied by fluid and zero otherwise. The average value 
of F in a cell would then represent the fractional volume of the cell occu­
pied by fluid. In particular, a unit value of F would correspond to a cell 
full of fluid, while a zero value would indicate that the cell contained no 
fluid. Cells with F values between zero and one must then contain a free 
surface. Thus, the fractional volume of fluid (VOF) method [5] provides 
the same coarse interface information available to the marker particle 
method. Yet the VOF method requires only one storage word for each mesh 
cell, which is consistent with the storage requirements for all other de­
pendent variables.

In addition to defining which cells contain a boundary, marker parti­
cles also define where fluid is located in a boundary cell. Similar infor­
mation can be obtained in the VOF method. The normal direction to the 
boundary lies in the direction in which the value of F changes most rapid­
ly. Because F is a step function, however, its derivatives must be compu­
ted in a special way, as described below. When properly computed, the der­
ivatives can then be used to determine the boundary normal. Finally, know­
ing both the normal direction and the value of F in a boundary cell, a line 
cutting the cell can be constructed that approximates the interface there. 
This boundary location can then be used in the setting of boundary condi­
tions.
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Although the VOF technique can locate free boundaries nearly as well 
as a distribution of marker particles, and with a minimum of stored infor­
mation, the method is worthless unless an algorithm can be devised for ac­
curately computing the evolution of the F field. The time dependence of F 
is governed by the equation.

3F
■St + u IE +3x (2)

This equation states that F moves with the fluid, and is the partial dif­
ferential equation analog of marker particles. In a Lagrangian mesh, Eq. 
(2) reduces to the statement that F remains constant in each cell. In this 
case, F serves solely as a flag identifying cells that contain fluid. In 
an Arbitrary-Lagrangian-Eulerian or pure Eulerian mesh, the flux of F mov­
ing with the fluid through a cell must be computed, but as noted in Sec.
II, standard finite-difference approximations would lead to a smearing of 
the F function and interfaces would lose their definition. Fortunately, 
the fact that Fisa step function with values of zero or one, permits the 
use of a flux approximation that preserves its discontinuous nature. This 
approximation, referred to as a Donor-Acceptor method [8], is described in 
more detail in Sec. IV (Subsec. D).

In summary, the VOF method offers a region following scheme with mini­
mum storage requirements. Furthermore, because it follows regions rather 
than surfaces, all logic problems associated with intersecting surfaces are 
avoided with the VOF technique. The method is also applicable to three-di­
mensional computations, where its conservative use of stored information is 

highly advantageous.
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Thus, the VOF method provides a simple and economical way to track 
free boundaries in two- or three-dimensional meshes. In principle, the 
method could be used to track surfaces of discontinuity in material proper­
ties, in tangential velocity, or any other property. The particular case 
being represented determines the specific boundary conditions that must be 
applied at the location of the boundary. For situations where the surface 
does not remain fixed in the fluid, but has some additional relative mo­
tion, the equation of motion, Eq. 2, must be modified. Examples of such 
applications are shock waves, chemical reaction fronts, and boundaries be­
tween single-phase and two-phase fluid regions.

In the next section, details are presented for using the VOF method to 
define free surfaces in an Eulerian hydrodynamics code.
IV. SOLA-VOF

Eulerian finite-difference methods for computing the dynamics of in­
compressible fluids are well established. The first method to successfully 
treat problems involving complicated free surface motions was the Marker- 
and-Cell (MAC) method [6]. This method was also the first technique to use 
pressure and velocity as the primary dependent variables. MAC employed a 
distribution of marker particles to define fluid regions, and simply set 
free surface pressures at the centers of cells defined to contain the sur­
face. No attempt was made to apply the pressure boundary condition at the 
actual location of the boundary within the surface containing cell. This 
crude approximation was later improved [9], and marker particles were elim­
inated in favor of particle chains on the free surfaces [4],
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A simplified version of the basic solution algorithm (SOLA) used in 
the MAC method is available [10] in a user oriented code called SOLA. Al­
though SOLA does not treat free surfaces, an extended version, SOLA-SURF, 
is also available [10] that uses the surface height function method (see 
Sec. II.A). The basic simplicity and flexibility of the SOLA codes make 
them excellent foundations for the development of more sophisticated 
codes. For this reason, a variable mesh version of the SOLA code, SOLA-VM, 
was chosen as a basis for illustrating the VOF technique. An experimental 
version of this new code, SOLA-VOF, was first reported in Ref. 5. Since 
that time, many improvements have been made and the basic technique has ma­
tured through applications to a wide class of problems. In a related devel­
opment [11], McMaster, et al., have recently combined the SOLA-SURF code 
with a different interface tracking technique based on a VOF-like concept 
[12].

The following subsections provide details of the SOLA-VM solution al­
gorithm with particular attention devoted to the special considerations 
needed in making finite-difference approximations in nonuniform meshes. 
Subsequent subsections describe the VOF algorithms for advection and for 
locating interfaces.
A. Outline

SOLA-VM uses an Eulerian mesh of rectangular cells having variable 
sizes, 6x.j for the i^*1 column and Sy^ for the row, as shown in Fig. 1. 
While not as flexible as a mesh composed of arbitrary quadrilaterals, the 
variable mesh (VM) capability of SOLA-VM gives it a considerable advantage 
over methods using equal-sized rectangles.
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The fluid equations to be solved are the Navier-Stokes equations.

3u ^
3t + U

3v_
at

1^+ V 3u _ -+ a + v3x 3y “ 3x gx v|L 3x2 3y2

V 3V -|£ + q + v 1 32v 32v
3x dy " 3y yy |L 3x2 3y2

Vx3x x2/j

(3)

Velocity components (u,v) are in the Cartesian coordinate directions (x,y) 
or cylindrical coordinate directions (r,z) respectively. The choice of co­
ordinate system is governed by the value of 5, where 5=0 corresponds to 
Cartesian and 5 = 1 to cylindrical geometry. Body accelerations are denot­
ed by (g ,g ) and v is the coefficient of kinematic viscosity. Fluid den- x y

sity has been normalized to unity. For an incompressible fluid, the momen­
tum equations, Eq. (3), must be supplemented with the incompressibility 
condition.

|li + |v +iu = 0 
3x 3y x (4)

Sometimes, it is desirable to allow limited compressibility effects [13] 
(e.g., acoustic waves) in which case Eq. (4) must be replaced with

1 3B.3u.iv,5u_n
^ 3t + 37 + 37 + IT ' 0 (5)

where c is the adiabatic speed of sound in the fluid (and the mean density 
is unity). Since Eq. (5) adds more flexibility with little additional com­
plexity, it is used in the remainder of this discussion.
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Discrete values of the dependent variables, including the fractional 
volume of fluid (F) variable used in the VOF technique, are located at cell 
positions shown in Fig. 2.

The volume of fluid function F is used to identify mesh cells that 
contain fluid. A free surface cell (i,j) is defined as a cell containing a 
nonzero value of F and having at least one neighboring cell, (i±l,j) or 
(i,j±l), that contains a zero value of F. Cells with zero F values are 
called empty cells, and cells with nonzero F values and no empty neighbors 
are treated as full or interior fluid cells. The SOLA-VOF code also has 
provisions for defining any cell or combination of cells in the mesh to be 
obstacle cells into which fluid cannot flow.

Briefly, the basic procedure for advancing a solution through one in­
crement in time, St, consists of three steps:

(1) Explicit approximations of Eq. (3) are used to compute the first 
guess for new time-level velocities using the initial conditions or previ­
ous time-level values for all advective, pressure, and viscous accelera­
tions.

(2) To satisfy the continuity equation, Eq. (5), pressures are itera­
tively adjusted in each cell and velocity changes induced by each pressure 
change are added to the velocities computed in step (1). An iteration is 
needed because the change in pressure needed in one cell to satisfy Eq. (5) 
will upset the balance in the four adjacent cells.

(3) Finally, the F function defining fluid regions must be updated to 
give the new fluid configuration.
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Repetition of these steps will advance a solution through any desired 
time interval. At each step, of course, suitable boundary conditions must 
be imposed at all mesh and free-surface boundaries. Details of these steps 
and boundary conditions are given in the following subsections.
B. Momentum Equation Approximations

In the following, the notation Q? . stands for the value of Q(x,y,t)
* »ij

at time nfit and at a location centered in the i^ cell in the x-direction
and jth cell in the y-direction. Half integer subscripts refer to cell
boundary locations. For example, Q? , refers to the value of Q on the

i .jt-s

boundary between the j and j+1 cells in the y-direction.
A generic form for the finite-difference approximation of Eq. (3) is

jn+1 Ui+!s.j

v n+1 
i. j+!s + 6t

p1j)/fixi+* + 9x ' FUX * FUY + VISX]

(6)

pi + 9y ' FVX - FVY + VISY]

Here Sx^^ = l/2(6xi + i$xi+^) and <Syj+is = l/2(6yj + 6yj+.|). The advective 
and viscous acceleration terms have an obvious meaning, e.g., FUX means the 
advective flux of u in the x-direction, etc. These terms are all evaluated 
using the old time level (n) values for velocities. Because the pressures 
at time level n+1 are not known at the beginning of the cycle, Eq. (6) can­
not be used directly to evaluate (un+^, vn+^), but must be combined with 

the continuity equation as described below. In the first step of a solu­
tion, therefore, the pn** in these equations are replaced by pn to get a 

first guess for the new velocities.
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As far as the basic solution procedure is concerned, the specific ap­
proximations chosen for the advective and viscous terms in Eq. (6) are rel­
atively unimportant, provided they lead to a numerically stable algorithm. 
Special care must be exercised, however, when making approximations in a 
variable mesh like that of Fig. 1. The problem is best illustrated by con­
sidering the procedure used in the original MAC method for Cartesian coor­
dinates. In the MAC method, Eqs. (3) and (4) were first combined so that
the convective flux terms could be written in a divergence form (i.e.,V* uu

2
instead of jj*Vu). Thus, FUX would be, for example, rather than u|^-.

oX 9x

The divergence form was preferred in MAC because it provided a simple way 
to insure conservation of momentum in the difference approximations. This 
may be seen by considering the control volume used for u^^ ^ that is indi­
cated by dashed lines in Fig. 3. With the divergence form. Gauss' Theorem 
may be used to convert the integrated value of FUX over the control volume 
to boundary fluxes at its sides. Then, the flux leaving one control volume 
will automatically be gained by the adjacent one and conservation during 
advection is guaranteed.

Unfortunately, conservation in a variable mesh does not automatically
imply accuracy. To see this, suppose an upstream or donor-cell difference

2approximation is used for FUX = 3u /3x, which is known to provide a condi­
tionally stable algorithm. Assuming the u velocity is positive, the donor 
cell approximation is.

(7)

58



where, e.g..

Expanding Eq. (7) in a Taylor series about the location, where the
u-equation is evaluated, yields.

(8)

Thus, the zeroth order term is incorrect unless the cell widths are equal,
= 5x.+i. 1° other words, the variable mesh reduces the order of ap­

proximation by one, and m this case leads to an incorrect zeroth order re­
sult. If a centered rather than a donor-cell approximation had been used, 
the result would have been first order accurate and not second order as it 
is in a uniform mesh.

It does not follow, however, that variable meshes are necessarily less 
accurate because they do allow finer zoning in localized regions where flow 
variables are expected to vary most rapidly. Nevertheless, variable meshes 
must be used with care. It is best, for example, to allow for gradual var­
iations in cell sizes to minimize the reduction in approximation order. It 
is also worthwhile to look for other approximations that do not lose their 
accuracy in a variable mesh. In this regard, it should be noted that the 
reason the conservation form of the advective terms lose accuracy is that 
the control volumes are not centered about the positions where variables
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are located. Because of this the advective terms should be corrected to 
account for the difference in locations of the variables being updated and 
the centroids of their control volumes. When this is not done a lower or­
der error is introduced.

The stability advantages of the donor cell method can be retained in a 
variable mesh with no reduction in formal accuracy, if the u.*Vu^ form is 
used for the advection flux. At the same time, it is also possible to com­
bine the donor-cell and centered-difference approximations into a single 
expression with a parameter, a, that controls the relative amount of each 
one. The general form at (i+^.j) is

FUX = (ui+j5 ./6xa)[6x.+1 DUL + 6Xi OUR + asgn(u) (6x.+1 DUL - Sx. DUR)]
’ “ (9)

where

DUL = (v%,j - ui-%,j)/6xi

OUR = (ui+3/2jj - u1+*5,j)/,Sxi+l

6xa = 6xi+1 + 6xi + asgn(u) (<Sxi+1 - 6x.j) ,

and where sgn(u) means the sign of u.,, When a = 0, this approximation
1 +’S,J

reduces to a second order accurate, centered difference approximation.
When o=l, the first order donor-cell form is recovered. Thus, using the 
approximation defined in Eq. (9), there is no loss of formal accuracy when 
a variable mesh is used.
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The basic idea used in Eq. (9) is to weight the upstream derivative of 
the quantity being fluxed more than the downstream value. The weighting 
factors are 1 + a and 1 - a, for the up and downstream derivatives, respec­
tively. The derivatives are also weighted by cell sizes in such a way that 
the correct order of approximation is maintained in a variable mesh. This 
type of approximation is used in SOLA-VOF for all convective flux terms ap­
pearing in Eq. (6). Viscous accelerations are approximated with standard 
centered approximations.
C. Continuity Equation Approximation

Velocities computed from Eq. (6) must satisfy the continuity equation, 
Eq. (5). In order to satisfy this equation, the pressures (and velocities) 
must be adjusted in each computational cell occupied by fluid. The finite- 
difference form used for Eq. (5) is

(10)

where

Since the velocities appearing in D are evaluated at the new time level, 
which depend on the n+1 level pressures according to Eq. (6), this equation 
is an implicit relation for the new pressures. A solution may be obtained 
by the following iterative process. The computational mesh is swept row by
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row starting with the bottom row and working upward. In each cell contain­
ing fluid, but not a free surface, the pressure change needed to drive the 
left side of Eq. (10), call it S, toward zero is

6p = - S/(3S/3p) (11)

where S is evaluated with the most updated values of p that are available, 
and the derivative is with respect to pH .. The new estimate for the cell

' Jj
pressure is then

Pij + flP 02)

and new estimates for the velocities located on the sides of the cell are

ui^,j + St fiP/fixl+»,

V^.j - 6t
(13)

vi,j^+ 6t 6P/6^

Vi,.^- 6t fip/Sy.^ ,

where the velocities appearing here are again the most updated values 
available.

A similar procedure is used in cells containing a free surface, except 
that the S used in Eq. (11) is not the left side of Eq. (10), but a rela­
tion that leads to the proper free surface boundary condition when driven 
to zero by the iteration [4]. The boundary condition is satisfied by set­
ting the surface cell pressure (p. .) equal to the value obtained by a lin-
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ear interpolation between the pressure wanted at the surface (p$) and a 
pressure inside the fluid (Pfj)- For this scheme to work the adjacent cell 
chosen for the interpolation should be such that the line connecting its 
center to the center of the surface cell is closest to the normal to the 
free surface. Then the S function giving this result is

S = (1 - n) PN + n Ps - Pifj 04)

where n = dc/d is the ratio of the distance between the cell centers and 
the distance between the free surface and the center of the interpolation 
cell, see Fig. 4.

A complete iteration, therefore, consists of adjusting pressures and 
velocities in all cells occupied by fluid according to Eqs. (11-13), where 
S is given by Eq. (10) for an interior cell and by Eq. (14) for a surface 
cell. Convergence of the iteration is achieved when all cells have S val­
ues whose magnitudes are below some small number, e. Typically, e is of 
order 10 , although it can vary with the problem being solved and the 
units chosen for the problem.

In some cases, convergence of the iteration can be accelerated by mul­
tiplying 6p from Eq. (11) by an over-relaxation factor w. A value of w 
that is often optimum is 1.8, but in no case should it exceed 2.0; other­
wise an unstable iteration results.

In practice, the free surface condition, Eq. (14), leads to an over­
relaxation type of instability when the interpolation factor a> is greater 
than one. Stability can be insured by under-relaxing the pressure varia­
tions in cells used as interpolation neighbors for surface cells. In
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particular, the relaxation factors used in a cell acting as an interpola­
tion neighbor for a surface cell must be replaced with

 (O
1 - (jj(l-n)<5t R (15)

where

R = (|£ Ax <JC) •

Here rj and dc refer to the surface cell, while the S derivative is the val­
ue for the neighbor cell. Also Ax is <$x of the surface cell if the neigh­
bor lies in the x-direction, otherwise. Ax is equal to 6y of the surface 
cell. The idea behind (15) is that the pressure change in the neighbor 
cell is coupled to the pressure in the surface cell, which in turn is de­
pendent on the neighbor cell pressure through the linear interpolation, Eq. 
(14). To insure stability, this feedback type of coupling of the surface 
cell on its neighbor cell can be algebraically computed and used to define 
the stable relaxation limit, Eq. (15).
D. Approximations for Volume of Fluid Function

1. Advancing F in Time. The VOF function F is governed by Eq. (2). 
For an incompressible fluid, Eq. (4) may be combined with Eq. (2) to yield 
the equation

3F 1 9rFu 3Fv 
3t r 3x 3y (16)

where r = x when £ = 1 and r = 1 when £ = 0. Even when the fluid is 
slightly compressible and Eq. (5) replaces Eq. (4), this equation for F is 
still an acceptable approximation. Equation (16), which is in divergence



form, is here more convenient for numerical approximation and is the form 
used in the following discussion. When Eq. (16) is integrated over a com­
putational cell, the changes in F in a cell reduce to fluxes of F across 
the cell faces. As previously noted, special care must be taken in comput­
ing these fluxes to preserve the sharp definition of free surfaces. The 
method employed in SOLA-VOF uses a type of Donor-Acceptor flux approxima­
tion [8]. The essential idea is to use information about F downstream as 
well as upstream of a flux boundary to establish a crude interface shape, 
and then to use this shape in computing the flux. Several researchers have 
previously used variations of this approach for tracking material inter­
faces (see, e.g.. Refs. 8 and 14-15).

The basic method as developed for use in the VOF technique may be un­
derstood by considering the amount of F to be fluxed through the right hand 
face of a cell during a time step of duration 6t. The total flux of fluid 
volume and void volume crossing this cell face per unit cross sectional 
area is V = u 6t, where u is the normal velocity at the face. The sign of 
u determines the donor and acceptor cells, i.e., the cells losing and gain­
ing fluid volume, respectively. For example, if u is positive the upstream 
or left cell is the donor and the downstream or right cell the acceptor.
The amount of F fluxed across the cell face in one time step is <$F times 
the face cross sectional area, where

6F = MIN { Fad |Vx| + OF , Fd Sxd }
and where O?)

CF = MAX { (1.0 - Fad) |Vx| - (1.0 - Fd) 6xd, 0.0 }
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Single subscripts denote the acceptor (A) and donor (D) cells. The double 
subscript, AD, refers to either A or D, depending on the orientation of the 
interface relative to the direction of flow as explained below.

Briefly, the MIN feature in Eq. (17) prevents the fluxing of more 
fluid from the donor cell than it has to give, while the MAX feature ac­
counts for an additional fluid flux, CF, if the amount of void to be fluxed 
exceeds the amount available. Figure 5 provides a pictorial explanation of 
Eq. (17). The donor and acceptor cells are defined in Fig. 5a for fluxing 
across a vertical cell face. When AD = D, the flux is an ordinary donor 
cell value,

F " FD ivxi >

in which the F value in the donor cell is used to define the fractional 
area of the cell face fluxing fluid, see Fig. 5b. As discussed in Sec.
IV.F, numerical stability requires that |Vx| be less than 6x, so that it is
not possible to empty the donor cell in this case.

When AD = A, the value of F in the acceptor cell is used to define the
fractional area of the cell face across which fluid is flowing. In case
(c) of Fig. 5, all the fluid in the donor cell is fluxed because everything 
lying between the dashed line and the flux boundary moves into the acceptor 
cell. This is an example exercising the MIN test in Eq. (17). In case (d) 
of Fig. 5, more fluid than the amount FA|Vx|, must be fluxed, so this is an 
example exercising the MAX test. In particular, the extra fluid between 
the dashed line and the flux boundary is equal to the CF value in Eq. (17).
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Whether the acceptor or donor cell is used to determine the fractional 
area for fluid flow depends on the mea1 surface orientation. The acceptor 
cell is used when the surface is convected mostly normal to itself, other­
wise, the donor cell value is used. However, if the acceptor cell is empty 
or if the cell upstream of the donor cell is empty, then the acceptor cell 
F value is used to determine the flux regardless of the orientation of the 
surface. This means that a donor cell must fill before any fluid can enter 
a downstream empty cell.

The reason for testing on surface orientation is that an incorrect 
steepening of surface waves will occur if the acceptor cell is always used 
to compute fluxes. Consider, for example, a horizontal surface with a 
small wave moving in the positive x-direction. A flux based on the down­
stream (acceptor) value of F will eventually steepen the wave into a step 
discontinuity. In effect, the acceptor method is numerically unstable be­
cause it introduces a negative diffusion of F (i.e., a diffusion-like 
transport with a negative coefficient). Instabilities do not grow unbound­
ed, however, because of the MIN and MAX tests used in the flux definition. 
In contrast, when the surface is advecting normal to itself, a steepening 
that keeps the step-function character of F is exactly what is wanted.

Once the flux has been computed by the above method, it is multiplied 
by the flux boundary area to get the amount of fluid to be subtracted from 
the donor cell and added to the acceptor cell. When the process is repeat­
ed for all cell boundaries in the mesh, the resulting F values correspond 
to the time-advanced values satisfying Eq. (16) and still sharply define 
all interfaces.
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2. Bookkeeping Adjustments. The new F values determined by the above 
method may occasionally have values slightly less than zero or slightly 
greater than unity. Therefore, after the advection calculation has been 
completed, a pass is made through the mesh to reset values of F less than 
zero back to zero and values of F greater than one back to one. Accumulat­
ed changes in fluid volume introduced by these adjustments during a calcu­
lation are recorded and may be printed out at any time.

There is one other adjustment needed in F in order that it may be used 
as a surface cell flag. Surface cells have values of F lying between zero 
or one, however, in a numerical solution F values cannot be tested against 
exact numbers like zero and one because roundoff errors would cause spuri­
ous results. Instead, a cell is defined to be empty when F is less than eF 
and full when F is greater than 1 - e^, where £p is typically 10"6. If, 
after advection, a cell has an F value less than Cp, this F is set to zero 
and all neighboring full cells become surface cells by having their F val­
ues reduced from unity by an amount l.lCp. These changes in F are also in­
cluded in the accumulated volume change. Volume errors after hundreds of 
cycles are typically observed to be a fraction of a per cent of the total 
fluid volume.

3. Determining Interfaces Within a Cell. For the accurate applica­
tion of boundary conditions, knowledge of the boundary location within a 
surface cell is required. In the VOF technique, it is assumed that the 
boundary can be approximated by a straight line cutting through the cell.
By first determining the slope of this line, it can then be moved across 
the cell to a position that intersects the known amount of fluid volume in 
the cell.
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To determine the surface slope, it must be recognized that the surface 
can be represented either as a single-valued function Y(x) or as X(y), de­
pending on its orientation. If the surface is representable as Y(x), we 
must compute dY/dx. A good approximation to Y(x) is

Yf = Y (xi) = F(i .j-DSyj,-, + F(i,j)6yj + F(i „i+l )6yj+1 ,

where Y = 0 has been taken as the bottom edge of the j-1 row of cells.
Then,

(£\ • 2«1.1 - ‘ 28N * sVi> ■ 08)

A similar calculation can be made for dX/dy,

Xj = X(yj) = F(i-1 ,j56x^1 + F(i,j)6xi + F(i+1 ,j )6xi+1 ,

and

($)/2<Vi - • (19)

If |dY/dx| is smaller than |dX/dy|, the surface is more nearly hori­
zontal than vertical, otherwise it is more nearly vertical. In any case, 
the derivative with the smallest magnitude gives the best approximation to 
the slope because the corresponding Y or X approximation is most accurate 

in that case.
Suppose |dY/dx| is smallest so the interface is more horizontal than 

vertical. If dX/dy is negative, fluid lies below the surface, and cell 
(i»j-l) is used as the interpolation neighbor for surface cell (i,j). Had

69



dX/dy been positive, cell (i,j+l) would be chosen for the neighboring in­
terpolation cell because fluid would then be above the surface.

Once the surface slope and the side occupied by fluid have been deter­
mined, a line can be constructed in the cell with the correct amount of 
fluid volume lying on the fluid side. This line is used as an approxima­
tion to the actual surface and provides the information necessary to calcu­
late n for the application of free surface pressure boundary conditions, as 
described in Sec. IV.C.

For cylindrical coordinates, the above computations are more complex 
because of the volume dependence on radius. Except for cells on the axis, 
however, the exact results differ little from the simpler Cartesian coordi­
nate results, consequently, the latter are used in both cases.

Surface tension effects may be included in SOLA-VOF with little addi­
tional effort [16]. The essential step is to compute a local curvature in 
each surface cell using the Y(x) or X(y) definitions, Eqs. (18)-(19), and 
from this an effective surface tension pressure, ps, to be applied at the 
surface according to Eq. (14).
E. Boundary Conditions

1. Mesh Boundaries. In addition to the free surface boundary condi­
tions, it is necessary to set conditions at all mesh boundaries and at sur­
faces of all internal obstacles. At the mesh boundaries, a variety of con­
ditions may be set using the layer of fictitious cells surrounding the 
mesh. Consider, for example, the left boundary. If this is a rigid free- 
slip wall, the normal velocity there must be zero and the tangential veloc­
ity should have no normal gradient, i.e..
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U1J = 0 \

VU = V2,j ( 

Pl,j = P2,j ( 
F1J = F2J /

If the left boundary is a no-slip rigid wall, then the tangential velocity 
component at the wall should also be zero, i.e..

'1 ,j
’l.j = "V2,j

pl,j = p2,j 
F1J = F2,j

for all j .

These conditions are imposed on the velocities computed from the momentum 
equations and after each pass through the mesh during the pressure itera­
tion.

Continuative or outflow boundaries always pose a problem for low-speed 
calculations, because whatever prescription is chosen can potentially af­
fect the entire flow field. What is needed is a prescription that permits 
fluid to flow out of the mesh with a minimum of upstream influence. In 
SOLA-VOF, the continuative boundary conditions used at the left wall are

U1 J = U2,j 'j
VU = V2,j (

> for all j
P1J = P2J I
F1J = F2,j )
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These conditions, however, are only imposed after applying the momentum 
equations and not after each pass through the pressure iteration.

For periodic boundary conditions in the x-direction, the left and 
right boundaries must be set to reflect the periodicity. This is easiest 
when the period length is chosen equal to the distance from the left wall 
to the left boundary of the last interior cell in the mesh at the right 
side. That is, two columns of cells, i=IMAX and i=IMAX-l, are reserved on 
the right side of the mesh for the setting of periodic boundary conditions. 
The conditions are then, on the left

ul,j = uIM2,j

vl,j = vIM2,j

v2,j = vIMl,j
P2,j ' pIMl„i

F2,j = FIMl,j 

and on the right

uIMl,j = u2,j )
> for all j ,

vIMAX,j = v3,j )

where IM1 = IMAX-1 and IM2 = IMAX-2. In this case, these conditions are im­
posed on velocities computed from the explicit momentum equations and after 
each pressure iteration.

72



A constant pressure boundary condition at the left wall is set by keep­
ing the pressure in column i=2 constant and otherwise treating the boundary 
as continuative.

Boundary conditions similar to those for the left wall are used at the 
right, top, and bottom boundaries of the mesh. Of course, the normal and 
tangential velocities at the top and bottom boundaries are v and u, respec­
tively.

For convenience, the SOLA-VOF code has been written so that any of the 
above boundary conditions can be automatically imposed by setting input 
numbers. To increase the usefulness of the basic code, specified inflow 
and outflow boundaries and internal obstacles within the fluid region are 
easily incorporated. In the case of obstacles that are restricted to 
shapes constructed by blocking out cells of the computing mesh, semi-auto­
matic rigid wall boundary conditions are included in the SOLA-VOF code.
For this purpose, an array used to store relaxation factors for the pres­
sure iteration, BETA. ., is also used to flag obstacle cells. In particu- 
lar, because legitimate relaxation factors must be positive numbers, a neg­
ative value (say -1.0) serves as a flag. The flag values must be pro­
grammed into the setup section of the code for each application. Thereaf­
ter, the code automatically eliminates computations for all momentum and 
continuity equations in flagged obstacle cells. Boundary conditions for 
normal velocities, pressures, and the volume of fluid function are automat­
ically set in the main boundary condition section of the code. Because all 
velocity components within obstacles are set to zero, no-si ip tangential 
velocity conditions are only first-order accurate. That is, tangential ve-
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loci ties are zero at locations shifted from the actual boundary by one-half 
of a cell width.

Specified inflow and outflow conditions at mesh boundaries or at loca­
tions within the mesh must be programmed into the boundary condition sec­
tion of the code. A special location is reserved in the SOLA-VOF code for 
this purpose at the end of the regular boundary condition section.

2. Free Surface Boundaries. The free surface boundary condition for 
normal stress is automatically satisfied by the implicit pressure calcula­
tion using Eq. (14). This condition must be supplemented with the specifi­
cation of velocities immediately outside the surface, where these values 
are needed in the finite-difference approximations for points inside the 
surface. The specifications used in SOLA-VOF are identical to those used 
in many earlier Marker-ahd-Cell codes. Velocities must be set on every 
cell boundary between a surface cell and an empty cell. If the surface 
cell has only one neighboring empty cell, the boundary velocity is set to
insure the vanishing of D- ., the velocity divergence defined in Eq. (10).

* »J

When there are two or more empty cell neighbors, the individual contribu-
tributions to the divergence, -pip and |j, are separately set to zero. In
some cases, it is also necessary to assume zero values for or -l^. Thesedy dX
latter conditions are additionally used to set exterior tangent velocities 
to a free surface on boundaries between empty cells adjacent to a surface 
cell.



F. Numerical Stability Considerations
Numerical calculations often have computed quantities that develop 

large, high-frequency oscillations in space, time, or both. This behavior 
is usually referred to as a numerical instability, especially if the physi­
cal problem being studied is known not to have unstable solutions. When 
the physical problem does have unstable solutions and if the calculated re­
sults exhibit significant variations over distances comparable to a cell 
width or over times comparable to the time increment, the accuracy of the 
results cannot be relied on. To prevent this type of numerical instability 
or inaccuracy, certain restrictions must be observed in defining the mesh 
increments 6x. and 6y., the time increment 6t, and the upstream differ-

• J

encing parameter a.
For accuracy, the mesh increments must be chosen small enough to re­

solve the expected spatial variations in all dependent variables. When im­
possible because of limitations imposed by computing time or memory re­
quirements, special care must be exercised in interpreting calculational 
results. For example, in computing the flow in a large chamber it is usu­
ally impossible to resolve thin boundary layers along the confining walls. 
In many applications, however, the presence of thin boundary layers is un­
important and free-slip boundary conditions can be justified as a good ap­
proximation.

Once a mesh has been chosen, the choice of the time increment neces­
sary for stability is governed by two restrictions. First, material cannot 
move through more than one cell in one time step because the difference 
equations assume fluxes only between adjacent cells. Therefore, the time 
increment must satisfy the inequality
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( «xi fiy,“<",n!TvJT,T^

where the minimuni is with respect to every cell in the mesh. Typically, 6t 
is chosen equal to one-fourth to one-third of the minimum cell transit 
time. Second, when a nonzero value of kinematic viscosity is used, momen­
tum must not diffuse more than approximately one cell in one time step. A 
linear stability analysis shows that this limitation implies

v6t
2 2,1 5xi^

2 6X2 + <5y2

With 6t chosen to satisfy the above two inequalities, the last para­
meter needed to insure numerical stability is a. The proper choice for a 
is

1 > a > max

As a rule of thumb, an a approximately 1.2 to 1.5 times larger than the 
right-hand member of the last inequality is a good choice. If a is too 
large an unnecessary amount of numerical smoothing (diffusion-like trunca­
tion errors) may be introduced [17].

V. SAMPLE PROBLEMS
Six calculational examples have been chosen to illustrate the accuracy 

and capabilities of the SOLA-VOF code. In all these examples, either ex­
perimental or analytical information is available for comparison with the 
calculated results. These examples offer a substantial challenge to any 
free boundary method.
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A. Broken Dam Problem
In this example, a rectangular column of water, in hydrostatic equili­

brium, is confined between two vertical walls. Fig. 6. The water column is 
1.0 units wide and 2.0 units high. Gravity is acting downward with unit 
magnitude. At the beginning of the calculation, the right wall (dam) is 
removed and water is allowed to flow out along a dry horizontal floor. Ex­
perimental results for this problem have been reported [18] for the posi­
tion vs time of the leading edge of the water as it flows to the right.
Fig. 7.

This is a good test problem because it has simple boundary conditions 
and a simple initial configuration. The appearance of both a vertical and 
horizontal free surface, however, provides a check on the capability of 
SOLA-VOF to treat free surfaces that are not single valued with respect to 
x or y. Results from two calculations are presented in Fig. 7 with the ex­
perimental data. In both cases, the mesh consisted of 40 uniformly spaced 
columns (Sx = 0.1) and 22 nonuniformly spaced rows. The smallest Sy values 
are located at the bottom of the mesh where resolution is needed to define 
the thin leading edge of the advancing water. In the first calculation, 
the smallest 6y was 0.05, while in the second it was 0.025. We see from 
Fig. 7 that the best results are obtained with the smallest 6y case, but 
both results are still quite good. The greatest deviation from the experi­
mental results is everywhere less than one cell width.

The smallest 6y calculation required 460 time cycles to get the water 

to the right wall (x = 4.0) and used 328 sec of CDC-7600 computer time 
(which included a considerable amount of numerical and graphical output).
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B. Undular Bore
If a horizontal layer of water is pushed into a rigid, vertical wall 

there will be a step wave, or bore, produced that runs away from the wall. 
If the incident velocity is not too great, the bore front will have a well 
behaved, undular shape, but at sufficiently high velocities the bore front 
will break and be highly irregular. In either case, conservation of mass 
and momentum principles may be used to derive “jump" conditions that should 
exist across the bore transition [19].

SOLA-VOF was used to compute the undular bore evolution shown in Fig. 
8. The initial configuration in Fig. 8a consists of a uniform mesh of 20 
cells in the horizontal direction (fix = 0.6) and 8 cells in the vertical 
direction (fiy = 0.2). Fluid initially fills the lowest 5 rows (depth 1.0) 
and is uniformly moving to the right with unit velocity. The right, bot­
tom, and top walls are rigid, free-slip boundaries. At the left boundary, 
fluid is continuously input to prevent any waves from being generated 
there. Gravity acts downward with unit magnitude.

Although this problem is very coarsely resolved, the results are re­
markably good and provide a nice check on mass and momentum conservation. 
The computed jump height at the right wall is 1.201, while theory predicts 
1.209. A more finely resolved calculation using a mesh consisting of 60 by 
12 cells yielded a height of 1.203, which is converging to the theoretical 
answer.

The coarse mesh calculation took 14 sec of computer time to complete 
48 cycles of calculation.
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C. Breaking Bore
A more interesting example is produced by decreasing the gravitational 

acceleration in the above example from unity to 0.4548. In this case, the 
bore transition is turbulent and involves a water elevation change from 1.0 
to 2.8. Fluid configurations and velocity fields at selected times, show­
ing the development of the bore, are shown in Fig. 9. In this case the 
computational mesh consisted of 50 equally spaced cells in the x-direction 
(6x = 0.25) and 20 cells with variable spacing in the y-direction. The 
variable spacing was chosen to give finer resolution around y = 1.0, where 
a shear layer is formed as the incoming water flows into the bore front.

Experimental evidence indicates that turbulent bore transitions have 
widths that are typically equal to about 5 times the change in elevation 
(2.8 - 1.0 = 1.8). This is consistent with the calculational results, even 
though the calculation is not computing true turbulence. A better measure 
of the accuracy of the calculation is the final height at the right wall, 
which is 2.91 and is in good agreement with the theoretical value, 2.8.

No special considerations were needed to maintain the resolution of 
the free surface as it continually folds over on itself, the V0F technique 
handles this automatically. This calculation required 292 sec of CDC-7600 
computer time for 457 cycles of computation.
D. Rayleigh-Taylor Instability

Because the success of the V0F technique is based on the ability to 
numerically advect a step-function distribution (F) without numerical 
smoothing, it is worthwhile to investigate the sensitivity of SOLA-VOF to 
changes in the F-advection algorithm. A good problem for this purpose is
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the nonlinear development of a Rayleigh-Taylor instability. During the 
early stages of the instability the fluid surface moves normal to itself, 
but during the later stages there are regions along the sides of the grow­
ing liquid fingers where the flow is mostly tangential to the surface.
Thus, this problem offers a good test of the particular combination of do­
nor and acceptor cell fluxing used in the code.

The initial fluid configuration consists of an inviscid fluid occupy­
ing the top half of a box that has a width of 1.0 and height of 3.0. Grav­
ity is acting downwards with unit magnitude. The free surface is given an 
applied pressure pulse, ps = cos(nx), that acts only during the first cycle 
of calculation. This pulse perturbs the unstable fluid surface, causing it 
to flow down along the right edge of the box in the form of a fluid spike, 
while a bubble moves up along the left box edge; see Fig. 10. During the 
earliest stages of growth, the amplitudes of the bubble and spike displace­
ments follow linear theory [20], but nonlinear effects quickly take over 
with the spike growing significantly more rapidly than the bubble.

To check the sensitivity of the F-advection algorithm used in SOLA-VOF 
this problem was repeated with F advective fluxes determined entirely by 
the downstream or acceptor cell F values. This pure Acceptor-Cell method, 
which differs from the mixture of Donor-Acceptor fluxing used in the SOLA- 
VOF code, has been used in some previous work (see, e.g.. Ref. 14). The 
consequences of using pure Acceptor-Cell fluxing is obvious from a compari­
son of Fig. 11 with Fig. 10. The Acceptor-Cell method develops large ir­
regularities in the free surface, particularly where it is flowing parallel 
to itself. This does not occur in the SOLA-VOF method because it uses do­
nor cell fluxing in such regions.
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From this simple example, it is evident that the particular combina­
tion of Donor-Acceptor advection used in the VOF technique does an exceed­
ingly good job. It is all the more remarkable because the algorithm uses a 
single pass through the mesh with relatively few calculations required for 
the flux at each cell boundary.
E. A Reactor Safety Application

Many boiling water reactors use a large pool of water to condense 
stream should a major steam leak occur. In some designs, steam would be 
forced into the pool through long vertical pipes extending several pipe 
diameters below the surface of the pool. Before steam enters the pool, 
however, air initially in the pipes must be pushed out. The ejection of 
this noncondensable air forms large bubbles in the pool and displaces the 
pool surface upward. Safety considerations require an understanding of the 
hydrodynamic forces generated during this process. For this purpose, sev­
eral small scale experimental programs have been conducted and several 
groups have attempted supporting theoretical analysis.

A cross section of a single pipe apparatus used at the Massachusetts 
Institute of Technology [21] is shown in Fig. 12. It consists of a cylin­
drical vessel approximately half filled with water and with an axisymmetric 
pipe extending down into the pool from above. At the beginning of a test, 
a valve is opened at the top end of the central pipe exposing it to a con­
stant pressure plenum. Gas in the plenum flows through an orifice in the 
pipe and then into the lower pressure cylindrical tank by displacing water 
initially in the pipe.

81



To model this test apparatus with the SOLA-VOF code, it is necessary 
to supplement the code with calculations for the gas pressure in the pipe 
and for the pressure in the space above the pool surface. These pressures 
are then used as free surface boundary pressures. A sequence of calculated 
results illustrating the fluid dynamics associated with the air clearing 
process are contained in Fig. 13. The free boundaries obviously undergo 
severe distortion, but the SOLA-VOF algorithm has no difficulty in follow­
ing the fluid motion. Pressures measured at the center of the floor are 
compared with the corresponding calculated pressures in Fig. 14. The 
agreement is reasonably good, except for some of the details associated 
with the initial pressure spike. There is some experimental evidence that 
the higher first spike and subsequent small second spike is a result of 
elastic flexibility in the apparatus, which was not included in the calcu­
lation. Similar results have also been obtained for many other test condi­
tions and for other measured quantities [22]. Since these results have 
been reported in detail in the quoted references, they are not reproduced 
here. Nevertheless, these results serve to further validate the SOLA-VOF 
code as a powerful and useful research tool.
VI. SUMMARY

The volume of fluid (VOF) technique has been presented as a simple and 
efficient means for numerically treating free boundaries embedded in a cal­
culational mesh of Eulerian or Arbitrary-Lagrangian-Eulerian cells. It is 
particularly useful because it uses a minimum of stored information, treats 
intersecting free boundaries automatically, and can be readily extended to 
three-dimensional calculations.
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The VOF technique was described in detail as it has been used to fol­
low free surfaces in an incompressible hydrodynamics code. Sample calcula­
tions with the new code, SOLA-VOF, show that it works extremely well for a 
wide range of complicated problems.
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Figure Captions
1. Schematic of finite-difference mesh with variable rectangular cells.
2. Location of variables in a typical mesh cell.
3. Control volume (dashed rectangle) used for constructing a finite-dif­

ference approximation for the u momentum equation at location (i+^.j).
4. Sketch showing definition of quantities used in defining free surface 

pressure boundary condition.
5. Examples of free surface shapes used in the advection of F. The do­

nor-acceptor arrangement is shown in (a) where the dashed line indi­
cates the left boundary of the total volume being advected. The 
cross-hatched regions shown in (b-d) are the actual amounts of F flux­
ed.

6. Velocity vectors and fluid configurations for broken dam problem at 
times 0.0, 0.9, 1.4, and 2.0. Vectors are drawn from cell centers, 
which are marked by + signs. The free surface is drawn as an F = 1/2 
contour line, which is why the top right corner at t = 0.0 is not 90°.

7. Comparison of calculated results with experimental data for the broken 
dam problem.

8. Velocity vectors and fluid configuration for undular bore problem at 
times 0.0, 4.05, 7.02, and 10.08.

9. Velocity vectors and fluid configuration for breaking bore problem at 
times 0.0, 6.50, 8.51, and 14.01.

10. Evolution of a Rayleigh-Taylor instability started by a pressure per­
turbation. Times are 0.0, 0.4, 0.8, and 1.6.

11. Repeat of calculation shown in Fig. 10 using pure acceptor cell advec­
tion for F. Note the considerably more irregular surface in the last 
frame.

12. Schematic of MIT single vent test apparatus.
13. Velocity vectors and free surface configurations computed when air is 

forced through submerged vent pipe.
14. Comparison of calculated and measured pressure history on floor of 

pool chamber.
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APPENDIX B

FORTRAN LISTING OF THE NASA SOLA-VOF COMPUTER CODE
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bl C
62
63
64
65 C
66 C
67 C
68
69 C
70 C
71 C
72
73 C
74
75 C
76
77
78
79
eo
81
82
83
84
65
86
87
68
69
90
91
92
93
94
95
96 C
97
98 C
99

100 C
Itl
1C2 C
1C3
104 C
1C5
106 C
1C7 C
108 C
109
110
111
112
113
114 C
115
116 C
117
118 C
119
12 0 C

READ (5*210 NAME 
WRITE (o,200)
WRITE (6*210) NAME

READ AND PRINT INITIAL INPUT DATA

READ (5»XPUT)

* SPECIAL INPUT DATA* VARIABLE MESH* READ IN*CALCULATE AND PRINT 

READ (5»MSHSET)

CALL MESHST

WRITE (6,2*0) T9AR.JBAR»DELT,NU,CrL»EPSI,OZRO*GX,GY,UI,VI,VELMX
1 ,TWFIN,PRTOT,PLTOT,OMG,ALPHA,WL*WR,WT*WB*PAPTN,CWTD,TRST,MOVY
2 ,nTMVP» AUTr)T,FLHT* IS YMPL* WEBER* BONO* ISRF10* C ANGLE »VOUT 

WRITE (6,290) N<X
WRITE (17*200)
WRITE (17,250) I8AR,JBAR,DELT,NU,CYL*EPSI*DZRO»GX,GY,UI»VI,VELMX

1 ,TWFlN,PRTOT,PLTDT,OMG»ALPHA,WL,wR*WT»WB,PARTN,CWTO,TRST*MOVY
2 ,OTMVP*AUTOT*FLHT,ISYMPL*WEBER*BOND*ISRF10,CANGLE»V3UT 

WRITE (6,290) NKX
WRITE (17*290) NKX 
00 10 I■1*NKX
WRITE (6,300 ) I,XL(I)»XC(I),XR(I)*NXL(I ),NXR(I),0<MN(I)
WRITE (17, 300) I*XL(1>*XC(I )*XR(I)*NXL(I)*NXR(I ),DXWN(I )

10 CONTINUE
WRITE (6,310) NKY 
WRITE (17*310) NKY 
00 20 I *l» N< Y
WRITE (6 *3 CO) I,YL(I),YC(I),YR(I),NYL(I),NYR(I)»DYMN(I)
WRITE (17,300) I»YL(II*YC(I),YR(IJ»NYL(I)»NYR(I)»OYMN(I)

20 CONTINUE

VINIT»2.0*PI/3.0

CALL SETUP

IF (CYCLE.GT.O) GO TO 30 

CALL 3C 

GO TO 40

♦ START CYCLE 

30 CONTINUE
IF (CYCLE.GT.20) 0M3-1.0
ITER-0
FLG-1.0
PMX-CM6

CALL TILDE 

CALL 8C 

CALL PRESIT
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IF (T.GT.5P9) GO TO 60121
122 C
123
124 C
125
126 C
127 
129 C
129
130 C
131
132 C
133 C
134 C
135
136
137 
139
139
140
141
142
143
144
145
146
147 
149
149
150 
1:1
152
153
154
155
156
157
158
159
160 
161 
162
163
164
165
166 
167 
ite
169
170
171
172
173
174
175
176
177
178
179 
190

CALL PARMOV 

CALL VFCONV 

CALL BC 

40 CONTINUE 

CALL PET AC L 

PRINT ANO PLOT

VOLuNE-O.C 
00 50 I«2#111 
03 50
IF (9ETA(I,JJ.LT.0.3.0R.F(I,J).LT.E“6) GO TO 50
IF (NFt2»J).Nc.0.AND.F(2»J41).LT.tN6) HCL-F(2#J)*DELY(J>♦Y<J-l)
IF (NF(I*U,JJ.E0.2) HWALL«Y(J)
IF (NF{IN1,J ).E0.3) HWALL«F(m»J)*0ELY{J»4Y(J-l)
/OL-JME-WOL U4E*F{I,J»*DtLY (J)*0ELXm*{2.C*PI*XI (I J*CYL*(1.0-CYL)) 
IF (NFd.J J.nc.I. AN0.NF(I#J).NE.2) GO TO 50 
QW.O*OFLCAT(NF( I» J J )-3.0
VOLUME-VOL UHF4CYL*')3*PI*0ELXm**240ELY(J)*F{I,J J + (1.0-F(I, J))

50 CONTINUE
V0L3AR.V0LUNE/VINIT
VRITE (6,290) T,CYCLE,VOLUME,V0L9AR,HCL,HWALL 
WRITE (d,240) ITER,T,D£LT,CYCLE,VCHGT 
IF (MOVY.EO.l) GO TO 70
WRITE (17,290) T,CYCLE,VOLUME,V0L3AR,HCL,HVALL 

60 CONTINUE
IF (I.GT.O.) GO TO 70 
WRITE (17, 240) TTER, T,CELT,CYCLE,VCrIGT 

70 CONTINUE
IF (CYCLE.LE.O) GO TO 80 
IF (T4EM6.LT.TWRLT) GO TO 110 
TwPLr-TWPLT4BLT0T 

90 CONTINUE
IF (MOVY.EO.l) GO TO 100 
CALL PAGEG (7,0,0,1)
WRITE (17,270) NAM=
WRITE (17,240) ITER,T,OELT,CYCLE,VCHGT 
WRITE (17,220)
00 90 I■1, IM4X 
DO 90 J«1,JM4X
WRITE (17,230) I,J,J(I,J),V(I,J),P(I,J),D(I,J),PS(I,J),F(I,J),NF(I 

1 ,J),PETA( I,J)
90 CONTINUE 

ICC CONTINUE 
CALL DRAW 

110 CONTINUE
IF (CYCLE.IE.0) GO TO 120 
IF (T+EM6.LT.TWPRT) GO TO 140 
TWPRT-TWPR T+PRTDT 

120 CONTINUE
WRITE (6,270) NAME
WRITE (6,240) ITER,T,DELT,CYCLE,VCHGT 
WRITE (6,260)
WRITE (6,220)
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lei
162
163
164
185
166
167 C
189 C
169 C
190
191
192
193
194
145
196
197
193
199 C
2C0 C
201 C
202
203
204
205
206
2C 7
203
209
210
211
212
213
214
215
216
217
219
219
220
221
222
223
224
225
226
227 C
229 C
229 C
230
231
232
233
234
235
236
237
238
239
240

JO 130 I-1#IHAX 
00 130 J«1»JHAX
WRIT? (6,? 3«) I»J#IJ(I*J)»V(I»J)*P(I»J)»D(I»J)#PS(I»J)#F(I»J)*NF(I 

1 , J >»P£TA< I»J)
130 CONTINUE 
140 CONTINUE

SET THE ADVANCE TIME ARRAYS INTO THE TIME -N ARRAYS

DO 150 I*1 * IMAX 
DO 150 J-l.JMAX 
JN(I,J)-U( I»J)
VN(I»J)*V(I»J)
U(I>J >«0.0 
YtI»J)«O.C 
DtI>J )-0.0 
FN(I»J)»F( I,J )

150 CONTINUE

ADJUST DELT

IF (AUTQT.IT.0.5) GO TO 180
DUMX-EMIO
0VMX-EM10
DELTN-OELT
DO 160 i«?.m
DO 160 J«2»JM1
U0M«DA8S(UN(I#J))/(XI(1*1J-Xl(I))
YDN.JA3S ( VMI» J )) / (YJ l J + 1)-YJ( J) )
DU'IX-D'tAXKOUMXfUOM)
DVNX-DHAX1 (DVHX.VD'I)

160 CONTINUE
DTNP-l.0100
IF (ITE® .GT.25) 0TMP-0.99D0
DELT0"DECTADTMP
C0N*0.25
IF (CYCLE.GT.10) CON *0.4500
CELT■DMIN1(DELTO»CON/DUMX,CON/DVMX)
IF (MOVY.GT.O) DELT»DMIN1(DELT»0TMVP)
OTRA-DELTN /DELT 
JO 170 I"1»TMAX 
DO 170 J•!»JMAX
IF (3ETA(I,J).LT.0.0) GO TO 170 
3ETA(I#J)«BETA(I»J)*DTRA 

170 CONTINUE 
160 CONTINUE

ADVANCE TINE T-T+DELT

T-TOELT
IF (0ELT.LT.EM6) T-EP8 
IF (T.GT.TWFIN) GO TO 190 
CYCLE *CYCL E+l
IF (FN(2,3 ).GT.O.IDO.OR.VOUT.GT.O.0) GO TO 30 
TWPLT-T 
TWFIN-T 
GO T3 30 

190 CONTINUE
CALL EXITG (7)
CALL EXIT
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241 C
242 200 FORMAT (1H1)
243 210 FORMAT (20A4)
244 220 FORMAT <4**H1,5X.HJ»9X,1HU»14X»1HV»15X#1HP,15X,1 HD,12X,2HPS»13X,
245 1 1HF,11X»2HNF,9X,4H<>ETA)
246 230 FORMAT (2X,13,3X,13, 6(3X,1PD12.5),3X,13,3X»D12.5 )
247 240 FORMAT (6X,6HTTER« ,I5,5X,6HT1ME- ,IPD12.5,5X,6H0ELT» ,1P012.5,5X,
248 1 7HCYCLE- ,14,5X,7HVCHGT■ ,1PD12.5)
249 250 FORMAT (1H ,5X,6HI3AR« ,I4/6X*6HJBAR* ,I4/6X,6HDELT- ,1P012.5/8X,4
250 1 HNU- ,012 .5/7X,5HCYl- ,D12.5/6X,6HEPSI» ,012.5/6X,6H0ZR0- ,012.5/
251 2 8X,4HGX■ ,012•5/6X,4HGT ,012.5/8X,4HUI« ,D12.5/8X,4HV1- ,012.5/5
252 3 X,7MVEL'»X« ,D12.5/5X,7H WFIM* ,012.5/5X,7MPRT0T» ,012.5/5X, 7HPLTD
253 4T» ,012.5/7X,5H0MG» ,012.5/5X,7HALPHA- ,012.5/8X,4HWL» ,I4/8X,4HWR
254 5- ,I4/aX.4HwT« ,T4/9X,4HW9« ,14/5X,7HPARTN- ,012.5/8X,6HCWTDa ,012
255 6 ,5/6X»6HTRST* ,01».5/6X,6HM0VYa ,012.5/5X,7HDTMVP« ,012.5/5X,7HAU
256 7T0T- ,012.5/6X,6HFLHT» ,D12.5/3X,9HISrMPLT* ,I4/5X,7Hw£BER« ,012.5
257 d /6X»6H80MD* ,012.5/3X,9HTSURF10- ,I4/4X,8HCANGLE- ,D12.5/6X,6HV0U
259 9T- ,012.5)
259 26C FORMAT (1MC)
260 270 FORMAT (1H ,18X,2044,1X,A1C,2(IX•A8))
261 280 FORMAT (2X,SHTIME- .1PD12.5,3X,7HCYCLE- ,16,3X,8HV0LUME> ,1P012.5,
262 1 3X,3HV0L8 AR- ,1P012.5,3X,5HHCL• ,1P012.5,3X,7HHWALL- ,1PD12.5)
263 290 FORMAT (2X ,5HNKX-, 14)
264 300 FORMAT (2X,6HME$H- .I4,3X,3HL« ,1PD12.5,3X,3HC- ,012.5,3X,3HR-
265 1 ,012.5,3X,4HNL« ,I4,3X,4HNR- ,I4,3X,5HDMN- ,012.5)
266 310 FORMAT (2X,5HNKY- ,14)
267 END
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**$***$«*♦€Ztd C**♦$**tt**8£GTNNIN6 OF 5LEMEMT FILUST/
269 3J8ROUT1SE FILNST
270 COMMON /FLM/ 7(200)
271 C ***** SETUP OF OUTP-JT FILM TYPE *****
272 C
273 CALL MODES G (Z#48 )
274 CALL SETSMG (Z,19,15.0)
275 CALL SETSMG (Z,20,10.0)
276 CALL 08JCTG (2,2.5,0.0,12.5,10.0)
277 CALL SUBJE G (2,0.0,9.0,1.0,1.0)
2 78 CALL SCOUTH (2)
279 C ***** END OF FILM OUTPUT *****
2 FO C
281 SETU8N
282 £N0
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343
344
345
346
347
348
349
350 C
351 C
352 C
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
3 72
373
3 74
375
3 76
377
378
379
380
361
382
363
364
385
366
367 C
363 C
389 C
390
391
392
393
394
395
396
397
398
399
4C0
4tl
4C2

J3AR-NUMV-1 
11A<«IBAR+2 
J*AX»J3AR42 
1n!■I MAX-1
Jll-JHAX-I 
1)12 ■ I MAX-2 
JM2«JMAX-2

* CALCULATE VALUES SEEDED FOR VARIABLE MESH

DO 80 I • 1# NUMX
IF (X(I) .EC.0.0) GO TO 70
Rxm-i.o/xm
GO TO 30 

70 RXII )»0.0 
30 CONTINUE

DO 90 I * 2 * NU M X
xi < i) o.5* <x<i-i>*xm)
DEL X(I)«X(I)-X(I-l)
RXim-1 .D /XI (I )

90 ROXII )«1.C/0ELX(I)
OELXf l)OELX(? )
XI(1)»XI(2)-0ELX(2)
RXI(1)*1.0 /XT (1)
R0X(1)»1.D/DELX(1)
DELX(NUMXP1)-DELX(SUMX )
XI (NUNXP1) •XI(N'JMX) + DELX(NUMX)
X(NUMXP1)«XI(NUM*P1)+0.5*DELX(NUMXP1)
RXKNUMXPl J-l.O/XKNUMXPl)
ROXINUNX0! )»1.0/0ELX(NUMXP1)
00 100 I"2 »NUMT 
YJ{I)-0.5* CTd-D + YI I) )
RYJ(I)»1.C/YJ(I)
DELY(I)«Y(I)—Y(I-l)
R D Y(I)»1.0/0ELY(T)

ICO CONTINUE
OE LY ( 1) »DELY ( 2)
R0Y(1)-1.0/0ELY<1)
YJ(i)-YJ(2)-0ELY(2)
RYJ (1)«1.0 /YJ(1)
DELY(NUMYPl)*nELYCNUMY)
YJ(hUMY?l)•YJ«NUMY)*DELY(NUMY)
RYJ(NUMYP1 )»1.0/YJ(SUMYP1)
RDYINUMYPI)-l.C/DELY(NUMYP1)

♦CALCULATE 3ETA(T.J) MESH

00 110 I*2 »NUMX 
DO 110 J-2.NUMY
XX»OELT*RDX(I)*(2.0/(0ELX(I)♦DELX(1-1)) + 2.0/(0ELX(I+l)♦OELX(I) ))

1 +DELT*RDY(J)*(2.0/(OELY(J)*OELY(J-l)>*2.0/(DELY(J*1)*0ELYU)))
3E T A(I» J)•OMG/XX 

110 CONTINUE
JRITE (6.160)
WRIT? (17.150)
00 120 I-1.NUMXP1
•RITE (6.170) I»X(I).I.RX(I)»I»DELX(I)»I.RDX(I).I.XI(I)»I»RXI(I) 
WRITE (17.173) I.X(I)>I.RX(I)»I.DELX(I).I.R0X(I).I.XI(I).I.RXI(I) 

120 CONTINUE
WRITE (6.160)
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***s**$$**C439 C**t***ii*43EGINNINS 3F CLE«ENT SETUP/
440 SU3P0IJTINE SETUP
441 INCLUDE CTMDECK »LIST
442 C
443 C * CONFUTE CONSTANT TERMS AND INITIALIZE NECESSARY VARIABLES
444 C
445 T«0.0
446 ITER-0
447 CYCLE-0
448 TvPRT-0.0
449 TWPlT-0.0
450 NTD-0
451 3IGMA-EM4*PI/WE9ER
452 GY«SIGNA*BOND
453 CANGLE-CANGLEPRPD
454 TANCA-DTAN (CANC-LE )
455 C
456 C * SET CONSTANT TERNS FOR PLOTTING
457 C
458 XNIN-Xm
459 XMAX-X(IMl)
460 IF (ISrM®L .GT.O) TiTN — XMAX
461 YHN-Y(l)
462 YMAX-Y(JNl)
463 01-XMAX-XNIN
464 02■YMA X-YMIN
465 03»D*1AX1(C1»D2)
466 SF-1.0/D3
467 XS-tFT-0.5* (l.O-DIPNC )
468 YSHFT-0.5* (1.0-D2*SF )
469 C
470 L OETcR MIN£ SLO°ED °OJNDARY LOCATION
471 C
472 C SET INITIAL TOP SURFACE CONFIGURATION
473 C
474 C C DEPUTE INITIAL VOID - FRACTION FUNCTION F IN CELLS
475 IF (ISRF10.GT.0.AN0.FLHT.GT.EM6) CALL ICON
476 C
477 C SET F(I,J)«1.0 IN OBSTACLE CELLS
478 C
479 DO 10 1-2*111
480 DO ID J■ 2» JNl
461 IF (dETA(I,J).LT.0.0) F(I,J)»1.0
482 10 CONTINUE
463 C
484 C CALCULATE HYDROSTATIC PRESSURE
485 C
486 DO 30 1-2.INI
487 DO 30 J-2»JM1
488 IF (F(I,J) .GT.1.0-EN6.0R.F(I,J).LT.EM6) GO TO 30
489 JS-J
490 DO 20 J1-?,JS
491 P(I*J1)—GY*(YJ(JS)+(F(I,JS)-0.5)*DELY(JS)«YJ(J1))
492 20 CONTINUE
493 30 CONTINUE
494 C
495 C PARTICLE SET UP
496 C
497 NP-PARTN
498 C



499 C * SPECIAL INPUT DATA
SCO C **********
501 VCHGT"O.0
502 SHF1-1.0-EMF
503 00 40 J-2* JN1
50<l DO 40 I«2» INI
5C5 PS(I» J)*3 • 0
506 40 CONTINUE
5C7 DXHIN-ePIO
5U8 DO 50 1-2*IM1
5C9 50 0XMIN-DNIN1CDELX(I)»DXNIN)
510 DYMIN»tP10
511 00 60 I-2»JN1
512 60 DYMIN«0HTN1(DEIV(IJ*DYMIN)
513 VELMX1*DMIM {0XHIN,0YMIN)/VELMX
514 IF (CYCLE.GT.O) GO TO 60
515 C
516 C * SET INITIAL VELOCITY FIELD INTO U AND V ARRAYS
517 C
518 00 70 I*2» TNI
519 00 70 J-’.JNl
520 V(I»J)«VT
521 U(I»J)*UI
522 IF (F(I»J) .LT.EHF) J(I»J)»0.0
523 IF (F(I>J) .LT.EHC) V(I»J)«0.0
524 70 CONTINUE
525 80 RETURN
526 END

104



527
528
529
530
531
532
533
534
535
5 36
537
5 38
539
540
541
542
5<.3
544
545
548
547
548
549
550
551
552
553
5 54
555
556
557
553
559
560
561
562
563
564
565
566
567
568
569
5 70
571
5 72
573
5 74
575
5 76
577
5 78
579
580
561
5 82
563
584
5d5
566

C**it*+lt**3cGINNTNG OF ELEMENT ICON/ **»S****«'*C
SUBROUTINE ICON 
INCLUDE CO“DFCK*LIST
DIMENSION YS(5001» TS(500)» CURY(500)» CURVY(500)
FLHTO-FLHT-fO.lDO
N*3J3
N*1«N-1
EP$ILN»2.C*E"4 
DEL-1.0/OFLOATIN)
COSCA-DCOS(CANGLE)
IF (CYL.GT.O.O) COSCA-2.0*C0SCA 
GAMMA-SIGN A*(l.O+COSCA)
IT MX-500 
IT-1
9NjT-0.0*C YL+(1.0-CYL)
YSNOT-O.O
IF (30N0 .NE.O.O) YSNOT—0. 5RDA3S (COSCA/BONO)

10 CONTINUE 
20 DO 60 J-1»N

IF (J.GT.l) GO TO 30 
ZSJM1-S.0 
YSJM1-YSN0T 
GO TO 40

30 ZSJMl-ZS(J-l)
rsjmi-ys cJ-i)

40 RSOZ-l.O/OSORTd.O-ZS JM1**2 )
RJMi-DFLOA T( J-D* OS L*CYL+( 1.0-CYL )
RJ-DFLOAT(J)*DFL*CYL+(1.0-CYL)
R JMH-OFLO ATI J )-0.5) *DEL*CYLT< 1.0-CYL)
ZS(J)-(ZSJMl*RJMl+0tL*RJMH*(C0SCA-BQN0*(YSJMl+O.5*D£L*ZSJMl*RSQZ) ) 

1 > /R J
IF (ZSU). LT.1.0) GO TO 50
YSNQT-YSN0T*1.0500
GO TO 10

50 RSOZN-l.O/OSORT(1.0-ZS(J)**2)
YS(J)-YSJM1+0.5*DEL*(ZSJM1*RS0ZTZS(J)*RSQZN)

60 CONTINUE
IF (BONO.EC.0.0) GO TO 70 
tRR«DABS(ZS(N)-COSCA*(0.5*CYLT(l.O-CYL)))
IF (FRR.LT.c’STLN ) GO TO 120 

70 YSUM-0.5*(YSN0T5RN0T + YS (N) )
DO SO J-1.NM1
RJ*DFLOAT(J)*OFL*CYL♦(1.0-CYL)

60 YSJM-YSU^+YS(J)*RJ 
YSUM-YSUM* DEL
IF (YSJM.LT.gosiLN.ANO.BOND.EQ.0.0) GO TO 120 
0EN-(2.o*PI*CYL + (l.O-CYL) )
YS NOT -YS NO T-YSUM/DEN 
IT-IT+1
IF (BOND.NE.O.O ) GO TO 100 
DO 9C J-l.N 
YS(J)-YS(J)-YSUM/OSN 

90 CONTINUE
IF (IT.GT.ITMX) GO TO 110 
GO TO 70

100 IF (IT.LE.ITMX) 50 TO 20
110 IF (IT.GT.ITMX) WRITE (6,260) IT,YSUM,ZS(N),COSCA 

CALL EXIT 
120 CONTINUE

YSNOT-YSNOTtELMTO

105



567
568
569
590
591
592
593
599
595
5 96
597
598
599
6 CO
601
602
6C3
609
60S
606
607
608
6C9
610
611
612
613
619
615
616
617
618
619
620
621
622
623
629
625
626
627
628
629
630
631
632
633
639
635
636
637
638
639
690
691
692
693
699
695
696

00 13C K-1,N 
YS(K)»YS(K)*FLHT0 

130 CONTINUE
CALL PAGEG (Z»0»0>1)
CALL FRANE (XNIN,XNAX#YNAX,YHIN)
CALL DRWG3S 
00 160 K»1#N 
IF (K.GT.l I GO TO 190 
YSKN* YSNOT 
GO TO 150 

190 YSKH*Y$(K“l)
150 YSK-YS(K)

XKM-OFLOAT(K-l)*OEL
XK«OFLOAT(K)*OEL
CALL DRW Vc C ( X Kfl, YSK1# XK» YSK , 1)

160 CONTINUE
CALL PAGEG (7»0»0»1)
00 170 K«1>N*11 
OHOXR-(YS( K+D-YS (K) ) / DEL 
DHDXL-(YS(K)-YSIK-1»)/DEL 
GP«0.5*(0H0XR+DHDXL)
SPP«(DHDXB-0HDXL)/05L 
CURV(K)—GPP/I (1.0+GP**2)**1.5)
OHDYT—DEL / (YS(K + 1)-YS(K))
0H0Y3““DEL/(YS(K)-YS (K-D)
GYo-O.SPIDHOYT+OHOYA)
GYPP-2.09IPHOYT-OHOYB)/(YS(K+1)-YS(K-1)»
CUR VY (<) —GYP® / I < 1.0»GYP**2)**1.5)
WRITE (6*300) K*YSCK)»Cl'RV(K)»CURVY(K)

170 CONTINUE
00 130 I«2#IN1 
K«XI(I)/0EL*1.0
XCL'RV*CURV(K-1)>{XI(I)—0 FLOAT! K-D* DEL)*(CURV(K)-C UR V(K-1))/0£L 
-RITE (6» 2 90 ) I * XI(t)* XCURV 

160 CONTINUE
00 210 I«2»IN1
K»XI(I)/0EL+1.0
IF (K.GT.l ) GO TO DO
XSKM1-C.0
YSKNl-YSNOT
30 TO 200

190 <SKN1«DFL0AT(K-1)*DEL 
YSKM1»YS(K-1)

200 FLHT«YSKN1+(XI(I)-XSKH1)*(YS(K)-YSKN1)/DEL 
QO 210 J-2*JNl 
r(1*J)-1.0
IF (FUT.GT.YU-l ).4ND.FLHT.LT.Y(J)) F (I* J)-ROY ( J) ♦ ( FLHT-Y ( J-l)) 
IF (Y(J-l) .GE.FLHT) F(I*J)-0.0 

210 CONTINUE
DO 250 J-2»JN1
IF (YJ(J).LT.YSNOT.OR.YJ(J).GT.YS(N>) GO TO 250
00 220 KK«2»N
K-KK
IF (YS(KK).GT.YJ(J).AND.YS(KK-l).LT.YJ(J)) GO TO 230 

220 CONTINUE 
GO TO 250 

230 CONTINUE
TANG»(YS(K )—YS(K-l))/DEL 
ANG-OATANITANG)
IF (ANG.LE .0.25*PI) GO TO 250
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Sts C**ii******BeGIMNING TF ELEMENT BC/
669
670
671 C
672 C
673 C
674
675
676
677
678
679
680 
681 
682
663
664
665
666
667
668 
669 
69C
691
692
693
694
69 5
696
697
698
699 
7C0 
701 
7C2
703
704
70 5 
706 
7C7 
703
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727

SUBROUTINE 3C 
INCLUDE CONOECK,LIST

SET BOUNDARY CONDITIONS

DO ICO J■!»JNAX 
F(l,J)-F(2»J)
F(IMAX,J).F<m»J>
P(1.J)»P(2,J>
P(INAX»J)«P<IH»J)
SO TO (10»20»30»40), 4L 

10 U(l»J J-0.0 
Ytl»J)*V(2»J)
GO TO 50 

20 U(l»J)-0.0
V( l»J)*-V(2#J )*DEUm/DELX(2)
GO TO 50

30 IF (ITcS.GT.O) GO TO 50 
U(1#J)-U(2»J)
V(l»J)*V(2/J)
GO TO 50

40 J(l»J)-U(IN2»J)
V(l>J >-V(IM2»J>
GO TO 50

50 GO TO (60*70»e0,90), 2R 
60 U(INl,JI-0.0

VdNAXf J )-V( I**l* J)
GO TO UO 
U(IfU,J)*0.0
V( IJ'AX, JI«-V(IN1, J)*0ELX(IHAX)/DELX(I41 J
GO TO 100

80 IF (ITER.GT.O) GO TO 100 
U(I!U*J>«U(IW2*J>
Y (I -NA X# J ) • V (I Nl » J )
GO TO 100 

90 0(1*1#J>«U(?*J)
V(IMAX*J)-V(3»J)

ICO CONTINUE
00 2C0 1*1#I*AX 
F(I#1)*F(I,2)
F(I»JMAX)*F(T»JN1)
P(I»1»*P(I#2)
P(t*JMAX)*P(I»JMl)
GO TO (11D»12D»130»140)» NT 

110 V(I»J*U)*0.0
J(I#JNAX)-U(I#J*1I 
GO TO 150 

120 Y ( I» J Ml) *0 .0
U(I»JMAX)*-U(I#JMl)*OELY(JMAX)/DELY(JM1) 
GO TO 153

130 IF (ITER.GT.O) GO TO 150 
V(I»JN1)«V(I»JN2)
U(I»JMAX)«U(I»JM1)
GO TO 150

140 V(I»JMU-V (I»2)
U(I#JMAX)*L(I>3)
GO TO 150

130 GO TO (160»17D»160.193), WB 
160 V(I«1)*0.C

«*ss**ss**c

108



723
729
730
731
732
733 
73%
735
736
737
738
739 
7%0 C 
7%1 C 
7%2 C 
743 
74%
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777 
776
779
780 
7 81 
782 
763
784
785
786 
767

UCI»1)”U(I>2)
00 TO 200 

170 V(I»1)>0.0
'J(I>1>—U< I»2)*OEir(l)/DELY(2)
GO TO 200

180 IF (ITER.GT.O* GO TO 200 
V(I>1)-V(I*2)
U(I»1)“U(T»2)
GO TO 200

190 V(I»1)-V(I»JM2)
U<I»l>-U(r*JM2)

200 CONTINUE

FREE SURFACE AND SLOPED BOUNDARY CONDITIONS

03 450 I“2 »INI 
<RP«RDX(I)40.5*RXI(I)
RXRP-l.O/XRP
<RN«RDX<n-3.5*RXI(I)
IF (XRN.ST.O.O) GO TO 210 
RXRN-C.O 
GO TO 220 

210 CONTINUE
RXRW.O/XRN 

220 CONTINUE
00 450 J-2.JN1
IF (SET A(I» J).GT.0.3) GO TO 230
3NR-0.0
3NT»0.0
3NL«0.0
8N6«0.3
F(I, J)-0.0
p(itj>»o.o
IF (3ETA(I+1»Ji.GT.O.O) 9NR-1.0 
IF (GETA(I#J4l).GT.3.0) 8NT«1.0 
IF (3ETA(I-1.J),GT.0.0* 8NL-1.0 
IF (8ETA(I#J-1I.GT.O.O* 8NB-1.0 
3NT0T-3.4R+BNT+-8NL + 51B 
IF (3MT3T.LE.O.O) GO TO 450
F(I, JI«(BNP*F<I«-1,J**3NT*F(I, JU)4BNl*F(I-l»J)4BHB*F(I, J-m/BNTOT 
P( I»J)■(BNR*P(I*1,J*♦BMT*P(I»J>1) + BNL*P(I-l»J)4BNB*P(I»J-1))/BMTOT 
GO TO 450 

230 CONTINUE
IF (F(I,J) .LT.ENF.3R.F(I,J).GT.1.0-ENF) GO TO 450 
f^FSB-O
IF. (F(I+l,JJ.LT.ENF* NFSB-NFS8+1 
IF (F( I,J+l).LT.tNF) NFSB»NFS8*2 
IF (F(I-1,J).LT.EHF) NFSB-NFSB+4 
IF (F(I, J-1>.LT.ENF) NFS8-NFSB<-8 
IF (NFSB.EO.O) GO TO 400 
IF (NFSB.GT.8) GO TO 240
GO TO (250#260»279#?B0.290#300#310»320)f NFSB 

240 NFS81-NFS8-8
GO TO (330»340»350.36O»37C»3B0»390)» NFSB1 

250 J(I»J)-(U(1-1*J)-D5LX(I)*R0Y(J)*(V(I»J)-V(I#J-l)J)*(1-CYL)*CYL*(U 
1 (1-1,J)♦XRN*PXRP-RDY(J)*RXRP*(V(I*J>-V(I#J-1)))

GO TO 410
260 V(I.J*«( V(I»J-l)-DELY(J)4RDXm*(U(I» J)-U(I-1#J >* )*(1-CYL)+CYL*(W 

1 (I»J-1)-DELY(J)*(XRP*U(I»J)-XRN*U(I-1»J)>)
GO TO 410
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848 IF <V0UT.LT.EM6J GO TO 460
849 F(I,l)»C.O
880 IF UI(I) .IT.0.100) F(1,1)-1.0
8 51 IF (XI(I). IT.0.100) FII»2)-1.0
852 460 CONTINUE
853 RETURN
854 SNO
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C**'t***$$*53cGINNISG 3F ELEMENT PRESIT/ 
SUBROUTINE PRESIT 
INCLUDE C3“DECK»L1ST 

10 CONTINUE

♦ ****M*»*C

NAS C0NV6RCENCE 9EEN REACHED

IF (FLG.EO.O.) GO TO 140 
ITER * I TER*1 
ITHAX*1000
IF (CYCLE.LT.5) IT«AX-4000 
IF (ITER.LT.ITMAX) SO TO 20 
IF (CYCLE.LT.10) GO TO 140 
T-EP10 
GO TO 140 

20 FL6-0.0

COMPUTE UPDATED CELL PRESSURE AND VELOCITIES

DO 130 J>2»J«1 
DO 130 I-2#Tmi
IF (3ETA(I,J).LT.0.0) GO TO 130 
IF (F( I,J) .LT.EMF) SO TO 130 
IF (NF(I.J).EQ.O) 50 TO 80

CALCULATE PRESSURE fqr SURFACE CELLS

NFF«hF(I»J)
L-I 
( »J
GO TO (30>40,50»60.130), NFF 

30 L-I-l 
GO TO 70 

40 L“I♦1 
GO TO 70 

50 "-J-l 
GO TO 70 

6U N*J 
70 CONTINUE 

?LM«P(L»M)
IF (NF(L»M ).NF.O.ANO.8ETA(I»J).GT.O.0) PLN«PS(I»J)
OcL°«(1.0-PETA(I,J))♦PLN+PFTA(I»J)* PS(I»J)-P(I> J)
GO TO iO 

60 CONTINUE
D(I,J)«ROX (I>* (U(I»J >-U(1-1,J)»♦*OY(J >♦(V(I»J)-V(I>J-l))+CYL*0. 

1 *RXI(I)*(IJ(I»J)+U(I—l»J))

TEST FOR PRESSURE CONVERGENCE

IF (DA3S(D(IfJ)/D2R'0>.GE.EPSI) FLG«1.0 
0ELP--8ETA(I,J)*D(I.J)*PETA(I,J)

90 CONTINUE
P(I#J)-P(T»JHO=lP
IF (8ETA(I«1»J).LT.0.0) GO TO 100
U( I»J)-U(I»J )*DELT*0ELP*2.0/(0tLX(I)*DELX( I*D)

100 IF (3ETA(I-1,J).LT.3.0) GO TO 110
U(I-l#J)«U(I-1»J)-DELT*0ELP*2.0/(DELX(I)*DELX(I-l))

110 IF (3ETA(I»J+1).LT.O.O) GO TO 120
V(I»J)-V(I»J)*DELT*0=LP*2.0/(DELY(J)*DELY{J*1))

120 IF (BETA(I»J-1).LT.0.0) GO TO 130

114



995 V(I, J-1)«V<I.J-1>-!)=LT*OELP*2.0/(DELY( JUDELY(J-l)}
996 130 CONTINUE
997 CALL BC
993 GO TO 10
999 1*0 CONTINUE

10C0 RETURN
1001 END
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1042
1043
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1046
1047
1048
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1050
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1052
1053
1054
1055
1056
1057
1058
1059
1060 
1061

C*M***Jt**3EGINNING OF ELEMENT PARNOV/ 
SUBROUTINE PARNOV 
INCLUDE COHDECK»LIST 

C
C ♦ SOLA-VN PARTICLE MOVEMENT SECTION
C

NPT«0
NPN"0
K«1
KN*1
PFLG-1.0

10 IF (NP.EQ.NPT) GO TO 150 
C * CALC. U WEIGHTED VELOCITY OF PARTICLE 

I-IP(K)
J-JP(K)
IF (YP<K>.GT.YJ(J)I GO TO 20 
HPX«X(I)-XP(K )
HMX«DeLX<IJ-HPX
H°r»rj(j)-y®<k>
NORMY-(DSLYCJ)+DELY(J-l ))*0.5 
HMY*N3*'1Y-HP Y
UT3P»(U(I-J»J)*HpX6!J(I»J)*HMX)*RDX(I)
US OT»<U(I-l.J-l)*ho* + u(I#J-1)*HHX)*RDX(I)
UPART-(UTOP*HMY+UBOT*HPY)/NORMY
GO TO 30

20 HPX«X(I)-XP(K)
*0 ELX (I )-HPX 

HPY-YJ(J*1 )—Y P(K)
NORMY«(DEL Y(J +1)♦DELY(J))*0.5 
HMY-NORMY-HPY
UTOP-('J{ I-l» J + l )*Hi>X6U( I»J*1)*HNX)*RDXII) 
U3 0T«(U( T-l. J )*HPX*|J(I»J)*HHX)*RDX(I ) 
UPART ■(UTOP*HMY'*U30T*HPY)/NORMY 

C CALC. V WEIGHTED VELOCITY OF PARTICLE
30 IF <XP(K).GT.XI<I>> GO TO 40

MGRMX-OEL Y(I )*DEL*(I-1>)*0.5
SNGRNX.l.n/NOPMX 
HPX-XItl) — XP(K)
HM X•NORMX-HPX 
HPY*Y(J)-YP(X)
HMY-DELY (J )-Hi>Y
VTOP-IVII-l»J)*HOX.V(I»J)*HNX)*RNORMX 
VB3T«(V(T-l»J-l)*HpX*V(I»J-l)*HMX)*RN0RMX 
VPART* ( VTOP*HN Y-f VBOT ♦HPY)*RDY(J)
GO TO 50

40 NORMX«(OELX(I)+DEL<(I61))*C.5 
RN0»MX»1.0/N0RNX 
HPX»XI(I♦! )-XP (X )
HMX-NORMX-HPX 
HPY-YCJ)-YP(K)
HNY-DELYIJ )—HPY
VTOP*(V(I.J)*HPX+V(I+l.J)*HMX)*PNORMX 
V3CT-1 V(I» J-1>*hi»x*V (I>1» J-1)*HNX)*RN0RNX 
VPART-I VTOP*Hwy«-VBOT*HPY>*RDY< J )

50 <PART»X?(K ) + UPART*9ELT 
YPART-YPIK ) + VPARTADELT 
IF (XPART.GT.Xd)) IPUN)-IP(K)4l 
IF (XPART.LT.X(T-D) IP(KN)»IP(K )-l 
IF (YPART.GT.Y(J)) JP(KN)«JP(K)♦1 
IF (YPART.LT.Y(J-l)) JP(KN)-JP(K)-l

** ****$$**C
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1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
107*
1075
1076
1077
1073
1079
1060
1081
10 82
10 83
108*
1085

XP(KN)“X 0APT 
rP(KN)«y°ART 
IF (WL.cO.3) 90 TO 90

60 IF (09.50.3) GOTO 100
70 IF <*9.t0.3> GO TO 110
90 IF (WT.6Q.3) GO TO 120

GO TO 130
90 IF (XP(KN) .LT.Xtl)> PFLG-0.0 

GO TO 60
100 IF (YP(KN) .LT.YU JJ PFLG-0.0 

GO TO 70
110 IF (XP(KN) .GT.X(IHl)> PFLG-0.0 

GO TO 80
120 IF (YP(KN) .GT.V(JNl)) PFLG-0.0 
130 IF (PFLG.N6.1.0) GO TO 1*0 

KN«KN*1 
NPN*NPN+1 

1*0 K«K+1
MPT «NPT*1 
PFLG-1.0 
GO TO 10 

15C NP«NPN 
9ETJR H 
END
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1067
1088
1069
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099 
11C0 
1101 
1102 
1103 
11C4
1105
1106
1107
1108 
1109
me
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120 
1121 
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145

C**i***»$**9E5INNIMG OF ELEMENT VFCONV/ **SS**1*'»*C
SUBROUTINE VFCONV 
INCLUDE COND€CK*LIST 

C
C CONVECT THE VOLUME - FRACTION FUNCTION F 
C

00 30 J-1»JN1 
DO 30 I*1» INI 
VX «U(I» J)* DELT 
VY*V(I»J)* DELT 
IA-I+1
ID"!
IDM.4AXD(I-1»1)
RB-XI m*0.5*0EL*(I>
»A"XI(I+1)
RD-XIII)
IF (VX.6E.P.0) GO TO 10
IA-I
I0-I+1
IDN"MIN0(I+2#INAX)
RA-XKI)
AD-XKI+l)

10 CONTINUE
1 AO"IA
IF (NFCID*J).E9.3.0R.NF(ID>JI.E0.4) IAD-ID 

C IF(NF(IO»J ).EO.O.ANO.NF(IA»J).EQ.O) IAD-ID
IF (FN(IA»J).LT.ENF.OR.FN(IOM»J).LT.ENF) IAD-IA
FX1»FN(IAD»J)*DAMS(VX)+0MAX1((DP1-FN(IAD,J)J*DA3S(VX)-(DP1-FN(I0»J 

1 ))*0ELX(ID>»0«000>
FX"0MIN1{FX1»FN(I0.JJ*DELX(ID>)
F(10,J J-CJ ID»J »-FX*RDX(ID)*((DA3S(R3/RD))*CTL+(1.0-CYL))
F(IA,J ) »F( I*, J ) ♦ex + ROX (IA)*( I DABS<R9/RAn*C YL^C 1.0-CYL) )
JA-JAl
JD-J
JON-NAXJCJ-l»1)
IF CVY.GE.C.O) GO TO 20
J A ■ J
JO-J+1
JDN-NINUCJ*2,JMAX)

23 CONTINUE 
JAD-JA
IF (NF(I,JD).E0.1.0R.NF(I,JD).E0.2) JAD-JO 

C IF(NF(I,JD ).E3.0.ANO.NFCI,JA).EO.O) JAD-JD
IF (FN(IfJA).LT.EMP.OR.FN(I,JD?n.LT.ENF) JAD-JA
FY1-FN(I,JAD )*DA9S(VY)>DMAX1((DP1-FNII,JAD))*DABS(VY)-(0Pl-FN(I,J0 

1 ))*0cLY(JD),0.3D0)
FY»0NIN1(FY1,FN(I,J0)*0ELY(J0))
F(I,JD)-F(I,JO)-FY*RDY<JO)
F( I, JA)"F( I, JA)*FY*RDYUA)

30 CONTINUE
DO 70 J-2,JNl 
DO 70 1-2, INI
IF OETACI ,J).LT.O.D) GO TO 70 
VCHG-0.0
IF (F(I,J>.GT.ENF.4N0.F(I,J).LT.EHF1) GO TO 50 
IF (FtI,J).GE.EMP1) GO TO 40 
VC HG-F(I,J )
F(I,J)-0.0 
GO TO 50 

4C CONTINUE
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1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1153
1159
1160
1161
1162
1163
1164

VCHG — (1.0-F(I»J) )
F(I»J)-1.0 

50 CONTIN'Jc
VCSGT»VCHGT+VCHG*DELX(I)*OEir(J)*(XI(I)*2.0*P1*CYL*{1.0-CYU)
IF (F( I»J) .LT.l.O-F^F) GO TO 70
IF (F(I♦!» J)•LT.EMF) GO TO 60
IF (F(I-1,JJ.LT.EWF) GO TO 60
IF (F (I, J + D.LT.FIFl GO TO 60
IF (F(I,J-l).LT.EMF) GO TO 60
GO TO 70

60 F(I»J)«FCI,J)-1.100*EMF 
^046-1.100*51^
VCHGT«VCHGT*VCHG*0Elxm*DELY<J)*(XI<I)*2.0*PI*CYL*<1.0-CYl>) 

70 CONTINUE

SPECIAL 9CUN0APY CONDITIONS FOR F

RETURN
END

119



1165
1166 
1167
1163
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180 
1181 
1182 
1183
1164
lies
1166
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1190
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C**lt**$S**3e6INNISG OF 5LEHENT PET ACL/ **$$»*tt**C
SUBROUTINE PET ACL 
INCLUDE CO NOE CK »LI ST 

C
C OETE® MINE THE PRESSURE INTERPOLATION FACTOR PETA
C

00 10 I«l» INA X 
DO 10 J *1# JNAX 
PS(I»J)»0.0 

10 PET4<I,J>-1.0 
IPASS *0
DO 160 I-2»I"1 
DO lt>0 J-2,JN1 
NF(I>J)-0
IF (dtTA(I'J).LT.O.O) GO TO 160
IF (F(I,JJ.LT.ENF.rK.FCIjjJ.GT.i.O-cMF) GO TO 160 
IF (F<I+1»JJ.LT.ENF) GO TO 20 
IF (FdfJ + 1).LT.EMF) GO TO 20 
IF (F(I-1»JJ.LT.pmf) GO TO 20 
IF (F(I*J-1).LT.EMF) GO TO 20 
GO TO 160 

20 CONTINUE 
C
C CALCULATE THE PARTIAL DERIVATIVES OF F 
C

DXAV0.5*nELX{ T-1)4-0SLX<I)*0.5NDELX( !♦!)
DYAV«0.5*D£LY<J-lJ»DELr<J)40.5*OELY<J41>
FIPJM-F<I-H»J-1>
IF Cl .E3.Tm.TR.J.E0.2.0R.BETA(I*l» J-D.LT.C.O) FIPJN-1.0 
FIPJ«F(I*1*J>
IF (I•E3.IM1.0R.BETA(I+1»J).LT.0.0> FIPJ«l.o 
FIPJP-FCI+l.J+l)
IF (I.£3.IN1.0R.J.E3.JM1.0R.BETA(I+1»J+1).LT.0.0) FIPJP«1.C 
FIJN-FCI.J-l)
IF C J.E3.?.0R.9ETA(I,J-1).LT.0.0) FIJW.O 
FIMJN«FCI-1»J-11
IF (J.E3.2.TR.BETACT-1,J-1).LT.0.0) FINJN-1.0 
FINJ-FC1-1»J)
IF (BETACI-1,JC.LT.O.O) FINJ-1.0 
FIM J P «F ( I-l» J+l)
IF (8ETA(I-1»J4-1).LT.0.0) FIHJP-1.0 
FIJP-F(I,jn)
IF (J•c 3.JMl.OR.BETA(I»J + 1)•L T> 0•0) FIJP-1.0 
AVFCX-FIJNADELY(J-1) + F(I»J)*DELY tJ)*FIJPPDELYCJ + l) 
AVFCY-FIMJ*DELX(I-l)>F(I»J)*DELX CI)*FIPJ*DELX(I+1)
AVFR-FIPJN*DELY(J-1)♦FIPJADELYCJ)*FIPJP*DELYCJ+1) 
AVFL-FIMJH*DSLY(J-U♦FINJNOELYCJ)+FIMJP*DELY(J+l) 
AVFT«FI*1J0*nELX( 1-1) + FIJP*DELX( I ) + FIPJP*DELX(I + l) 
AVFB»FI*1JM*DELX(I-l)+FIJM*0eLX(I )+FIPJN*D€LX< 1 + 1)

C
C BOUNDARY CONDITIONS FOR WALL ADHESION
C

IF {9ETACI+1,J).G5.0.0.AND.I.NE.IN1) GO TO 30 
AVFR»AVFCX+0.5*(D£LX(I)+DELX(I+l)J/TANCA
IF (FCI»J+1).LT.ENF) AVFT*AVFCY-0.5*<DELY(J1+DELY<J♦1>>*TANCA 
IF (FCI,J-l).LT.ENP) AVF3»AVFCY-0.5*CDELYCJ)+DELY(J-1)>*TANCA 

30 IF (3ETA(I,J+1).GE.0.3.AND.J.NE.JMD GO TO 40 
AVFT-AVFCY+0.5*(0ELY<J)+9ELY(J+l))/TANCA
IF CFC I + l>J) .LT.ENF) AVFR*AVFCX-0.54(DELXCI) + 0ELX(I + 1))*TANCA 
IF (F(I-1*JI.LT.ENF) AVFL"AVFCX-0.5*(DELX(I)+DELX(I-1))PTANCA
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1242 C
1243 C
1244 C
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40 IF <3ETMI>J-1).GF.0.0.AND. J.NE.2) GO TO 50 
AVF3»AVFCY40.5*(DEir(J)4DELY(J-1))/T4NCA
IF (F(!♦!» J)•LT.EMF) AVFR-AVFCX-0.5*(DELX(I)♦DElX(I♦!))*TANCA 
IF CFCI-1#J».LT.EMF) AVFL«AVFCX-0.5*(0ELXm+DELX(I-l))*TANCA 

50 IF <3ETA(I-1»J).GE.3.0) GO TO 60
AVFL-A\/FCX40.5*(0ELX (H4DELX(I-1))/TANCA
IF (Fd. J+l).LT.EMF) AVFT-AVFCY-0.5*(DELY{J) + DELY(J + 1))*TANCA 
IF (F(I,J-1).LT.EMF) AVF8-AVFCY-0.5*(0ELY(J)+DELY(J-l))*TANCA 

60 CONTINUE
PFX-lAVFR-AVFL)/OXAV 
PFf«(AVFT-AVFB)/DYAV 
PF-PFX**2+PFY**2 
IF (PF.GT.EN10) GO TO 70 
NF(I,J )«5
F(I»J)"0.25*(°(I+l»J) + P(I»J + l)+P(I“,l»J) + P(I»J“l))
GO TO 160 

70 CONTINUE

DETERMINE THE PRESSURE INTERPOLATION CELL NF

A8PFX-DA8S(PFX)
ABPFY-0A3S(PFY)
L * I 
M « J
IF (ABPFY.GF.A3PFX) GO TO 80
OXOYR«OELYU)*ROXm
PFNN-A3PFY
NF(I»J)*2
L-I + l
OMX-DELX(I )
DMIN«C.5*( OMY + OELXd+l ) )
IF (PFX.GT.O.D) GO TO 90
N F(I * J)«1
L-I-l
OMX-DELXd )
0MIN-O.5M DNX+DELxa-l) )
GO TO 90 

80 CONTINUE
OXDYR»DELX(U*POY(J)
PFMN»A3PFX 
NF(I»J)-4 
m-J + 1
DMX«DELY(J )
ONIN»0.5*(OMX+CELY( l+D)
IF (PFY.GT.0.0) GO TO 90 
NF(I,J)-3 
N» J—1
OMX-OELY(J )
O.MIN«0.5*( DNX + OELY( J-l ) )

90 CONTINUE 
TANTH-PFMN
IF (ISRF10.LT.1) GO TO 140
IF (NF(I,J ).LE.2) GO TO 100
RIGHT-2.0* (AVFR-AVFCX)/(0£LX(I)+DELX(I + 1))
XLEFT-2.0* (AVPCX-AVFL )/<DELXm + DEL<< I-l) )
GPP«2.0*(RIGHT-XLEFT)/DXAV 
GP»0.5*(RIGHT+XLEFT)
GO TO 110 

IOC CONTINUE
IF (NF(I»J ).E0.2.AN0.F(I + 1»J).GT.EMF.AND.FlI + 1,J).LT.ENF1) AVFCY
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1290
1291
1292
1293
1294
1295
1296
1297
1299
1299
1300
1 3C1
13 C2
1303
1304
1305
13C6
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
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1319
1320
1321
1322
1323
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1341
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1344

i ■Fi>ij*oeLx(i-i)*F<i,ji*DeLxm*DELX(m)
T0P-2.0*UVFT-AVFCY> /(DELY<J)*DELY< Jn> >
8 0TT3M«2.0*UVFCY-A\/F8)MDELYU)+DELY{J-in 
GP P-2.0* (TCP-1? OTTO'1) /DYAV
GP»0.5*(Tnp*9nTT0M)

110 CURVCY-0.0
IF CYL.lT.l .0) GO TO 120 
XLITLR-XK I)
IF <NF(I»J ).€Q.l) XLITLR-X(I-1)*F(I»J»*0ELX(I)
IF (NF(I»J).E0»2) XLITLR"X(I*1)-F(I»J)*DELX(I)
RLITLR-l.O/XLITLR 
TRIG-DABS(DSIN(OATAS(TANTH)))
IF (MFd.J ).LE.?) TRIG»DABS(DCOS(DATAN<TANTM))>
CURVCY—CYL*TRIG*05IGN(DP1#PFX>*RLITLR 

120 CURVXY«-GPP/(1.0+GP**2)**1.5 
CURW-CURVXY*CURVCY 
PS <I» J>-STG(«A*CURV
IF ( ( AVFL.UT.E'*6.0R. AVFR.LT.EH6) . AND. (A VFT. IT. E M6. OR . A VFB . L T. E M6 ) ) 

1 GO TO 130 
SO TO 140 

130 PS(I»J)-EP10 
IPASS-1 

140 CONTINUE
IF (F(I,J).IT.ENF) SO TO 150 
NFSB-0
IF (FCI + 1,J).IT.ENF.0R.I.E0.I»U.0R.9ETA(I + 1»J).LT.0.0) NFSB-NF S3*l 
IF (F(I,J*l).LT.FNF.QR.BcTACI,J + l).LT.O.O) NFSB-NF S3*2 
IF (F(I-1>J).LT.EMF.OR.BETA(I-1#J).IT.0.0) NFSB-NFS3+4 
IF (FCI#J-1).LT.EMF.OR.8ETA(I,J-l).LT.0.0) NFSB«NFS3*8 
IF (NFSB.EC.l*) PS(I»J)-0.0 

150 CONTINUE
0FS-(0.5-F(I,J))*0MX
IF (F(I»J) .LT.0.5*TANTH*0X0YR) OFS-0.5*0NX*(1.0 + 0XDYR*TANTH-OSQRT( 

1 S.O*F(I»J)*OXDYR»TANTH))
PcTA(I# J)-1.0/(l.0-0FS/0MIN)
IF (L.EO.l.OR.L.FO.TNAX) PETA(I *J)-1.0 
IF (H.EJ.l.OR.M.EO.JNAX) PETA(I»J)-1.0 
IF <36TA(L#").IT.0.0) PtTA(I»J)-l.O 

160 CONTINUE
IF (IPA3S.LT.1) GO TO 230 
00 220 J-2.JN1 
DO 220 I»2 #INI
IF (NF(I»J ).LT.1.0R.NF(I.J).GT.4.0R.8ETA(I»J).LT.0.0) GO TO 220 
IF (PS( I»J ).LT.EP9) GO TO 220 
PS(I»J)>0.0 
NFF-NF(I *J )
GO TO (17C.190,190,200)* NFF 

170 L-I-l 
N»J
GO TO 210 

18C L-I+l 
M-J
GO TO 210 

190 L-I 
N-J-l 
GO TO 210 

200 L-I 
N«J*1 
GO TO 210

210 IF (PS(L,M ).LT.EP9) PS (I *J )-PS(L,N)



1345 220 CONTINUE
134a 230 CONTINUE
1347 C
1348 C * * SET 8ETA IN AOJAC'NT FULL CELL
1349 C
1350 00 290 J*1»JNAX
1351 DO 290 I-1#INAX
1352 NFF»NF(I»4)
1353 IF (NFF.EO.O) GO TO 290
1354 L-I
1355 N-J
1356 30 TO (240*253>260>270;290); NFF
1357 240 L-I-l
1353 ONX-OELXU )
1359 DNIN-0.5M DMX + DELX(I-1))
1360 GO TO 280
1361 250 L-I + l
1362 DMX-OELXd I
1363 DMIN-0.5*C DMX + DELX(I*1)I
1364 30 TO 280
1365 260 N-J-l
1366 OMX*OELY(J)
1367 0NIN-0.5*(DNX+OELY(J-l))
1368 GO TO 280
1369 270 N-J41
1370 ONX-0ELY(J )
1371 OMIN-0.5*( DNX+0£LY(J + H )
1372 260 CONTINUE
1373 IF (NF(L»MJ.GT.O) GO TO 290
1374 3Pa-1.0-3f TA(L»")*(1.C-PETA(I»J))*DELT/(DNIN*DNX»
1375 PETA(L;N)-1.0/BPD
1376 290 CONTINUE
1377 c
1379 c SET EMPTY CELL PRESSURES
1379 c
1360 DO 3C0 I*1»IMAX
1381 00 300 J-liJMAX
1382 IF (F(I#J).GT.EMF.0R.9ETA(I#J).LT.C.0» GO TO 300
1383 P(I>J)-0.0
13 84 300 CONTINUE
1365 RETURN
1386 END
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C**$$**$$**Beginning of element draw/ **$$***s**c
SUBROUTINE DRAW 
INCLUDE COMDECK.LIST 

C
C VELOCITY VECTOR PLOT 
C

IF (MOVY.EO.O) GO TO 10 
IF (T .LT.TMV»-EN101 SO TO 110 
TMVP»TMVPtDTMVP 

10 CONTINUE
CALL PAGES (7,0.0*1)
CALL FRAME (XMIN.XMAX»YMAX*YMIN)
IF (MOVY.EO.l) GO TO 20 
VRITE (17.130) NAME 
WRITE (17.120) T.CYCLE 

20 CONTINUE 
CALL 0RW08S 
DO 30 J-2.JM1 
00 30 I-2.1M1
IF (CYCLE.GT.O.AND.F(I,J).LT.EMF) GO TO 30 
IF (F(I.J) .LT.0.5) GO TO 30 
IF (8ETA(I.J ) .LT« 0.0) GO TO 30 
XCC-XI(I)
YCC *0.5*(Y (J )♦Y (J-l))
UVEC-(U(I-1»J)*U(I.J))*0.5*VELMX1+XCC 
VVEC«(V(I.J-l)*V(I.J))*0.5*VELMXltYCC 
CALL DRVVEC (XCC . YCC » U VEC. WE C» 1)
CALL PLTPT (XCC.YCC.ICH.l)

30 CONTINUE 
C
C DRAW FREE VJRPACE
C

FPL-0.5 
DO iO 1*2.INI 
00 50 J-2.JM1
IF (BETA(I.J).LT.C.D) GO TO 50
FATR-0.25*(F(I,J)+c(I+l.J)*F(I»J+1)*F(I*1»J+1))
FXTR-0.5*( F(I41»J^1) +F (I*l, J )-F (I. J»l)-F(I»J ) ) / (XI (I+D-XI (I ) ) 
FYTR«0.5*(F(I.J*1)+F(I*1,J+1)-F(I,J)-F(1+1»J))/(YJ(J+1)-YJ(J)) 
FTRS»FXTP**2*FYTR**7 
IF (FTRS.EO.O.O) PTRS-EP10
XTR-0.5*(XI(I*1)+XI(I))+(FPL-FATR)*FXTP/FTRS 
XTR«DMAX1(*TR.XI< T))
XTR»DMINl( XTR.XH !♦! ) )
XTRM--XTR
YTR-D.5*(YJ(J)*YJ(J*1))+(FPL-FATR)*FYTR/FTRS 
YTR«OMAXKYTR»YJ(J))
YTR-OMINK YTR. YJ( J*1 ) )
IF (F(I» J) .ST.0.5.AND.F(Ia-1,J).GT.0.5) GO TO 40 
IF (F(I»J) .LT.0.5.AND.Fd + l.J).LT.0.5) GO TO 40 
FA3R-C.25* (F( I, J ) + F( I + l.J ) + F(I» J-l)+F( m* J-l) )
FXBR“0.5*(F(I*1*J)*F(I*1,J —II—F(I*J)-F(I,J-H)/(XI(I+t)-XI(I)) 
FYBR"0.5*(F(I,J)*F(I*1,J)-F(I#J-1)—F(I*1.J—1))/(YJ(J)—YJ(J—1)) 
FBRS«FX3R**2 + FY8R*0 
IF (F3RS.EO.O.O) F3RS-EP10
X3R-0.3*(XI(I*1)*XI(I))*(FPL-FAaR)*FXBR/FBRS 
XBR-DMAXK XBR.XKI))
X3R-0MINK X3R. XI (I + U )
Y3R»D.5*(YJ(J)♦YJJJ-l>)-MFPL-FABR)*FY8R/FBRS 
YBR-OMAXK Y5P»YJ(J-1))
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ON? COST
U8V'XT>2'0TV'XT'*V02*X«1« Ht) IVNSOd OCT 66*T

OI'-aiOADHQ'X^'C'OTOdT^-lha'XOC^HT) ivwaod 021 86*T
3 26*1

NdOA3b 96^x
IT'O'O'Z) 939Vd n»D (0,03*AA0H) 31 S6*T

anNIINCO OTT *6*1
snNimoo oot €6*t
anNIANOD 06 26*1

(T'HDIMNJdA'lMeiX) idild ITVD T6*T
dN«I»N 06 00 06*1

313A3'i (021*21) ailtlK 68*1
3NVN (0£I«2T) aiiaf 83*1

(NIWA*XVhA*X?t»X*M»X) Skvad TTVO 28 *T
sso’ao n*D 98*t

(T*0*0*2) 93SVd 1TV3 S8*I
OCT Cl (j-j (O'C-a^dN) dl *9*1

D £8*1
S3TDUa»d 10Id 3 28*T

3 T8*T
anNiiNOO 08 03*i
anNUNOO 02 62*T

(I«XfWA*33X*Nm*33X) 33AM»0 ITTO 82*1
(I)X»33X 22*1

02 00 92*1
anNUNOO 09 S2*t

(0«33A*X*WX‘33A‘MhX) 33Af«a0 TTV3 *2*T
(T)A*33A £2*T

Twr*X«P 09 00 22*1
SSOAdO n»3 T2*T

(T*C*0*Z) 939Vd 11V3 02*1
08 Cl 09 (O'O'lO'l) dl 69*T

OTT Cl 09 (I'Oa'AAON) dl 89*:
3 29*T

iOld HS3N 3 99*1
3 59* T

anNUNOO os *9*x
(naiA'aix'UA'iix) 33A«ao nvo E9*x

({W)rAMU)INIWO«UA 29*T
( (P )r A‘UA )TXVW0«11A T9*I

sudniAd*uivd-idd) + ( (T + n ri + ( nmd.'o-oiA 09*t
((I )1X*11X )INIU0*11X 65*I

((T-1)IX'T1X)TXVNC-U> 8S*T
Slld/llXd*ni*d-Tdd)*( (I )IX4(I-I )I XJdS^O-UX 2S*T

0Td3»S11d (O^O'O a'SUd) dl 9S*T
Z**'llAd + 2**UXd*S11d £S*T

(cr)PA-(T*r)rA)/(cr*i)d-( r*T-i )d-(T*r*i)d'Mi+r*T-i)d>*s*o«iiAd *s*t
< (t-i)ix-ci> ix) / ((r«T-nd-(T^p*T-i) d-(r«i)d+( T^r^DdJkS'o-iixd cs*t

((T^r «t-i >d*( r*T-i)d + ( x*r «nd+ (r*i) d) *s2*o«ii vd zs*t
os oi 09 ce'ouvmr'nd'QM^s'O'n* (r«i)d) di ts*t
06 01 09 (6•0*19•(T♦^»I)d•O^V,S•0•i9•(r«I)d) dl 0S*T

anNUNCO o* 6**1
(T*aiA»aix*a6A«a8X) obaaso nvo e**i

((nri^aai )TNikC»aeA 2**t



1901
19C2
15C3
19t4
1909
1906
190?
190d
19C9

C**^S**$$**B6GIMNING OF ELEMENT FRAME/
SUBROUTINE FRAME (XXL»XXR,yrT»YYB) 
IMPLICIT OCUBLE PRECISION IX-Y) 
CALL DRWVEC IXXL»YYT*XXR,YYT»0» 
CALL DRWVEC (XXL»YYT»XXL»YYB#0) 
CALL DRWVEC (XXL»YYB,XXR»YYB»0) 
CALL DRWVEC IXX»,YY3#XXR,YYT#0) 
RETURN 
END

**»S**$$**C
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♦**$***$**c1510
1511
1512
1513 
151*
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556

C**SS**«***8eGINNING OF ELEHENT ORWOBS/
SUBROUTINE ORWOBS 
INCLUDE COMOFCKfllST 
X0NE>1.0 
TONE«Y(JNl )
XTWO-l.O 
YTtoO-YCENTR
CALL DRWVEC IXONE »YONE »XTW0»YTW0»1)
THSTAR —1. 47C62890600 
TNI.0.0 
XONE-l.O 
YONE-YCENTR 
OTH-THSTAR*0.0500 
DO 10 I*1« 20 
TH2.TH1+-DTH 
XT WO*DCOS C TH2)
YT WO*DSIN(TH2)4YC ENTR 
CALL DRWVEC (XONE»YONE»XTWO#YTWO»1)
TH1«TH2 
XONE■X T WO 
YONS «YTWO 

10 CONTINUE 
XTW0«0.100 
YTWO-O.O
CALL DRWVEC (X ONE.TONE#XTWOfYTWO»1)

:
C DRAW AROUND ALL OBSTACLES
:

DO 30 I«?» TNI 
00 30 J.’.JNl
IF ((BET A(T» J >.LT.O.O.AND.BETA(I*lfJ).LT.O.O).OR.(BETA(IfJ) 

1 . AND.BETA (I*1»J».GT.O.0)) GO TO 20 
XQNE.XII)
X T WO«X ONE 
YONE«Y(J-l )
YTWO«Y(J)
CALL DRWVEC CXONE,YONE»XTWO»YTW0»1)

20 IF ((B£TA( I» J).LT.0.0.AND.BETA(I»J + 1).LT.O.Ol.OR.(BET A(I»J) 
1 .AND.BETA (I,J+l).GT.O.G)) GO TO 30 

XONE"X(1-1 )
XTWO-Xd)
YONE-Y(J)
YTwO«YONE
CALL DRWVEC (XONE»YONE»XTWO»YTWOfl)

30 CONTINUE 
RETURN 
END

GT.0.0

GT.0.0
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1557
1553
1559
1560
1561
1562
1563
1564
1565
1566
1567 
1563
1569
1570
1571
1572
1573

c**$$**$s**beginnin<; of slchent pltpt/
SUBROUTINE PLTPT (XONE#TONE*1CHAR#1STN)
INCLUDE COMDECK»LIST
IC«0
Xl-XONE
Yl-TONE

10 X01»<X1-XNIN)*SF+XSHFT 
Y01»<rl-rMIN)*SF*YSHFT 
CALL SETSNG (Z»B4.1M9)
CALL POINTG <Z»1,X01»Y01)
IF CISYNPL.EO.O.OR.ISYM.EQ.O) GO TO 20 
IC-IC*1
IF (IC.GT.l) GO TO 20 
XI—XI 
GO TO 10 

20 RETURN 
END

♦**s**s***c
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**$**♦$$**015 74 
1575 
15 76
1577
1578
1579
1580
1581 
15 82 
1 5o3
1584
1585
1586
1587
1588
1589 
1540
1591
1592
1593
1594

c**$$,*it**Bc6IN8‘ING TF FLcMENT DRWVEC /
S03R0UTINE DRWVEC (X ONE»YONE#XTWO#YTWO*ISYM)
INCLUDE COMDECK,LIST
IC-0
Xl-XONE
Yl-YONt
x 2 ■ x T W 0
Y2-YTW0

10 X01-(X1-XMIN)*SF+XSNFT 
Y01-(Y1-YNIN)*SF+YSHFT 
X02«(X2-XXIN)*SF+XSHFT 
Y02*(Y2~YMIN)*SF+YSHFT 
CALL SEONTG ( Z,1»X01»Y01#X02>Y02)
IF (ISYNPL.EO.O.OR.ISVN.EO.O) GO TO 20 
IC-IC+1
IF (IC.GT.1) GO TO 20 
XI—XI 
X2 — X2 
GO TO 10

20 RETURN 
END
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