5 - ' i G4
A-8163-MS MASTER

Informal Report

Simulation of Tank Draining Phenomena
with the NASA SOLA-VOF Code

University of California

m LOS ALAMOS SCIENTIFIC LABORATORY

Post Office Box 1663 Los Alamos. New Mexnco 87545
WETHIBUTION OF THIS DOCUMENT IS UNLIMITEQ



DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image
products. Images are produced from the best available
original document.



An Affirmative Action/Equal Opportunity Employer

This report was not edited by the Technical
Information staff,

This work was supported by the Lewis Research
Center of the National Aeronautics and Space
Administration (NASA).

This report was d as an 3 t of work sp
by the United States Government. Neither the United Stales
nor the United States Department of Energy, nor any of their
employees, nor any of their contractors, subcontractors, or
their employees, makes uny warranty, express or implied, or
ussumes uny legal liability or responsibility for the accuracy,

)| . or ful of any inf i

duct, or p disclosed, or that its use would

not infringe privately owned rights.

UNITED STATES
DEPARTMENT OF ENERGY
CONTRACT W-7408-ENG. 36



LA-8163-MS

A STER Informal Report

Uc-32
Issued: December 1979

Simulation of Tank Draining Phenomena

with the NASA SOLA-VOF Code

R. S. Hotchkiss

DISCLAIMER

This book was prepared a5 an account of work sponsored by an agency of the United States Gavernment,
Neither the United States Government nor any agency thereof, nor any of thenr employees, makes any
warFanty, express ar jmplied, Or assuMmes any legal figbitity or responsibitity for 1he acCuléey,
caompleteness, o usefylnass of any information, apparatus. product, of Process disclosed, o©F
represents that s use would not infringe privately owned rights. Reference herein 1o eny specific
commercial produet, process, ar service by trade name, ragemark, manufacturer, ar othecwise, does
not necessarily constitute of imply its endorserent, recommendation, or favoring by the United
States Government of any agency therent, The views 2nd opinions of authors expressed herein do not
necessarily state or refiect thase of the United States Government of any agency thereof.

DISYRIBUTION GF THIS BOCUMWERT {5 UL {TED

L






CONTENTS

Page
Abstract 1
I. Introduction 1
II. Methodology 3
IIT. NASA SOLA-VOF Structure 12
IV, Primary FORTRAN Variables 15
V. Input Variables 20
VI. Setting up a Problem 24
VII. Test Problems 26
A. Case 1 26
B. Case 2 33
C. Cases 3, 4, and 5 33
VIII, Similitude of Tank Draining Problems 40
References 42
Appendix A: Volume of Fluid (VOF) Method for the Dynamics
of Free Boundaries 43
Appendix B: NASA SOLA-VCF Computer Listing 93



SIMULATION OF TANK DRAINING PHENOMENA WITH THE NASA SOLA-VOF CODE

by
R. S. Hotchkiss

ABSTRACT

The NASA SOLA-VOF code is a modified version of the SOLA-VOF
computer program, specifically designed to calculate the fluid dy-
namics involved in baffled and unbaffled tank draining problems.
It solves the time dependent finite-difference equations that gov-
ern the two-dimensional motions of fluids with a free surface upon
which surface tension forces can act. The VOF method of tracking
the free surface provides an algorithm by which multivalued free
surface calculations with surface tension are easily performed.

Calculations can be made in either planar or cylindrical ge-
ometries with a variety of boundary conditions. The surface ten-
sion boundary condition is modeled by an applied surface pressure
and wall adhesion effects are specified by a wall contact angle.

Complete descriptions are given of the code structure, of
procedures for running and setting up the code, of the variables
used and of test problems that show the excellent agreement be-
tween the calculations and experiments of tank draining problems.
A complete computer listing is included in an appendix.

I.  INTRODUCTION

Statement of the Problem
The free surface dynamics of many common fluids in normal gravity environ-

ments are relatively insensitive to surface tension effects. However, in low
gravity applications or in fluids possessing very large surface tension coeffi-
cients, the forces induced by surface tension become important influences upon
the surface motijon.

The SOLA-VOF technique, developed by Hirt and Nicho]s,1 was initially de-
signed to provide a relatively simple, yet powerful, means of computing flows of
fluids with multivalued free surfaces or two materials separated by a multivalued
interface in two dimensions. The SOLA-VOF code, however, has been expanded to
include the effects of surface tension in either of these types of ﬂows.2



The surface tension model was developed initially for application to the
draining problems of liquid propellants from tanks in space vehicles. This prob-
lem involves the draining of various liquid propellants from a hemispherically
bottomed cylindrical tank in very low gravity environments; environments in which
surface tension may significantly influence the flow. In fact, in low gravity
environments the surface tension forces are so influential on the draining char-
acteristics of a tank that a residual amount of fluid can be trapped in the tank
as a result of surface tension a]one.3’4 Studies of these flows are therefore
important in order to comprehend the extent of the residual volumes of propellant
in the fuel tanks and the amount of additional payload to a space vehicle that
the residual volume implies. Further, studies of mechanisms to reduce the resid-
ual volumes assist the design of propellant tanks that are capable of reducing
the additional payload or eliminating it entire]y.5

For this purpose, the NASA SOLA-VOF code has been designed. It is a general
purpose, one-material time-dependent computer code capable of solving the equa-
tions of motion for incompressible, viscous fluids with free surfaces upon which
surface tension forces exist. These flows can exist in the presence of obstacles
and variable geometries such as the hemispherical section of the tank.

Although the code can be used to calculate a wide variety of problems,

NASA SOLA-VOF contains modifications that allow its use to study flows in a hemi-
spherically bottomed cylindrical tank of radius R = 1 with an outlet of radius r
= 0.1. (Note: these units are nondimensional and may be dimensionally scaled to
any size tank having an outlet to tank radius ratio of 0.1. All variables used
in this report are nondimensional unless otherwise specified. Section VIII de-
scribes the scaling procedures to dimensionalize the results.) The code can be
used to study flows characterized by Weber numbers (We) in the range 0.001< We< =
and Bond numbers (Bo) in the range 0 < Bo < ». The ranges given here are those
that can be accomplished in a reasonable amount of computer time; otherwise,
there is no real Tower 1limit to We. The definition of We used here is 0.0001/c
based on the tank dimensions with o being the surface tension per unit length.
Likewise, Bo is defined as g/c where g is the acceleration of the environment.
These flows can also be computed in the presence of a disk type baffle located in
the tank above the outlet as desired.

The solution from the code provides a history of free surface motion in ad-
dition to a final value of residual volume. The code further automatically pro-
vides a graphical interpretation of this history in addition to the detailed nu-
merical results at any desired instant of time.
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IT. METHODOLOGY

The formulation of finite-difference equations, boundary conditions, and
stability criteria of the basic method are thoroughly discussed in App. A and
will not be further discussed here. The reader is encouraged to study this ap-
pendix to gain a thorough understanding of the method.

The basis of the SOLA-VOF technique is the solution of the Navier-Stokes
equations, the incompressible mass equation, and a transient transport equation
for the convection of F, the fractional volume of fluid on a variably spaced mesh
of cells spanning the region of interest. These equations are advanced through
time in discrete time steps to provide the transient evolution of the flow field.

The major difference between the VOF method reported in App. A and the NASA
SOLA-VOF code is the addition of surface tension along the free surface and the
effects of wall adhesion. In this method surface tension is modeled as a pres-
sure applied at the free surface. This surface pressure PS is a function of the
surface tension force per unit length o, and the local curvature at the point of
application and is defined by

Ps= - oK (1)

in which K is the curvature of the surface and is given by

1 1
= +K = —— ¢ 2
K ny cyl ny Rcy] (2)

in which ny is the principal radius of curvature in the x-y plane and Rcy1 is
the principal radius of curvature in the azimuthal direction. Rcyl = o in planar

coordinates . Given a surface function G = f(x) or G = f(y) the planar curvature
is given by i

Xy 1 2 3/2
[1+(6)]

TThe customary absolute value sign has been omitted from the numerator because

the sign of G determines the proper sign of the curvature ny.



in which the primes denote differentiation with respect to the independent varia-
ble. If G denotes a single-valued surface height function dependent only on x
(i.e., nearly horizontal), Eq. (3) would give ny . If G, on the other hand, was
given as G = f(y), a single-valued height function of y alone (i.e., a nearly
vertical surface), then (3) would also give ny. As already noted, the VOF meth-
od can accommodate multivalued surfaces, thus in the computing mesh the surface
height function is really given by G = f(x,y) and Eq. (3) does not globally ap-
ply. Fortunately, however, a local evaluation of G (i.e., in a given surface
cell) can be made on the basis of the local single valuedness of G, i.e., locally
either G = f(x) or G = f(y). The method by which this is discerned is the es-
sence of surface tension in the NASA SOLA-VOF code. Figure la shows a locally
near horizontal surface (G = f(x)) passing through surface cell (i,j). The cur-
vature in cell (i,j) can be computed from (3) by evaluating G at the three points
indicated. G is evaluated by summing the height of fluid at the center and adja-
cent columns. This procedure requires no knowledge of whether the fluid is above
or below the surface, although in the example shown it is assumed to be below the
surface and the heights are evaluated relative to the bottom of the j-1 row of

cells. The procedure ist

i+l
*
G0 AR = 3 Fiy oo 0y,
2=j-1
* J+1
G, = AVFCX = Y F. . &
- 1,4 2
2=j-1
* J+l
6., = AVFL = _%1 FRIA (4)

TThe superscript * appearing with a capitalized name denotes the FORTRAN name as-
sociated with such a variable in the code.
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then 6 = app* =[ (AVER - AVFCX) _ _(AVFCX - AVFL) ] 1
1/2(8x; +8xy,) ~ 1/20x; + 8x, 1) ] 172 Sxp>

where <8x;> = 1/2 8x;_; + &x; + 1/2 &x54,

" _ ap* = 1[_(AVFR - AVFCX) (AVFCX - AVFL) ]
and & =GP =7 [1/2(&1. *oxi,q) | 1/2(6x; F ox; 1) (5)

and (3) can be evaluated.

A similar evaluation is made for near vertical surfaces (G = f(y)) in the
vicinity of cell (i,j) as shown in Fig. 1b. 1In this case, fluid heights are
summed along rows in a manner completely analogous to that above. This procedure
is

i+1
*
6541 = AVFT = z_Z Fy.ie1 8%,
i+l
*
G. = AVFCY = 2 Fy.j 8%
2=i~-1
i+1
*
6,y = AVFB = —21 Foi-1 5% (6)

now

G = GPPT =[ (AVFT - AVFCY) (AVFCY - AVFB) ] L1

1/2(6yj + G_yj+1) - 1/2(6yj + 5yj_1) 1/2 <6yj>

where <6yj> = 1/2 ayj_l + Gyj +1/2 dyj+1 R

and



Fig. 1.

AV

i+l

\Y
@ L \ i+

(b)

(a) The near horizontal surface requires that columns be locally summed
to provide the surface heights necessary to determine the planar curva-
ture. The cylindrical radius of curvature is also shown. (b) The ver-
tical surface requires that rows be locally summed to provide the sur-
face heights necessary to determine the planar curvature. The cylin-
drical radius of curvature is also shown.



(AVFT - AVFCY) . (AVFCY - AVFB);] (7)

' *
G =6k = %’[1/2(5yj *8Y54) | 1/2(eyy ¥ eys )
for the evaluation of (3).

The problem with these two procedures is that when one is computing in cell
(i,j), how does one know which of the two to use. In other words, how does one
know if the fluid surface is more nearly horizontal or mobfe nearly vertical.

This question is readily answered by partially doing both procedures. From (4),
the surface slope at cell (i,j) with respect to the horizontal can be made, name-

dG _ * (AVFR - AVFL) (8)
1/26x1._1 + 6x1 + 1/2<Sx1.+1

From (6), the surface slope at cell (i,j) with respect to the vertical is simi-

larly,
dG * (AVFT - AVFB) .
-— = PFY = . (9)
dy l/zayj_1 + ayj + 1/26yJ.Jrl

A comparison of (8) with (9) reveals the answer to the question posed. If |PFY|
> |PFX| the surface is more horizontal than vertical and (5) is used. Similarly
if [PFX| > |PFY|, the surface is more vertical than horizontal and (7) is used.
Equation (3) can now be fully evaluated, and in turn can be used to solve for the
surface pressure Ps in cell (i,j). The value of 6" in (3), determined by (5) or
(7) provides the proper sigg for ny to be used in (1). Thus, fluid inside a lo-
cally convex surface with G < 0 will be influenced by a positive surface pres-
sure; fluid inside a locally concave surface with G > 0 will experience a nega-
tive surface pressure.

The only remaining variable to be evaluated to fully define PS in (1) is the
Kcy] term in (2). The orientation of the surface in cell (i,j) is now known and
it is a simple matter to determine upon which side of the horizontal or vertical
surface the fluid is located. If the surface is nearly horizontal and PFY > O,



fluid is above the surface; if PFY < 0, fluid is below the surface. Similarly
for a near vertical surface, PFX > O implies that the fluid is to the right and
PFX < 0 implies that the fluid is to the left of the surface. Further, for a
near horizontal surface, PFX = tan 6 where € is the angle the surface makes with
the horizontal. Likewise for near vertical surfaces PFY = tan ©, only now 8 is
the angle between the surface and the vertical. Both of these situations are de-
picted in Figs. la and 1b. To solve for the cylindrical component of curvature

in the near horizontal case G.e., K = Rl - sin8 is straightforward since

cyl cyl rcy]

rcy] is given by XIi which is the distance in the x direction from the axis to

the center of cell (i,j). In this case the sign of the curvature depends upon
PFX; if PFX < 0, as shown, Kcy1 is positive (and implies a negative surface pres-

sure), and vice versa. For the near vertical case, KC 1" Rl = ios 0 . Now

y cyl cyl
r'cy1 depends upon which side of the surface the fluid is located. If fluid is to
the left, rcy] = Xiy, + Fij 6xi; if fluid is to the right rcyl = Xjgn ~ Fij Gxi.

The sign of K is again determined by PFX the same as before.

cyl

With thesﬁ quantities determined, the curvature K in (2) can be evaluated
and used in (1) to determine the surface pressure which is used in the code as an
applied pressure in the surface cell in which it is computed.

Wall adhesion effects are modeled simply with the contact angle CANGLE. As
the surface slope is being determined at a boundary from (4) or (6), the value of
AVFT, AVFB, AVFR or AVFL is set consistent with CANGLE. For example, suppose the
surface cell at the boundary is considered as shown in Figs. 2a and 2b with fluid
assumed to be below the surface. A surface pressure is desired for this cell and
will be calculated in the same manner as previously outlined except in this case,
the surface must make an angle CANGLE, with the wall. Equations (4) and (6) are

computed as usual except the values of AVFR and AVFT are set as follows:

1
AVFR = AVFCX + E-(Sxi + 6xi+1)/TANCA

AVFT

1
AVFCY - 5 (8y; + 6y5,) TANCA

where TANCA = tan (CANGLE). The remainder of the procedure remains the same.
Similar adjustments are made to the appropriate combination of the variables

8



/ Fictitious Cells

[~ CANGLE

\ wali Boundary

Wall Boundary

AVFT
| CANGLE

AVFCY

~9 AVFB

(b)

Fig. 2. (a) Wall adhesion for the locally near horizontal case is modeled by
setting the value of AVFR such that CANGLE is the angle between the
wall and the surface. (b) Wall adhesion for the locally near vertical
case is modeled by setting the value of AVFT such that CANGLE is the

angle between the wall and the surface.



AVFL, AVFR, AVFB, AVFT depending on the location of an obstacle or a wall (i.e.,
whether it be above, below, left or right of the surface cell).

The surface tension scheme together with the standard VOF method can be used
to move an initially flat horizontal interface to an equilibrium position con-
sistent with the contact angle and Bond number (i.e., a miniscus). Yet, to do
so, in order to establish initial conditions for a calculation, would require
considerably more calculational time than solving for the initial surface distri-
bution directly. An ordinary differential equation for the static equilibrium
displacement from an initially horizontal surface is found by minimizing the to-
tal potential energy. If such a surface displacement is given by YS = f(r), 0 <
r < 1, then the differential equation is:

Y
1 d rig )
FHF[——‘—*—‘_/——-—,—Z]- B, Y - 2 cos (CANGLE) = 0
1+ (Y, )

S

subject to the conditions YS (r = 0) =0 and YS (r = 1) = tan (CANGLE). Further
since the volume of fluid must remain constant during the minimization

1
Volume = an rYs dr =0 .

0
A recur§10n solution to this equation can be obtained by substituting Z =
YS in the differential equation above and differencing the resulting
1+ (YS )

equations. The difference equations become

r. r.
- _J-1 _J-%
Zsj Zsj-1< rj >+ 6r< rj > [2 cos (CANGLE)

10



' JA

. s
and since Y_ = —————
> V1-12
Ve &( SO S (10)
sj sj-1 2 _ 2 _ 2
Vi-17,2 J1-1g
and the volume equation becomes YSUM = 0 with
N-1 1
YSUM = _2 ri Ye5 81+ 3 Yoy (11)
J=1
where N = the number of partitions across the interval 0 <r <1, and
dr = the partition spacing.
The method by which (10) is solved is:
(a) choose a value of Y_(0) = - 2 cos (CANGLE) for B, > 0; if B, = 0, set
s 2 |B0| 0 0

YS(O) =0
b) calculate the Zsj’ =1, «eo, N, ZS(O) =0
0) with Ys(j = 0) x 1.05 and repeat step b

c) ifZ,>1 replace YS(J
d) compute the Ys" j=1, «ee, N

)

) J

) if |ZSN - cos (CANGLE)| > € go on to step f, otherwise STOP
)

)

compute YSUM
reset YS(O) = YS(O) - I%%M
) return to step b and repeat the sequence until convergence is reached.
NOTE: If B = 0, step e is skipped and after step f the convergence test is
made |YSUM| < €. If this is violated, proceed to step g, then return only to d
and repeat this sequence.
Equations (10) and (11) were formulated on the basis of cylindrical coordi-
nates. The equations and procedures for their solution are perfectly valid, how-

(
(
(
(
(
(
(

e
f
g
h

ever, for plane coordinates if the r and 2n factors are replaced by unity and
every appearance of 2 cos (CANGLE) is replaced by cos (CANGLE). In either case
the resulting distribution of YS can be uniformly augmented to any desired ini-
tial surface position and used to determine the set of Fi,j's in every column of
cells for the mesh selected. This is done by interpolating between the nearest

11



est values of the Ysj to find a surface height at the center of each column of

cells and setting the value of F(i,j) in each column accordingly.

IIT. NASA SOLA-VOF STRUCTURE

The NASA SOLA-VOF code is written in subroutine form such that each subrou-
tine performs an individual task in the calculation. The subroutine names are
symbolically selected to indicate the function that each performs. For the most
part, each routine is positioned in the code in the calculational order pre-
scribed in App. A for the solution of the governing equations.

Each subroutine is listed below in the order of its appearance. A brief de-
scription is included to describe the major functions of each subroutine.
SOLA-VOF (main program)

(a) Reads and prints the input and output data.

(b) Contains the calling sequences to the other subroutines and thus pro-

vides cyclic control over the calculation.

(c) Computes the time step, DELT, used each cycle and increments the time
with this value, t ~ t + DELT.

(d) Increments the cycle number by one each cycle.

(e) Provides a shutdown procedure in the event that a solution cannot be
obtained that satisfies mass conservation.

FILMST (FILM SeT-up)

(a) Provides the necessary buffers, links, and logical units for the use of
local graphics software. This routine must be written specifically for
each graphics system.

MESHST (MESH SeT-up) ‘

(a) Generates the computing mesh from the input data established in NAME-
LIST/MSHSET/.

(b) Evaluates all of the necessary geometric variables that are used
throughout the code.

(c) Computes the relaxation factors (BETA(i,j)) that are used in the pres-
sure iteration.

(d) Sets up obstacles by defining obstacle cells as having
BETA(i,j) = - 1.0. Obstacle definition, in general, must be coded by
hand for each problem.

12



SETUP (general set-up)

(
(b

=]

g
)
)

(c)

Initialize constants necessary to the calculation.

Computes the scaling factors and centering shifts required for graphics
output.

Calls the ICON subroutine to provide an initial surface configuration
for either cylindrical or planar geometry consistent with the contact
angle and centerline symmetry boundary conditions. ICON is the routine
that initializes the F(i,j) arrays for the entire mesh for the tank
draining problem.

Computes the initial hydrostatic pressure distribution to initialize
the P(i,j) pressure array.

Initializes marker particle number.

Sets up the initial velocity with U(i,j) = UI and V(i,j) = VI every-
where in the mesh.

ICON (Initial surface CONfiguration)

(a)

(b)

(c)

Computes the solution of the two point boundary value problem for the
initial equilibrium position of the free surface. The parameters of
the equation are the contact angle (CANGLE) and the Bond number (BOND).
Computes the fractional volume of fluid in each cell F(i,j) based upon
the free surface position.

Plots and prints initial surface configuration.

BC (Boundary Conditions)

TILDE

(a)

(b)

(c)

Sets the values of appropriate variables at rigid free slip, no slip,
continuative outflow, and periodic boundaries.

Sets the values of appropriate variables around the boundary establish-
ed by the free surface.

Allows for special boundary condition inclusions, such as inflow bound-
aries; these must be included by hand as needed for each problem in
general. However, for the tank draining problem, the set-up is fixed
for inflow or outflow at the tank outlet.

Computes an explicit solution for each of the momentum equations.
(i.e., new values of velocities are obtained from the time n values of
pressure, convective and diffusive accelerations.) These tilde values
will be advanced to time n+l values in the pressure iteration.

13



PRESIT (PRESsure ITeration)

(a) Iterates the velocity and pressure field such that mass is conserved in
each cell of the mesh (i.e., |D(i,j)| < EPSI), except surface cells.

(b) Computes a surface cell pressure adjustment based on the applied sur-
face pressure, yet mass conservation in the surface is not iterated, it
is set by application of the free surface boundary conditions.

PARMOV (PARticle MOVement)

(a) Computes the movement of marker particles in the velocity field just
found.

(b) Provides the necessary bookkeeping to allow marker particles that exit
the mesh to be replaced by newly input particles. (NOTE: Particle
initjalizations must be done by hand in the SETUP subroutine.)

VFCONV (Volume Fraction CONVection)
(a) Computes the solution to the equation

(b) Computes and stores for printout any errors in volume (i.e., loss or
gain) during the calculation of step (a).
PETACL (PETA interpolation factor CalLculation)

(

) Used only for surface cells.

) Determines the slope of the surface in surface cells.
)

(a
(b
(c) Determines the cell flag, NF(i,j) to indicate the interpolation neigh-
bor of the surface cell. (The interpolation neighbor is the cell adja-
cent to the surface cell containing fluid and with which surface cell
pressures are interpolated to provide the proper value of PS at the
surface.)

NF = 1, implies a neighbor to the left.

NF = 2, neighbor to the right.
NF = 3, neighbor on the bottom.
NF = 4, neighbor on the top.

Thus, the above information describes the orientation of the surface
(whether vertical or horizontal) and on which side of this surface
fluid exists.

(d) Computes the surface pressure PS(i,j) caused by surface tension in sur-

face cells.
14



(e) Computes the factor PETA(i,j) that is a measure of the nondimensional
distance from the cell center to the surface along the cell midline to-
ward the interpolation neighbor.

DRAW (Generates graphics output of problem data)

(a) Draws velocity vector and free surface distributions.

(b) Draws the mesh during CYCLE = 0.

(c) Provides particle plots as requested.

FRAME

(a) Draws a frame around graphics output (the frame size is scaled to the

mesh size).
DRWOBS (DRaW OBStacles)

(a) Draws lines around all obstacles. In addition, the hemisphere on the

bottom is drawn as a reference.
PLTPT (PLoT a PoinT)

(a) Provides the graphics system call to plot a single point (x1,yl).

(b) Computes and plots the symmetric point to be plotted if the flag ISYMPL
is on. (Symmetry is always assumed to exist only about the y axis.)

DRWVEC (DraW a VECtor)

(a) Provides the graphics package system call to draw a line between points
(x1,y1) and (x2,y2).

(b) Computes and plots the symmetric form of a given line if ISYMPL is
turned on (i.e., = 1).

A simplified flow diagram showing the calling sequence of the routines is

presented in Fig. 3.

IV. PRIMARY FORTRAN VARIABLES

The primary variables used in the program, other than those in the NAMELIST
input blocks, are listed below. The algebraic form of the variable used in the
finite difference equations is given with a brief description.

VARIABLE DESCRIPTION

BETA(I,J) 1 = 1 Relaxation factor.
Gxi Gyj

CYCLE Cycle number.

15
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FILMST

Read Input
Data

MESHST

ICON

SETUP

t=cycle=0

|

8C

l

PETACAL

!

Print
ond
Plot

!

t=t+At
cycle=cycle+|

!

PARMOV
1
VFCONV
1
BC
1
PETACAL

1

Print
and
Piot

! yes
(i?ims to STOP?
‘no

t(n+)=t(n)+At
cycle=cycle+|

TILDE

8c

Fig. 3. Flow chart of the NASA SOLA-VOF code.



CURV(K)

CURV
CURVCY
CURVY(K)
CURVXY
D(I,J)
DELT
DELX(I)
DELY(J)

F(I,J)

FLG

FN(I,J)

FUX
FUY
FVX
FVY
GP

GPP

d%6/dx®

[1 + (d6/dX)?]

d26/dy?

3/2

[1 + (de/dv)21%/¢

Veu

st

5x .
i

Gyj

u du/3x
v du/ 3y
u ov/9x
v ov/dy
G

G"

Theoretical curvature of kth segment of ini-
tial surface with respect to x direction
(ONLY FOUND IN ICON).

The numerical sum of the principal curva-
tures.

Azimuthal curvature for cylindrical geom-
etry.

Theoretical curvature of kth segment of ini-
tial surface with respect to y direction.
Numerical curvature with respect to either x
or y direction.

The divergence of the velocity field.

Time step.

The mesh spacing of the ith cell along the x
axis.

The mesh spacing of the jth cell along the y
axis.

The volume of fluid per unit volume of cell
(i,j) at time level n+l.

A flag that indicates convergence of pres-
sure iteration if = 0, nonconvergence if =
1.

The volume of fluid per unit volume of cell
(I1,J) at time level n.

The flux of u momentum in the x direction.
The flux of u momentum in the y direction.
The flux of v momentum in the x direction.
The flux of v momentum in the y direction.
The derivative of the surface height with
respect to either x or y depending on sur-
face slope.

The second derivative of surface height with
respect to either x or y depending on sur-
face slope.
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HCL

HWALL

IBAR
IMAX

IM1
IP(k)
ITER
JBAR
JMAX
JM1
JP(k)
NAME
NF(I,J)

P(I,J)

PETA(I,J)

IBAR+2

IMAX-1

JBAR+2

JMAX-1

-SIGMA - CURV

1/6xi
1/8y.
/ yJ
1/XIi

1 .
/YJJ

Height of the surface at the centerline of
the tank.

Height of the surface at the wall of the
tank.

The number of real cells in the x direction.
The number of real plus fictitious cells (2)
in the x direction.

The value of I at the last real cell in the
x direction.

The index of the cell in the x direction
containing particle k.

The iteration number.

The number of real cells in the y direction.
The number of real plus fictitious cells (2)
in the y direction.

The value of J at the last real cell in the
y direction.

The index of the cell in the y direction
containing particle k.

The problem title that is read in as input
in a 20A4 format.

The flag of surface cell (I,J) indicating
the Tocation of its interpolation neighbor.
The pressure of cell (I,J) at time level
n+l.

The ratio of the distance between cell cen-
ters to the distance between the surface and
center of the interpolation cell.

The pressure of cell (I,J) at time level n.
The surface pressure computed from the sur-
face tension coefficient and curvature.



SF
SIGMA

TANCA

u(1,d)

UN(I,J)

V(I,J)

VCHGT

VINIT

VISX

VISY

VN(I,J)

VOLBAR

VOLUME
X(I)

XI1(I)
XP(k)
XSHFT

Y(J)

YJ(J)
YP(k)
YS(K)

o = .0001/WEBER

tan (CANGLE)

2n/3

VOLUME/VINIT

XI

Scale factor for plotting.

The surface tension force per unit length
for the tank draining problem.

Time

Tangent of the contact angle.

The x direction velocity on the right side
of cell (I,J) at time n+l.

The x direction velocity on the right side
of cell (I,J) at time n.

The y direction velocity at the top of cell
(I,d) at time n+l.

The accumulated loss or gain of F from inac-
curacies in numerical solution of F advec-
tion.

Initial nondimensional volume of hemispheri-
cal bottom of tank.

The viscous accelerations in the x direc-
tion.

The viscous accelerations in the y direc-
tion. '

The y direction velocity at the top of cell
(1,d) at time n.

The ratio of the fluid volume in the tank to
that of the hemispherical bottom.

The volume of fluid in the tank.

The x distance to the right edge of cell
(1,J).

The x distance to the center of cell (I,J).
The x coordinate of particle k.

The shift along the plotting absicca to cen-
ter the plot frame on film.

The y distance to the top of cell (I,J).

The y distance to the center of cell (I,J).
The y coordinate of particle k.

The solution height of the initial surface
at segment k (used in ICON).
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YSHFT The shift along the plotting ordinate to
center the plot frame on film.

ZS(K) sing The sin of the angle of deviation from hori-
zontal of the kth segment of the surface
(used in ICON).

V.  INPUT VARIABLES

A11 of the input data to the NASA SOLA-VOF code are in NAMELIST blocks with
the exception of the problem title NAME which is a 20A4 format. The NAMELIST
variables occur in two blocks. The first block is /XPUT/ and contains all of the
physical parameters necessary to specify and run the problem. The second block
/MSHSET/ contains the geometrical information necessary for the creation of the
variable mesh and the number of cells used in it.

The following is a 1ist of all the input variables and a description of
each.

NAMELIST /XPUT/

DELT The time step used either to start the prob-
lem (must be chosen in accord with stability
criteria) or to run the problem with a con-
stant time step.

NU The kinematic viscosity of the fluid.

CYL = 0 for plane geometry.
= 1 for cylindrical geometry.

EPSI The convergence criterion for the pressure
iteration (i.e., |V -y| < EPSI). This is
typically set to 10-3 for most problems
scaled such that velocities are of the order
of unity.

DZRO |V +u/DZRO| < EPSI is the true convergence
test. DZRO = 1.0 satisfies the criterion
above for the selection of EPSI. However,
DZRO can be used to accommodate any desired
magnitudes of velocity while keeping EPSI on
the order of 10-3.

GX Acceleration of gravity or environment in x

direction.
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GY
Ul

VI

VELMX

TWFIN

PRTDT

PLTDT

OMG

ALPHA

WL ,WR,WT ,WB

PARTN

Acceleration in y direction similar to GX.
The initial U velocity to be set everywhere
in the mesh.

The initial V velocity to be set everywhere
in the mesh.

The maximum velocity to which all velocity
vectors in the mesh will be scaled upon
plotting.

Time when to finish the calculation.

Print time step (i.e., time interval between
prints on paper).

Plot time step (i.e., time interval between
plots on film).

The overrelaxation coefficient for the pres-
sure iteration. Typically OMG = 1.8 but can
be picked 1.0 < OMG < 2.0.

The parameter that specifies the relative
amount of centered or donor cell differenc-
ing of the advective flux terms.

ALPHA = Q0 for centered differencing.

ALPHA = 1 for donor differencing. Fraction-
al values between 0 and 1 can also be used.
Stands for wall left, right, top, and bot-
tom, respectively. These flags set the de-
sired wall boundary condition. Each of the
parameters can assume the following values

1 for rigid free-slip wall
2 for rigid no-slip wall

3 for continuative outflow boundary
4 for periodic boundary. NOTE: Inflow
boundaries must be prescribed by hand in the

special boundary condition section of sub-
routine B.C.

The number of marker particles to be placed
in the flow field.
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CWTD,TRST

Movy

DTMVP
AUTOT

FLHT

ISYMPL

WEBER

BOND

ISRF10

CANGLE

22

We

Bo

Cycle when to tape dump, time to restart.
Can be neglected in the NASA SOLA-VOF code
as there is no tape dump capability.

0 if no movie is desired

1 if a movie is desired.
Problem time interval between movie frames.
Automatic time step flag
= 0 specifies that the constant DELT previ-
ously given is used for the calculation.
= 1 specifies that the time step DELT will
automatically be computed based on the sta-
bility condition
DELT = MIN < 2 Tj§£17'>

Oax! > Taaxl /-
Fluid height (i.e., the initial vertical po-
sition of a horizontal surface). Subroutine
ICON finds a miniscus solution about this
height. (For tank draining problems this
can also be termed the initial fill height.
Since the tank radius is R = 1 in this code,
the value of FLHT is just set to the number
of desired fill heights.)
0 no symmetry plots

1 film frames are drawn as a symmetric
plot about the vertical axis.

Weber number

WEBER = .0001/SIGMA for the tank draining
problem.

BOND number. GY = SIGMA x BOND is set from
this specification and overrides the value
of GY previously set.

= 0 no surface tension effects are included
in calculation

= 1 turns on surface tension forces.

The contact angle between the fluid and tank
wall. (Specified in degrees.)



VouT The outflow velocity (is predetermined to be
= - 1.0 for all tank draining problems).

Set VOUT = + 1.0 to perform inflow or tank
filling calculations.

IBAFF = 0 means no obstacles are placed in the
tank for a baffle (i.e., unbaffled draining)
= 1 places the baffle obstacles in the flow
field. For best results, the baffle must be
used in a mesh that has mesh lines at x =
625, y = 0.4, and y = 0.56.

NAMELIST . /MSHSET/

NKX The number of submeshes used to compose the complete mesh that spans
the x direction.

XL The x coordinate of the left edge of a submesh. Must be specified for
NKX submeshes.

XC The x coordinate of the convergence point of a submesh. Must be speci-
fied for NKX submeshes.

XR The x coordinate of the right edge of a submesh. Must be specified for
NKX submeshes.

NXL The number of cells to be placed between coordinates XL and XC in a
submesh. Must be specified for NKX submeshes.

NXR The number of cells to be placed between coordinates XC and XR in a
submesh. Must be specified for NKX submeshes.

DXMN The minimum value of 6xi that occurs in a submesh on each side of the

convergence point XC. Must be specified for NKX submeshes.
The following input numbers generate the mesh in the y direction and are
analogous to the x values previously specified.

NKY The number of submeshes in the y direction that compose the complete
mesh.

YL The y coordinate of the left edge of a submesh as one views the submesh
in the direction of the negative X axis.

YC The y coordinate of the convergence point of a submesh as one views it
in the direction of the negative x axis.

YR The y coordinate of the right edge of the submesh, as one views it in
the direction of the negative X axis.

NYL The number of cells in a submesh between locations YL and YC.
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NYR The number of cells in a submesh between locations YC and YR.

DYMN The minimum value of Gyj that occurs in a submesh on each side of the
convergence point.

YCENTR The y coordinate of the center of the hemisphere at the tank bottom.
This should be set at a value of 1.0 plus the height of the neck of the
outlet. For the test problems already done, this value was chosen to
be = 1.1, ‘

The variable mesh is constructed by Tinking a group of submeshes together to
achieve any desired distribution of cell spacing. This is done in the same man-
ner in both directions. The number of cells is specified in each submesh on each
side (i.e., to the left and to the right) of the convergence point. Both cells
directly adjacent to the convergence point have a cell spacing equal to the mini-
mum value specified in the input as DXMN or DYMN. The cell spacing is then ex-
panded quadratica’ y from the convergence point cell to the left and right edges
of the submesh in accordance with the number of desired cells on either side. If
a uniform cell spacing on the left (right) has a cell size that is less than the
minimum size input as DXMN or DYMN, a uniform spacing is then used on the left
(right). The number of cells to the Teft and to the right of the convergence
point need not be equal but there must be at least one on both sides.

When two or more submeshes are linked together, it is imperative that the
location of the left edge of the right submesh be the same as the location of the
right edge of the left submesh.

An example of the proper format to be used to specify a mesh spanning the x
dimension LW < X <RW with n submeshes is

NKX = n, XL = LW, XL2, XL3, ...XLp, XC = XC1, XC2, «¢+, XCp,

XR = XL2, XL3, +.., RW, NXL = NL7, NL2, ..., NLp,

NXR = NR;, NR2, ..., NRp, DXMN = DXMN1, ..., DXMNj
in which NLj represents the number of cells to the left of XCi and NRj is the
number of cells to the right of XCi in each submesh i, i =1, ..., n.

VI. SETTING UP A PROBLEM

Since the NASA SOLA-VOF code has been modified for the tank draining prob-
lem, there are no special inclusions needed to run these problems. In general,
however, special sections may be added by hand for inflow boundaries and any oth-
er special boundary conditions not provided (in the B.C. subroutine) and to ini-
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tialize obstacles (in the MESHST subroutine). The hemispherical tank section is
included in the code with a procedure that compares the distance from the hemi-
spherical center (0,YCENTR) to the center of each cell 1i,j (XIi, YJj) with R = 1.
If the distance is greater than 1, the cell flagged with BETA(i,j) = -1.0 for an
obstacle cell; if the distance is less than 1, the cell is assumed to contain
fluid. Other than this, all that is required is to initialize the NAMELIST/XPUT/
and NAMELIST/MSHSET/ variables. Once these variables are determined it is imper-
ative that the PARAMETER statement at the very beginning of the code be modified
to provide the proper storage requirements for the problem selected. The PARA-
METER statement has the form

PARAMETER(IBAR2 = 13, JBAR2 = 38, NPRTS = 1, MSHX =4, MSHY = 4),

The variables named in this statement are used to set the dimensions of the
COMMON blocks at compile time and cannot be used as variables elsewhere in the
code. The values specified in the parameter statement are easily determined from
the input data

IBAR2 = NXL + NXR + 2
JBAR2 = NYL + NYR + 2
NPRTS = PARTN

MSHX = NKX

MSHY = NKY

The dimensions can be larger than these equations specify but never smaller.

Due to the 32 bit word length of the UNIVAC 1104 computer, the code NASA
SOLA-VOF has been modified to allow DOUBLE PRECISION computing. This feature
provides 64 bit computing, similar to that of a CDC-7600, the computer on which
the code was developed. A requirement of this feature regarding input data is
that floating point input numbers must be specified in double precision.

Thus, the setup procedure for running the NASA SOLA-VOF code is very
straightforward and simple. For tank draining problems, one can easily use the
mesh setup data provided in the next section of this report for the baffled and
unbaffled cases. There is, of course, no restriction on the mesh used for the
unbaffled problem, only geometric requirements. In this case, it is crucial to
place a vertical grid line at X = 0.1 which is the radius of the outlet and to
have a smooth variation of DELX across the mesh due to the accuracy requirements
outlined in App. A.
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The mesh provided for the baffled draining problem is another matter and
should be used for all baffled problems. If finer resolution is desired a scaled
analog of this mesh is required. The reason is because of the position of the
baffle relative to the outlet. The general prescription of defining the annular
opening from the mesh data provided allows no cells to resolve the space between
the baffle and hemispherical tank wall. A special condition is provided in sub-
routine MESHST to flag cell (8,5) as a fluid cell and thus provide a single cell
resolution of the annular space. A more desirable situation is to have at least
two cells across such an opening, yet the cost of such a desire for the tank
draining problem is great both in terms of storage and computer time. Any
changes to the mesh for baffled problems should be accompanied by either a remov-
al or alteration of the statement IF(IBAFF.GT.0.AND.I.EQ.8.AND.J.EQ.5) GO TO 140
in the obstacle setting section of the MESHST.

VII. TEST PROBLEMS

Five test cases were performed to demonstrate the utility of the NASA SOLA-
VOF code for tank draining problems. Test cases 1 and 2 are unbaffled problems
while cases 3, 4, and 5 are for baffled tanks. A summary of the parameters in-
volved in each problem is given in Table I. It should be noted that a few of the
test cases were recomputed with a contact angle of 1°. No apparent differences
(from calculations with 5° contact angle) were observed in the solutions so ob-
tained. Thus, there appears to be a calculational insensitivity to small contact
angles except for flows strongly dominated by surface tension.

The remainder of this section will be devoted to the discussion of the test
cases and a comparison, where possible, of calculated with experimental results.

A. Casel

The input data for this calculation are given in Table II. These data are
arranged as a NAMELIST data set with the first part of the data being the /XPUT/
block and the latter part, the /MSHSET/ block. The symmetrically drawn mesh gen-
erated by the /MSHSET/ data is shown in Fig. 4a in which calculations are per-
formed only on the right half.

The initial free surface position that results from the ICON subroutine is
shown in Fig. 4b. A comparison of the initial free surface as determined by the
F = 0.5 contour line can be made with Fig. 4c. (Note: All free surface plots
that are produced by the code utilize the F = 0.5 contour line to approximate the
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Case Number

Weber

Bond

~Initial Fill Height
Contact Angle
Baffle

TABLE I

TEST PROBLEM PARAMETERS

No

0.01

50

No

1.52

50

Yes

4.05

50

Yes

9.12

50

Yes
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Fig. 4.  Sequence of plots for Case 1. (a) Symmetrically plotted mesh used, (b)
initial surface from ICON, (c) free surface plot at t = 0, (d) surface
configuration at t = 154, (f) surface configuration at vapor ingestion
showing residual volume at t = 241.
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TABLE II
NAMELIST INPUT DATA FOR EACH TEST CASE

NASA TANK DRAINING TEST PROBLEM —— COURSE MESH —~-CASE 1
PELT=1.0p-04 nU=0.0 cyL=1.0 eps1=.00] pzrRO=1.0 6x=0,0 6v=0.0 uvr=0.0

vi=0.0 vELMx=1.0 THFIN=S00.0 PRTDT=99999,.0 pLTDT=1.0 DMG=1.8 ALFHA=1.0

wL=1 wer=1 Wwr=1 we=1l parRTN=0. mMoOvyY=0 DTMVF=1.5

AUTOT=1. FLHT=3.0 1svYmPL=1

1srF10=1 weBer=1,06 3oND=-5.0 vouT=-1.0 cANGLE=S. [

XPUT

NKx=2 xXL=0., .2 xc=.1 .95 xp=.2 1.0 nxL=1 8 NxR=1 1 Dxmn=.1 .05
NeY=1 yL=0. vc=1.8 vym=3.6 NYL=1E NYR=1E DYymNn=0.1 yvCENTR=1.1
MSHSET

NASA TANK DRAINING TEST PROEBLEM —— CDARSE MESH-~— CASE &
pELT=1,.00-04 nU=0,0 cyL=1.0 eps1=, 00! pzRO=1. Gx=0., Gy=0. wvi=0,
vi=0. vELMx=1l, TWFIN=500.0 PRTDT=99999. pLTDT=1.0 DM5=1.8 ALFHA=].

wL=1l wRr=l Wwt=1l Wwe=1 pPARTN=0. mMOvvy=(0 DpTHMVFE=1,5

AUTDT=1, FLHT=Z.0 1svymrPL=1

1srF10=1 werer=.0]1 BOND=0.0 vouT=-1.0 CANGLE=D.(

XPUT

Nex=1 xL=0, xc=0.5 xr=1.0 NxL=5 NxR=5 pxmn=0.1

NEY=1 yL=0. vc=1.8 vyr=32.6 NvYL=18 NYR=18 pymn=(.1 vcenTrR=1.1
MSHSET

NRSA TANK DRAINING TEST PROELEM -— COURSE MESH ——CASE 3
PELT=1.00~-04 NuU=0.0 cvyL=1.0 ers1=.001 pzRD=1. G6x=0. evy=0. uvr=0,
vi=l. vELMx=1. TWFIN=S00.0 pPRTDT=99999, pLTDT=1.0 OMG=1.8 ALFHA=].
wL=1 Wwr=1 WwTt=1 WEe=1 pARTN=U. MOvY=0 DTMVP=1.5
AUTOT=1, FLHT=Z.0 IsYyMrFrL=]1 1BAFF=]
1srF10=1 WereErR=1.52 roOND=0.0 vouT=~-1.0 canGLE=S.0
XPUT
NKx=3 xL=0, .2 .62% xc=.1 .4125 .8125 xp=.2 .625 1.0
NxL=1 & 2 Nxr=1 & & pxMmNn=.1 10625 , 093275
NEY=32 vL=0, .4 .56 vyc=.2 .48 2.08 vyr=.4 .55 2.6
Nve=2 1 15 nvr=2 1 15 pymn=.1 .08 101332
YCEMTR=1,1
MSHSET

NASA TANMK DRAINING TEST PROBLEM —— COURSE MESH ——CRSE 4
pELT=1.00-04 Nnu=0.0 cyL=1.0 eFrs1=.001 pzrRo=1. ex=0. ev=0. uvIi=l,
vi=0. VELMX=1l. TWFIN=S00.0 PRTDT=99999, pLTDT=1.0 OMG=1.8 ALFHA=1.
WL=1l wR=1 WT=1 WE=1 PARTN=0. MOvY=0 DTMVP=1.5
AUTDT=1. FLHT=Z.0 1sYMrPL=]1 1BAFF=1
1srF10=1 weBeER=4,05 BoOND=0.0 vouT=-1.0 cANGLE=D.U
XPUT
Nex=3 xL=0. .2 .625 xc=.1 .4125 .8125 xmp=.2 .625 1.0
NxL=l 2 2 Nxr=1 2 2 pxmn=.1 ,10625 .09375
NEY=2 vL=0. .4 .56 vyc=.2 .48 2.08 vyr=.4 ,5€& 3.6
NyvL=2 1 15 Nnyr=2 1 15 bpymn=.1 .05 .101333
YCENTR=]1.1
MSHSET

NASA TANK DRAINING TEST PROEBLEM —— CDURSE MESH ——CASE 5
DELT=1.00-04 NU=0.0 cyL=1.0 EFPsI=,001 pZRO=1. ex=0. evy=0., vi=0.
vi=0. vELMx=1l. TWFIN=S00,0 pRTDT=99999, pLTDT=1.419 OMG=1.8 ALFHAR=1.
WL=1 wr=1 wr=1l We=l pARTN=(0. mMOvY=1 DTMVP=1.419
AUTOT=1,. FLHT=E.0 1sYMFL=1 1PAFF=1
1sprFlU=]1 MEBER=9.12 3onND=0.0 vouT=-1.0 cANGLE=S. 0
XPUT
Nex=R xL=0, .2 685 xc=.1 .4185 .8125 xp=.2 .625 1.0
NxL=l 2 2 nxr=1 2 & pxmn=.1 106285 . 09375
NEYSEZ ye=l., .4 .56 yve=.8 .48 2.08 vyr=.4 .56 3.6
NYL=2 1 15 nyR=2 1 15 Dpymn=.1 .08 .10133%

YCENTR=1.,1
MSHSET
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free surface; a procedure that is completely satisfactory for such calculations
as these.) Figures 4d-4f show the free surface configuration at selected times
with the last frame at the time vapor ingestion occurs, which shows the residual
volume remaining in the tank. Table III is a list of the residual volumes com-
puted for each case. A careful inspection of Fig. 4 will reveal the fact that
the angle made between the wall and surface in the free surface plots (beginning
with Fig. 4c) is not the contact angle previously reported. This consequence is
only an artifact of the computer generated drawing since no special procedure was
built into the graphics routines to accurately convey the wall-surface intersec-
tion. Thus, one must make a mental extrapolation of the surface near the wall to
visualize the proper contact angle.

Figure 5 shows a history of the centerline and wall positions based on the
nondimensional time t. The curve for the centerline shows a few surface waves
superimposed upon a near linear decline while the curve for the wall displays a
stepwise appearance. The centerline curve is an accurate representation of the
surface history at the cylindrical axis. The wall curve, however, represents the
location of the top of the last wall surface cell as a function of time. This
method of defining the wall contact point was chosen for simplicity and conven-
ience, and is admittedly a coarse approximation. The wall surface location is a
rather arbitrary point to define due to the fact that the surface is modeled by
fractional values of F and the application of a contact angle boundary condition
at the wall. To be consistent with various optical methods used experimentally
to determine wall-surface interface, a more complicated method would have to be
devised.

A comparison of the Case 1 calculations with the experiment reported in [6]
is made in Fig. 12. There is generally excellent agreement between the two, al-
though the calculation shows more sloshing than the experiment. Part of this
sloshing phenomena is due to the coarse mesh used to perform the calculation.
The rather large cells near the centerline prevent the precise evaluation of the
surface pressure (i.e., curvature) necessary to retard the growth of the surface
convexity.T

TSince the completion of the NASA SOLA-VOF code, the ongoing development of the
SOLA-VOF code has produced changes in the fluxing terms of the F equation that
significantly improve the comparison presented. A finer mesh can also improve
the accuracy at the centerline. However, it is not the only source of error.
Concerned investigators are advised to follow the current developments of the
SOLA-VOF code.
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TABLE III

RESIDUAL VOLUME

[VOLBAR = vRES/(zn/3)]

Case 1
Case 2
Case 3
Case 4

Case 5

0.42
0.46
0.51
0.69
0.77

31



3.5
g 30 +
2 | —
1)
@ N
® 25
o -
£
o |
0 -
€ - Wal|
£ 2.0 |
E -
o
- - .
s 1.5 Centerline
4 -
o |
@ |
(] -
s .0
O —
@ o
> -

0.5

0.0 L I T T T T T T Y O

0.0 0.5 1.0 1.5 2.0
time (x1072)
Fig. 5. Centerline and wall contact point histories for Case 1.
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As previously mentioned, the contact point at the wall shows the conse-
quences of the simple contact point definition, however, the curve shows the cor-
rect average slope and can therefore be useful for some engineering purposes.

B. Case?2

Case 2 calculations were made with the input data given in Table II. A se-
quence of the resulting free surface plots is shown in Fig. 6. Figures 6a and 6b
show the solution of the equilibrium position differential equations and the ini-
tial surface represented by the F = 0.5 contour, respectively. The remaining
figures show the surface at selective times including the time at which vapor in-
gestion occurs (Fig. 6f) and the residual volume in the tank (see Table III).
Figure 7 shows the history of the centerline and wall contact point positions as
previously discussed. Here, one sees the sloshing that takes place in this zero
gravity, surface tension dominated flow. No experimental results are available
for comparison with this calculation.

C. Cases 3, 4 and 5
The three baffled draining cases exhibit such similarity that they are pre-

sented together. Figure 8 shows the typical flow pattern for the three cases.
Although Fig. 8 contains plots of the Case 4 calculation, the other two cases ex-
hibit only slight differences in free surface position at the times given.

Figure 8a shows the mesh used to calculate all of these cases with the baf-
fle represented by the cross-hatched area. The data used for the mesh are speci-
fied in Table II. (Note that the only differences in Table II for Cases 3-5 is
the Weber number and the data used to set up a movie run for Case 5.) Figures
8b-8f show a sequence of surface positions at various times. These cases exhibit
no sloshing and the only major difference in them is shown in Fig. 8f in which
the time at which vapor ingestion occurs is given for each of the cases. This
figure shows the fluid column just prior to vapor ingestion. Figures 9-11 exhib-
it the centerline and wall contact point behavior of Cases 3-5. The wall contact
point does not move in any of the cases, while the centerline histories indicate
a steady decline of the surface with a very rapid vapor ingestion. The typical
residual volume pattern as shown in Fig. 8f indicates that fluid is trapped by
wall adhesion on top of the baffle and along the wall. The free surface contours
that appear in this figure across the annular space between the disk baffle and
the hemispherical bottom are a result of the numerical errors that occur from the
single cell across the space. It is usually more desirable to place two or more
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(d) (e) (f)

Fig. 6. Sequence of plots for Case 2. (a) Equilibrium surface solution from
ICON, (b) free surface plot at t = 0, (c) free surface at t = 40, (d)
free surface at t = 80, (e) free surface at t = 100, (f) residual vol-
ume at vapor ingestion t = 139.
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Sequence of plots for Case 4 but typical for Cases 3 and 5. (a) Mesh
used for baffled cases, (b) initial surface from ICON, (c) surface con-
figuration at t = 30, (d) free surface at t = 70, (e) free surface at t
= 100, (f) surface configuration Just prior to complete vapor ingestion
at t = 129 (Case 3), t = 117 (Case 4), and t = 112 (Case 5?
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cells between obsacles to resolve the flow through such a region. However, in
these cases, the flow dynamics are dominated by the tank outlet and a coarse res-
olution can be used with little error.

The residual volumes for these three cases are listed in Table IIl and plot-
ted in Fig. 13. The experimental results are from [7]. The apparent lack of
agreement between the calculated and experimental values is readily explained by
the fact that a time delay in the experimental apparatus was included in the de-
termination of the experimental values. When the true drain time is determined
by subtracting the time delay of the experimental apparatus, multiplied by the
volumetric flow rate and the product is subtracted from the initial volume, the
experimental data points of Fig. 13 significantly shift to the right. Thus, a
much better agreement is actually obtained than that presented.

VIII. SIMILITUDE OF TANK DRAINING PROBLEMS

Because all of the tank draining problems are performed nondimensionally, it
is necessary to scale the results to obtain dimensional quantities.
The Weber number is customarily defined as We = Qz/n20R3, in which

Q= AV = 7 r2V, the volumetric flow rate

R = the tank radius
V = the outflow velocity, and
r = the outlet radius.

Calculationally, (i.e., in the code) these quantities are all nondimensional and
set to the predetermined values R =1.0, r = 0.1, and V = -1.0. Thus, in this
case, We = ,0001/0. Similarly, the Bond number Bo = gR2/0 becomes Bo = g/c.

We define a nondimensional quantitle as the dimensional quantity XI divided
by the scale of that quantity Xo’ then X =X Xo' Hence all that is needed to
fully dimensionalize the calculational results are the length and time scales, L,
and To’ respectively.

The length scale is determined by the radius of the tank being modeled

(i.e., Lo = Ro); a time scale is then obtained from either the known outflow ve-

LOV

locity T0 = —— or the known volumetric flow rate
L le0n?n ow®
TO= T = T = T .
Q Q Q
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Now all quantities can be scaled to their appropriate values by

' -2
' =9 Lo To
3 -2
o =
Ty T
Q = .0l Lo3 To'1
X =X Lo
and so on.

Variables input to the code or variables output by the code should always be
interpreted with this predetermined nondimensionality in mind.
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VOLUME OF FLUID (VOF) METHOD FOR THE DYNAMICS OF FREE BOUNDARIES
C. W. Hirt and B. D. Nichols
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Los Alamos, NM 87545
ABSTRACT
Several methods have been previously used to approximate free bounda-
ries in finite-difference numerical simulations. In this paper a simple,
but powerful, method is described that is based on the concept of a frac-
tional volume of fluid (VOF). This method is shown to be more flexible and
efficient than other methods for treating complicated free boundary config-
urations. To illustrate the method, a detailed description is given for an

jncompressible hydrodynamics code, SOLA-VOF, that uses the VOF technique to

track free fluid surfaces.
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1. INTRODUCTION

In structural dynamics, it is customary to employ Lagrangian coordi-
nates as the basis for numerical solution algorithms. In fluid dynamics,
however, both Lagrangian and Eulerian coordinates have been used with con-
siderable success. Because each coordinate representation has unique ad-
vantages and disadvantages, the choice of which representation to use de-
pends on the characteristics of the problem to be solved. In this paper
the emphasis is on Eulerian formulations for problems involving free bound-
aries. In particular, problems where the free boundaries undergo such
large deformations that Lagrangian methods cannot be used.

Free boundaries are here considered to be surfaces on which discontin-
uities exist in one or more variables. Examples are free surfaces, material
interfaces, shock waves, or interfaces between fluid and deformable struc-
tures. Three types of problems arise in the numerical treatment of free
boundaries: (1) their discrete representation, (2) their evolution in
time, and (3) the manner in which boundary conditions are imposed on them.
In Sec. 11, a short review is given of different methods that have heen
used for embedding free boundaries in finite-difference or finite-element
grids. A comparison of the relative advantages and disadvantages of these
methods leads to a new technique that is simple yet powerful. This method,
the volume of fluid (VOF) method, is described in Sec. III. In Sec. 1V,
details of the VOF method are described as it has been implemented in an
Eulerian hydrodynamics code. The new code, SOLA-VOF, is illustrated in
Sec. V with various examples that show the strength of the VOF technique

for treating problems involving highly complicated free surface flows.
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Finally, in Sec. VI, a short summary is provided that emphasizes the advan-
tages of the new code.
I11. FREE BOUNDARY METHODS

Discrete Lagrangian representations for a fluid are conceptually sim-
ple, because each zone of a grid that subdivides the fluid into elements
remains identified with the same fluid element for all time. Body and sur-
face forces on these elements are easy to define, so it is relatively
straightforward to compute the dynamic response of the elements. 1In an
Eulerian representation the grid remains fixed and the identity of individ-
ual fluid elements is not maintained. Nevertheless, it is customary to
view the fluid in an Eulerian mesh cell as a fluid element on which body
and surface forces may be computed, in a manner completely analogous to a
Lagrangian calculation., The two methods differ, however, in the manner in
which the fluid elements are moved to new positions after their new veloci-
ties have been computed. In the Lagrangian case the grid simply moves with
the computed element velocities, while in an Eulerian or Arbitrary-Lagran-
gian-Eulerian [1] calculation it is necessary to compute the flow of fluid
through the mesh. This flow, or convective flux calculation, requires an
averaging of the flow properties of all fluid elements that find themselves
in a given mesh cell after some period of time. It is this "averaging

process," inherent in convective flux approximations, that is the biggest
drawback of Eulerian methods. Convective averaging results in a smoothing
of all variations in flow quantities, and in particular, a smearing of sur-
faces of discontinuity such as free surfaces. The only way to overcome
this loss in resolution for free boundaries is to introduce some special

treatment that recognizes a discontinuity and avoids averaging across it.
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As already noted, the process of embedding a discontinuous surface in
a matrix of computational cells involves three separate tasks. First, it
is necessary to devise a means of numerically describing the location and
shape of the boundary. Second, an algorithm must be given for computing
the time evolution of the boundary. Finally, a scheme must be provided for
imposing the desired surface boundary conditions on the surrounding compu-
tational mesh. The first two problems are related, because the method of
description will govern the choice of evolution algorithm. On the other
hand, the application of boundary conditions is largely independent of how
the surface is defined.

In the remainder of this section, we shall concentrate on the repre-
sentation and evolution problems. We shall also restrict this discussion
to two-dimensional situations, except for a few remarks concerning analo-
gous three-dimensional methods.

A. Height Functions

A simple means of representing a free boundary is to define its dis-
tance from a reference line as a function of position along the reference
line. For example, in a rectangular mesh of cells of width 8x and height
8y one might define the vertical height, h, of the free boundary above the
bottom of the mesh in each column of cells. This would approximate a curve
h = f(x,t) by assigning values of h to discrete values of x. This method
does not work well when the boundary slope, dh/dx, exceeds the mesh cell
aspect ratio 8y/éx, and does not work at all for multiple valued surfaces
having more than one y value for a given x value. This is a severe limita-

tion because many simple shapes, such as bubbles or drops, cannot be treat-
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ed. However, when it can be used, this representation is extremely effi-
cient, requiring only a one-dimensional storage array to record the surface
height values. Likewise, the evolution of the surface only requires the
updating of the one-dimensional array (see, for example, Ref. 2).

In the case of a free fluid boundary, the time evolution of the height
function is governed by a kinematic equation expressing the fact that the

surface must move with the fluid,

. (1)

where (u,v) are fluid velocity components in the (x,y) coordinate direc-
tions. It should be noted that Eq. (1) is Eulerian in the horizontal di-
rection, but Lagrangian-like in the vertical direction, which is more or
less normal to the surface. Finite-difference approximations to this equa-
tion are easily made [2].

The height function method is directly extendable to three-dimensional
situations [3] for single-valued surfaces describable by, e.g., h =
f{x,y,t).

B. Line Segments

A generalization of the height function method uses chains of short
line segments, or points connected by line segments (e.g., Ref. 4). Coor-
dinates for each point must be stored and for accuracy it is best to limit
the distance between neighboring points to less than the minimum mesh size
8x or 8y. Therefore, slightly more storage is required for this method,

but it is not limited to single valued surfaces.
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The evolution of a chain of line segments is easily accomplished by
simply moving each point with the local fluid velocity determined by inter-
polation in the surrounding mesh. In this sense the line segment method
resembles a Lagrangian mesh line. It is more flexible, however, because
individual segments may be readily deleted or added as required for optimal
resolution. Since the segments are linearly ordered, the deletion-addition
process presents no logical problems.

Unfortunately, there is one serious difficulty with the line segment
method. When two surfaces intersect, or when a surface folds over on it-
self, segment chains must be reordered, possibly with the addition or re-
moval of some chains. If such intersections are anticipated, the reorder-
ing process may not be difficult. In the general case, however, the detec-
tion of intersections and determining how a reordering should be done is
not a trivial task.

The extension of the line segment method to three-dimensional surfaces
is also nontrivial [5]. Linear ordering used for two-dimensional lines
does not work for three-dimensional surfaces. Thus, the determination of
neighboring points defining the local surface configuration requires a ma-
jor effort. Similarly, the determination of surface intersections and ad-
dition-deletion algorithms is considerably more complex.

C. Marker Particles

Instead of defining a free surface directly, one can also work with
the regions occupied by fluid. For example, marker particles can be spread
over all fluid occupied regions with each particle specified to move with

the fluid velocity at its location [6]. Clearly, storage requirements in-
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crease significantly with this method, because of the large increase in the
number of point coordinates that must be stored. Surfaces are defined to
lie at the "boundary" between regions with and without marker particles.
More specifically, a mesh cell containing markers, but having a neighboring
cell with no markers, is defined to contain a free surface. The actual lo-
cation of the free surface must be determined by some additional computa-
tion based on the distribution of markers within the cell.

Marker particle methods offer the distinct advantage of eliminating
all logic problems associated with intersecting surfaces. This is primari-
1y a consequence of the fact that while particles have to be ordered with
well-defined neighbors when marking surfaces, they do not have to be well
ordered when marking regions. The marker particle method is also readily
extendable to three-dimensional computations, provided the increased stor-
age requirements can be tolerated [7].

In retrospect, it appears that a method that defines fluid regions
rather than interfaces offers the advantage of logical simplicity for situ-
ations involving interacting multiple free boundaries. While the marker
particle method provides this simplicity, it suffers from a significant in-
crease in required computer storage. It also requires additional computa-
tional time to move all the points to new locations. It is natural, there-
fore, to seek an alternative that shares the region defining property with-
out an excessive use of computer resources. Such a method is described in

the next section.
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111. THE VOLUME OF FLUID (VOF) METHOD

In each cell of a mesh it is customary to use only one value for each
dependent variable defining the fluid state. The use of several points in
a cell to define the region occupied by fluid, therefore, seems unnecessari-
ly excessive. Suppose, however, that we define a function F whose value is
unity at any point occupied by fluid and zero otherwise. The average value
of F in a cell would then represent the fractional volume of the cell occu-
pied by fluid. In particular, a unit value of F would correspond to a cell
full of fluid, while a zero value would indicate that the cell contained no
fluid. Cells with F values between zero and one must then contain a free
surface. Thus, the fractional volume of fluid (VOF) method [5] provides
the same coarse interface information available to the marker particle
method. Yet the VOF method requires only one storage word for each mesh
cell, which is consistent with the storage requirements for all other de-
pendent variables.

In addition to defining which cells contain a boundary, marker parti-
cles also define where fluid is located in a boundary cell. Similar infor-
mation can be obtained in the VOF method. The normal direction to the
boundary lies in the direction in which the value of F changes most rapid-
ly. Because F is a step function, however, its derivatives must be compu-
ted in a special way, as described below. When properly computed, the der-
ivatives can then be used to determine the boundary normal. Finally, know-
ing both the normal direction and the value of F in a boundary cell, a line
cutting the cell can be constructed that approximates the interface there.
This boundary location can then be used in the setting of boundary condi-

tions.
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Although the VOF technique can locate free boundaries nearly as well
as a distribution of marker particles, and with a minimum of stored infor-
mation, the method is worthless unless an algorithm can be devised for ac-
curately computing the evolution of the F field. The time dependence of F
is governed by the equation,

5F , BF , . OF _
FrUG Y0 - (2)

This equation states that F moves with the fluid, and is the partial dif-
ferential equation analog of marker particles. In a Lagrangian mesh, Eq.
(2) reduces to the statement that F remains constant in each cell. In this
case, F serves solely as a flag identifying cells that contain fluid. In
an Arbitrary-Lagrangian-Eulerian or pure Eulerian mesh, the flux of F mov-
ing with the fluid through a cell must be computed, but as noted in Sec.
11, standard finite-difference approximations would lead to a smearing of
the F function and interfaces would lose their definition. Fortunately,
the fact that F is a step function with values of zero or one, permits the
use of a flux approximation that preserves its discontinuous nature. This
approximation, referred to as a Donor-Acceptor method [8], is described in
more detail in Sec. IV (Subsec. D).

In summary, the VOF method offers a region following scheme with mini-
mum storage requirements. Furthermore, because it follows regions rather
than surfaces, all logic problems associated with intersecting surfaces are
avoided with the VOF technique. The method is also applicable to three-di-
mensional computations, where its conservative use of stored information is

highly advantageous.
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Thus, the VOF method provides a simple and economical way to track
free boundaries in two- or three-dimensional meshes. In principle, the
method could be used to track surfaces of discontinuity in material proper-
ties, in tangential velocity, or any other property. The particular case
being represented determines the specific boundary conditions that must be
applied at the location of the boundary. For situations where the surface
does not remain fixed in the fluid, but has some additional relative mo-
tion, the equation of motion, Eq. 2, must be modified. Examples of such
applications are shock waves, chemical reaction fronts, and boundaries be-
tween single-phase and two-phase fluid regions.

In the next section, details are presented for using the VOF method to
define free surfaces in an Eulerian hydrodynamics code.

IV. SOLA-VOF

Eulerian finite-difference methods for computing the dynamics of in-
compressible fluids are well established. The first method to successfully
treat problems involving complicated free surface motions was the Marker-
and-Cell (MAC) method [6]. This method was also the first technique to use
pressure and velocity as the primary dependent variables. MAC employed a
distribution of marker particles to define fluid regions, and simply set
free surface pressures at the centers of cells defined to contain the sur-
face. No attempt was made to apply the pressure boundary condition at the
actual location of the boundary within the surface containing cell. This
crude approximation was later improved [9], and marker particles were elim-

inated in favor of particle chains on the free surfaces [4].
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A simplified version of the basic solution algorithm (SOLA) used in
the MAC method is available [10] in a user oriented code called SOLA. Al-
though SOLA does not treat free surfaces, an extended version, SOLA-SURF,
is also available [10] that uses the surface height function method (see
Sec. II.A). The basic simplicity and flexibility of the SOLA codes make
them éxce]]ent foundations for the development of more sophisticated
codes. For this reason, a variable mesh version of the SOLA code, SOLA-VM,
was chosen as a basis for illustrating the VOF technique. An experimental
version of this new code, SOLA-VOF, was first reported in Ref. 5. Since
that time, many improvements have been made and the basic technique has ma-
tured through applications to a wide class of problems. In a related devel-
opment [11], McMaster, et al., have recently combined the SOLA-SURF code
with a different interface tracking technique based on a VOF~1ike concept
[12].

The following subsections provide details of the SOLA-VM solution al-
gorithm with particular attention devoted to the special considerations
needed in making finite-difference approximations in nonuniform meshes.
Subsequent subsections describe the VOF algorithms for advection and for
locating interfaces.

A. Outline

SOLA-VM uses an Eulerian mesh of rectangular cells having variable

.th

sizes, 6xi for the 1th column and Gyj for the j~ row, as shown in Fig. 1.

While not as flexible as a mesh composed of arbitrary quadrilaterals, the
variable mesh (VM) capability of SOLA-VM gives it a considerable advantage

over methods using equal-sized rectangles.
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The fluid equations to be solved are the Navier-Stokes equations,

2

2 3
Bu,  du,,du_ 3 Pu, 2%, (Lo _u
U TY 5y ax+9x+"[ 2 32+E(x3x 2)]
Yy X
ﬂ+ua_v+vﬂ=_gﬂ+ + _32_V+_§_ 53_ (3)
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Velocity components (u,v) are in the Cartesian coordinate directions (x,y)
or cylindrical coordinate directions (r,z) respectively. The choice of co-
ordinate system is governed by the value of £, where £ = 0 corresponds to
Cartesian and £ = 1 to cylindrical geometry. Body accelerations are denot-
ed by (gx,gy) and v is the coefficient of kinematic viscosity. Fluid den-
sity has been normalized to unity. For an incompressible fluid, the momen-

tum equations, Eq. (3), must be supplemented with the incompressibility

condition,
u 9y &u_
X 3y X - (4)

Sometimes, it is desirable to allow limited compressibility effects [13]

(e.g., acoustic waves) in which case Eq. (4) must be replaced with

du E_
3x

+ + =0 , (5)
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&’l<
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i
c

where ¢ is the adiabatic speed of sound in the fluid (and the mean density
is unity). Since Eq. (5) adds more flexibility with 1ittle additional com-

plexity, it is used in the remainder of this discussion.
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Discrete values of the dependent variables, including the fractional
volume of fluid (F) variable used in the VOF technique, are located at cell
positions shown in Fig. 2.

The volume of fluid function F is used to identify mesh cells that
contain fluid. A free surface cell (i,j) is defined as a cell containing a
nonzero value of F and having at least one neighboring cell, (it1,j) or
(i,jt1), that contains a zero value of F. Cells with zero F values are
called empty cells, and cells with nonzero F values and no empty neighbors
are treated as full or interior fluid cells. The SOLA-VOF code also has
provisions for defining any cell or combination of cells in the mesh to be
obstacle cells into which fluid cannot flow.

Briefly, the basic procedure for advancing a solution through one in-
crement in time, 8t, consists of three steps:

(1) Explicit approximations of Eq. (3) are used to compute the first
guess for new time-level velocities using the initial conditions or previ-
ous time-level values for all advective, pressure, and viscous accelera-
tions.

(2) To satisfy the continuity equation, Eq. (5), pressures are itera-
tively adjusted in each cell and velocity changes induced by each pressure
change are added to the velocities computed in step (1). An iteration is
needed because the change in pressure needed in one cell to satisfy Eq. (5)
will upset the balance in the four adjacent cells.

(3) Finally, the F function defining fluid regions must be updated to

give the new fluid configuration.
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Repetition of these steps will advance a solution through any desired
time interval. At each step, of course, suitable boundary conditions must
be imposed at all mesh and free-surface boundaries. Details of these steps
and boundary conditions are given in the following subsections.

B. Momentum Equation Approximations

In the following, the notation Q? 3 stands for the value of Q(x,y,t)
at time nst and at a location centered in the ith cell in the x-direction

and jth cell in the y-direction. Half integer subscripts refer to cell

boundary locations. For example, Q? jHig refers to the value of Q on the
boundary between the j and j+1 cells in the y-direction.
A generic form for the finite-difference approximation of Eq. (3) is
. _ _ [ n+l n+l
ui+%’j = ”i+%,j + 6t [ (pi+1,j - pi,j)/éxi+% tg, - FUX - FUY + VISX]
(6)
ntl  _ .n n+l n+l
Vi,j+% = vi,j+% + 6t [- (pi,j+1 - pi,j>/6yj+% + gy - FVX - FVY + VISY]
Here 6xi+% = 1/2(6xi + 6xi+]) and 6yJ.+LE = 1/2(6yj + Gyj+]). The advective
and viscous acceleration terms have an obvious meaning, e.g., FUX means the
advective flux of u in the x-direction, etc. These terms are all evaluated
using the old time level (n) values for velocities. Because the pressures
at time level n+1 are not known at the beginning of the cycle, Eq. (6) can-

n+1’ v"+]),

not be used directly to evaluate (u but must be combined with

the continuity equation as described below. In the first step of a solu-

n+1

tion, therefore, the p in these equations are replaced by pn to get a

first guess for the new velocities.
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As far as the basic solution procedure is concerned, the specific ap-
proximations chosen for the advective and viscous terms in Eq. {6) are rel-
atively unimportant, provided they lead to a numerically stable algorithm.
Special care must be exercised, however, when making approximations in a
variable mesh like that of Fig. 1. The problem is best illustrated by con-
sidering the procedure used in the original MAC method for Cartesian coor-
dinates. In the MAC method, Eqs. (3) and (4) were first combined so that
the convective flux terms could be written in a divergence form (i.e.,Ve uu

2
instead of u-Vu). Thus, FUX would be, for example, %%“ rather than u g:

The divergence form was preferred in MAC because it provided a simple way

to insure conservation of momentum in the difference approximations. This
i+h,] that is indi-
cated by dashed lines in Fig. 3. With the divergence form, Gauss' Theorem

may be seen by considering the control volume used for u

may be used to convert the integrated value of FUX over the control volume
to boundary fluxes at its sides. Then, the flux leaving one control volume
will automatically be gained by the adjacent one and conservation during
advection is guaranteed.

Unfortunately, conservation in a variable mesh does not automatically
imply accuracy. To see this, suppose an upstream or donor-cell difference
approximation is used for FUX = auz/ax, which is known to provide a condi-
tionally stable algorithm. Assuming the u velocity is positive, the donor

cell approximation is,

FUX = [um’j Cugpr > = Uy 5 €Uy g >]/5x1.+!§ s (7)
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where, e.g.,

.o.o= (u. .+ U .
Ui, T (iogs Vi, )72
U . if u. . =0
i-%, ’ i
< u_i j > = { J J
. .
ui+%,j , if ui,j <0 .

Expanding Eq. (7) in a Taylor series about the location, X {40 where the

u-equation is evaluated, yields,

38x; + 8x, 2
FUX = %(ﬁ)% +0(6x) . (8)
Thus, the zeroth order term is incorrect unless the cell widths are equal,
6xi = 5xi+]. In other words, the variable mesh reduces the order of ap-
proximation by one, and in. this case leads to an incorrect zeroth order re-
sult. If a centered rather than a donor-cell approximation had been used,
the result would have been first order accurate and not second order as it
is in a uniform mesh.

It does not follow, however, that variable meshes are necessarily less
accurate because they do allow finer zoning in localized regions where flow
variables are expected to vary most rapidly. Nevertheless, variable meshes
must be used with care. It is best, for example, to allow for gradual var-
jations in cell sizes to minimize the reduction in approximation order. It
is also worthwhile to look for other approximations that do not lose their
accuracy in a variable mesh. In this regard, it should be noted that the
reason the conservation form of the advective terms lose accuracy is that

the control volumes are not centered about the positions where variables
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are located. Because of this the advective terms should be corrected to
account for the difference in locations of the variables being updated and
the centroids of their control volumes. When this is not done a lower or-
der error is introduced.

The stability advantages of the donor cell method can be retained in a
variable mesh with no reduction in formal accuracy, if the u-vu form is
used for the advection flux. At the same time, it is also possible to com-
bine the donor-cell and centered-difference approximations into a single
expression with a parameter, a, that controls the relative amount of each

one. The general form at (i+),j) is

FUX = (u,

1+%’j/6xa)[6xi+] DUL + Gxi DUR + asgn(u) (6xi+] DUL - & DUR)]

(9)

where

DUL = (ui+;i’j - ui_%,j)/dxi

DUR = (ui+3/2,j - ui+¥,j)/6xi+1

Sx = 6xi+] + Gxi + asgn{u) (6X1+1 - Gxi) .

and where sgn{u) means the sign of u, When o = 0, this approximation

i+g,§°
reduces to a second order accurate, centered difference approximation.

When a = 1, the first order donor-cell form is recovered. Thus, using the
approximation defined in Eq. (9), there is no loss of formal accuracy when

a variable mesh is used.
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The basic idea used in Eq. {9) is to weight the upstream derivative of
the quantity being fluxed more than the downstream value. The weighting
factors are 1 + o and 1 - o, for the up and downstream derivatives, respec-
tively. The derivatives are also weighted by cell sizes in such a way that
the correct order of approximation is maintained in a variable mesh. This
type of approximation is used in SOLA-VOF for all convective flux terms ap-~
pearing in Eq. {6). Viscous accelerations are approximated with standard
centered approximations.

C. Continuity Equation Approximation

Velocities computed from Eq. (6) must satisfy the continuity equation,
Eq. (5). In order to satisfy this equation, the pressures (and velocities)
must be adjusted in each computational cell occupied by fluid. The finite-
difference form used for Eq. (5) is

n+1 n 2 n+l
(pi g Py ’J)/(C 8t) + Di R =0 (10)

where

n+l - n+] - n+l n+1 - n+l )
i, (“ws,j ”i-sﬁ,a‘)/‘“i*(vi,jﬂs Vi 51895

1 +1
+E (ugik,j + u?-k,j)/(zxi) .

D

Since the velocities appearing in D are evaluated at the new time level,
which depend on the n+1 level pressures according to Eq. (6), this equation
is an implicit relation for the new pressures. A solution may be obtained

by the following iterative process. The computational mesh is swept row by
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row starting with the bottom row and working upward. In each cell contain-
ing fluid, but not a free surface, the pressure change needed to drive the

left side of Eq. (10), call it S, toward zero is
sp = - S/(3S/3p) (1)

where § is evaluated with the most updated values of p that are available,
and the derivative is with respect to Py i The new estimate for the cell

pressure is then

Pijtop (12)

and new estimates for the velocities located on the sides of the cell are

Ujpsg j + 8t 6p/6xi+%

- &t Gp/&xi_

Y31, e

(13)

Vi, j+s + 8t <5p/<SyJ.+;5

Vit St S8y L

where the velocities appearing here are again the most updated values
available.

A similar procedure is used in cells containing a free surface, except
that the S used in Eq. (11) is not the left side of Eq. (10), but a rela-
tion that leads to the proper free surface boundary condition when driven
to zero by the iteration [4]. The boundary condition is satisfied by set-

ting the surface cell pressure (p,i j) equal to the value obtained by a lin-
’
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ear interpolation between the pressure wanted at the surface (ps) and a
pressure inside the fluid (pN). For this scheme to work the adjacent cell
chosen for the interpolation should be such that the line connecting its
center to the center of the surface cell is closest to the normal to the

free surface. Then the S function giving this result is

S=(1-n)py*npg-p; (14)

where n = dc/d is the ratio of the distance between the cell centers and
the distance between the free surface and the center of the interpolation
cell, see Fig. 4.

A complete iteration, therefore, consists of adjusting pressures and
velocities in all cells occupied by fluid according to Eqs. (11-13), where
S is given by Eq. (10) for an interior cell and by Eq. (14) for a surface
cell. Convergence of the iteration is achieved when all cells have S val-
ues whose magnitudes are below some small number, €. Typically, € is of
order 10'3, although it can vary with the problem being solved and the
units chosen for the problem.

In some cases, convergence of the jteration can be accelerated by mul-
tiplying sp from Eq. (11) by an over-relaxation factor w. A value of @
that is often optimum is 1.8, but in no case should it exceed 2.0; other-
wise an unstable iteration results.

In practice, the free surface condition, Eq. (14), leads to an over-
relaxation type of instability when the interpolation factor o is greater
than one. Stability can be insured by under-relaxing the pressure varia-

tions in cells used as interpolation neighbors for surface cells. In
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particular, the relaxation factor o used in a cell acting as an interpola-

tion neighbor for a surface cell must be replaced with

» (15)
I - o(1-n)8t R

where
-1
R=(§155Ax d(‘) .

Here n and dc refer to the surface cell, while the S derivative is the val-
ue for the neighbor cell. Also Ax is 6x of the surface cell if the neigh-
bor lies in the x-direction, otherwise, Ax is equal to 8y of the surface
cell. The idea behind (15) is that the pressure change in the neighbor
cell is coupled to the pressure in the surface cell, which in turn is de-
pendent on the neighbor cell pressure through the linear interpolation, Eq.
(14). To insure stability, this feedback type of coupling of the surface
cell on its neighbor cell can be algebraically computed and used to define
the stable relaxation limit, Eq. (15).

D. Approximations for Volume of Fluid Function

1. Advancing F in Time. The VOF function F is governed by Eq. (2).

For an incompressible fluid, Eq. {4) may be combined with Eq. (2) to yield

the equation

oF , 1 8rfu , 3Fv

3t T T 8x 3y o . (16)

where r = x when £ = 1 and r = 1 when £ = 0. Even when the fluid is
slightly compressible and Eq. (5) replaces Eq. (4), this equation for F is

still an acceptable approximatibn. Equation (16), which is in divergence
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form, is here more convenient for numerical approximation and is the form
used in the following discussion. When Eq. (16) is integrated over a com-
putational cell, the changes in F in a cell reduce to fluxes of F across
the cell faces. As previously noted, special care must be taken in comput-
ing these fluxes to preserve the sharp definition of free surfaces. The
method employed in SOLA-VOF uses a type of Donor-Acceptor flux approxima-
tion [8]. The essential idea is to use information about F downstream as
well as upstream of a flux boundary to establish a crude interface shape,
and then to use this shape in computing the flux. Several researchers have
previously used variations of this approach for tracking material inter-
faces (see, e.g., Refs. 8 and 14-15).

The basic method as developed for use in the VOF technique may be un-
derstood by considering the amount of F to be fluxed through the right hand
face of a cell during a time step of duration &§t. The total flux of fluid
volume and void volume crossing this cell face per unit cross sectional
area is V = u &t, where u is the normal velocity at the face. The sign of
u determines the donor and acceptor cells, i.e., the cells losing and gain-
ing fluid volume, respectively. For example, if u is positive the upstream
or left cell is the donor and the downstream or right cell the acceptor.
The amount of F fluxed across the cell face in one time step is SF times

the face cross sectional area, where

8F = MIN { FAD IVXI + CF , FD SXD }

and where (17)

CF=MAX { (1.0 - FAD) |Vx| - (1.0 - FD) GXD, 0.0}
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Single subscripts denote the acceptor (A) and donor (D) cells. The double
subscript, AD, refers to either A or D, depending on the orientation of the
interface relative to the direction of flow as explained below.

Briefly, the MIN feature in Eq. (17) prevents the fluxing of more
fluid from the donor cell than it has to give, while the MAX feature ac-
counts for an additional fluid flux, CF, if the amount of void to be fluxed
exceeds the amount available. Figure 5 provides a pictorial explanation of
Eq. (17). The donor and acceptor cells are defined in Fig. 5a for fluxing
across a vertical cell face. When AD = D, the flux is an ordinary donor

cell value,
Fefp Il s

in which the F value in the donor cell is used to define the fractional
area of the cell face fluxing fluid, see Fig. 5b. As discussed in Sec.
IV.F, numerical stability requires that [Vxl be less than 6x, so that it is
not possible to empty the donor cell in this case.

When AD = A, the value of F in the acceptor cell is used to define the
fractional area of the cell face across which fluid is flowing. In case
(c) of Fig. 5, all the fluid in the donor cell is fluxed because everything
lying between the dashed 1ine and the flux boundary moves into the acceptor
cell. This is an example exercising the MIN test in Eq. (17). In case (d)
of Fig. 5, more fluid than the amount FA|Vx|, must be fluxed, so this is an
example exercising the MAX test. 1In particular, the extra fluid between

the dashed line and the flux boundary is equal to the CF value in Eq. (17).
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Whether the acceptor or donor cell is used to determine the fractional
area for fluid flow depends on the mea~ surface orientation. The acceptor
cell is used when the surface is convected mostly normal to itself, other-
wise, the donor cell value is used. However, if the acceptor cell is empty
or if the cell upstream of the donor cell is empty, then the acceptor cell
F value is used to determine the flux regardless of the orientation of the
surface. This means that a donor cell must fill before any fluid can enter
a downstream empty cell.

The reason for testing on surface orientation is that an incorrect
steepening of surface waves will occur if the acceptor cell is always used
to compute fluxes. Consider, for example, a horizontal surface with a
small wave moving in the positive x-direction. A flux based on the down-
stream (acceptor) value of F will eventually steepen the wave into a step
discontinuity. In effect, the acceptor method is numerically unstable be-
cause it introduces a negative diffusion of F (i.e., a diffusion-Tike
transport with a negative coefficient). Instabilities do not grow unbound-
ed, however, because of the MIN and MAX tests used in the flux definition.
In contrast, when the surface is advecting normal to itself, a steepening
that keeps the step-function character of F is exactly what is wanted.

Once the flux has been computed by the above method, it is multiplied
by the flux boundary area to get the amount of fluid to be subtracted from
the donor cell and added to the acceptor cell. When the process is repeat-
ed for all cell boundaries in the mesh, the resulting F values correspond
to the time-advanced values satisfying Eq. (16) and still sharply define

all interfaces.
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2. Bookkeeping Adjustments. The new F values determined by the above

method may occasionally have values slightly less than zero or slightly
greater than unity. Therefore, after the advection calculation has been
completed, a pass is made through the mesh to reset values of F less than
zero back to zero and values of F greater than one back to one. Accumulat-
ed changes in fluid volume introduced by these adjustments during a calcu-
lation are recorded and may be printed out at any time.

There is one other adjustment needed in F in order that it may be used
as a surface cell flag. Surface cells have values of F lying between zero
or one, however, in a numerical solution F values cannot be tested against
exact numbers like zero and one because roundoff errors would cause spuri-
ous results. Instead, a cell is defined to be empty when F is less than €
and full when F is greater than 1 - s where € is typically 10'6. If,
after advection, a cell has an F value less than s this F is set to zero
and all neighboring full cells become surface cells by having their F val-
ues reduced from unity by an amount 1.lsF. These changes in F are also in-
cluded in the accumulated volume change. Volume errors after hundreds of
cycles are typically observed to be a fraction of a per cent of the total
fluid volume.

3. Determining Interfaces Within a Cell. For the accurate applica-

tion of boundary conditions, knowledge of the boundary location within a
surface cell is required. In the VOF technique, it is assumed that the
boundary can be approximated by a straight line cutting through the cell.
By first determining the slope of this line, it can then be moved across
the cell to a position that intersects the known amount of fluid volume in

the cell.
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To determine the surface slope, it must be recognized that the surface
can be represented either as a single-valued function Y(x) or as X(y), de-
pending on its orientation. If the surface is representable as Y(x), we

must compute dY/dx. A good approximation to Y(x) is

<
il

i = Y0xg) = FO,3-1)8y; o + F(3,3)6y; + F(3,041)8y54y

where Y = 0 has been taken as the bottom edge of the j-1 row of cells.

Then,
v\ _
(—dx)i 2(Yiq = Yyop)/(@xgpq + 26x; + 6%, 7) . (18)

A similar calculation can be made for dX/dy,

X5 = X(y,) = F(i-1 ,J-)Gx.i_] + F(d ,j)sxi + F(i41,] )6x'i+1 s

hj i

and
() = 2004 - Xy {8y gy + 2855 + 8y59) (19)
ay); §41 §=1171Y 541 Yy ¥ %590 -

If |dY/dx| is smaller than |dX/dy|, the surface is more nearly hori-
zontal than vertical, otherwise it is more nearly vertical. In any case,
the derivative with the smallest magnitude gives the best approximation to
the slope because the corresponding Y or X approximation is most accurate
in that case.

Suppose |dY/dx| is smallest so the interface is more horizontal than
vertical. If dX/dy is negative, fluid lies below the surface, and cell

(i,j-1) is used as the interpolation neighbor for surface cell (i,j). Had
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dX/dy been positive, cell (i,j+1) wouid be chosen for the neighboring in-

terpolation cell because fluid would then be above the surface.

Once the surface slope and the side occupied by fluid have been deter-
mined, a line can be constructed in the cell with the correct amount of
fluid volume lying on the fluid side. This line is used as an approxima-
tion to the actual surface and provides the information necessary to calcu-
late n for the application of free surface pressure boundary conditions, as
described in Sec. IV.C.

For cylindrical coordinates, the above computations are more complex
because of the volume dependence on radius. Except for cells on the axis,
however, the exact results differ little from the simpler Cartesian coordi-
nate results, consequently, the latter are used in both cases.

Surface tension effects may be included in SOLA-VOF with 1ittle addi-
tional effort [16]. The essential step is to compute a local curvature in
each surface cell using the Y(x) or X{y) definitions, Eqs. (18)-(19), and
from this an effective surface tension pressure, Pgs to be applied at the
surface according to Eq. (14).

E. Boundary Conditions

1. Mesh Boundaries. In addition to the free surface boundary condi-

tions, it is necessary to set conditions at all mesh boundaries and at sur-
faces of all internal obstacles. At the mesh boundaries, a variety of con-
ditions may be set using the layer of fictitious cells surrounding the
mesh. Consider, for example, the left boundary. If this is a rigid free-
slip wall, the normal velocity there must be zero and the tangential veloc-

ity should have no normal gradient, i.e.,
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=0

sJ
Vy 5 = Vg
1 2,
J ST fran
P1,i = P2,;
F1. = Fo,3
1f the left boundary is a no-slip rigid wall, then the tangential velocity
component at the wall should also be zero, i.e.,
U370
Vy 2 = =V, .
1 2
) ) TN forat i
Pr.i 7 Pa,j
1,0 7 Fa,s

These conditions are imposed on the velocities computed from the momentum
equations and after each pass through the mesh during the pressure itera-
tion.

Continuative or outflow boundaries always pose a problem for low-speed
calculations, because whatever prescription is chosen can potentially af-
fect the entire flow field. What is needed is a prescription that permits
fluid to flow out of the mesh with a minimum of upstream influence. In

SOLA-VOF, the continuative boundary conditions used at the left wall are

1,5 7 Y25
v « = Vo
1 2
J ~ »J for all j .
P1,i © P2,j
F1,i = Fa,5
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These conditions, however, are only imposed after applying the momentum
equations and not after each pass through the pressure iteration.

For periodic boundary conditions in the x-direction, the left and
right boundaries must be set to reflect the periodicity. This is easiest
when the period Tength is chosen equal to the distance from the left wall
to the left boundary of the last interior cell in the mesh at the right
side. That is, two columns of cells, i=IMAX and i=IMAX-1, are reserved on
the right side of the mesh for the setting of periodic boundary conditions.

The conditions are then, on the left

U1,i T Yime,j

V1,5 7 Vime,j

Vz,j = VIM]’j for all j
P2,i = Pim,j
F2,5 = Fim,;
and on the right
Y, T V2,5
for all1 j ,

ViMax,i = V3,

where IM1 = IMAX-1 and IM2 = IMAX-2. In this case, these conditions are im-
posed on velocities computed from the explicit momentum equations and after

each pressure iteration.
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A constant pressure boundary condition at the left wall is set by keep-
ing the pressure in column i=2 constant and otherwise treating the boundary
as continuative.

Boundary conditions similar to those for the left wall are used at the
right, top, and bottom boundaries of the mesh. Of course, the normal and
tangential velocities at the top and bottom boundaries are v and u, respec-
tively.

For convenience, the SOLA-VOF code has been written so that any of the
above boundary conditions can be automatically imposed by setting input
numbers. To increase the usefulness of the basic code, specified inflow
and outflow boundaries and internal obstacles within the fluid region are
easily incorporated. In the case of obstacles that are restricted to
shapes constructed by blocking out cells of the computing mesh, semi-auto-
matic rigid wall boundary conditions are included in the SOLA-VOF code.

For this purpose, an array used to store relaxation factors for the pres-
sure iteration, BETAi,j, is also used to flag obstacle cells. In particu-
lar, because legitimate relaxation factors must be positive numbers, a neg-
ative value (say -1.0) serves as a flag. The flag values must be pro-
grammed into the setup section of the code for each application. Thereaf-
ter, the code automatically eliminates computations for all momentum and
continuity equations in flagged obstacle cells. Boundary conditions for
normal velocities, pressures, and the volume of fluid function are automat-
ically set in the main boundary condition section of the code. Because all
velocity components within obstacles are set to zero, no-slip tangential

velocity conditions are only first-order accurate. That is, tangential ve-
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locities are zero at locations shifted from the actual boundary by one-half
of a cell width.

Specified inflow and outflow conditions at mesh boundaries or at loca-
tions within the mesh must be programmed into the boundary condition sec-
tion of the code. A special location is reserved in the SOLA-VOF code for
this purpose at the end of the regular boundary condition section.

2. Free Surface Boundaries. The free surface boundary condition for

normal stress is automatically satisfied by the implicit pressure calcula-
tion using Eq. (14). This condition must be supplemented with the specifi-
cation of velocities immediately outside the surface, where these values
are needed in the finite-difference approximations for points inside the
surface. The specifications used in SOLA-VOF are identical to those used
in many earlier Marker-and-Cell codes. Velocities must be set on every
cell boundary between a surface cell and an empty cell. If the surface
cell has only one neighboring empty cell, the boundary velocity is set to
insure the vanishing of Di," the velocity divergence defined in Eq. (10).

J
When there are two or more empty cell neighbors, the individual contribu-

tributions to the divergence, %-%%9 and

v
ay

AR )
some cases, it is also necessary to assume zero values for g% or 5%. These

latter conditions are additionally used to set exterior tangent velocities

, are separately set to zero. In

to a free surface on boundaries between empty cells adjacent to a surface

cell.
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F. Numerical Stability Considerations

Numerical calculations often have computed quantities that develop
large, high-frequency oscillations in space, time, or both. This behavior
is usually referred to as a numerical instability, especially if the physi-
cal problem being studied is known not to have unstable solutions. When
the physical problem does have unstable solutions and if the calculated re-
sults exhibit significant variations over distances comparable to a cell
width or over times comparable to the time increment, the accuracy of the
results cannot be relied on. To prevent this type of numerical instability
or inaccuracy, certain restrictions must be observed in defining the mesh
increments (Sx_i and Gyj, the time increment S8t, and the upstream differ-
encing parameter a.

For accuracy, the mesh increments must be chosen small enough to re-
solve the expected spatial variations in all dependent variables. When im-
possible because of Timitations imposed by computing time or memory re-
quirements, special care must be exercised in interpreting calculational
results. For example, in computing the flow in a large chamber it is usu-
ally impossible to resolve thin boundary layers along the confining walls.
In many applications, however, the presence of thin boundary layers is un-
important and free-slip boundary conditions can be justified as a good ap-
proximation.

Once a mesh has been chosen, the choice of the time increment neces-
sary for stability is governed by two restrictions. First, material cannot
move through more than one cell in one time step because the difference
equations assume fluxes only between adjacent cells. Therefore, the time

increment must satisfy the inequality
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{ <Sx,i % }
§t < min , T——i—T
DRIRSDR

where the minimum is with respect to every cell in the mesh. Typically, 6t
is chosen equal to one-fourth to one-third of the minimum cell transit

time. Second, when a nonzero value of kinematic viscosity is used, momen-
tum must not diffuse more than approximately one cell in one time step. A

linear-stability analysis shows that this limitation implies

1 6x$ Gy?
Vit < 3
2 .2 2
(‘Sx_i + Gyj

With 8t chosen to satisfy the above two inequalities, the last para-
meter needed to insure numerical stability is a. The proper choice for a

is

. .6t . .8
1> a > max u1’J |v1’J ‘
6xi ‘

As a rule of thumb, an « approximately 1.2 to 1.5 times larger than the
right-hand member of the last inequality is a good choice. If a is too
large an unnecessary amount of numerical smoothing (diffusion-like trunca-
tion errors) may be introduced [17].
V. SAMPLE PROBLEMS

Six calculational examples have been chosen to illustrate the accuracy
and capabilities of the SOLA-VOF code. In all these examples, either ex-
perimental or analytical information is available for comparison with the
calculated results. These examples offer a substantial challenge to any

free boundary method.
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A. Broken Dam Problem

In this example, a rectangular column of water, in hydrostatic equili-
brium, is confined between two vertical walls, Fig. 6. The water column is
1.0 units wide and 2.0 units high. Gravity is acting downward with unit
magnitude. At the beginning of the calculation, the right wall (dam) is
removed and water is allowed to flow out along a dry horizontal floor. Ex-
perimental results for this problem have been reported [18] for the posi-
tion vs time of the leading edge of the water as it flows to the right,
Fig. 7.

This is a good test problem because it has simple boundary conditions
and a simple initial configuration. The appearance of both a vertical and
horizontal free surface, however, provides a check on the capability of
SOLA-VOF to treat free surfaces that are not single valued with respect to
x or y. Results from two calculations are presented in Fig. 7 with the ex-
perimental data. In both cases, the mesh consisted of 40 uniformly spaced
columns (8x = 0.1) and 22 nonuniformly spaced rows. The smallest 8y values
are located at the bottom of the mesh where resolution is needed to define
the thin leading edge of the advancing water. In the first calculation,
the smallest 8y was 0.05, while in the second it was 0.025. We see from
Fig. 7 that the best results are obtained with the smallest Sy case, but
both results are still quite good. The greatest deviation from the experi-
mental results is everywhere less than one cell width,

The smallest 8y calculation required 460 time cycles to get the water
to the right wall {x = 4.0) and used 328 sec of CDC-7600 computer time

{which included a considerable amount of numerical and graphical output).
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B. _Undular Bore

If a horizontal layer of water is pushed into a rigid, vertical wall
there will be a step wave, or bore, produced that runs away from the wall.
If the incident velocity is not too great, the bore front will have a well
behaved, undular shape, but at sufficiently high velocities the bore front
will break and be highly irregular. In either case, conservation of mass
and momentum principles may be used to derive "jump" conditions that should
exist across the bore transition [19].

SOLA-VOF was used to compute the undular bore evolution shown in Fig.
8. The initial configuration in Fig. 8a consists of a uniform mesh of 20
cells in the horizontal direction (§x = 0.6) and 8 cells in the vertical
direction {8y = 0.2). Fluid initially fills the Towest 5 rows (depth 1.0)
and is uniformly moving to the right with unit velocity. The right, bot-
tom, and top walls are rigid, free-slip boundaries. At the left boundary,
fluid is continuously input to prevent any waves from being generated
there. Gravity acts downward with unit magnitude.

Although this problem is very coarsely resolved, the results are re-
markably good and provide a nice check on mass and momentum conservation.
The computed jump height at the right wall is 1.201, while theory predicts
1.209. A more finely resolved calculation using a mesh consisting of 60 by
12 cells yielded a height of 1.203, which is converging to the theoretical
answer.

The coarse mesh calculation took 14 sec of computer time to complete

48 cycles of calculation.
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C. Breaking Bore

A more interesting example is produced by decreasing the gravitational
acceleration in the above example from unity to 0.4548. In this case, the
bore transition is turbulent and involves a water elevation change from 1.0
to 2.8. Fluid configurations and velocity fields at selected times, show-
ing the development of the bore, are shown in Fig. 9. In this case the
computational mesh consisted of 50 equally spaced cells in the x-direction
(6x = 0.25) and 20 cells with variable spacing in the y-direction. The
variable spacing was chosen to give finer resolution around y = 1.0, where
a shear layer is formed as the incoming water flows into the bore front.

Experimental evidence indicates that turbulent bore transitions have
widths that are typically equal to about 5 times the change in elevation
(2.8 - 1.0 = 1.8). This is consistent with the calculational results, even
though the calculation is not computing true turbulence. A better measure
of the accuracy of the calculation is the final height at the right wall,
which is 2.91 and is in good agreement with the theoretical value, 2.8.

No special considerations were needed to maintain the resolution of
the free surface as it continually folds over on itself, the VOF technique
handles this automatically. This calculation required 292 sec of CDC-7600
computer time for 457 cycles of computation.

D. Rayleigh-Taylor Instability

Because the success of the VOF technique is based on the ability to
numerically advect a step-function distribution (F) without numerical
smoothing, it is worthwhile to investigate the sensitivity of SOLA-VOF to

changes in the F-advection algorithm. A good problem for this purpose is
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the nonlinear development of a Rayleigh-Taylor instability. During the
early stages of the instability the fluid surface moves normal to itself,
but during the later stages there are regions along the sides of the grow-
ing liquid fingers where the flow is mostly tangential to the surface.
Thus, this problem offers a good test of the particular combination of do-
nor and acceptor cell fluxing used in the code.

The initial fluid configuration consists of an inviscid fluid occupy-
ing the top half of a box that has a width of 1.0 and height of 3.0. Grav-
ity is acting downwards with unit magnitude. The free surface is given an
applied pressure pulse, Pg = cos(wx), that acts only during the first cycle
of calculation. This pulse perturbs the unstable fluid surface, causing it
to flow down along the right -edge of the box in the form of a fluid spike,
while a bubble moves up é]ong the left box edge; see Fig. 10. During the
earliest stages of growth, the amplitudes of the bubble and spike displace-
ments follow 1linear theory [20], but nonlinear effects quickly take over
with the spike growing significantly more rapidly than the bubble.

To check the sensitivity of the F-advection algorithm used in SOLA-VOF
this problem was repeated with F advective fluxes determined entirely by
the downstream or acceptor cell F values. This pure Acceptor-Cell method,
which differs from the mixture of Donor-Acceptor fluxing used in the SOLA-
VOF code, has been used in some previous work (see, e.g., Ref. 14). The
consequences of using pure Acceptor-Cell fluxing is obvious from a compari-
son of Fig. 11 with Fig. 10. The Acceptor-Cell method develops large ir-
regularities in the free surface, particularly where it is flowing parallel
to itself. This does not occur in the SOLA-VOF method because it uses do-

nor cell fluxing in such regions.
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From this simple example, it is evident that the particular combina-
tion of Donor-Acceptor advection used in the VOF technique does an exceed-
ingly good job. It is all the more remarkable because the algorithm uses a
single pass through the mesh with relatively few calculations required for
the flux at each cell boundary.

E. A Reactor Safety Application

Many boiling water reactors use a large pool of water to condense
stream should a major steam leak occur. In some designs, steam would be
forced into the pool through long vertical pipes extending several pipe
diameters below the surface of the pool. Before steam enters the pool,
however, air initially in the pipes must be pushed out. The ejection of
this noncondensable air forms large bubbles in the pool and displaces the
pool surface upward. Safety considerations require an understanding of the
hydrodynamic forces generated during this process. For this purpose, sev-
eral small scale experimental programs have been conducted and several
groups have attempted supporting theoretical analysis.

A cross section of a single pipe apparatus used at the Massachusetts
Institute of Technology [21] is shown in Fig. 12. It consists of a cylin-
drical vessel approximately half filled with water and with an axisymmetric
pipe extending down into the pool from above. At the beginning of a test,
a valve is opened at the top end of the central pipe exposing it to a con-
stant pressure plenum. Gas in the plenum flows through an orifice in the
pipe and then into the lower pressure cylindrical tank by displacing water

initially in the pipe.
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To model this test apparatus with the SOLA-VOF code, it is necessary
to supplement the code with calculations for the gas pressure in the pipe
and for the pressure in the space above the pool surface. These pressures
are then used as free surface boundary pressures. A sequence of calculated
results illustrating the fluid dynamics associated with the air clearing
process are contained in Fig. 13. The free boundaries obviously undergo
severe distortion, but the SOLA-VOF algorithm has no difficulty in follow-
ing the fluid motion. Pressures measured at the center of the floor are
compared with the corresponding calculated pressures in Fig. 14. The
agreement is reasonably good, except for some of the details associated
with the initial pressure spike. There is some experimental evidence that
the higher first spike and subsequent small second spike is a result of
elastic flexibility in the apparatus, which was not included in the calcu-
lation. Similar results have also been obtained for many other test condi-
tions and for other measured quantities [22]. Since these results have
been reported in detail in the quoted references, they are not reproduced
here. Nevertheless, these results serve to further validate the SOLA-VOF
code as a powerful and useful research tool.

VI. SUMMARY

The volume of fluid (VOF) technique has been presented as a simple and
efficient means for numerically treating free boundaries embedded in a cal-
culational mesh of Eulerian or Arbitrary-Lagrangian-Eulerian cells. It is
particularly useful because it uses a minimum of stored information, treats
intersecting free boundaries automatically, and can be readily extended to

three-dimensional calculations.
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The VOF technique was described in detail as it has been used to fol-
low free surfaces in an incompressible hydrodynamics code. Sample calcula-
tions with the new code, SOLA-VOF, show that it works extremely well for a
wide range of complicated problems.
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Figure Captions

10.

11.

12.

13.

14,

Schematic of finite-difference mesh with variable rectangular cells.
Location of variables in a typical mesh cell.

Control volume (dashed rectangle) used for constructing a finite-dif-
ference approximation for the u momentum equation at location (i+k,j).

Sketch showing definition of quantities used in defining free surface
pressure boundary condition.

Examples of free surface shapes used in the advection of F. The do-
nor-acceptor arrangement is shown in (a) where the dashed line indi-
cates the left boundary of the total volume being advected. The
cross-hatched regions shown in (b-d) are the actual amounts of F flux-
ed.

Velocity vectors and fluid configurations for broken dam problem at
times 0.0, 0.9, 1.4, and 2.0. Vectors are drawn from cell centers,
which are marked by + signs. The free surface is drawn as an F = 1/2
contour line, which is why the top right corner at t = 0.0 is not 90°.

Comparison of calculated results with experimental data for the broken
dam problem.

Velocity vectors and fluid configuration for undular bore problem at
times 0.0, 4.05, 7.02, and 10.08.

Velocity vectors and fluid configuration for breaking bore problem at
times 0.0, 6.50, 8.51, and 14.01.

Evolution of a Rayleigh-Taylor instability started by a pressure per-
turbation. Times are 0.0, 0.4, 0.8, and 1.6.

Repeat of calculation shown in Fig, 10 using pure acceptor cell advec-
tion for F. Note the considerably more irregular surface in the. last
frame.

Schematic of MIT single vent test apparatus.

Velocity vectors and free surface configurations computed when air is
forced through submerged vent pipe.

Comparison of calculated and measured pressure history on floor of
pool chamber.
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LASL Identification
SOLA VOF LP No.288

APPENDIX B
FORTRAN LISTING OF THE NASA SOLA-VOF COMPUTER CODE
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L d]
o~

wWwn
~ 00

W w
w o

ww
W &

36

o w
® ~

39
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42
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44
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48

=9
£1
52
53
54
55
56
57
58
59
€0

Cxs33+*x33xxBEGINNING OF ELEMENT COMDECK/ *#$5%s 3%
COMDECK PROC
PARAMETER IBAR2e13, JBAR2®3B)NPRTSul, MSHX 24 MSHY =4

c
IMPLICIT DOUSLE PRECISION (A=Hy0-2)
C
C e——=e BEGIN COMDECK TYPE -
REAL Z» X011, YOl, XD2, Y02
DOUBLE PRECISION LONGs, NUs NORMYX, NORMY
INTEGER CYCLE, WL, WR), WT, W8
(o e=——we END COMDECK TYPE ——
C  ==c=- BEGIN CIMDECK COMMON1 —————
c
COMMON /TD/ ACOM(l)s UN(IBARZ2,JBAR2)s VN(IBAR2,J8AR2), P(IBAR2
1 »JBAR2)y F(IRAR2,JAAR2)s» NFUIBAR2,JBAR2)» PETA(IBAR2,JBAR2))» XP
2 (NPRTS)» YP(NPRTS), IP(NPRTS)s JP(NPRTS)» TwPRTs TWPLT» NP» NTD,
3 TWTOy PS{IBARZ2,JBAR2)
c
COMMON /GEN/Z U(IRAR2,JBAR2), VI(IBAR2,J8AR2)s D(IBAR2,JBAR2), BETA
1 (18AR2,J8AR2),y FN(IBARZ2,JBAR2)» X{IBAR2), XI(IBAR2), RXI(IBAR2),
2 DELX(IRAR2), ROX(INAR2)y RX(IBAR2)s Y(JBAR2), DELY(JBAR2), RDY
3 (JBAR2))» YJ(JRAR2)y RYJ(JBAR2)y NAME(2C),
4 XL(MSHX) )y XC(UMSHX)p XR(MSHX)}s DXMN(MSHX), NXL (MSHX),
5 NXRUMSHX) 9 YL(MSHY)y YCUMSHY)» YR(MSHY)y DYMN(MSHY)s NYL(MSHY),
6 NYR(MSHY)
COMMIN /GEN/ IBAR, JBAR, DELTs NUs CYL, EPSI, DZROs GX» GYs Ul, VI
1 » VELMXy TWFINy, PRTDT, PLTDT, OMG» ALPHAs WLs WRs WBs WT» PARTN»
2 CATDs TRSTe Ty CYCLE, IMAX, JMAXy, IM1, JM1y IM2, JM2, EMF, EMF2,»
3 EM4y ITER, SM&y) NKYXp NKYs IREP, VCHGT» GYI, AUTOTs FLGs PDCs» JTMN
& » PdWy EMFly FLH4T, ISYMPL, WEBERs» BOND» SIGMA, PI, ISRF10s CANGLE
5 » TANCA» RPDy YCENTR, VIUT, IBAFF, EP8y EP9, EP10, EM10, DP1
COMMON /FLM7 Z2(2n0)
COMMIN /MDVIE/ MOVY, DTMVP, VELMX1, UVEC» VVECs XCC» YCC, JOBTP,
1 IOBLF, I0OBRGy JORST, XSHFT, YSHFT, XTRy YTR» X8Ry YBRs XTLs» YTL»
2 XWIN, XMAXy D1y D2y D3s SFs YMINs YMAX
DIMENSION Q(IBAR2,JAAR2)
EQUIVALENCE (UNpXPLT)» (VYNLYPLT)» (Q,FN)
c ———w-e ZND COMDECK CZIMMON1 ————-
END
CxxgsxxgsxREGINNING OF ELEMENT SOLAVOF/ *¥5$SHESEx%(
INCLUDE COMIECK,LIST
c
c SOLA=VIFy VARIABLE MESH 6848288585523 85 3808850808543 04804520%8
c
NAMELIST /XPUT/ DELTyNUSCYL)EPSI»DZIR0sGX»GYsUIsVI,VELMX, TWFIN
1 PRTDT,,PLTOT»OMGoALPHA»WLIWRIWT pWdR»PARTN,CwTDs TRST,MOVY DT MVP
2 sAUTOT,FLHT)ISYMPL,WESER,)BONDSISRFLOsCANGLE»)VOUT,IBAFF
NAMELIST /MSHSET/ NKXpXLoXCoXRosNXLyNXRsDXMNsNKY»YLsYCoYRyNYLsNYR
1 JOYMNyYCENTR
c
« DATA 3LOCK FOR COOE = ALL ELEMENTS ARE IN COMMON
c
DATA EMF /1.,0D0=06/» EM6 /1.00=06/» EMF2 /72.50~07/s EM4& /1.,0D0-04/
DATA EPB /1.00408/9¢ EP9 /1.00+09/» EP10 /1.00+410/s £M10 /1.GD-10/
DATA DP1 71.0D00/
DATA PI 73.,1415926%54D0/, RPD /0.,0174532925D007
DATA CANGLE /5.0007
DATA VOUT /=-1,000/s IBAFF /0/
c

CALL FILMST



1¢5
luve
1¢7
1c8
1¢9
110
111
112
113
114
115
11%
117
118
119
120

amo (s X gXel

o o

(s XaXe) (2] (] (g ] (2] (o]

10

20

30

READ (5,210) NAME
dRITE (0,200}
WRITE (65210) NAME

READ AND PRINT INITIAL INPUT DATA

READ (5,XPUT)

* SPECIAL INPUT DATA» VARIABLE MESHs READ INsCALCULATE AND PRINT
READ (5,MSHSET)

CALL MESHST

ARITE (6,2%0) T8AR,JBAR,DELTSNUSCYLSEPSI,DZRO»GX»GYsUIsVISVELMX
1 sTHFINSPRTOT)PLTOT,OMGALPHASWL ) WRyWTsWB,PARTN,,CWTD s TRSTH,MOVY
2 sNTMYP,AUTAOTyFLHTH)ISYMPLsWEBER)BONDSISRF10»CANGLE»VOUT

ARITE (69290) N<X

WRITZ (17, 200)

WRITZ (175250) IBAR, JBARSDELTsNU,CYLSEPSI,DIRO)GX»GY» UL, VI, VELMX
1 »TwFINSPRINT,,PLTDT» OMGALPHA» WLy wR)WT»WBPARTN»CWTD»TRSTHMOVY
2 sDTAVILAUTIT,FLHTISYMPLIWEBERSBOND» ISRF10sCANGLEPVIUT

WRITE (56,290) NKX

WRITE (17y290) NKX

DO 10 Is1,NKX

dRITE (69300) IoXL(T)oXCUI)HXR(I)sNXL(I)sNXR(I),DYMN(I)

ARITE (179330) IsXLCIDpXCAIDaXRUIDISNXLCI) pNYRCI)HDXUN(])

CONTINUE

WRITE (5»313) NXY

WRITE (17,310) NKY

00 20 Isl,NKY

WRITE (653C0) IoYLUTI)pYCUID)pYRUIDSNYLCTI))NYR(I)DYMN(I])

WRITE (179300) IsYLCIsoYCCT)sYR(IIINYLCIDONYRCI)»DYMN(T)

CONTINUE

VINIT=2.0%P1/3.)

CALL SETUP

IF (CYCLE.GT.Q0) GO TO 3¢C
caLL 8¢

60 T3 40

¢ START CYCLE

CONTINUE

IF (CYCLZ4GT420) OM521.0
ITER=O

FLG=1e2

PMX=ENS

CALL TILODE

CatL 8¢

CALL PRESIT
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121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
13¢
139
140
141
142
143
la4
145
146
147
148
149
10
121
152
153
154
155
126
157
1£8
189
160
161
162
163
le4
165
165
167
les
169
170
171
172
173
174
173
176
177
178
179
1€0
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(2N a¥al o (2] o (o] [g]

4G

50

70

80

90
1¢¢

110

120

IF (T.G6T.EP9) GO TO 50
CALL PARMODV

CALL VFCONV

caLt BC

CONTINUE

CALL PETACL

PRINT AND PLOT

VOLUME =0, C

D0 50 I=2,1I4]

93 53 J=2,IM}

IF (BETA(Isd) el TeDedeOReF(IsJ) el TeEMB) 63 TO 50

IF (NFU29J)oNEoOeAND F(20J+1)elLToEME) HCLEF (2, J)*DELY(J)*Y(J=1)
IF (NF{IM1,J0).EQ.2) Hwall=Y(J)

[F (NF(IM15J)eEQe3) HWALL®F(IM1l,J)*DELY(J)4Y(J=1)

VOLJMESVOL UME+F(T o) #DELY (J)®DELX(I) *{2,0%PI*XI(I)*CYL+(1.0=CYL))
IF (NFUIsJ)aNEo1laANDNF(TIoJ)eNEL2) GO TO 50

AA=2, 0*DFLCAT(NF(I,J))=3.0

VAOLUME=VIL UMESCYL*I2%PI#DELX(T)**24DELY(J)®F(I5J)*(1.0=-F(I,J))
CONTINUE

VOL3ARsVOLUME/VINIT

ARITE (6,5,280) TH»CYCLE»VOLUME,VDLBAR,HCL sHWALL

ARITE (25242) ITER,T,DELTHCYZLE» VCHGT

I[F (MOVYs£EQ.l) 50 T3 70

wAITE (17528)) THoCYZLE»VOLUME,VIOLBAR,HCLyHWALL

CONTINUE

IF (T«GTeDe) GO TO 70

WRITE (175240) ITERs THDELTSCYCLE,VCHGT

CONTINUE

IF (CYCLZ4LELO) GO TD 8O

IF (T+EMA6.LT.TWPLT) 6O TO 110

TWPLT=TYPLT+PLTNT

CONTINUE

IF (MOVY.EC.1) GD TN 100

CALL PAGEG (7,050,1)

ARITE (17,270) NaANME

ARITE (17,240) ITER, T,DELTHCYCLE,VCHGT

WRITE (175220)

DO 3) [=1l,Ivax

00 30 J=l,Jvix

ARITE (17523C) I9dsd(IsJ)oV(Isd)sPlIsJd)aD(Isd)sPS{Isd)sF(Isd)sNF(I
1 »J)sPETA(I,J)

CONTINUE

CAONTINUE

CALL DRAW

CONTINUE

IF (CYCLELLELQ) GO TO 120

IF (T+c4%,LT.TWPRT) GO TO 140
TUPRTsTWUPRT+PRTDT

CONTINUE

dRITE (£9270) NAME

dRITE (69240) ITER,T,H,DELTSCYCLES VCHGT
WRITE (6926€9)

dRITE (6,220)



181 30 130 I[=1,IMAX

162 00 130 Jsl,Jvax
163 WRITE (65230) I50s(d)eVIIsd)sPlInJd)sDlIsd)sPSLIsd)sF(I,J)sNF(I]
164 1 »J)sPETA(ISJ)

185 130 CINTINUE
l1¢e6 140 CONTINUE

167 C

188 C SET THE ADVANCE TIME ARRAYS INTO THE TIME =N ARRAYS
189 €

190 00 150 Isl,IMAX

191 DO 150 JelypJMAX

192 IN(IsJ)sUlTIsd)

163 YN(Is 3)=V(Ird)

164 U(I»J)=0.0

145 V(IsJ)=0.l0

196 D(IsJ)20.0

197 FN(I»J)=F(IsJ)

163 150 CONTINUE

199 C

2C¢0 C ADJUST DELT

201 C

202 IF (AUTOT.LT.0.5) GI TO 180

203 DUMX=EMLO

204 OVMX=ENM1D

205 DELTN=DELT

206 DO 145G I=2,IM

2C7 00 160 J=2,JM1

203 UOM=DABSC(UNIT,I)) Z(XYTI(LI+1)=XI(I))
209 YDM=JIA3S (VUNIT, I/ (YJt)+1)=Yi(J))
210 DUMX=DMAXY(DUMX,UDM)

211 DVMXaDMAX] (DVMX, VDY)

212 160 CONTINUE

213 DTMP=1.01D0

214 IF (ITzR.6T.25) OTHP=0,9900

215 DELTO=DELT#DTMP

216 CON=0.25

217 IF {(CYCLE.GT.10) CON=0.4500

218 DELT=DMINI(DELTO,CON/DUMX, CON/DVMX)
219 IF (MOVY.GT.0) DELTwDMINI(DELT,OTMVP)
220 DTRASDELTN/DELT

22} 33 170 I=1,1TM™AX

222 00 170 J=l,JMAX

223 IF (BETA(I,J)eLT.0.0) GO TO 170
224 JETA(I,J)=BETA(T,J)¢DTRA

225 170 CONTINUE
226 180 CONTINJE

2z7 ¢

228 C ADVANCE TIME TsT+DELT

229 C

230 T=aTeOELT

231 IF (DELT.LTeEM6) T=gPB
232 IF (T.GTTWFIN) GO T3 190
233 CYCLE=CYCLE+]

234 IF (FN(253)eGT40e1D7.NRVOUTLGTe00) 60 TO 30
235 TdPLTaT

23% TWFIN=T

237 G0 T2 30

238 190 CONTINUE

239 CALL EXITG (7)

240 CALL EXIT



98

241 C
242
243
264
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267

200 FDORMAT (1W1l)

210 FORMAT (204A4)

220 FORMAT (&% o14T»5Xo1H4Js 9Xs1HU» 14X »1HV 15X LHP»15Xs1HD»12X92HPS» 13X,
1 1HF)LLX92HNF, OXo&4OETA)

230 FORMAT (2X,73,3%5I3»6(3Xp1PD12¢5)53Xs13,3XeD12.5)

2640 FORMAT (6Xs5HTITER® »IS5s5X6HTIME® 5 1PD12+5s5X»6HDELTs » 1PD12:555Xy
1 THCYCLEs ,I4,5X, 74VCHGT= ,1PD12,5)

250 FORMAT (1H »5X,5HI3AR® ,14/6X96HJIBAR® ,14/6X,6HOELTe ,1PD12.5/8X»s4
1 HNUS pD12.5/7T7X»5H4CYLs 5212.5/6XsH6HEPSIs ,D12.5/6X,6HDZIR0= 5»D12.5/
2 AXp44GX® 3D12.5/78X0&HGY HD12.5/8Xs4HUI= ,D12.5/08X,4AdVI® ,D12.,5/5
3 Xy 7AVELYX® 5D12.5/5Xs7H WFIN® ,D12.5/5XsTHPRTOT® ,012e5/5Xs 7THPLTD
4Ts 501257 X9 5HOMGe sD1265/5X9THALPHAR ,D12.5/8Xs4Hul= »I4/8Xy4HUWR
S8 ,16/8Xe&HUWTe »T4/8Xs4HWE® H14/5X) THPARTN= »D12¢5/75X»AHCHTD= ,D12
5 oB/5Xs5HTRSTe 5N12,5/6Xs6HM0VYs ,D12,5/5X, THOTMYP= ,D12.5/5X, THAU
7TOT= D12, S/6Xs6HFLHAT= 4D12.5/73Xs FHISYMPLT® 5 I4/5X,THWZBER® »D12.5
8 /6¥94HBINDe ,D12.5/3XsIHISURFLOs »14/64Xs BHCANGLE= »D12.5/6Xs6HVIU
9T= ,D1245)

260 FORNMAT (1HC)

270 FORMAT (1H ,18Xs20404,1%»A1052(1XyA8))

280 FIRMAT (2X,S5HTIME= 4 1PD12e55s3X»THCYCLE= ,16,3Xs6HVOLUME= ,1PD12.5s
1 3X,8HVOLRAR= ,1PN12,593Xs5HHCL® »1PD124553X»7THHWALLS ,1PD12.5)

290 FIRMAT (2X,5HNKX=,14)

300 FORMAT (22X 5HMESH= o 14,3Xp34HLs ,1PD12.553Xp3HC= ,012.553X,3HRs=
1 5D0124553Xs4HNLE 216,53 Xs4HNRSs 54, 3X,5HDMN= ,D12,.5)

310 FORMAT (2X,5HNKYs ,14)
END



2¢€38
269
270
271
272
273
274
275
27
277
2178
279
2€0
281
282

C*#esx*xSs*xBIGTINNING OF ELEMENT FILMST/

¢
c

RS S SR

SUBRIUTINE FILMST
TOMMIN /FLM/ 7(200)
sexxs SETUP

caLt
CcatLtL
catlL
catt
CALL
CALL

MODESE
SETSMG
SETSMG
28JCT6
SUBJEG
SCOUTH

OF QUTPIT FILM TYPE sssss

(Z548)

(Z2519515.0)
(2520512.0)
(2926%00¢0912¢%510.0)
(2300010 0931003100)
(z)

sxxk® END OF FILM QUTPUT *4#%s

RETURN

END
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263 C*#33+#x353+##3EGINNING OF ELEMENT MESHST/ S5 $SEF 3824

284
265
266
287
288
2¢E9
290
291
292
293
29%
295
296
297
298
299
300
301
302
303
3C4
305
3¢cé
307
308
309
310
EDD)
312
313
314
315
316
317
318
319
320
321
322
323
32¢
325
326
327
328
329
330
331
332
333
334
335
336
337
338
33’
340
341
342

10

2
30

40

SJ3RJUTINF MESHST

INCLUDE COMRECK,LIST

[=1

Jel

X(1)=xL(1)

Y{l)=yL(1)

00 39 Ksl,NKX

DxMLs(XC(K)=XL{K))/NXL (K)
DXMRI=(XR (K J=XC(X)I/NXR(K)

DXMN1=DXMN (K )

NT=NXL(K)

TNeNT

TNsDYAXI{TNy1.0+EMS)

ODXMN(K)=OMINI(DXMNL,DXML)
3MCa((2.0%TN4L1,0)S(XC(K)=XL{K))I=TN*®(TN#2,0)*DXMN(K))/(TN*(TN=1.0))
CMC (TN#DXMN(K)=XC(K)+XL(K))/(TN$(TN=1.0))

0 1C L=y NT

I=[+1

X{I)sX([=1)4BMC+(2.0«DFLOAT(L)+1.C)*CNC
NTaNXR(K)

TN=NT

TN=DMAXI(TNy 1. O+EMS)

IXMN(K)=DMINI(DXMN1,DXMR)
BMCo({2,0%TN+1,0)*{XR(K)=XCIK)})=TN*(TN+2,C)I*DXMN(K))/ (TN*(TN=1,0))
CHMC=(TNSDXMN (K )=XR(<)I+XCIK))/{TN${TN=-1.0))

DD 20 L=1,NT

I+l
C(I)=X(I=1)+3MC+(2.0%TN+3,C~2,0%0FLOAT(L))*CMC
CONTINUE

0 6J K=1,NKY

DYMLs(YCAKI=YL{K))/NYL (K)

JYMR= (YR (K )=YC{X))/NY(K)

DYMN1aDYMN (K)

NTaNYLIK)

TNaNT

TN=DMAXL (TN 1. 0+EM4)

DYMNIK)=aDPMINI(DYMNL,DYML)

BMCE{ (2. 0% TN+L,0) *¥(YC(K)=YLA(K))=TN®{TN+2,0) *DYMN(K)})/(TN*(TN=1.0))
CMC=(TNEDYMN(K)=YCIK)+YL(K))/(TN®(TN=-1.0))

0J 40 L=1,NT

JaJel

Y(J)aY(J=1)+BNMC+(2,7%DFLOATI(L)I+1.C)*CMC
NTsNYR(K)

TN=NT

TN=OMAXL{TNyLlaD+EVS)

AYMNIK) =DM INI(DYMNLI,DYMR)
IMCa((20%TN+Lo0)*(YR(KI=YCUK))=TN*(TN42,0)*DYMN(K) )/ (TN&(TN=1,0))
CUCn(TNSDYMN(K)I=YRIK)I¢YC(KII/(TN#(TN=1.0))

D9 50 L=1yNT

Jaj+l

Y(J) =¥ (J=1)4BMC+(2,0%TN+3,0-2.,0%DFLIAT(L))*CMC
CONTINUE :

NyMX=]

NUMY=J

NUMX MLl sNyMY=]

NUMYM1sNUMY=~-1

NUMXPLaNUMX+]

NUMYP1sNUMY+L

I3AR=NUYX=]



343
344
345
346
347
348
349
350
351
3t2
353
3%4
335
356
357
358
359
360
3€l
362
3¢3
364
3¢5
366
367
3¢8
369
370
in
372
373
374
375
376
377
378
379
380
381
382
33
364
385
3¢b
3€7
3€3
389
390
391
392
393
394
365
366
367
393
369
4Co
4C1
4C2

[z X gXe]

OO0

79
30

90

1¢0

119

120

JIARSNUMY=-]
IMAX=IBAR+2
JNAX®J3ARS2
IMlsIMAX=-]
JYlsyMAX-1
IN2=IMAX=2
JM2mJMAX=2

# CALCULATE VALUES NEEDED FOR VARIABLE MESH

DO 8L I=1,NUMX

[F (X(I).EC.J.0) GO TO 70
RX(I)=1,0/%(1)

60 10 8)

RX{I)=0,.0

CONTINUE

D3 90 Is=2,NUMX

XI(I) 23,55 (Xx{I=-1)+X(1))
OELX(I)aX(I)=¥(TI~-1)
RXI(I)=1.d/XI(I)
ROX(I)=l.C/DELX(T)
DELX(1)=2ELX(2)
XI(1)=sxI(2)=9ELY(2)
*XI(1)=1.0 /0T L)
ROX(1)=1.N/DELX(1)
DELX(NUMXP1)=DELX(NUMX)
XI(NUMXPL) sXT{NIMX)+DELXINUMX)
CINUMXPL) s XTI (NUMYP1)+0.58DELX(NUMXPL)
RXI(NUMXP1)=21,0/XT(NUMXP]1)
RDOX(NUMXPL )=l ,0/NELX(NUMXP])
00 100 I=2,NUMY
YI(1)=d 5% (Y(I=1)+Y(I))
RYJ(I)=1sC/YJI(T)
JELY(I)=Y(I)=Y(I=1)
RDY(I)=1,0/2ELY{T)

CONTINUC

NILY(1)=DELY(2)
ROY(1)=l.d/DELY(1)
YICideYy(2)=DELY(2)
RYJ(Ll)=1l.0/Y){1)

NELY (NUMYP1)=DELY (NUMY)
YJ(NIMYP L) Y JUNUMY)I+DELY (NUMY)
RYJINUMYPY )=m1,C/7YI(NUNMYPL)
ROY(NUMYP1)=1,C/DELY (NUMYP1)

#*CALCULATE RETA(T»J) MESH

00 110 Is=s2,NUMX

DO 110 J=2,NUvY
AXBDSLT*ROX(I)I*(2,0/(DELX(TII*DELX(I=1))+2,0/(DELX(I+1)+DELX(I)))
1 4DELT*RNOY(II*(2,0/(DELY(JI+DELY(J=1))+2,0/7(DELY(J+1)+DELY(J)))
3eTAllpJd)s UG/ XX

CINTINUE

ARITE (50169)

WRITE (1751%0)

D3 120 Isl,NUMXP]

WRITE (65170) IoX(TI) oI oRX(I)pIoDELXC(I) I oRDX(IIsToXI(I)sI»RXI(I)
WRITE (175172) IsX(T)plsRX(I)slsDELX(INoIsROX(IIIsXI(INoIoRXILI)
CONTINJE

dRITE (69160)

101



102

4C3
404
405
406
407
403
4C9
410
411
412
413
414
415
416
417
418
413
4c0
421
422
423
424
425
426
427
428
429
430
€31
432
433
434
435
4356
437
438

OO

dRITE (17,160}

D0 130 Is=1,NUMYPL1

WRITE (65100) IsY(IV,I,DELY(I)sIsROY(IIsI,YJ(I)HIsRYJII)
WRITE (17,180) IsY(T)sIo0ELY(I)aLsROY(T)ToYJ(I)sT,RYI(I)

13C CONTINUE

* ¥ SET RETA(Is))= =1,0 IN OBSTACLE CELLS
MUST B8E DONNE 3Y H4AND IN GENERAL

D0 140 I=2,IM]
YCIRCoYCENTR=DSQRT(1,0-XI(I)%%2)
00 140 Jsw2,JM]
IF (IBAFF.GTe0AND.T.EQ.B.,ANDJEQ.5) GO TO 140
IF (XI(1)eGTe0el1DNO0ANDCYJ(J)LT.YCIRC) BETA(I»J)==1.0
IF (I3AFF.E%.0) GO TO 140
IF (XI(IDalTe0e62500eAND{YJI(J)eGTe0s4D0ANDYI(J)eLTe0.56DC)
1) 8ETA(I,J)=~1,.0
140 CONTINuUE
ARITE (5+160)
WRITE (175160)
DO 150 J=1,NuMY
DO 150 Is1,NUMX
ARITE (651S0) I,J535TA(I,J)
WRITE (175190) I5Js3ETA(IJ)
150 CONTINUE
RETURN

169 FORMAT (141

170 FORIMAT (LY 92HX(s12,2H)=m,1PD12:.502Xs3HRX(91252H) =9 P)12.592Xs SHDELYX
1(s125249)251PD2245» 1 s 4HROX{»[252H) =91PD124552Xs 3HXI(p1252H)=,1PDY2
2 592X XTI (»12+24)2,1PD12,5)

180 FORMAT (1Y ,2HY(51292H4)8,1PD126593XsSHOELY(51202H)=s1PDL2+593Xs&HRD
1Y {sL252H)=51PD12e5s3X93HYJ(»1292H)351PL12:s553Xs &HRYJ(5]I2,24)5,1P0]1
2 2.5)

190 FORMAT (2YX,5HSETA(sT2s1Hss1292H)=51P01447)

END



439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
45

457
458
459
460
401
462
4¢3
464
465
466
467
468
469
470
471
472
473
474
475
475
477
478

468

Cregs**33243EGINNING IF FLEMENT SETUP®/

o000

OO0

(s ¥ e NN Nalal

OO0

OO0

OO0

2€
30

SUBROUTINE SETUP
INCLUDE CIMDECK,LIST

# COMPUTE CONSTANT TERMS AND INITIALIZE NECESSARY VARIABLES

T340

ITER=Q

CyCL==0

TWPRT=J,.9
TWwPLT=0,0

NTD=)
SIGMASEM&*PI/WEBER
GY=SIGYA*BOND
CANGLE=CANGLE#*RPD
TANCA=DTAN(CANGLE)

* SET CONSTANT TERYS FOR PLOTTING

X4INsX (1)

XMAXsY(IM1)

[F (ISYMPL.GT.0) YMIN=~XMAX
YMIN=Y (1)

YrAXeY{JM])
OleXxYAX=XMIN
02=YMAX=YMIN
ND3=04AX1(C1,02)
SF=1.9/03

XSAFT=0e5% (1,0=D1#%F)
YSAFT=),5%(1.,0-D2%SF)

JETcRMINE SLO®ED S0JNDARY LOCATION

SET [NITUAL T3P SURFACE CCNFIGURATION

CAMOYTE IMITIAL VAID - FRACTION FUNCTION F IN CELLS

IF (ISRF1CeGTe0sANDFLHT.GT.EM6) CALL ICON
SET F(I,J)=1.0 IN 03STACLE CELLS

00 10 I=2,1IM]1

DI 10 J=2,J41

IF (BETA(ISJ)elTe042) FlIsJl)=l,0
CONTINUE

CALCULATE HYNDROSTATIC PRESSURE

DO 30 I=2,1M1

20 30 Js=2,JM1

IF (FUI»J) eGTele0-S%6.0RF{I»J).LT.EMS) GO TO 30
J5=J

20 20 J1=2,4S
PUIsJd1)a=GY®R(YJUISIH(FUI»JISI=0.5)%DELY(JS)I=-YI(J1))
CINTINUE

CAINTINUE

PARTICLE SET UP

NP=PARTN

*55Se8EEC
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499 C * SPECIAL INPUT DATA

5¢0 C LAZ R AL R

501 VCHGT=0.0

502 EMFl=1.0~EMF

503 0N 40 J=2,J%1

504 D0 40 I=2,1IM

5¢C5 PS(I»4)=3.0

5C6 40 CONTINUJE

5¢C7 DXMIN=EP10

508 DO 50 I=2,IM1

5¢9 50 JIXMIN=DMINI(DELX(I)»DXMIN)
519 DYMIN=EP10

511 00 60 I=2,4M1

512 60 DYMIN=DMINILI(DELY(I)s DYMIN)
513 VELMXL=OMINL{OXUINGOYMIN)/VELMX
514 IF (CYCLE.GT.0) GO TO 80

515 C

516 C # SET INITTAL VELOZITY FLELD INTO U AND V ARRAYS
517 C

518 00 7C I=2, M1

519 29 70 J=2, J%1

520 ViI,J)=vIl

521 utl,J)=ul

522 IF (FUIsJ) oLTLENF) J(I,J)=040
523 IF (FUIsJ) el TeEME) V(I,J)e0.0

524 79 CONTINUE
525 80 RETURN
526 END
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527 C*»3sxx 33+ 3cGINNING OF SLEMENT ICON/ ssgsengssel

528
529
530
531
532
533
534
535
536
537
538
539
540
54l
542
543
544
545
545
547
548
543
559
551
582
553
55¢
555
526
5:7
543
559
560
561
562
te3

570
571
572
573
574
57%
576
5717
578
579
580
561
582
83
5864
565
5¢€6

10
20

30

49

650

79

90

120
110

120

SUBRJUTINE ICON

INCLUDE COMDFCK,LIST

DIMENSINN YS{(500)s 7S(500), CURVI500)s CURVY(500)
FLATO=sFLHT+0.1D0

N=350)

NM]lsN=]

EPSILN®2.CeEMg

DELsld/NFLIOAT(N)

COSCA=DCIS(CANGLE)

IF (CYL.GT40.0) CISCA=2,0%C0OSCA
GAMMA=SIGMA® (1,0420SCA)

ITMX=200

IT=1

INGT=0.08%CYL+(1.0-CYL)

YSNOT=J.0

IF (30ND eNEsO+0) YSNOT==0,5¢DABS (COSCA/BOND)
CONTINUE

DD 60 Js=lyN

IF (JoGTel) GO TO 30

ISJM1=CaD

YSJM1=sYSNOT

GO TD 40

ISJM1=Z5(J=1)

YSJMl=YS(J=1)
RSQZ=1.0/0SORT(1,0=25S JM1*%2)
RJML=DFLIAT(I=-1)4DZLsCYL+(1.0-CYL)
RJsDFLOAT(J)*DFL*CYL+(1,0-CYL)
RI4He(OFLNAT(I)=N5)eDEL*CYL*(1.0-CYL)

IS(J)m(ZSIMI*RJML4DEL*¥RIMH*(COSCA-BOND*(YSJMLI+C.54DEL*ZSINLI*RSQZ))
1) /7R)

I (ZS(J)eLTe1.0) G] TO 50
YSNOT=YSNOT#1,0509

G0 T9 16

RSIIN=LD/0SART(14I-25(J)*s2)
YS(J)oYSJMI+0.5+NEL* (ZSIMI*RSQZ+ZS(JI*RSQZIN)
CONTINUE

IF (30OND.%Ce0.0) GJ T2 70
ERR=DAIS(ZSIN)=CONSTA*(0.5%CYL+(1.0-CYL)))

IF (FRRSLTWc>SILN)Y S0 TO 120

YSUMS O 5% YSNNT*RNOT+YS(N)})

DD 80 J=1,NM1

RUsDFLIAT(J)*DEL*CYL+(1.0~CYL)
YSUMsYSUMeYS(J)eRY

Y3UMsYSUMRDEL

IF (YSUM.LT,EPSILN.AND.ACND.EQ.0.0) GJ TO 120
DEN=(2.u*PI*CYL+(1,0=-CYL))
YSNCT=YSNOT=-YSUM/DEN

IT=1T+1

IF (30NDJNE.O.0) GI TO 130

N0 9C J=1,N

YS{J)=Y¥S(J)=~-YSUM/DEN

CONTINUE

IF (IT.GT.ITMX) GO TO 110

63 TJ 70

IF (ITeLELITHX) G0 TO 20

IF (IT.GT,ITMY) WRITE (6,260) IT,YSUMp2ZSI{N),CODSCA
CALL EXIT )

CONT INUE

YSNOTsYSNOTeFLHTO
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5e7
568
589
590
591
562
593
594
595
566
597
598
599
600
6C1
602
603
504
605
606
607
508
6C9
610
611
612
613
614
615
616
617
618
619
620
¢21
622
823
6524
625
626
627
628
629
630
631
632
633
634
635
636
637
6138
639
640
641
642
663
644
645
645

106

130

140
15¢

160

170

1&C

190
200

210

220
230

D0 13C Ksl,N

YS(K)=YS(K)+FLHNTO

CONTINUE

CALL PAGEG (2505051)

CALL FRAMYE (XMIN,XMAX,YMAX,YMIN)

CALL DRWOSS

DN 160 K=sl,N

IF (KeGTel) GO TO 14D

YSKM= YSNOT

60 TO 150

YSKM=YS(K=1)

TSK=YS(K)

XKMsDFLOAT (K=1)%nEL

XKsDFLOAT(X)*DEL

CALL DRWVEC (XKMyYSKMyXKyYSKsl)

CONTINUE

CALL PAGEG (750,0,1)

J0 170 K=1,N41

OHDXk=(YS{K+#1)~YS(K))/DEL
DADXL={YSI{K)=YS(K=1))/DEL
GPe0,S*x(DHDXR+DHDXL)
GPO=(DHYDXR=NHDXL) /DEL
CURV(K)==GPP/{(1.,0+GP%%2)%%]1,5)
DH4DYTe=)EL/(YS(K#1)=-YS(K))

DHGYBe=DEL 7(YS(K)=YS (K=1))

GYO=0 5% (DHDYT+DHDYR)

GYPP=2.G*({ DHOYT=DHOYB)/Z (YS(K+1)=YS(K=1))
CURVY(K)s=CY2D/((1.0¢GYP*#2)%%],5)

WRITE (553C0) Ke¥S(K)pCURV(K)»CURVY (K)
CAONTINUE

N2 186G Is2,IM1

KeXI(I)/DEL+1.0
XCURVSCURV(K=1)+(XI(I)=DFLOAT(K=1)%DEL)I*(CURV(K)=CURV(K=-1))/DEL
aRITE (69290) THXI(1),XCURY

CONTINUE

DN 210 1s2,IM]1

Kex[(I)/DEL+1.0

IF (KeGTel) 60 TO 130

XSKM1=(.0

YSKM1=YSNOT

30 TO 200

(SKMLeDFLOAT(K=11%DEL

YSKM1sYS{K=1)
FLHAT=YSRMI+(XT(I)=XSKML)*(YS(K)-YSKM1)/DEL
00 210 J=2,JM1

F(lsJ)=140

IF (FLATeGTeY(J=1)oAND FLHTLTeY(J)) F(I,J)mROY{JI*(FL4T~Y(J=1))
IF (Y(J=1) eGE.FLYT) F(I»J)=0.0

CONTINUE

DO 250 J=2,4M1

IF (YJ(J)eLTeYSNOTLIRYJ(J)IeGToYSIN)) GO TO 250
20 220 KK=2,N

KeKX

IF (7S(KK) oGTeYJ(J)e ANDYSIKK=1) oL TeYJ(J)) GO TO 230
CONTINUE

60 T2 259

CONTINUE

TANG={YS(X)=YS{K~=1))/0DEL

ANG=DATAN(TANG)

IF (ANG.LE J.25%PI) GO TO 250



be?
648
649
650
651
652
653
6s4
655
655
657
653
659
660
6tl
6€2
663
664
665
666
667

249
25C

260

21

280
25C
300

FLYTXaX{ TM1)=DEL*(DFLOAT(K=1) #(YJI(J)=YS(K=1))/(YS(K)=YS(K=1)))

D0 240 L=2,IM1
X{MLeX(IM1)=X(L)
XIML1=X(I™1)=X{(L=-1)
F(LsJd)=140

IF (FLATXGGToXTMLOAND FLHT XL ToXIMLL) F(LoJ)aRDX(LIS(FLHTX=XTIUL)

IF (XIML.GESFLHTX) F(Ly»J)=0.0
CONTINUE

CONTINUE

DG 250 J=l,JMAX

FllsJ)=sF(2,J)
FO(IMAXpJ)=F(141,J)

o0 270

I=]1,IMAX

E(Is1l)=F(Is2)
FIIoJMAX)=F(I,yJIM1)

RETUN

FORMAT
FORMAT
FORMAT
END

(2¥»13HERROR IN ICON»2X»15,2X»3(2X,1PD12.5))
(2% 5I1352X51PN12.5+2X»1PD12.5)
(2X513,3(2%s1PD12.5))
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663 C**35*%33x4BEGINNING IF ELEMENT BC/ AL 3EL 2L L e

669
670
671 C
672 C
673 C
674
675
676
677
678
679
680
681
682
683
684
665
686
687
688
669
56GC
691
692
693
694
695
665
697
098
699
7¢L0
7C1
7¢2
703
7C4
705
766
"7
708
709
710
711
712
713
714
715
7156
717
718
719
720
721
722
723
7%
725
72%
727

108

10

30

&0

50
60

70

L1y

30

1co

11¢

120

130

14C

1:¢
160

SUBRJUTINE 3C
INCLUCE COMDECK,LIST

SET BOUNDARY CONDITIONS

DO 100 JslpJMAX
Flled)esF(2,I)
FIIMAXpJ)=F(TM1,J)
P(led)=sP(2,5J)
P(IMAX,J)=P(IM1,J)

50 TO (105205,30,40), WL
UY(lsJ)=0,.0

Vilsd)sV(2,d)

G3 TJ 50

U{lrd)=0.C
VilsJd)==V(2,J)*NELX(1)/DELX(2)
60 10 50

IF (ITER4GT40) GO0 TO 50
Ul1sJ)=u(2,))
V(lsJ)=V(2,))

60 TJ 59

J{lsJ)au(Inm2,y)
VilsJd)aV(IM2,J)

69 T3 50

60 TJ (60570580597} dR
U(IMlsed)=0Q49
VIIMAXsd)aV({IM1,e])

G0 TO 1u90

YJ(IML,J)=0.0

VIIMAX s J)m=V(TM1,J)®DZLX(IMAX)/DELX{IMY)
60 TD 100

IF (ITER.GT.0) GO T3 100
U(IM1,Jd)=s3(IM2,J)
VIIMAXsJ)= N (IM1pJd)

G3 10 100
JUIML, )= (2,])
VIIMAXsJ)sV(3,J)
CONTINUE

00 200 I=1,IMAX
FlIsl)=F(1,2)
FI(I»JMAX)=F(T,JM1)
P(Isl)eP(I,2)
P(TsJMAX)=P{TodM]1)

GO T3 (119,1275130,140), wT
ViIsdM1l)=0,0
UlIsdMAX)=I(I,J4%]1)

GO0 TO 150

V(I JM1l)=0,0

UCLoIMAX) ==Y (T IM1I*DELY(JMAX)/DELY(JML)
89 T0 1359

IfF (ITER.GT.0) GO TO 15¢
V{[sdM1l)ay (TyJM2)

UG MAX)Y=U(I,JM1)

G9 T3 159
VIIpdM1)my(I,2)
ULTsJMAX)=L(T53)

G0 TO 159

GO TO (150,1705»180,192), uB
ViIls1)=0,C



723
729
730

739
740
741
742
743
T44
T45
746
747
748
749
150
751
782
7%3
754
75
756
€7
758
759
760
761
7¢e2
763
T¢4
7¢€5
7¢6
767
768
769
770
M
772
773
174
775
776
777
778
7719
780
781
182
763
784
785
766
7€7

o000

UtI
60
170 v(I
Ul
60
150 IF
V(I
ul(l
60
190 v(I
Jlr
200 CON

FRE

23
R P
RXR
KRN
IF
RXR
60

210 CON
RXR

220 CON
90
IF
BMR
AT
3L
M8
FUI
P(I
1F
IF
1F
IF
aMT
1F

FUIpJ)m(BMRIF(I+1,)43MT#F (1o J¢1)4BML4F(I=1,J)+BMB*F(I,J=1))/BNTOT
P(IsJ)s(AMREXP(T+1, ) +3MT*P (I, J¢1)+BMLEP(I=1,J)+BMB*P(TI,J=-1))/BMTOT

6o
230 CON
IF
NFS
IF.
IF
IF
IF
IF
If
60
240 NFS
60
250 U(1
1 (1
63
260 V(I
11
60

»1)3U(1,2)

T0 200

ll)'0.0
s1)m=U(I,2)%DELY(1)/DELY(2)
TO 200

(ITER.,GT.Q) GD TI 200
21)ev(I2)

p1)=U(T,2)

T0 209

21)ayv(TyJM2)
p1)=1i(T,dN2)

TINVUE

E SURFACE AND SLOPED 3OUNDARY CONDITIONS

450 I=2,1IM])
sRDX(1)40+5*RXI{])

Pel.0N/XRP

sRDOX(I) =) 5%R¥I(])
(XR4.5T40.0) GO TO 219

M2Ced

Y0 220

TINUE

M=]l,0/XRM

TINUE

450 J=2,J"1
(BETA(T»J)eCGT,04d) GO TO 230
2060

5.0

0.9

2043

pJ)=d 6D

2J 18040

(B3ETA(I+415J)e6GTeded) 3MR=1,0
(RETA(I»J+1)eGTeded) BMT=1,0
(3ETA(I=19J)eGTe0s0) BML=1,40
(BETA(T,J=1),GT.0.0) BMB=1.0
OT=34R+AMT+A4L+348
(3MTITSLELDWN) GI TD 450

TQ 450

TINUE

(FUIsJ) el TeEMFeMRGF(IsJ)eGTel0=EMF) GO TO %0

Bs(

(FUI+1,J0).LT.EMF) NFSB=NFS8+]

(F(IsJ+Y)oLToEMF) NFSBasNFS8e2

(FUI=1yJ) el ToSMF) NFSOsNFSBe&

(F{IsJd=1)eLTeEMF) NFSB=aNFSB+8

(NFS3.,EQ.C) GO T) 400

(NFSR,GT«8) GO T] 240

TN (25052605,2725280,2905300,310,320), NFSB

8laNFS8=8

TI (330,340,3509350,37C»380,390)s NFSB1

2d 1 ((I=1sJ)=DELXLTI)*ROY(JI* (VI IsJ)=V(IpJ=1))2#(1~-CYL)+CYL®(V
=1l J)EXRASRXRP=RNY (J)*RXRP#(V(I»J)=V(I,Jd=1)))

T0 410

2d )=V Ipd=1)=DELY(J)I*ROX(II*(U(IsJ)=U{I=1,J)))*(1=CYLI+CYL®(V
2J=1)=DELY(J)*(XRP*U(I,J)=XRM*U(I~1,5J)))

T0 419
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110

788
769
790
791
792
793
794
795
796
797
798
799
8C0O
ac1
802
6C3
8C+4
8¢5
806
8c?
8c3
8co
810
811
812
813
814
815
816
817
818
819
820
821
822
823
82é
825
826
827
828
829
830
831
632
833
834
835
836
837
828
839
840
3641
842
843
844
845
846
847

OO0

3OO0

27C UGTsJ)sU(I=19d)%(1-CYL)+CYL*U(I=1»J)8XRYFRXRP
63 T 260

280 Ul1=15d)m(ULT»J)+DELX(I)*RDY(IIS(VII3)=V(I,J=1)))%(1~CYL)4CYL®(U
1 (Do )*XRPRIARMERDY(JISRXRMR(VITIJ)~V(IsJ=1)))
GG TO <10

290 U(I=-1sJ)=U(I-15J-1)
50 TO 250

300 U(I=1J)U(1J)*(1~CYL)I+CYL#U(I»J)*#XRP*RYRM
60 TO 2690

310 U(I=15J)=U(I=1,J=1)
UlIsd)=ull,i=1)
G0 TO 260

320 V(I d=1)s{VIIJ)+DELY{J)ISROX(TI*{ULI»J)I=U(I=-1sd)2)%{2=CYL)+CYL*(V
1 (LeJ)eDSLY( ) (XRORY{IJ)=XRM*U(I=1,J)))
60 TO 41N

330 UCLIsd)sU(I=1o))¢(1=-CYLI+CYL*U(I=15J)*XRMSRXRP
G0 1O 320

340 V(IyJ)ev(I=1,J)
60 T2 320

350 VIIsJd)aviI=1,))
V{lsJ=1)aV (I=1,J0~1)
50 T2 257

360 JUI=1,J)sU(TpJ)*(1=CYL)+CYL*U(I,J)*XRP¥RXARM
60 TO 320

370 UlI,Jd)su(l,l+l}
Y{l=lpJ)sU(l=1yJ¢1)
60 T3 320

380 V(I»J)=v(I+l,J)
VIIpd=1)sV(I41,J=~1)
30 TO 220

390 JUI»J)eUtlTI=1,J)%t1=CYL)4CYLRU{I=1pJ)$XAMERXRP
ViIsd=1)sV(Tys))
V(IsJd+1l)=V(I,J)
30 T2 410

400 CONTINUE
6Gd TJ 453

SET vELICITIES IN <MPTY CELLS ADJACENT TN PARTIAL FLUID CELLS

410 CONTINUE

IF (FLGWGT o0e54AND,ITER.GTL0) GO TO 450

IF (F(I+15J)eGT<EMF) GI TO 420

IF (FUI+15J+1) LT EMF) VI(I+1,J)ev(I,ry)

IF (FUI+1p =1V LT EMF) V(I®s,i=1)my{I,J=1)
42C IF (F(lyJ*1).GT.EMF) GI TO 430

IF (FUI+1pJ+1)eLToS4F) UllpJd+l)2U(1,J)

IF (F(I=19J41) LT eEMF) U(I=1sJ+1)sU(I-1,J)
430 IF (F(I=1sJ)aGT.EMF) GO TO 440

IF (FCI=15J+1)oLToEMF) VII=1,J)=V(],sJ)

IF (FUI=1pJ=1}eLT.EMF) V(I=1yJd-1)=2V(I,Ji~1)
440 IF (F(IsJ=1).GT.EMF) GO TD 450

IF (FUI+1lsJ=1)4LT4S%F) U(IJ=~1)2U(I,J)

IF (FUI=1sd=1).LToEMF) UlI=1pJ=1lley{l~-1,J)
420 CONTINUE

SPECIAL BQUNDARY CONDITIONS
D0 440 [=1,TMAX

VI(I,1)s0.0
IF (XI(I)elTe04100) V(I»1)=VOUT



848
849
850
851
852
853
854

460

IF (VOUT.LT.EM6) GO TQ 460
F(I»1)=C,0

IF (KI(I1)elTo0a41D00) F(I,1)=1,0
IF (XT(I)elLT.04100) FlI,2)=1.0
CONTINUE

RETURN

END
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855 Cx*ss%x38*xBSGINNING OF FLEMENT TILDE/ 558K 3888

8c6
8s7
858 C
859 C
669 C
861
862
863
Y.L
865
8éd
E6T
de8
849
670
er71
872
873
874
875
876
877
878
879
880
8&l
8e2
883
864
885
.3-1.
887
8€8
8¢e9
890
861
892
863
894
865
8956
397
868
899
Q00
Jul
902
903
9C4
905
906
9C7
908
909
91¢
911
912
913
914

112

10

SUBRCUTINE TILDE
INCLUDE COMDECK,SLIST

* COMPUTE TEMPORARY U AND V

DO 20 J=2, Vvl

00 20 I=2,IM1

U(I,J)=0.C

RDELX=L,0/ (DELX(IV+IELX(T+1))

RDELY®=L.0/(DELY(JI+DELY(J+]1))

IF (F(I»J)+F(T+15J).LT.EMF) GO TO 10

IF (3ETA(I»))elTe0eNeORGIETA(I*1,J)elTe0e0) GO TO 10
SGU=NSIGNIDPL1,UNIT,J))

DUDRa(UN(T +1,J)=UN(T,J))*RDX{T+1)
DUDL=(UN(I»J)=UN(TI=1,J))*RODX(I)

ROXA=DELXCTIY4DELX(T+]1) +ALPHA®SGUS(DELX(I+1)=DELX(I))
RDXA=1,0/RDXA
FUX=RDXASUN(TI»J)*(PTLX(I)*DUDR+DELX(I+1)*DUDL+ALPHASSGU®(DELX(I+]1)
1 *0UDL=-DELX(T)*DUDR))
V3T=(0ELX(T)PUN(T+1,J)¢DELX(I+1)*VN(I»J))*RDELX
VB3s(DELX(IVRYN(T+1eJ=1)+DELX{I+1L)*VYN(TIo»J=1))*RDELX

VAV=) ,5%(VBT+VAa8)

DYT=0 5% (DELY(J)+DELY(J+1))

DYB=D S+ (DELY(J=1)#NELY (J))

QUDTs{UN(T »J+1)=UN(I5J)}/0YT

DUI3=(UN(T »3)=UN(T»J=-1))/0YB

SGVeISIGN(DPLl,VAV)

DYA=DYT+DYR+ALPH{A%S5V*(DYT~DYB)
FUY=(VAV/DYA)S(CYRB*DUDT+DYT*DUDB+ALPHA®SGY*(DYT*DUD3-DYB*#DUDT))
UBDYT=(DELY(J)*UN(T»J+1)+DELY(J*1)*UN(I»J))/C(DELY(J)+DELY(J+1))
UBDY3s(DEL YUI=1)*IN(I,J)+0ELY(J)*UN(I»J=1))/7(DELY(J)I4DELY(J-1))
DUDXSI =2 0% (UN(T=19) )*ROX(I)/(DELX(I)+DELX(I+1))4+UN(I+1,J)%ROX(]I+1
1 )/ (DELX(T)I#NELX(I+1))=UNCI»J)*ROX(I)*RDX(I+1)})}

QUDYTo(UN(TI, J+1)¥DSLY(J)*RDY(J4LI=UN(I»J)I*DELY(J+1)*RDY (J)=L'BDYT*
1 (DELY(JI*RPDY(I+1)=NELY(J+1)*ROY(J) D)/ (Ce5*(DELY(J)+DELY(J*+1)))
OUDYS={UNIT,J)eNELY(J=1)#RDY(J)=UN(I,J=1)*DELY (J)*RDY(J=-1)=-UBDYB*
1 (DELY(J-1)%2DY(J)=NELY(JI*RDY(J=1)))/(0s5*(DELY{J=1)+DELY(J)))
DUDYSQ=(DUDYT=DUDYR)}*ROY(J)

DUDXL=(UN(IsJ)-UN(T=1,J))#ROX(])

QUOX2= (UN(TI+1,J)=UN{IsJ))*RDOX(T+1)
RXDUOX=RX(TY*(DELX(I+1)#QUDXL+DELX(I)*DUDXR)/(DELX(I)+DELX(I+1))
RXSQUSUN(T»J)*RX(T)*%2

VISXeNU(CUDXSI+DUDYSC+CYL*RXDUD X=CYL®RXSQU)

UCTpJ ) =sUNC T I 4DELT#((P(T5J)=P{I+153))%2,0%ROELX+GX=FUX=FYY+VISX)
CONTINJUE

ViIsd)=C.0

IF (FUL»J)+F(T1,0+41).LTLENF) GO TO 20

IF (3ETA(T»J)elTaCeVeORBETA(ISI+1)eLToCaO) GO TO 20
USRe(DZLY(J+1)SUN(T»J)+DELY(J)SUNII,J+1))*RDELY
UBLa(DELY(J+1)*UNIT=1,J)+DELY(J)*UN(I-1,J+1))*RDELY

JAV=0,.5% (URR+UBL)

DXR=g S*(DELX(T)4DELX(I+1))

OXL=0S*¥(DELX(T)+DELX(I~1))

SGUSDSIGN(DP1sUAV)

DXA=DXR+DIXL+ALOHA®SSY$ (DXR-DXL)

OVOR= (VN(T+1,J)=VN(T,J)}/DXR

OVOL=(VN(T,»J)=UN{I=-1,J))/DXL
FVXm{UAV/DXA)#(DXL#NDVDOR+DXK*DVDL+ALPHA*SGU*(DXR*DVDL-DXL*DVDR))
SGV=DSIGN(DP1,VN(I5)))



915
916
917
913
919
920
921
922
923
924
925
926
927
928
9239
930
931
932
933
934

OYA=DELY (J#1)4DELY(J)+ALPHAPSGVS(DELY(J+1)=DELY(J))

DVOT=(VN({T»J+1)=VN{T,J))*RDY{J+1)

DVOB=(VYN(T»J)=VUN(T,J=-1))*%RDY(J)

FVYa(VN{TsJ)/DYA)*({NDELY({J)*DVDT+DELY(J+L1)*DVDB+ALPHA*SGV*(DELY(J+]

1 )*DVOB=DELY(J)*DVDT))

VROY&=(DELX{TI+1)*VUN(I,J)4DELX(T)*VN(I+25J))/(DELX(I)+DELX(I*1))

VBOYL=(DELX{T)*#VN(T=1,J)4DELX(I=1)8VNII,J))/(DELX(I)+DELX(I=1))

DVOXRa{VYN(T+31,J)*DELX(I)#RDOX(I+1)=VN(I,J)*DELX(I+1)*ROX{I)=-VBDYR®

1 (DELX(II®ROX(I41L)=DELX(I+1)*ROX(I}))/(0«5%(DELX(I+1)+DELX(I))})

DVOXLe(UN(IsJI®DELX(I=1)#RDX(I)=VN(I=1yJ)*DELX(I)*ROX(I-1)=VBDYL®*

1 (DELX(I=1)*DX(T)=DELX(I)I*RDX(I=1)))/(De5*(DELX(IVI+DELX(I=1)))

OVAXSGC=({NVOXR=-DVOXL)*ROX(I)

DVCYSA=2,C*(VN(I, J=1)%ROY(J)}/(DELY(J+LI4DELY(J))=VN(TI,J)*RDY(Jel)

1 #RDY(J)+VN{I,J+1)*ROY(J+1)/(DELY(J+1)4DELY(J)))

DVDXRX=(VBDYR=VIDYL) *RDOX(I)*RXI(I)

VISY=NUS(DVAXSQ+DVIYSQ+CYL*DVDXRX)

VIIsJd)ayNC Ty S)DELTH((P(IsJ)=P(IsJ41))#2,0%RDELY4GY=FVX=FVY+VISY)
20 CONTINUE

RETURN

END
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935 C*#Sise38s#3EGINNING IF ELEMENT PRESIT/ 338938 5e(

936 SUBRJUTINE PRESIT

937 INCLUDE COMDECK,LIST

938 10 CONTINUE

933 C

940 C HAS CONVERCENCE BEEN REACHED
941 C

942 IF (FLG.EQ.De) GO TI 140

943 ITERSITER+]

944 ITMAX®1000

945 IF (CYCLE«LT.5) IT¥4X=4000
946 IF (ITER.LT.ITMAY) 30 TO 20
947 IF (CYCLE.LT.10) 60 TO 140
948 TsEP1U

949 60 TO 140

950 2G FLG=(QeO

951 C

952 C COMPUTE UPDATED CELL PRESSURE AND VELDCITIES
923 C

954 00 130 J=2,JM]

955 00 130 1=2,TM]

9c IF (3ETA(I,dV.LT.%.2) GO TO 130
957 IF (F(I:J)oLT.c*F! 50 10 130
958 IF (NF(I»J)eEQD) 59 TO 80
99 €

9¢G C CALCULATE PRESSURE FQOR SURFACE CELLS
9¢l C.

962 NFFanF(Isd)

963 Lel

94 1=)

9es GJ TO (30,%0,50,60,130), NFF
966 30 L=1-1

967 60 10 7¢

908 ©0 L=f+l

9¢9 60 T2 70

970 50 Mej-l

9N 63 T3 70

972 60 M=J+l
973 70 CONTINUE

974 A M=sP(L,")

975 IF (NF(Ls)M)eNE.OWANDIGRETA(ISJ)eGTe0e0) PLM=PS(IsJ)
976 DelOs(1e0=PETA(I»J)) *PLMU+PFTA(LI»J)*PS(IsJ)=P(I,J)
977 60 TO 20

978 ) CONTINUE

979 D(Ipd) =X AL)* (UIT»d)=UCTI=15J))+ROY(II®(VIINI)I=-V(I»J=1))+CYL*0.5
980 1 sRXI(II*(ULTI»Jd)+U(T=15J))

9e1 C

982 C TEST FOR PRESSURE CONVERGENCE

983 C

984 IF (DA3S(D(T5J)/DZRD)GELEPSI) FLG=1.0

985 DELPea=3ETA(I»J)*D{I»J)*PETA(INJ)

986 9C CONTINUE

987 PUI»J)=P(T5J)eNELP

988 IF (BSTA(I+1,J).LT.0.0) GO TO 100

989 UCIod)=sU(I»J )¢DELT*NELP®2,0/(DELX(I)4DELX(T¢1))

990 100 IF (3ETA(I-1,J).LTe3,0) GO TO 110

991 JUTI=15J)sU(I=1,J)-DELT®OELP*2,0/(DELX(I)+DELX(I-1))
992 110 IF (SETA(I»J+1).LT.J.0) GG TO 120

993 VIIsJ)=V(IsJ)+DELTENZLPH2,0/7(DELY(J)®DELY(J*1))

994 120 IF (BETA(I,J=1).,LT.0.,0) GO TO 130
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995 V(IsJ=1)aV(IsJ=1)=DELT*DELP*2,0/(DELY(J)+DELY(J=1))
996 130 CONTINUE

997 caLL 8C
993 60 T2 19
999 140 CONTINULE
10C0 RETURN
1001 ZND
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1002 Cs+3$82*38s¢3EGINNING OF ELEMENT PARNMOV/ 5385838+

10€3 SUBRIOUTINE PARMOV

1004 INCLUDE ZOMDECK,LIST

10¢5 €

1006 € * SOLA-VY PARTICLE MOVEMENT SECTION
1007 C

10¢8 NPT =0

1069 NPN®Q

1010 K=l

1011 KNs=l

1012 PFLG=1.0

1013 10 IF (NP.EQ.NPT) GO TO 150

1014 C ¢ CALC. U WEIGHTED VELOCITY OF PARTICLE
1015 I=sIP(K)

1016 J=JP{K}

1017 IF (YP(K).CT.YJ(J)}) GO TO 20

1018 AP X=X (I})=YP(X)

1019 M X=DeLX(I)=HPX

1020 40YsyJ{J)=YP(K)

1021 NIRMYs(DELY(J)4DELY(J=1))%0,5

1022 MY =NIRYY=HPY

1023 UT2P=a(U(T=-1,J)%HP X+ (TI5J)eHMX)*RDX(])
1024 UBIT=(U(I=1p =l )sHDX4U(I,J=1)#4MX)*DX(])
1025 UPART=(UTOP®HMY+UBOT*HPY) /NORMY

1026 G2 1O 30

1027 20 HPX=x(I)=XP(K)}

1028 AuX = ELX (T }=HP X

1029 HPY=YJ{J+1)=YP(K)

1030 NORMY={DEL Y(J+21)+DELY(J))*C.5

1031 4MYsNORMY~HPY

1032 UTOPa( (=1, +1)2HPX+U(IsJ+1)sHMX)}*ROX(T)
1633 UINT=(U(T=1sJ )*HPX+J(IpJ)*HMX)*RDX(])
1034 UPART = (UTOF*<4MY+U3IIT#HPY)/NORMY

1035 C CALCe V WEIGHTED VELOCITY OF PARTICLE
1036 30 IF (XP(K)+GT.XIUI)) GO TO 40

1037 NORMX=(DELY(I )+DELX(I-1))*0.5

1038 ANTRMX =1, /NORMX

1039 4PX=XI{I)=XP(K)

1040 AMXsNORMY=KHPYX

1041 4PY=Y{J)-YP(X)

1042 4MY=DELY (J)=HPOY

1043 VIOPs(V(I=1,J)eHOYey (T J)*HMX)#RNORYX
1044 VBIT=(V(T=~1,J=1)%HPYX+V{IyJ=1)%HMX)%RNORMX
1045 VPART=(VTOPRYMY+VBOT#HPY)®RDY(J)

1046 61 TO 50

1047 40 NCORMXs(DELX(IV4DELX{(I*1))%*Ce5

1048 RNORMX=1,0/NOIMY

1949 HPXaX1{I+1)-XP (K}

1050 HMXsNJRMX=HPX

1051 HPY=Y(J)=YP(X)

1052 HMYsDELY(J )=4PY

1053 ITOP= (V(Ty JI*HPXSV(T+1,J)*HMX)SRNORMX
1054 V3CT=(V(IpJ=1)%4PX4V(I4]1yJ=1)¢HMX)*RNORMX
1928 VPART=(yTOPEHMY+VBIT*#4PY}*RDY (J)

1056 0 XPART=XP (K )+UPART*IELT

1057 YPART=YP(K)4VPART#DELT

1053 IF (XPART GT.X(I)) TP(KN)=IP(K)e]

1059 IF (XPARTSLT«X(T-1)) IP(KN)=IP(K)-1
10¢0 IF (YPART.GTeY(J)) JP(KN)=JP(K)+1

1061 IF (YPARTALTaY(J=1)) JP(KN)=JP(K)=1
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1062
1063
10¢4
1065
1069
10¢7
1068
10¢e9
1070
1071
1072
1073
1C74
1075
1076
1077
1078
1079
1069
1081
1082
108e3
10e4
1085

69
7C
20
9%
100
110
120
139

140

15¢

XP{KN)sXOARTY

YP(XKN)=YPART

IF (WLezQ43) R0 TO 70

IF (4d8.20Q0.2) GO 7O 100

IF (WR.,EJ.3) GO TO 110

[F (WTe.c2.2) GO TO 120

50 TO 130

IF (XP(KN) JLToX{1}) PFLG=0,0
30 TO0 %)

IF (YP(KN) (LT.Y(1l)) PFLG=0,0
63 T2 70

IF (XPU(KN) «GToeX(IMI)) PFLG®0.0
GO TO 80

IF (YP(KN) oGTeY(JM1)) PFLG=0.9
IF (PFLGeNEW140) € TO 140
KNsKN+1

NPNsNPN+]l

KaK+l

NPTaNPT+l

PFLG®=1.0

69 TJ 10

NP=NPN

RETJURN

END
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1087
1088
1089 C
1090 C
1091 C
1092
1093
1094
1095
1096
1097
1068
1099
11c¢0
1101
1102
1103
11C4
1105
1106
1107
11¢63
1109
111¢
1111 €
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128 C
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
116l
1142
1143
1144
1145

118

19

22

30

*C

SUBROUTINE VFCONV
INCLUDE CIOMDECK,LIST

CONVECT THE VOLUME = FRACTION FUNCTION F

N0 30 J=1,JM1

DO 30 I=}1,Iv1

VX=U(IsJ)*DELT

VYV (I,J)*DELT

Ia=]+]

I0=]

ID¥=MAXO(I~1,1)

RBuYI(I)+0 S5*%DELY(T)

RAsXI(I+l)

RD=XI(I)

IF (VXe6EsCe0) 60 TI 10O

IAa]

[D=]+1

IDM=MIND(T+2,1IMAX)

RAsXI(I)

RD=X[(1+1)

CONTINUE

IAD=IA

IF (NFUIDpJ)eEQe3eO0RNF(ID»J)oEQed) IADs=ID
IFINFCIDPJ)eEQOANNDNF(1A»J)eEQsD) IADEID

IF (FNUIASJYGLTLEMF.,IR,FN(IDMJ) LTLEYF) TAD=]A
FX1sFN(IADJ)*DARS(VX)+OMAXLI{(DPI~FN(IAD,J))*DABS(VX)=(DP1~FN(IDy»J
1 ))#DELX(ID)»0,209)
FXSDMINLC(FX1,FN(INsJ)*DELX(ID))

FOIN)JI)=C(IDs ) )=FXeDX(IN)I*((DAIS(RAI/RD))S*CYL+(1.0-CYL))
FOTASJY=F( I8, ) +FX¥DX(TAI*({DABS(RB/RA})*CYL+(1.0~CYL))
JasJ+l

JDsy

JOMsMAXO(S~1s1)

IF (VY.GEaCWsC) GO TN 29

JAs=)

JDs=J+l

JDMaMINO(J+2,I%AX)

CONTINUE

JAD=JA

IF (NF(I»JD)eE0Qs1eMNFII»JD)IeEQs2) JAD=JD
IFINF(IoJD)eEQA.0ANDNF{TI»JA).EQ.O) JAD=JD

IF (FN(IpJAYLTGEMF IRGFN(TIsJDM)LT.EMF) JAD=JA
FYL1aFN(L1sJAD)#DARS(VY)SDMAXI((DPL=FN(I,JAD))I*DABS(VY)=(DPY1=FN(]»JD
1 1I*DELY(JD)»0.3DN)
FY=DMINL(FYLsFN(TI»JD)*DELY(JD))
F(Is4D)=F{I5J0)=FY*RDY(JD)
FUIsJAYsF(IsJA)+FYERDY(JA)

CONTINUE

D0 70 J=2,JM1

00 70 I=2,1IM]

IF (3ETA(I»J)elLTe0ed) 60 TO 70

VCHG=0,0

IF (FUIpJ) eGTEMF,ANDF(I»J) LTL.EMFL) GO TO 50
IF (F(IsJ)GELEMF1) GO TO 40

VCHGsF(IsJd)

F(I,J)=0.0

GJ TQ 50

CONTINUE



1146
1147
1148
1149
11%0
1151
11%2
1153
11%4
1125
1156
1157
1153
1159
11¢€0
11el
11e2
1163
1164

OO0

50

60

70

VCHGe=(1.0=F({I,J))

F(IsJd)=1.0

CONTINUE
VEHGTsVCHGT+VCHG#DILX( [ *DELY(J)S(XI(I)*2.,0%PI#CYL+(1.,0~-CYL))
IF (F(I»J)etTele0=EMF) GO TO 70

IF (F(I+lsJ)elToEMF) GO TO 60

IF (F{I=1»J).LT.EMF) GO TO 60

IF (F{I,J+1).LT,EMF) GO TO 60

IF (F{I,J=1)LT.EMF) GO TO 60

G0 TO0 70

F(I»J)esF{TI,J)=141D0%EMF

VCHG=1,.,1D00%EMF

VCHGT =VCHGT+VCHG*OELX (T )*DELY(J)*(XI(TI)*2,0%PI*CYL+(1s0=CYL))
CONTINUE

SPECIAL BOUNNARY CONODITIONS FOR F

RETURN
END
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1165 C*%33+*3Sx#B3EGINNING JF ELEMENT PETACL/ L XE12 2332 1S

1166
1187
11e¢8
1169
1170
1171
1172
1173
1174
1175
1176
1n
1178
1179
1180
1181
1182
1183
1184
1165
1166
1167
1168
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
12C1
l2c2
1263
12C4
1205
12¢é6
1207
12(8
12¢9
1210
1211
1212
1213
1214
1215
1214
1217
1218
1219
1220
1221
1222
1223
1224

c
o
¢

(s NaNel

c
c
c

10

20

3C

SUBROUTINE PETACL
INCLUOE COMDECK,LIST

DETERMINE THE PRESSIRE INTERPOLATION FACTOR PETA

00 10 I=1l,IvAX

D0 10 JU=1,JMAX

PS(I5J)=0,0

PETA(I»J)=1,0

IPASS=0

00 160 I=2,IM]

DO lo0 Js2,J41

NF(1»4)=0

IF (BETA(I»J)elT,4043) 60 TO 160
TF (FUIsJ) eLTeEMFeORGF(I,J)eGTeale0=EMF) GO TO 160
IF (F(I+1,J).LTLEMF) GO TO 20
IF (FUI»J+1)LTLEMF) GO TO 20
IF (F(I=1s JYeLT.FEMF) GO TO 20
IF (F(I,J=1).LT.EMF) GO TO 20
GO0 T0 150

CONTINUE

CALCULATE THE PARTIAL ODERIVATIVES OF F

DXAV=0.S#NELX(T=1)40ELX(I)4045%DELX(I+1)
DYAV=0.5#DELY(J=11#DELY(J)40.5#DELY(J+1)
FIPJMaF(T+1,J-1)

IF (I EQ.TML IReJeEQ.2.0ReBETA(I+15J=-1)4LT.Cu0) FIPIM=1,0
FIPU=F(I+1,54)

IF (1eEQeT¥1470BETA(I+15J)eLT4040) FIPJalev
FIPJP=F(T+1y1+1)

IF (1.EQ.TM1.IRGJIEDQ.IMILORLIETA(I+1,3¢1),LToG.0) FIPIP=L,C
FIIN=F(IsJ-1)

IF (JeEQe24TRIETA(I,J=1)eLTe0s0) FIJ¥a1,0

FIMJMaF (I-1,4-1)

IF (JoEJ.2.IRGBETA(T=1,J=1),LT.0.,0) FI4JM=1.0
FIMJ=F(I=15J)

IF (BETA(I-1,J)eLTe340) FIMIs1,0

FIMJPaF(I-1,0+1)

IF (BETA(I-1,J41)4LT40.0) FINJP=1.0

FIJP=F(I,J41)

IF (JoEQeJML.ORLBETA(T,J41)0LT4040) FIJP=1.0
AVECX=FIJMODELY(J=1)+F (I,J )*DELY (J)+FIJP#DELY(J+1)
AVECY=FIMJ#DELX(T=1) +F (I,J)*DELX (1) +FIPJ#DELX(I+1)
AVFR=FIPJM4DELY(J-1) ¢FIPJ#DELY(JI+FIPJPEDELY (J+1)
AVFL=FIMJMADELY(J=1) +FIMJ*DELY(J)+FIMJPHDELY(J+1)
AVFT=FIMJP#NELX(T-1) +FIJP*DELX(T)+FIPJP#DELX(I+1)
AVFB=FIMJM*OELX(I=1)#FIJM#DELX(T)+FIPJM*DELX(I+1)

BOUNDARY CONDITIONS FOR wALL ADHESION

IF (BETA(I+1,J)eCG%eDe0.ANDsISNE,IM1) GO TO 30

AVFR®AVFCX 40, 5%« (DELX (T )+DELX(I+1))/TANCA

IF (FUIsJ+1)eLT.EMF) AVFT=AVFCY-0,5¢ (DELY(J)I+DELY(J+1))$TANCA
IF (F(IpJ=1)elTeEMF) AVFA=AVFCY=0.5%(DELY(J)4DELY(J=1))*TANCA
IF (3ETA(I»J+1)eGEeDe0.ANDsJeNELJML) GO TD 40
AVFT=AVFCY+0,5%(DELY(J)+DELY(J+1))/TANCA

IF (FOI+1sJ) oLV EMF) AVFR=AVFCX=CeS5*(DELX(I)+DELX(I+1))*TANCA
IF (F(I=1yJ)eLTWEMF) AVFL=AVFCX=0o5#(DELX(I)#DELX(I=1))*TANCA



1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1231
1252
1253
1224
12:5
12¢%5
1257
1258
1259
1260
1261
12€2
1263
1264
12€5
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1261
1282
1283
1284

OO0

40

50

60

70

80

90

10C

IF (SETA(IsJ=11eGE.0.0.AND.JoNEL2) GO TO 50

AVF3sAVFCY+0.5% (DELY(J)4DELY(J=1))/TANCA

IF (F(I415,J) el ToEMF) AVFREAVFCX=0¢5%(DELX(I)+DELX(1+1))#TANCA
IF (FUI-15J)eLTeEMF) AVFL®=AVFCX=0eS*(DELX(TIV4DELX(I-1))*TANCA
IF (3ETA(I-15J).GEs)ed) GO TO 60

AVFL=AVFCX 0, 5% (DELX(I)+DELX(I=1))/TANCA

IF (FUIsJ1)eL T EMF) AVFTaAVFCY=0e5%(DELY{J)+DELY(J#2))*TANCA
IF (FUIpJ=1)eLT.EMF) AVFB=AVFCY-0.5*(DELY(J)+DELY(J=1))*TANCA
CINTINUE

PFX={ AVFR=AVFL)/DXAV

PFY=(AVFT~AVFR)/DYAY

PFsPFX%*2+PFY®%2

IF (PF.GT.E410) 62 TQ 70

NF(I»J)=5

P IsJ)=De25#(0(I¢1p1)eP(I,J+1)4P(I=1,sJ)¢P(I5J=1))

G0 1O 1690

CONTINUE

DETERMINE THE PRESSURE INTERPOLATION CELL NF

ABPFX=DABS (PFX)
ABPFY=DA3S(PFY)

L=l

M=J

IF (ABPFY.GE,ABPFX) GO TO 80
IXOYR=DELY (J)4R0X(])
PFMNSA3PFY

NF(IsJ)=2

L=sI+]

NDMXaDELY(I)

OMIN=C .5 ( DMY+DELY(T+1))

IF (PFY.GTDed) GO TO 30
NF(Isd)=1

L=l=1

dMx=DELX(T)

OMINED S5*(DUYX+DELX(I-1))

GO TO 30

CONTINUE
DXDYR=DELY(T)*RDY (J)
PFMN=A3PFX

NF(IsJd)=4

LEFEDY

IMX=DELY(J)

DMINZD S (OMYX+CELY(1+1))

IF (PFY.GT.2,0) GO TO 90
NF(I,Jd)=3

Me -1

OMX=DELY(J)
DMIN=Q,S*(DMX+DELY(J~-1))
CONTINJE

TANTH=PFMN

IF (ISRF19.LT.,1) GJ TO 140
IF (NF(IsJ)elEL2) GI TO 100
RIGHT®2,)% (AVFR=AVFCX)/(DELX(I)*DELX(I¢1))
XLEFT=2,0% (AVFCX=AVFL)/(DELX(I)+DELX(I~-1))
GPPs2 )% (RIGHT=-XLEFT)/DXAV
GPs) 5% (RIGHT#XLEFT)

G2 T2 110

CONTINUE

IF (NF(IpJ)DeEQe2¢ANNGF(I+15J) eGT.EMFLANDSF(I+1)J)eLTEMF1) AVFCY
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122

12€5
1286
1287
1288
12€9
1290
1291
1292
1263
1294
1295
1296
1297
1299
1299
1300
1301
13¢2
13C3
13C4
13¢5
13¢5
1307
1308
13C9
1310
1311
1312
1313
1314
1318
1316
1317
1318
1317
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1331
1332
1333
1334
1335
13356
1337
1338
1339
1340
1341
1342
1343
1344

1 sFIMJ*DELX(TI=1)+F (T, J)eDELX{I)+DELX(I+1)
TOP=2,0*(AVFT=AVFCY) 7{DELY(J)+DELY(J+1))
BOTTIM=2,0*(AVFCY-AVFB)/(DELY(J)+DELY(J~1))
GPPe2,0%(YCP=-RDTTOM) /DYAV
GPuQ,5¢#( TOP+BNTTIN)

110 CURVCY=0.(
IF (CYL.LT.1.0) GO TO 120
XLITLRsXI(I)
IF (NF(IsJ)eEQel) XLITLRwX(I=1)¢F(I,J)*DELX(I)
IF (NFUIpJ)eEQe2) XLITLR®X(I+1)=F{I»J)*DELX(I)
RLITLR=1.0/XLITLR
TRIGDABS(DSIN(DATAN(TANTH)))
IF (NF(IsJ)elEe?) TRIGSDABS(DCOS(DATAN{(TANTH)))
CURVCYs=CYL*TRIG*DSIGNIDPL,PFX)*RLITLR
120 CURVXYS=GPP/({1.0+GP*%2)%%],5
CURVSCURVXY4CURVCY
PS(IsJ)=sSTIGMASCURY
IF ((AVFLoLToCEMA DR AVFR.LT.EME) dAND(AVFTALTIEMAORGAVFBLLTLEMG))
1 60 TO 120
50 TO 140
130 PS(I,J)=EP10
IPASS=]
140 CONTINUE
IF (FUI»J)oLTEMF) 50 TO 150
NFSBs=0
IF (FUI+1lpJ)elT.EMF ORICEQeIMI.ORGBETA(I+15J)eLTo0.0) NFSB=NFS341
IF (FUIpJ#1) oL T FMF,ORBETA(I»J*1)eLTo0s0) NFSB=NFS342
IF (FUI=19J) el TeEMF ORGBETA(I=15J)elT40e0) NFSBaNFS3+4
IF (F{TsJ=1) LT EMF ORBETA(I»J=1)elTe0.0) NFSBeNFS3+8
IF (NFSB.EC.1%) PS({I,J)=0.0
159 CONTINUE
DFS=(0e5=F(IsJ))*NuX
IF (FUIsJ)eLToOs5®TANTHSOXOYR) DFS=).5#40MX® (1. 0+0XDYRSTANTH=DSQRT(
1 2.9%F(I5J)%DXDYR2TANTH))
PeTA(I, )e1¢0/(1eQ=DFS/DMIN)
IF (LeEQel.OR.L.FO.TMAX) PETA(I»J)=1.0
IF (MeZdeloOReM.EQ.IMAX) PETA(I,J)=1,0
IF (BE€TA(Ls%)elTe0e) PETA(I»J)el.0
160 CONTINUE
IF (IPA3S.LTe1) GO TO 230
00 220 J=2,JM1
00 220 I=2,IM1
!F (NF(I’J).LT.I.SR.NF(I’J)OGT.‘.OROBETA(I’J).LT.0.0) GO TO 220
IF (PS(IsJ)elT.EPQ) GI TO 220
PS(IsJd)=de0
NFFsNF(IsJ)
Gl T) (17C,180,19C5200)s NFF
170 L=I~1
M=
G0 70 210
18C L=I+l
M=J
GO TG 210
190 L»=]
LER I
G0 T3 210
200 L=I
M=J+l
62 TJ 210
210 IF (PS(LsM)eLTLEPY) PS{IsJ)=PS(L,sM)



1345
134>
1347
1348
1349
1350
13£1
1352
1323
1354
1355
1356
1357
1358
13¢%9
1360
1361
1362
1363
1364
13¢5
1365
13¢7
1368
1369
1370
1371
1372
1373
137«
1375
1374
1377
1378
1379
1360
138}
1382
1383
1384
1365
13¢6

OO

OO0

220
230

240

250

260

27¢

280

29C

CONTINUE
CONTINUE

SET PETA IN ADJACENT FULL CELL

DO 230 J=1,JMAX

D0 290 I=1,IMAX

NFFsNF(I5d)

IF (NFF.EQ.0) GO TO 290

L=I

M=J

50 TO (240,25052605270,2390)» NFF
Ltel~1

IMX=DELX(T)
DMIN=Q 5% ({ DMX+DELX(I-1))

G0 TO 280

Lel+¢l

IMX=DELX(T)

DMIN®=Q,5%( DMX+DELX(I+1))

60 T2 2890

M= J=-1

OMX=JELY(J)
DMIN®SQ.5*{DMX+DELY(J-1))

60 73 282

M=J+l

DMx=DELY(J)

DMIN®O.5%( DMX+DELY(J+1))
CIONTINUE

IF (NF(LsM)eGT40) GI TO 290
3PD=] ¢d=3L TA(L»™)®(1oC=PETA(L,J) )*DELT/ (DMINSDMX)
PETA(LsM)=]1.,0/8PD

CONTINUE

SET EMPTY CELL PRESSURES

D0 3CO Isl,IMaX

D0 300 J=1,)MaX

IF (FUIsJ) eGToEMFLDORLSETA(ISJ)uLTLCe0) GO TO 300
P(IsJd)=).0

CONTINUE

RETURN

IND
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1367 Ce*$8*#33%x#BZGINNING OF ELEMENT DRAW/ 25385585 %(

1388
1369
1390
1391
1392
1393
1394
1395
1396
1397
13968
1399
1400
14C1
1402
1403
164C4
14C5
1406
1407
14C8
1409
1410
1411
1412
1413
164164
1415
1416
141/

1418.

1419
1420
1421
1422
1423
1424
1425
1425
1427
1428
1429
1430
1431
1432
1433
143¢
1435
1436
1437
1439
1439
1440
1441
16442
1443
1444
1445
1446

c
c
c

o0

1V

20

33

SUBROUTINE DRAW
INCLUDE COMDECKsLIST

VELOCITY VECTOR PLOT

IF (MOVY.EQ.0) GO TO 10

IF (T.T.TMVP=-EMN19) G3 TO 110
TMVP=TMVP+DTMVP

CONTINUE

CALL PAGEG (Z505091)

CALL FRAME (XMIN,XMAX,YMAX,YMIN)

IF (MOVY.EC.1l) GO TO 20

dRITE (175,130) NAME

WRITE (175,120) T,CYCLE

CONTINUE

CALL DRWOBS

D0 30 Js=s2, %1

D0 30 I=2,1M1

IF (CYCLEGTN.ANDJF(I»J).LTLEMF) GI TD 30
[F (F(I»J)eLT.Ge%) GO TO 30

IF (BETA(I»J)elTe0e2) GG TO 30
XCCexI(I)

YCC=05¢(Y(J)+Y(J=-1))
UVECS(U(TI=15J)4U(TsJ))*0.5%VELMX1+XCC
VVECS(V(IsJ=1)eV(Is3))#0,58VELMX1+YCC
CALL ORAVEC (XCCsYCZHoUVECHVVECH1)
CALL PLTPT (YCC,YCCHhICH,1)

CONTINUE

JRAW FREE SURFACE

FPL=0e5

D0 590 1=2,1IM]

D0 50 J=2,JM]

IF (BETA(I»J).LT.C.D) GO TO 50

FATR=0e25% (F(I,J)+E(I415J)+F(IsJ+1)¢F(1¢15J41))

FXTRE0e5%{ FII41pJ 1) #F(I+1pJ)=F (I, J#1)=F(I,J))/(XI(I+1)=XI(I))}
FYTR=0S*(F(I J+1)+F(I+1,3+2)=F(IsJ)=F(I+15J))/(YJ(JI+1)=YI(J))
FTRSSFXTR¥%24FYTR¥%2

IF (FTRSeEQe040) FTRS=EPLO

XTREQ 5% (X I(T+2)+XI{ L)) +(FPL=-FATR)*FXTR/FTRS

XTR=DMAX1(XTR, XI(T))

XTRaDMINL(XTR,XI(I+1))

XTRMe=XTR

YTR8D5#(YJUII+YI(J+1) )¢ (FPL=-FATR)I*FYTR/FTRS

YTR=DMAXI(YTR, YI(J))

YTR=DMINL(YTR,YJ(J*1))

IF (FUIpJd) oGTeDe%eANDGF(I¢15J)eGTe045) 60O TO 40

IF (FUI»J) elTe0s5eANDeF(I+15J)elTaCe5) GO TO 40

FASREG,25% (F(TpJ)+F(I415J)¢F(IpJ=1)¢F(I41yJ-1))

FXBR2Q4S*{ FITI+1s JICF (Il d=1)=F(lsd)=F(IpJd=1))/(XI(L+1)=XI(I))
FYBRuO.S*(F(ToJ)+F (1415 J)=F(I,J=1)=F(I+1,3=1)07(YI(J)=YI(J4=1))
FBRS=FX3R%#2+FYRR*«2

IF (F3RS.EQ.0,0) FAIS=EPLO

XBRuD 5% (XI(I+1)4XI(I))*(FPL-FABR)®FXBR/FBRS
KBR=DMAXI(XBR,XI(IN)

X3IR=DMINL(XBR, XI(I+1))

YRReD S5 (YJ(J)4YJ(J=1))+(FPL~-FABR)*FYBR/FBRS
YBR=DMAX1(YBR,YJ(J=1))



1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
14%8
1459
1460
14¢€1
1462
14€3
1464
1465
1466
14¢7
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1461
1482
1483
14 64
1485
1486
1487
1488
1489
14690
1491
1492
1493
1494
1495
1496
1497
1498
1499
1509

o0

[z N el ]

40

50

60

70
€0

90
100
110

120
130

YBReIMINLI(YBR,YJ(J))
CALL DRWVEC (XBR»yYZR,XTR»YTRy1)
CINTINUE

IF (FUIpJ)aGTe0s5eANDeF(I»J+1)e6T.0.5) 60 TO 50
IF (F(IsJ) el Te0o5¢ANDeF({IsJ+1)elTe0e5) GO TO 50
FATL®025% (F(IpJ)+F(IpJel}+F(I=1,J)¢F(1=1,J+1))
FXTLo05%(F(IsJ¢l)+F(15d)=F(I=1,J41)=F{I=1,J))/7(XI(1)=XI(1=1))
FYTL8O0s 5% (F{I=1sJ+1)+F(IsJ+1)=FlI=1,J)=F(1,J))}/(YILJel)=YI(J))

FTLS=FXTL*82+FYTL #¢2

IF (FTLS.EC.0.0) FTLS=EPLO

XTLu0e 5% (X T(I=2)eXI(I))*(FPL=FATL)*FXTL/FTLS
XTL=DMAXTI(XTL,)XI{TI~1))

KTLeOMINI(XTL,XTI(I))

YTLo0 5% (YI(I)I+YI(J+1) )+ (FPL=FATL)®FYTL/FTLS
YTL=OMAXL(YTL,YJ(J))

YTLsDMINL(YTL,YJ(J+1))

CALL DRWVEC (XTLsYTLs»XTRsYTR,1)

CONTINUE

MESH PLOT

IF (MOVY.EQ.1) GO T 110

IF (T.GT.0.0) GO T7 80

CALL PAGEG (Z50,051)

CALL DRwOBS

DO 60 J=1,JM1

YCCuy(J)

CALL DRWVEC (XMIN,YCC»XMAX,YCC»0)
CONTINUE

D3 70 I=1,1IM1

XCC=Xx(1I)

CALL 2RWVEC (XCCrYHIN,XCCoYMAX»1)
CONTINUE

CONTINUE

PLOT PARTICLES

IF (NP.EQ40) #2 TO 100

CALL PAGEG (2+0+091)

CALL DRwIBS

CALL FRAME (XMIN» XHAXsYMAX,YMIN)
WRITE (17,130) NAME

WRITE (175120) T,CYCLE

D0 90 Ns=1,NP

CALL PLTPT (XP(N),YP(N)},ICH,y1)
CONTINUE

CONTINUE

CINTINUE

IF (MOVYEQ.0) CALL PAGEG (2,050,1)
RETURN

FORMAT (14+4,30Xy2HT=,1PD10.3,4Xs6HCYCLE=»I4)
FORMAT (1H ,1°X,2044,1X,A105,2{1X,A8))
END
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1501 Co*3s+sS3s2BEGINNING OF ELEMENT FRAME/

15¢2
15C3
1504
1565
15C6
1507
1508
15¢9

SUBRTOIUTINE FRAME (XXL,XXRpYYT,YYB)
INPLICIT OCUBLE PREZISION (X-Y)
CALL DRWVEC (XXLsYYTsXXRsYYT,0)
CALL DRWVEC (XXLsYYT,XXLsYYB,O)
CALL DRWVEC (XXLpYYB,XXRsYYB,0)
CALL DRWVEC (XXR,YYI,XXR,YYT,0)
RETURN

END

(1131235320



1510 C**38*x 335+ BSGINNING OF ELEMENT DRWOBS/ *e33exggenl

1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
15456
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556

(s NaNg)

10

29

SUBRIUTINE DRWD1S

INCLUDE CGMDECK,LIST

XONE=1.0

YONE=Y(JM1)

XTW0=1le0

YTudsYCENTR

CALL DRWVEC (XONE sYINE»XTWO»YTWO»1)
THSTAR==1, 670620890500

TH1s0.,0

XONE=1.0

YONE=YCENTR

DTHsTHSTAR*0,0%D0

D0 10 I=1,20

TH2=THL+DTH

XT40=DCOS(TH2)

YTWO=DSIN(TH2) ¢YCENTR

CALL DRWVEC (XONE,YONE,XTWOD,YTWO,1)
TH1=TH2

XOANE=XTwW]

YONE=sYTWO

CONTINUE

XTw0=0.100

YTW0=0.0

CALL ORWVEC (XONEsYINE,XTWO,YTWO»1)

ORAW ARQUND ALL C9STACLES

DO 30 I=2,T¥1

20 30 J=2, M1

IF ({(BETA(TsU) eLlToDe0eANDBETA(I*1r»J) el Te0e0)eOR{BETAILIJI)eGTa0,0
1 ¢AND3cTA(I+154).6T40.0)) GO TO 20

XQNesX{ )

XTWO=X3INE

YONEsY(J=-1)

YTA0=Y(J) |

CALL DRWVEC (XONESYINEXTW0sYTWO,1)

IF ((BETA(I9J) el TeOe0ANDBETA(ISJ*+1) el To0s0)eOR(BETA(IFJI)eG6Te0.0
1 ANDJBETA(I»J#+1).6T7.0.0C)) GO TO 30

XONE=X(I=1)

XTW3eX(1)

YONEs=Y(J)

YTwOsYINE

CALL ORY4VEC (XONE,YTINE,XTWO»YTWO»1)

CONTINUE

RETURN

END
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1557 Ce»ss¢s3S¢3BEGINNING OF ELEMENT PLTPT/

1558
1559
1560
1561
15¢2
1563
1564
1565
1566
1%67
1508
1569
1570
1571
1572
1573

128

13

29

SUBRDUTINE PLTPT (XONEsYONEs ICHAR,ISYN)
INCLUDE COMDECK,LIST

IC=9Q

X1sXONE

Y1=YONE

X01=s({X1=XMIN)*SF+XSHFT

YOl (Yl=-YMIN)XSF+YSHFT

CALL SETSMG (Z594/,149)

CALL POJINTG (Z»1,¥21,Y01)

IF (ISYMPL.EQeO+OR.ISYM.EQ.0) GO TO 20
IC=IC+l

IF (IC.GTs1) GO TO 20

X1=~X1

G0 TO 10

RETURN

END

25535533 6%



1574 Co*$sss388*BGINNING TF ELEMENT ORWVEC/

1575
1576
1577
1578
1579
1580
1581
1582
1503
1584
15¢5
15¢56
1587
1588
15€9
1560
1591
1592
1563
1594

10

20

SUBROUTINE DRWVEC (XONE,YONE,XTwOsYTWOsISYM)
INCLUDE COMDECK,LIST

IC=)

X1sXONE

Yl=YONE

Xx2=xT#0

Y2=YTwd

KOls(X1=XMIN)*SF+XSUFT
YOle(Y1l=YMIN)*SF+YSHFT
XQ2=(X2-XMIN)*SF+XSHFT
YO2u(Y2=YMIN)*SF+YSHFT

CALL SEGHMTE (Z,1,%X31,Y01,X02,Y02)

IF (ISYMPLJEQsO0+0ISYM.EQ.O) GO TO 20
IC=IC+l

IF (IC.GT.1) 60 7O 20

Kls=X1

X2==X2

G0 10

RETURN

END
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