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ELECTRICAL PROPERTIES OF NEUTRON-
TRANSMUTATION-DOPED GERMANIUM

Marilyn Rodder

Department of Materials Science and Mineral Engineering and
Department of Instrument Science and Engineering,
Lawrence Berkeley Laboratory, University of California
Berkeley, California 94720

Abstract

Electrical properties of neutron-transmutation-doped germanium
(NTD Ge) and nearly uncompensated gallium-doped germanium have been
measured as functions of net-impurity concentration (? x 1015cm‘3
<Ny -Np<5bx 10%02n73) and temperature (0.3 K < T < 300 K).

The method of impurity conduction as a function of carrier concen-
tration and compensation was investigated in the low temperature hop-
ping regime., For nearest neighbor hopping, the resistivity is expected
to vary as p = ooexp(A/T) while Mott's theory of variable range hoo-
ping predicts that o = poeXD(A/T)1/4 in the low temperature 1imit.

In contrast, our results show that the resistivity can best be approx-

imated oy p = pOEXD(A/T)llz in the hopping regime down to 0.3 K.



1. Background
1.1 Introduction

Although semiconductors have beer studied for many years, they
actually became popular only after Schockley, Bardeen and Brattain
invented the transistor1 in 1947. Because of this invention,
research and development of semiconductors was heavily pursued. Their
most direct uses take advantage of their unique electrical behavior,
as in transistors, amplifiers and memory devices. Other applications
include those which combine electrical and optical effects such as
sensing devices, for example, in strain gauges, nuclear radiation
sensing devices and low temperature semiconducting bolometers used for

detection of far infrared radiation.

1.2 Crystal Structure
Semiconductors are extremely versatile in their applications

because their electrical conductivities range from metallic to insu-
lating depending on temperature and doping. Besides the elemental
semiconductors, 5i and Ge, there are many compound semiconductors such
as GaAs, GaP and InSh, Ternary and quaternary compound semiconductors
are becoming very important for solid state lasers, photodiodes and
light-emitting diodes. The elemental semiconductors (Group IV) all
crystallize in the diamond structure, in which each atom is surrounded
by four covalently bonded neighboring atoms, forming a regular tetra-
hedron as s :~wn in Fig. la. The Group III-V compounds crystallize in
the zincblende structure. Thus in GeaAs, each Ga atom is heteropolarly

surrounded by four As atoms as in Fig. 1b.
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Fig. 1. Tetrahedral bonds in Ge and GaAs. B8lack dots represent coval-
ently bonded electrons.

1.3 Energy Bands

Electrical conduction in crystailine solids--semiconduction-—can
be understood quantitatively in terms of energy bands, that is, elec-
tron energies versus k-space. A common method of describing electron
energies is to use a model which starts with a fres assembly of elec-
tronsz, and then to consider the changes in their movement resulting
from the restrictions presented by the crystal lattice.

First, consider a free electron in space. The time independent
Schrodinger equation for the free electran is:

vzw = (-ZmElﬁ ) 1.1)

where v is the wave function, and E is the energy of the electron.
Then:

7 = A exp{ikr) + B8 exp(-ikr) (1.2)
where kK is the wave vector describing the momentum of the electron, r
is the position vector, and |\v|2 is the probability of finding the
electron anywhere in space. The energy, in the one-dimensional case
ist H

E = (h%/2m)k? (1.3)



as shown in Fig. 2a3. But unlike electrons in free space, the values
that k can have are quantized, due to the de Broglie relationship

between the electron wavelength, 1, and its momentum, p:

r» = hfp (1l.4a)
p = (2mE)l/2 (1.4b)

such that k, equal to 2n/a is:
(2nE)2n < 202, (1.4¢)

<
k S

k 0 -m/a O ma

1 \ / G

(a) (b) (c)
XBL 828-11223
Fig. 2. E vs. k in one dimension for (a) free electrons, (b) electrons
moving in a periodic potential, and {(c) E vs. reduced wave
number. The scale of k in Fig. 2c has been expanded for visu-
al clarification.
Bloch extended this model to that of a crystal lattice in which
there is a periodically varying potential due to the charges at the

lattice sites4, as in Fig. 3.

2211828 WX

V(x)

Fig. 3. The variation in crystal potential with distance between lat-
tice sites.



Bloch showed that solutions to the one-dimensional wave functions would
be:

¥ = ukexp(ikx) (1.5a)

and ¥(x £ a) = exp(*ika)w(é) (1.5b)
where a is the lattice periodicity, exp(ikx} represents a plane wave
and uk(x) has the same perijodicity as the lattice. Thus, if there
are N lattice sites and v(x + Na) = w(xj, then exp(ikNa) = 1. The
resulting allowed k are:
k = 2an/Na n = (0,%1,%2,%3...). (1.6)

This leads to discontinuities in E versus k which occur at the values
k - nnfa, as shown in Fig. 2b. These discontinuities can be understood
as follows. For an electron of wavelength a = Za such that k = n/a, we
have the condition of Bragg reflection. Such an electron can no longer
be representeg as a traveling wave. Instead, it should be represented
as a standing wave comprised of two waves, exp(ikx) and exn(-ikx),
which travel in opposite directions. The summation of the two waves
leads to two solutions of different allowed energies at k = n/a. The
allowed energy states thus fall into bands separated by forbidden gaps.

If the energy of a state is described in terms of a reduced wave
number restricted to the range -wv/a < k < w/a, and a quantum number tc
describe the band to which the state belongs, then the band structure
will have the form in Fig. 2c. In order to describe the electron

. - > N *
energies as a function of k, one defines the effective mass m :

m = b2/ (d%E/dkd) (1.7a)

and
E = (h%/2m" )2 (1.7b)



The inverse value of the effective mass is the curvature in the E

versus k dependence shown in Fig. 2c.

1.4 Density of States

Proceeding from the concept of quantization, a “density of states”
can be introduceds. In three-dimensional k-cpace, the number of
states in a volume element dk = dkxdkydkz is:

(L3)dk/ 83 (1.8)
where we consider a cubic volume of side L and k = 2xn/L (n =

0,%1,+2,...). Then, the number of states between k and (k + dk) is:
(L) (4xk?)dk/ 8e>. (1.9)
The density of states per unit energy range and volume, for given spin

direction, is N(E}). For a volume 3. 1,
N(E) = 4xkdk/8xo. (1.10)
. 202, 5. % s :
Since E = h“k"/2m , the density of states is then

: *x
N(E) = 1/4x2) (2m 1n2)31 20 (1.11)
The concentration of electrons per unit volume can be found by inte-
grating over the density of states Fermi distribution product. The

Fermi-Dirac distribution function is defined by3:

£(E) = [exn{(E - EF)/kT} w17t (1.12)
where f(E) is the probability that a state of energy E is occupied,
EF is the Fermi energy, k is Boltzmann's constant, and T is the

absolute temperature. Ep is the energy value which is defined at

absolute zero temperature so that the integral over N(E) and f(E), up



to EF equals the number of ail the electrons, n, per unit volume EF is
given by4:

Be

20"N(E}dE =n (1.13)

The number of electrons in each orbital state can be two, one for each
spin direction, which leads te the factor 2 before the integral. f(E)

versys E 1s shown in Fig. 4.

1 T=0
flE) 12}
T>0
.-
0 s E

8L 82811225

Fig. 4. Th2 Fermi-Dirac distribution function versus the energy of an
electror state. At T =0, f=1forE ¢ Efpand f =0 for
E > Ef, s0 that all the electrons fall into the lowest
energy states. For T > 0, the distribution function is
exactly 1/2 at E = Ef.

1.5 Intrinsic Semiconduction

From the previous section, we know that current cannot flow in a
pure semiconductor at zero temperature becatse all the states belgw
EF are filled, with no unoccupied states for electrons to flow.
However, for T > 0, an electron can be freed from the covalent bond by
means of thermal excitation. This creates both a conducting electron
and a hole. which can be thought of as a positively charged particle
whose motion results from a shift of a valence electron. Under an
applied field, the motion of electrons and holes is in opposite direc-
tions givino rise to electrical conductivity. Thus, we have "intrin-

sic" semiconduction in a pure semiconductor.



The energies of electrons and holes can be described in terms of the
energy bands of section 1.3. The “valence band" is defined as the high-
est occupied band at T = 0, and the "conduction band" is the lowest unoc-
cupied band at T = 0, Thus, the energy necessary to free an electron
from a bond is given by the energy gap, EG, betwean the two bands. For
T > 0 then, those electrons with enough energy to cross the forbidden
energy gap will conduct in the lowest available conduction band states,

whereas the holes conduct in the valence band, as in Fig. 5.

Ee Ee
i

(b)

X8y 828-11226
Fig. 5. Intrinsic semiconductor (a) at Tow temperatures and (b) at
higher temperature where electrons cam be excited across the
bandgap.

A second way to excite electrons across the bandgap is by photon
absorption. If the light is of a wavelength such that hv > EG,
electron-hole pairs will be generated, and photoconduction will accur.

The concentration of electrons n and holes p in thermal semicon-
duction is dominated by generation and recombination. At equilibrium,
the following relationship ho]ds3:

n+p 3 (np) (1.14)
where (np) refers to the unexcited state, or recombination. For n and
p small compared to the number of states in the crystal, thermodynamics
predicts:

np = K {1.15)



where K is a function of temperature only. Then, by defining

n=p=n; we have for intrinsic material:

np = niz. (1.16)

Using Eq. 1.12 one can approximate f(E), the so—called "Boltzmann tail"
for (E - EF) >> kT, to be:

f(E) = exp[(E; ~E)/XT]. (1.17)
Using this result and Eq. 1.11, we have:

n=n; = §F(EIN(EYIE = N exp[(E; - E.)/KT] {1.18a)
for N = 2(2nm:kT/h2)3/2 {1.18b)

where n is the concentration of electrons and Nc is the density of
states in the conduction band (CB)}. Similarly, the concentration of
holes in the valence band {VB) is:

p = Nvexp[(Ev - EF)/kT] (1.19a)

for N, = 2(2m, "kT/n%)3/2 {1.19)

where NV is the density of states in the valence band. Combining

Egs. 1.18a and 1.19a, we itave for the intrinsic concentration:

ni2 = N Nyexn(-E/KT). (1.20)

1.6 Extrinsic Semiconductinn

The discussion of conduction in section 1.5 applies to a pure
semiconductor., In most applications, however, semiconductors are
doped with impurities which supply most of the carriers, thereby pro-
viding "extrinsic" semiconduction. Typical technologically important

concentrations range from lOlocm‘3 to more than 102°cm'3.
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The most commonly encountered doping concentrations lie around 10]'54:m'3

or ~ 100 ppb, a very pure substance indeed! The most common dopants for

Si and Ge are those elements of Group III and V.

1.6.1 Elemental Donors in Si and Ge - The Group V elements (As, P,
Bi, Sb) have five valence electrons. Four of the electrons contri- bute
to the tetrahedral bond of the host crystal (usually Group IV), while the
fifth electron migrates through the crystal, as with P in a Ge crystal as

shown in Fig. 6.

[ |
— Go==Go=Go—
—Ge= P =Gc—
| I T |

— Ge=GomGe—

e

Fig. 6. Substitutional dopant atom positions in an elznental semicon-
ductor for a donor with extra electron.

In the case of a phosphorus impurity, the impurity consists of a
positive ion, p* binding an electron in its Coulomb field. However,
the Coulomb attraction between the P* and a free electron is weak
due to the large relative dielectric constant of the semiconducte~

crystal. The Coulomb potential is:

V(r) = - e?/ane (1.21)

where €, is the relative dielectric constant of the medium. The

values of €. for 3i and Ge are 11.7 and 16.0, raspectively, showing
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a decrease in the interaction force. This screening is responsible
for the small binding energy of the electron at the donor site. Using
the bohr mode]l, we find that this small binding energy is related

to the Bohr radius of the donor electron, a*:

a* = hx/m"e? (1.22)
where K = 4ﬂerc°. In Eq. 1.22, m is the effective mass, and h and
e, are constants. This is essentially the result of what is called the
effective mass theory, which predicts surprisingly well both binding
energies and Bohr radii. Donors which can be described with this
simple model are called in analogy to hydrogeu, "hydrogenic". A typi-
cal binding energy corresponding to the ground state of the doror in
Ge is ED= 0.01 e¥. This is small compared to the bazdgap, EG, which
is 0.7 eV for Ge at room temperature. As shown in Fig. 7, the level is

so close to the conduction band that almost all donors lose their elec-

trons, i.e., are ionized at room temperature.

Ee

= s cB
Epp— — — — DONORS — — — —
Epf~ — — —ACCEPTORS- — — —
Evl- B EpeE— —vs
En

Fig. 7. Donor level position at conduction band edge, and (b) accep-
tor level position at valence band edge at room temerature.
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The concentration of electrons n is for all practical purposes, equal

to the concentration of donors ND' if "D > n,. From Eq. 1.16:

n =Ny >>n, (1.23a)

2
n; "INy {1.23b)

o
[}

1.6.2 Acceptors - In order to make the host crystal conducting
with holes instead of electrons, Group III acceptors (B, Al, Ga, In)
which are trivalent impurities and which accept electrons to complete
the tetrahedral bond of the host are used. When the vacancy of the
electron bond is filled by an electron moving into the site from an-
other bond, a hole is introduced in the latter bond. The hoie then
migrates throughout the crystal. The acceptor is negatively charged
since it has entrapped the additional electron. The positively charged
hele is attracted and bound by the acceptor with a small binding energy
of ~ 0.01 eV, in close analogy to the "hydrogenic" model used for
donors. Thus, essentially all the acceptors are ionized at room tem-
perature. The acceptor level lies just above the valence band edge,
as in Fig. 7. This level corresponds to the hole being captured by
the acceptor. When an acceptor is ionized (i.e., by an electron ex-
cited from the top of the valence band to fill the hole), the hols
jumps to the top of the valence band and becomes a free carrier.

That donors and acceptors lie in the bandgap does not contradict
the model described in section 1.3 because the model was for a pure
crystal. Extrinsic semiconductors contain impurity states, or imper-
fectjons. Furthermore. impurity states which are bound states are
localized, not delocalized as are Bloch electrons. Impurity states

are thus nonconducting.
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1.6.3 Compensation - Compensation is the result of the presence
of both donors and acceptors and can be achieved by introducing Group
11T acceptors into n-type material or Group V donors into p-type mate-
rial. Compensation K is defined as the ratio of the concentration of
minority impurities to majority impurities. Thus, in a semiconductior
with NA acceptors and ND donors, with Ni > ND, the compensation is:

K= NDINA (1.24}

The effects of compensation will be explained in chapter six.

1.7 Band Structure of Real Semiconductors

In seciivn 1.3, a conduction band centered &t k = 0 was assumed.
However, the bind structures of real semiconduciors have regions where
the energy E{k) is not quadratic in E, so that those states cannot be
represented by a single effective mass introduced in section 1.3.

Figure 8a shows the band structure in germaniunP.

=i e
Ge

CONDUCTION|
NAND

8L B2B-11238

Fig. 8. {a) Band structure of Ge plotted along the [100] and [111]
directions, and (b) ellipsoidal energy surface corresponding
to primary valleys along the <111> directions.
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The corduction band has its minimum along the [111] direction at the
zone edge. Due to the cubic symmetry in the Ky ky- and k,~ direc-
tions, the energy band must have tetrahedral symmetry. Thus, thers are
actually eight minima, shown in Fig. 8b. This modifies Eg. 1.22, so
that m* will be some average between the respective longitudinal and
transverse masses of my = 1.6 m, and m, = 0.082 m, for germanium.
This gives a value of a = 45 A for Ge, where the dielectric constant is
k = 16 and the lattice constant is 5.65 A. This is a large radius, so
that impurity orbits overlap at relatively low impurity ccncentrations.

Because we have eight conduction band minima in Ge, there are then
eight solutions to the lowest energy state. This degeneracy is not
allowed by the symmetry of the lattice; thus, corrections need to be
made in calculating the effective mass for the ground state.

The behavior of an electron in a crystaliine seolid is determined

by the Schrodinger equation4:

[R2rand + V(F) 1y (F) = Ev(F) (1.25)
where V(r) is the crystal potential "seen" by the electron, and y (V)
and £ are respectively, the state function and enrergy of the electron.
If Eq. 1.25 is modified to account for the longitudinal and transverse
masses, m, and m,, the resuit for the ground state is:
{rram) 2200) + (P12 )09 0y) + 2l2)] * VR w(F) -
Ev(r). (1.26)
It is always possible to write the solution to Eq. 1.25 as:
¥(F) = u(F)F(F) (1.27)

where u(r) has the same symmetry as the lattice and f(r) is a hydrogen-
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like envelope function. It can be shown6 that the ground state enve-

lope function f(r) which satisfies Eq. 1.26 for the ground state
function is:

f(r) ~ exp(-rfa”) (1.28)
where r > r_ and 4nri/3 is the atomic volume. Equations 1.26 to 1.28
then, represent the modifications to the ground state energy states of

a donor impurity. The other singly bound energy states can be repre-

sented by Eqs. 1.25, 1.27 and 1.28.

1.8 Calculating Energy Bands: The Tight-Binding Approximation

One method used to calculate Eq. 1.25 is by the "tight-binding"
methods. This method assumes a crystalline array of N potential
wells, as shown.

V(x)
b -l i itl

W,
W
W,

XL 828-11227

Fig. 9. The potential energy of an electron in a crystal, where W,,
W1 and Wy are energy levels.

In each well, the electrons have bound states with energies ”0’ Wy,
.« » W and wave functions #;, 6;, . . . #,. When the electron moves
from one well to another, a band containing N states is formed from
each bound state of a single well. The wave function describing this

motion is:
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v, = N1/2 % exp(ikX.)$ . (r = X.) (1.29)
nk i< 377n§ J )

where xj describes the position of the jth

h

atom and bnj(r - Xj) is the
atomic orbital centered around the jt atom. The energy of the elec-
tron described by L1 is given, according to quantum mechanicsl3, by:

E(k) = < ¥ [H > (1.30)

where H is the Hamiltonian of the electron. The value En(k) of the

energy of an electron with this wave function is:
- * 3
En(k) =W, * 5“’nk AV‘Pnk)d X {1.31)
where aV is the difference between the potential energy V and that of
the simple well, If it is assumed that only nearest-neighbor inter-
actions give the most significant overlap integrals, then for a simple

cubic lattice with lattice constant, a:

En(E) =W, - 8 - 2l{cosk,a + coskya * cosk,a) (1.32a)

where 8 = -SlﬁileVd3x. (1.32b)

and I is the “"overlap energy integral”, where
* 3
I=- (¢i+t AV"I)d x (1-32C)
Thus, according to the tight-binding approximation, the spread between
the minimum and maximum energies of the band is proportional to the
overlap integral I. The bandwidth B in this approximation is B = 2zI,

where z is the number of nearest neighbors in the 1attice4.

1.9 Anderson lLocalization

The tight-binding model above assumes that the donor sites form a

periodic lattice. Although the impurity sites occupy substitutional
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positions of the host crystal, they have a low enough concentration
that we can regard them as randomly distributed. This is known as
lateral disorder. The value of the overlap integral I in Eq. 32c¢ will
then change from site to site due to the random donor distribution.

Y considered the effect of the fiuctuations by consider-

Anderson
ing what happens when a potential V is added to each lattice site in
the tight-binding approximation. V was aliowed to lie between the

1imits % VO’ as shown in Fig, 10.
v

i

I

| E— Sty

(a)

oot

Fig. 10. One-dimensional random potential energy intraoduced by
Anderson for (a) Vo = 0 and (b) Vo/B large.

T

Anderson showed that there exists a critical valve (VOIB)crit such

that the solutions to the Schrodinger equation will lead to "localized"
wave functions, where Tocalization means that no conductivity can occur
in the lattice at absolute zero temperature. He then proved, using the
Born approximation for the mean free path, that for (VG/B) just Jess

than (VO!B)crit, the minimum value for the conductivity will be;
2 A
onin = (1/42) (€2 ) {(Br¥ ) cr it} (1.33)

where d. is the average distance between impurity centers. Calcula-
tions estimate that (VOIB)crit = 2. The effect of disorder is to
produce localization of states, even though there may be strong gver-

lap between wave functions of adjacent states.



18

Thus, if the Anderson criterion of V, > 2B is satisfied for a
particular band, all states in the band will be localized. If the
Anderson criterion is not satisfied, then the states are localized in
one range of energies and not localized in another where the two
ranges are separated by a critical energy Ec' The effects of Ander-

son lgcalization will be further discussed in Chapter 6.

2. Electrical Conduction in Doped Semiconductors

2.1 Introduction
The most fundamental electronic property of materials is electrical
conductivity. Both electrors and holes contribute to electrical cur-
rent. For a sample with only one type of carrier--for example, elec-

trons—--the electrical conductivity o is defined as:
2 *
g = ne ‘re/l'ne (2.1)

where To is the average time between collisions of an electron. The
electrical conductivity of a material depends on two factors: 1) the
number of current carriers per unit volume, and 2) the mobility of the
carriers under an applied field. The electrical mobility Ha is de-
fined as the ratio veléi the velocity per unit field strength. Since

the drift velocity in the field is:

= -ereé'/me*, (2.2a)

<
f

*
= e-re/me (2.2b)

and vg = Neuy (2.2c)
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Analogously, in a sample which is p-type we have the conductivity of

holes oy’

o, = pezrhlmh* = pewy (2.3)
for hole mobility wy, ard average time between collisions of a hole
The If there are both electrons and holes in a sample, their cur-
rents and conductivities are additive. The total conductivity o is:

o=0,%0q (2.4)
A second commonly used parameter is the resistivity p:

p=1/c= llneue (for n-type) (2.5a)

llpeuh (for p-type) (2.5b)

2.2 Temperature Dependence of the Conductivity: Low Concentration

(<1015cm'3)

The temperature dependences of the resistivity and carrier con-
centration of semiconductors doped with low impurity concentrations
(~ 1014cm—3) are shown in Figs. 1la and 11b. The resistivity changes
with temperature primarily as a result of the change in carrier concen-
tration n. At temperatures far above room temperature, there is appre-
ciable intrinsic carrier concentration, and 1n n will vary inversely to
the temperature with a slope of (-EGIZK), as seen from Eg. 1.20. The
Tal2 dependence of Nc in Eq. 1.18b is generally small compared to the
exponential dependence of T in Eq. 1.18a. As the temperature decreases,
the thermal energy of the intrinsic carriers decreases, such that their
concentration decreases and the resistivity increases. This is shown in

segment 1 of Figs. 1la and 11b.
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/T T
(a) (b)

X8y B28-11228

Fig. 11. (a) Carrier concentration and (b) resistivity relationships
as a function of temperature.

At about room temperature, extrinsic impurity conduction dominates and
there is complete ionization of donors (in n-type material) or acceptors
(in p-type material). Thus, in segment 2 of Fig. lla, we find:

n = |ND - NAI in the extrinsic region. The drop in resistivity in

this range is due to the temperature dependence of the mobility u. The
carrier mobility increases with decreasing temperature due to a decrease
in "lattice scattering". Lattice vibrations lead to shorter mean free
paths for carriers and carriers travel faster at higher temperatures, thus
shortening the time between collisions. Both factors decrease the mobil-
ity at high temperatures.

As the temperature drops below about 100 K, the carriers begin to
freeze out on the donor/acceptor centers in n-type/p-type material. The
free carrier concentration then drops, as in segment 3 of Fig. 1la and the
resistivity correspondingly increases. The slopes of segments 3 and 4 in
the freeze-out region of the concentration curve are described by approxi-

mations3

. Consider, for example, and n-type semiconductor (ND > NA)’
Charge neutrality requires that:

"+(NA'pA)=p+(ND'"D)
where NA and ND are the total concentrations of acceptor and donor

centers; and Pa and ny are the concentrations of holes and electrons
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on centers. Thus, the concentration of electrons in donor centers is
np = NDf(ED). The rate of loss of electrons from donor centers to the
conduction band is:

kl"c(ND - NA -n) (2.7)
where NC is the number of empty conduction band states, (ND - NA -n)
is the number of filled, or neutral, donors and k1 is a proportional-
ity constant. The rate of return of electrons to the donors is:

kon(n + Ng). (2.8)
At equilibrium,

n(n + NA)/NC(ND - Ny - n = kllk2 =K (2.9a)
and K = exp(ED - Ec)/kT (2.9b)
For n >> NA’ and n < ND’ Eq. 2.9a reduces to:

n = (NN) Y Zexp(E, - E.)}/2kT (2.10)

- MCD D C .
while for n << N,,
n = N.[(Ny = Np)/NpJexn(Ey - EQ)/kT (2.11)

Equation 2.10 applies to segment 3 of the In n versus 771 curve where
n > Ny and n (ED - Ec)/2kT. As n decreases to n < N,s the slope

increases as in Eq. 2.11 ton (ED - EC)/kT, shown in segment 4.

2.3 Temperature Dependence of the Conductivity: High Concentration
(> 1015cm'3)

The effects of increased impurity concentration or the carrier

concentration and resistivity curves as a function of temperature, are
shown in Figs. 12a and b. As Np increases, (ND - NA) increases in the

extrinsic region, and the resistivity correspondingly decreases. The
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relationship between the resistivity and impurity concentration at low
temperatures becomes more complicated. As the impurity concentration
is increased, a point is reached where charge transport is no longer
due to free carriers, but is instead due to charge transport between
impurities, known as impurity conductiona. At medium impurity con-
centrations (~ lolscm'3), "hopping” transport occurs as electrons hop
from occupied to unoccupied localized donor centers. The resistivity
then follows the ekponential relationshig, o = poexp(AiTn} for
0.25¢<n < 1.7 The value of n depends upor whether variable range or
nearest-neighbor hopping occurs. At high concentrations (> 1017cm'3),
"banding” occurs in which impurity state wavefunctions overlap signifi-
cantly and lose their localized character, This leads to a metallig
type of coaduction, with conduction occurring at all temperatures.
Theories concerned with hopping and banding transport in impurity
bands, as well as the effects of compensation will be presented in

Chapter 6.

_~HOPPING

-

———-——-BANDING
T
(b)

E/\
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Fig. 12, Effects on high impurity concentration on {a) carrier concen-
tration and (b) resistivity curves as a function of tempera-
ture. .
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3. Impurity Doping Methods

3.1 Introduction

Semiconductor doping is accomplished by introducing desired impuri-
ties into specified areas of a semiconductor device, Due to the vari-
ety of doping requirements needed for modern electronic devices, sever-
al doping methods have been developed. Two methods, impurity diffusion
and jon implantation, are commonly used to dope standard thin layer
devices of thicknesses of aboﬁt 1000 A or less. This discussion of
doping, however, will emphasize bulk techniques used to dope devices of
greater thickness. The two most common bulk doping methods are doping
during crystal growth and neutron transmutation doping (NTD).

Because device performance and reliability are critically affected
by impurity levels, there is a strong incentive to first develop large,
ultra-pure semiconductor single crystals. Once the starting semicon-
ductor material has been purified of foreign atoms, it is then doped
deliberately to the desired impurity level. In the case of ultra-pure
germanium, a net concentration of shallow impurity centers of about
1010cm“3, corresponding to a net-impurity concentration of one in

more than 1012 germanium atoms has been achieved*o.

3.2 Purification
Commercially produced polycrystalline germanium used as starting
material normally contains boron, phosphorus and aluminum at levels of
~ 1012 to 1013cm'3. in order to reduce these impurity concentrations
by two to three orders of magnitude, one can use the principle of solid-
1iquid impurity segregation. Thus, for a given impurity there is a

specific ratio of concentrations found in the liquid CL, and in the
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solid CS when the phases are in equi]ibriun} {Fig. 13a). This ratio,
cailed the segregation coefficient, k, is defined as:

k = CSICL. (3.1)
The value of k in Eq. 3.1 is appropriate only when the interface is at
equilibrium. Because the segregation is therefore altered by any fi-
nite growth velocity such that impurities must diffuse through a dif-
fusion layer at the interface, an effective segregation coefficient

keff is found to be:
kopp = [1H(1/k, - 1) exo(- f8/D)] {3.2)

where D is the diffusivity of impurities in the liquid, f is the growth

rate and & is the width of the diffusion layer.
[ ¢

CL

C_|
Cs Cs

e
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@ mezn

Fig. 13. Solute concentrations at (a) equilibrium and (b) finite
growth rate at the solid-liquid interface.

Zone purification and multiple "normal freeze" growth are most
commonly used to purify germanium. In zone purificationl, a narrow
1iquid zone of germanium is melted by means of an RF field which is
passed slowly along a long bar of germanium contained in a "boat"
(Fig. 14). The molten zone is moved from one end of the bar to the
other end, and the process is repeated several times in order to col-

lect the impurities by segregation into one end of the bar.
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Fig. 14, Schematic of zone purification process.

b

Fig. 15. Schematic of normal freeze growth method.

In the '"normal freeze" method shown in Fig. 15, impurities with
k < 1 become concentrated in the melt. This results in a high concen-
tration of impurities in the tail end of the crystal. The pure "seed"
ends of preceding crystals are then used to grow subsequent crystals
of higher purity.

Although both zone purification and the multiple normal freeze
growth method can be theoretically used to produce perfectly pure
crystals, there are practical limitations. Interactions between the
moltten germar.ium, the container and the ambient in the zone refiner
or crystal puller limit the purification to concentrations of 109 to

lolocm-a. In the case of the purest graphite containers available,
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phosphorus and boron are found to contaminate germanium10 to concen-
trations > 1011cm'3. Synthetic quartz, a more suitable material, con-
taminates germanium with ~ 1010¢n3 phosphorus and higher order com-
pounds of oxygen, aluminum and siliconlo.

In addition, the composition of the atmosphere surrounding the melt
controls the equilibrium between formation and dissociation of impurity
complexes, and the mobility of undesirable impurities. High vacuum is
generally not the preferred ambient because of the very long mean free
paths of atoms and molecules. The Tong mean free path increases the
probability for an impurity to reach the melted germanium. As a

result, a reducing gas ambient such as hydrogen is usually preferred.

3.3 Doping During Crystal Growth

Doping can also be achieved during single crystal growth. The
most common growth technique for germanium is the Czochralski method .
Doping is achieved either by adding the intended dopant element in
pure form to the melt or by adding a piece of heavily doped semicon-
ductor called the “"master dopant" to the melt. The former method is
seldomly used because it is difficult to control accurately the ex-
tremely small amounts of added dopant. Oxidation, evaporation or
interaction with the crucible and atmosphere can reduce the elemental
dopant drastically. Impurity segregation causes a variation of im-
purity concentration along the crystal axis. Impurity striations--
local fluctuations in the impurity concentration--occur in all crystals
grown from the melt. Various methods have been devised to obtain con-
stant impurity concentration profiles. Depending on the segregation

coefficient (k < 1), one can add more dopant (k > 1) or more pure
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semiconductor material (k < 1), These fluctuations are caused by
three effectsll. First, crystal rotation occurs in a noa-perfectly
cylindrical group of isotherms since the isotherms must be snaped so
that a single high-purity crystal of the desired diameter can be grown.
For each revolution, the solid/1iquid interface may pass through a
"hot" or "cold" point, thereby modifying the crystal growth rate and
effective segregation coefficient. This results in variations of im-
purity concentration. Secondly, incorporation of impurities changes
the melting point, which can cause oscillations in the growth rate and
effective segregation coefficient, as in Fig. 16a and b. The third
cause of impurity striations is due to formation of convection cells
in the melt. These cells stir the melt in patterns which affect the
homogeneity of the impurity concentration. To break these convection
cells, one can use magnetic field gradients—-which cause eddy currents
in the melt--to reduce impurity striationsll. However, the problem
of producing homogeneously-doped and compensated semiconductor single
crystals in melt-doped and grown crystals remainslz. As will he

seen later, small doping fluctuations become important at low tempera-
tures. At temperatures below about 1-2 K, dopant concentration fluc-
tuations of a few percent lead to resistivity fluctuations of more
than an order of magnitude. As a result, efforts to eliminate this
orchlem have resulted in the development of a doping technique known

as neutron transmutation doping (NTD). The NTD process and its advan-

tages will be discussed in the next section.
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3.4 Neutron Transmitation Doping

3.4.1 Introduction ~ As discussed in section 3.3, impurity stria-
tions occur in crystals which have dopants incorporated during growth
from a melt. Because the resistivity of impurity conducéion, intro-
duced in section 2.3, is critically dependent on impurity separation
and degree of compensation, it is desirable to dope semiconductors by

a method which allows perfictly homogeneous doping.

Fig. 16. (a) Etched segment of a Te-doped InSb crystal grown in the
presence of (b) thermal oscillations in the melt. (From “J.
Electrochem. Soc.” 119, 1218 (1972),

3.4.2 The NTD Process —~ Neutron transmutation doping13 is based
upon thermal reutron irradiation of an undoped semiconductor. Because
neutrons are neutral particles, their penetration range is very long.
In the absence of any electrical charge, neutrons readily reach the
nucleus. The number of neutron captures by semiconductor nuclei per
unit volume N is riven by:

N = NTGCO (3-3)

where NT is the number of target nuclei per unit volume, L is the

capture cross section, and ¢ = #t is the fluence (flux times time).
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The magnitudes of the impurity concentrations can thus be varied,
since they depend on the neutron flux and exposure times. It can be
shown that for low neutron energies, the capture cross section is re-

lated to the energy byzgz
o, @ E_llzu 1/v (3.4)

where v is the neutron velocity. The cross section is thus related to
the probability of interaction between the nucleus and the neutron,
such that the probability of neutron capture is increased at low neu-
tron energies.

Since the addition of a neutron causes the nucleus to become ex-
cited, the target nucleus emits high energy gamma radiation after neu-
tron capture. The energy of gamma rays can be measured accurately.
The gamma ray spectrum is an accurate and unique signature of a given

14, a tracer techrique which is

3

nucleus. Neutron activation anaiysis
sensitive to impurity levels as low as 109cm' , is based on the
measurement of gamma ray spectra. If the product isotope is unstable,
further decay occurs until a stable isotopic state is reached.

Before discussing neutron transmutation doping of germanium, we
will consider the simpler case of silicon, which is of major techno-
logical importance. Of the ~ 8,000 tons of semiconductor silicon pro-

d22'23. Al-

duced in 1981, 40 tons were neutron transmutation dope
though this is a small percentage of the total silicon market, NTD Si
is critical to the production of very high voltage, high power devices,
which are extremely expensive, This is in contrast to the more popu-
lar devices of extremely small voltage and low power used in the semi-

conductor industry.
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In the case of silicon, three stable isotopes are present. Absorp-

tion of neutrons leads to the following reactionsla:

(92.32) 3Bsi(n,y) 33si

(8.7%) 23si(n,y) 3si

(3.12) $8Si(n,y) }isi > J3P + 87, o, = 0.108
t)p = 2.62n

The first two reactions do not produce dopants. However, the 3051

isotope which is 3.1% abundant is transmuted to 3151 which then g~

31

decays with a half-life of 2.62 h to the stable isotope “°P, a donor.

The desired phosphorus isotope further decays:

3P(n,y) $5P + J5s + 87, o, = 0.1%b

t1/2 = 14.3d

This process occurs, however, only after substantial dopant levels
have been reached.

The undesirable 32P is the primary source of radioactivity in
silicon and Teads to unwanted sulfur in the crystal. This secondary
reaction 1imits the NTD method to p > lgcm for Si. In the range
p < 5 pecm, the 32P activity can be reduced by using low neutron flux
densities (~ 10 n/cﬁzsec) because 32P production varies with the
square of the neutron flux. However, this leads to prolonged irradia-
tion tinas and unattractively high costs. Foi higher resistivity
material, p > 10 gcm, ihe formation of 32P can be reduced by using

2sec). Due to the use of

31g;

1 r
high neutron flux densities (~ 10~ n/cm
shorter irradiation times, therc is incomplete decay of the
activity within the radiation time such that there are fewer 31P

atoms available for precduction of 32P.
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Although silicon is the only semiconductor which is commercially
doped by NTD, the process can be used for other semiconductors. Shown
below are the neutron capture reactions which yield dopant isotopes in

germanium and gallium arsenide, respectively:

TABLE 1.
Isotope
Fraction Reaction ac(b) tyj2  Type
( 20.5%) 38Ge(n,v) 23Ge + j36a + K 3.25 11.2d P
{ 36.5%) 7s6e(n,y) 13Ge + T3as + 8~ 0.52 82.8m n

( 7.8%) 7Ge(n,y) 1268 + JJAs + p~ > Se + 8~ 0.16 11.3h n

( 60.1%) $d6a(n,y) 1362 + Je + &~ .7 2Llm  n

( 39.9%) 7iea{n,y) 736a » i%Ge + g~ 4.6  14.1h n

(100.0%; J3as(n,y) 33As » Bse + 8~ 4.4 26.3h n
3y

Of the above cases of Si, Ge and GaAs, only germanium yields a
compensated material, while silicon and gallium arsenide yield strict-

1y n-type dopants. For germanium, the compensation ratio will be:

N
D As] + 2[Se
K=1;=L—1re-ﬂi_1=o.322

The values for selenium are counted twice because selenium is a doubly
charged donor and can thus compensate two acceptors. 'We beljeve that
the va.ue K = 0,322 is more accurate than the value K = 0.40 used in
other sources, based on older capture cross section datala’lg.
Following neutron irradiation, the NTD miterial is thermally an-
nealed of radiation damage caused by residual high-energy neutrons

present in the thermal neutron beam. The primary sources of radiation

damage are the fast neutron knock-on displacements and gamma and beta
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recoil damages which produce massive numbers of atom displacements
compared to the dopant atoms produced. Typical numbers of displace-
ments for each dopant atom produced are as high as 104 to 106 in
si]iconl3. 0f these, the displacements from fast neutron knock-on
recoil can be expected to be about 103 times higher than the damage
from thermal neutron recoi113. Fast neutrons therefore dominate the
displacement damage unless thermal-to-fast neutron ratios exceed
1000:1. Typically, the ratio of thermal-to-fast neutrons is only
about 10:1 to 50:1, but there are reactors-'which can achieve ratios
higher than 1000:120. The thermal neutron capture cross sections

for germanium and gallium arsenide are much larger than those for
silicon, as shown in Table I. As a result, the displacement damage by
thermal neutrons, relative to fast neutrons, is greater than it is in
silicon.

Radiation damage introduces defect levels in the bandgap, which
causes reductions in free carrier concentrations, carrier mobility and
minority free carrier lifetime. Thermal annealing recovers the elec-
trical activity of the dopant impurities by healing the damage. Al-
though the free carrier concentration and mobility can be recovered
during the annealing cycle, the minority free carrier lifetime is not
fully recovered. This i5 not well understood but it is thought that
the Tifetime is strongly affected by the purity of the starting mater-
ial and the cleanliness of the reactor14. For germanium and silicon,
thermal annealing temperatures of 400-450°C and 800-850°C, respective~

1y, are commonly used21.
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3.4.3 The Advantages of the NTD Process - Using the NTD process,

one obtains reproducible, homogeneously-doped semiconductors of a known
compensation such that NTD is advantageous over conventional doping
methods as discussed in section 3.3.

Because all reactors producing NTD material rotate the ingots in
order to improve radial uniformity, the accuracy in the doping can be
controlled to better than 1% for small samplesl4. This is far supe-
rior to conventional methods for which the doping inaccuracy may be as
high as 25%13. Figure 17 shows the accuracy attainable in terms of
percentage deviation of mean dopant concentration. Also shown is a
comparison of the spreading rasistance as a function of radial distance
for both NTD and conventional methods.

The narrow resistivity variation (as low as * 4%13) attainable
in NTD material leads to devices of more uniform electrical character-
istics, especially in voltage and switching characteristics. This is
particulariy important in high power silicon devices, which require
high breakdown voltages. The uniform resistivity allows a uniform
avalanche breakdown across the device. Finally, the NTD method is
particularly desirable for infrared detectors in which considerations
of low operating temperatures and high sensitivity often require close

compensation of shallow impurities.
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Fig. 17. Illustration of irradiation target accuracy obtained on sam-
ples irradiated at the University of Missouri Reseavrch Reac-
tor, The insert is a schematic of the spreading resistance
traces across a wafer for conventionally doped and NTD Si.

[After J.M. Meese, Neutron Transmutation Doping in Semicon-
ductors, Plenum Press, New York, 3 (1979)].

4, Measurement Techniques

4.1 Resistivity Measurements

The resistivity is the inverse of the conductivity ¢ = ney, where
n is the concentration of charge carriers (cm'3), e is the charge of
the electron (= 1.6 x 101%s) and u is the mobility (cm/Vs). The
resistivity p of a homogeneous material is the resistance R of a unit
cube measured between one pair of parallel faces. With R = gL /A, we
find o = RA/L(g cm). It can be determined by various methods, for

example, by using the so-called "four-point" probe or the "two-point-
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probe24, shown respectively in Fig. 18a and b, With the four-point
probe, one passes a current I through the two outer probes, while the
two inner probes act as high impedance voltage sensors so that the
resistivity o isl:
= (V/I}as/1n2 gcm for 6§ << s (4.1a)
= (V/1)2as qcm for § >> s (4.1b}
where § is the sample thickness and s is the thickness between probes.
Another technique is the two-point probe, used to measure the spreading
resistance of a samp1e1’25. This technigue allows the local resist-
jvity on a ym scale to be determined; thus, impurity striations on a

wafer can be measured.

T,

S eeSeS= § &
t

(a) (b)

1 @B

Fig. 18. (a) The four-point probe. (b} The two-pcint vrobe. Probes
of a hardened and highly conducting alloy are pressed on the
sample surface.

4.. Hall Effect

4.2.1 Basic Cocifiguration - The most commonly used method to de-

termine carrier concentration and the type of the carriers (+ or -) is
the Hall effect techniquezd. Together with a resistivity measurement,
vthe carricy mobility car be determined: u = l/pne. The standard Hall
effect configuration is shown in Fig. 19. A current I is passed
through the sampte in the x-direction. By applying a magnetic field B
in the z-directic-, the Lorentz force acting on electrically charged

carriers causes disp'acement of the carriers in the y-direction.
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There is thus a build~up of an internal electric fizld (or Hall field)

EH, which wil. cancel the effect of the Lorentz forces.

| ——— b
N @ :
v v X

8L B29-11234

Fig. 19. B8asic configuration for Hall effect measurements.
Once equilibrium has been established, in typically less than 16'13sec
the Hall force is equal to the Lorentz torce, and:

e(v x B) = ek,

VHIb = EHy = Bzvx = BZRHJX
for a current density Jx = I/bd, and Hall coefficient RH. In the
general case, where one type of carrier predominates:

Jx =V en

and RH = l/ne.
Above, n is the carrier concentration and e is the charge on an
electron. If both electrons and holes contribute to conduction, Ry
can be shown to be:

Ry = (2/e)l(p = b%n)/(p + bm)?]

where b = "n/“p is the ratio of the electron to hole mobility.

4,2.1 Van der Pauw Method -~ In 1958, a method of measuring re-

sistivity and Hall effect of flat, thin samples (lamellae) was intro-

duced by L.J. van der Pauwzs. For this methnd, the electrical con-
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tacts must be sufficiently sinall and located at the circumference of
the sample. Furthermore, the sample should be of constant thickness
and must not have isolated holes.

Van der Pauw showed that for an arbitrarily shaped sample of con-
stant thickness & with successive contacts A,B,C,D as described above
and shown in Fig. 20, the resistivity can be expressed as:

p = (“5/]"2)[(RAB,CD + RBC,DA)IZ] x f.
RAB,CD is the resistance obtained from the voltage across contacts A and
B, divided by the current through contacts C and D. RBC,DA is analo-
gous to RAB,CD’ and f is a function of the ratio RAB,CD:RBC,DA only
as shown in Fig, 2126. In the case of a circular or rectaqgu]ar sample,

f=1.

Fig. 20. Van der Pauw's use of conformal transformation to determine
the resistivity of an arbitrarily shaped sample of thickness

u L I T L
1 2 5 a0 2 s51022 &5 108
(Rag.co/Rac,pa)

o

Fig. 21. The function f used to determine the specific resistivity of
a specimen with an arbitrary contour as & function of the
resistance ratio Rz 34/R23,4]. [after L.J. van der
Pauw, Phillips Res. Repts., 13 (1958) 1].
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Both the Hall mobility and free carrier concentration can be found by
measuring the change uf resistance, RBD AC wher. a magnetic field B is
appiied perpendicular to the sample. The hall coefficient RH is then:

Ry = (6ARBD,AC)/B

ARBD AC is the change of resistance due to the magnetic field. The
Ha1l mobiiity My is then given by:

wy = (MRBD,AC)/B"'

and the free carrier concentration is:

n= B/eMRBD,AC'

Van der Pauw and others have made estimates of the error intro-
duced by using contacts of finite size and not located at the circum-
ference of the sample. It has been shown25 that the van der Pauw
geometry is quite insensitive to deviations from the ideal geometry.
In Fig. 22, one sees that the error in sheet resistance is only second
order dependent on the ratio of contact length to the length of one

side of a square-shaped samo]e27.

1.0 —r—TTT

Vi E

|,| A 1

T

0.01 A " PR
01 1.0
D/s

Fig, 22. Normalized sheet resistance error E with contacts centered
on each side of a square specimen with dimensions as shown
in the insert as a function the ratio of contact length to
side of the square. [after M.G. Buehler and J.M. David,
Natl. Bureau of Stds., Special Publ. 400-29 (1967) 64].
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5. Experimental and Data

5.1 Sample Preparation*

Wafers of ultra-pure p-type germanium crystal #516 were cut per-
pendicular to the <113> axis of crystal growth (Fig. 23), and were
lapped with 600 and 1900 grit lapping compound. The six wafers, taken
along the lengths 3.3 to 5.2 cm of the 17 cm long crystal, had impur-

10

ity concentrations of 3.4 x 107 to 4.0 x 1010 cm'3. Neutron

transmutation doping (NTD) to gallium concentrations of 2 x 1015cm"3
S Np<5x 10%0%m™ was done on the wafers by J.M. Meese at the
University of Missouri Research Reactor. About one year after
neutron irradiation--after the decay of many half-lives of the longer
living 71Ge (t112 = 12d)--two samples from each wafer of size
~7x7x2 mm3 were cut with a string saw and 1apDed**. This was
followed by etching (~ 15 secs) of the samples in a 3:1 HNO, :HF so-
lution and quenching in electronic grade methanol. Next, the samples
were thermally annealed at 400°C for six hours in dry argon in order
to heal radiation damage incurred during the NTD process.

In order to compare NTD germanium (with compensation K = 0,322}
with nearly uncompensated germanium, wafers of ultra-pure crystal #582
were cut at lengths 13.2, 14.5 and 15.5 along the crystal as shown in

Fig. 24, These wafers have gallium concentrations of 2.4 x 1015cm3

*Details of sample preparation are described in the Appendix.
*xAdditional samples of size ~ 0.4 x 0.4 x 0.6 mm3 were later tested
with resistance as a function of T, identical to that of the larger

samples.
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Fig, 23. Impurity profile of crystal selected for NTD.
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Fig. 24, Ilmpurity profile of melt-doped crystal.
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to 1.1 x lolscm'3, respectively, as shown in the impurity concentra-
tion profile. Two samples of size ~ 7 x 7 x 2 mm3 were cut from each
wafer.

5.2 Contact Preparation

In order to provide ohmic p+ contacts over a large temperature range,
the samples were doubly implanted at room temperature with boron ions at
100 keV at u dose of 2 x 101%m™2 and 130 keV at a dose of 4 x 10-%cm~2.
This was followed by annealing at 250°C for ore hour in dry argon. The
top 500 R of the germanium surface were etched off in a 5% NaOC1 solu-
tion for 30 seconds. RF sputtering of 400 A of titanium and 8000 A of
gold in argon was followed by annealing for 20 minutes at 250°C in
argon. To obtain contacts in the corners of the ~amples on both sides,
one protects the small corner contact area with Picein wax and etches
the gold in a 1:4 12 + KI solution, The titanium layer stops this
etchant and protects the underlying boron implanted layer. The titan-
ium was removed in a few seconds in 1% HF. Finally, the p+ layer was
removed in a 3:1 HF:HNO3 etching solution. After removal of the
Picein wax from the corner contact areas, 5 mil copper wires were
soldered onto the contact pads using pure, fresh indium without any
application of flux. Finally, pure indium foil strips were used to
connect the front and back side contacts in each corner as in Fig.

25. Charge injection from each double pad is approximating the
behavior of the ideal contact geometry very well., Ideal contacts

would have been infinitely narrow, positioned along the edge of each

corner,
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Va

Fig. 25. Method of forming electrical contacts on germanium sample.

-

5.3 Measurement
Variable temperature Hall effect measurements {van der Pauw method)
were made on the p-type Ge samples over the temperature range 0.3 K to
300 K using liquid he]iumza. A magnetic field of 6000 gauss was
used in the temperature range 300 K - 77 K, while a field of 1200 gauss
was applied below 77 K. Thus, magnetoresistance effects were mini-

29 shown in Fig. 26 uses a silicon

mized. The Hall effect apparatus
divde thermometer screwed down to a copper base which can be used over
a temperatu,e range of ~ 1.5 K to 300 K. The samples, positioned along
the extended copper base shown in Fig. 27, lie in an evacuated chamber
{~ 10'6torr), and are surrounded by three radiation shields to pre-
vent penetration of light ar thermal energy. Cigarette paper lined
with high vacuum grease lies between the cold finger and the sample

to prevent elesctrical contact and subsequent short circuit of the Ge
sample. Helium is passed from a dewar through the evacuation shroud
into the sample chamber. For measurements down to 1.5 K, the liquid
4He bath is pumped on with a rough pump down to below 1 mm.
5.4 Data

“
Plots of resistivity and concentration as a function of inverse

temperature are shown, respectively, in Figs. 28 and 29. From the
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resistivity plots, values of a and o which satisfy the relation
p = poexp(AlT") have been derived for the low temperature range

and have been tabulated in Table II for the NTD Ge samples.

TABLE TI.

samp] NgA :3?0 gs:o ) &l
ampie cm cm

NTD 1 2.0 x 1013 1.4 x 10° 8.95
NTD 2 4.0 x 108 4000.0 6.90
NTD 3 6.0 x 10t5 1230.0 6.72
NTD 4 9.0 x 1018 430.¢ 4.90
NTD 5 2.0 x 1016 34.0 4.39
NTD 6 5.0 x 1016 3.3 2.82
UNCOMP 1 2.4 x 1012
UNCOMP 2 3.0 x 101°
UNCOMP 3 1.1 x 1016

Plots of in o versus T for n equal to 1, 1/2 and 1/3 have been

made in order to determine the best fit for the value of n. These
plots are shown for samples NTD Ge 4 and NTD Ge 5 in Figs. 30 and 31,
respectively. As can be seen, the closest fit is obtained with

n = 1/2; however, the quality of the fit does not depend critically on
the value of n. 1In Fig. 29, the slope of the hole concentration
versus 1031T is shown to approximately satisfy the relationship
noexp{(E, - E;)/2kT], as described in section 2.2, The majority
impurity, gallium, is located 0.0108 eV above the valence band. This
corresponds to a slope of 0.054 eV for uncompensated material. Our

~3

data shows a slope of 0.057 eV down to p ~ lolzcm in very good

agreement with theory,
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6. Theories for Electrical Conduction in Semiconductors

In the following discussion, models incorporating the movement of
electrons in n-type material will be used, although our experimental
results have been obtained with p-type Ge. This has been done in an
effort to describe the conduction processes in a simple manner, by
avoiding the complications which arise in considering the differences
between holes and electrons. This has also been done in view of the
fact that no theories havé been developed specifically for the conduc~
tion mechanisms in heavily-doped and compensated p-type semiconductors.

6.1 Low Temperature Impurity Conduction Mechanisms

Impurity conduction, introduced in section 2.3, was first observed

30 in SiC and Tater by Hung and GleissmanB in

by Busch and Labhart
Ge. Impurity conduction, unlike ordinary semiconduction, increases
nearly exponentially with impurity concentration. This led Hung8 to
suggest that, at temperatures below about 5 K in Ge, impurity conduc-
tion occurs because of charge exchanges between impurity sites. For
impurity centers which have a small overlap of their wavefunctions,
this exchange occurs cdue to the probability that a carrier can tunnel
from an occupicd to an unoccupied impurity center.

This can occur only if there is some compensation in order to pro-
vide unoccupied sites. For low impurity concentrations, the effect of
adding compensators is to lower the resistivity p of impurity conduc-
tion since there is the creation of more empty centers into which car-
riers can juwp, shown in Fig. 32a. At higher degrees of compensation,

p increases due to the decreasing number of mobile carriers occupying
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majority centers (Fig. 32b). Finally, in the case of complete compen-
sation, impurity conduction vanishes. Then, as in Fig. 32c, all donors
are empty and all acceptors are occupied with electrons. Since the
overlap is small, impurity conduction is noticeable only at low tem-
peratures when the number of carriers excited into the conduction band

is extremely small.

(a) (b) (c)

XBL 828-11235
Fig. 32. The effects of (a) low compensation, {(b) higher compensation
and {c) cgmp]ete compensation for low impurity concentrations
(<1013¢cm3)y .,

As the concentration of impurities increases, the overlap of the
wavefunctions of adjacent impurities becomes so strong that carriers
are no longer localized around individual impurities and conduction
can proceaed without compensation. The resistivity is then expected to
be finite for zero compensation, and to increase steadily until it
becomes infinite for complete compensation. A metallic type of con-
duction then occurs. Hare, metallic refers to those materials whose
conductivity approaches a finite value at absolute zero temperature.
“Insulating" materials then, are materials which approach zero conduc-
tivity at absolute zero temperature.

Mott introduced the idea4 that this transition from tunnelling
to metallic type of conduction may occur abruptly at a critical con-
centration ne given by:

n 113

L
e 8y = 0.26 (6.1)



53

where a; is the effective Bohr radius of the impurity center as
in Eq. 1.22. For germanium, ne = 1.7 x 1017cm'3 and for silicon,
n = 1.9 x 1018cm'3. The value of the conductivity when metallic

conduction occurs was then shown to be:
o = 0.026 e/hd (6.2)
c * c *

where dc' the average distance between impurity centers at n., is
about 2.5 a;. The result for the conductivity in Eq. 6.2 corres-
ponds to the value of the conductivity which would be obtained in Eq.

1.33, for values of (VCIB) t= 2 and number of nearest neighbors,

cri
2 = 6. That z = 6 is used is based upon the assumption of a random
distribution of centers. Equations 6.1 and 6.2 apply to impurity con-
centrations just above those of the experimental results. For our
data which lies in the transition region (~ 1015cm'3 to 1016cm_3),

an explanation of impurity conduction is given in section 6.2.

6.2 Characteristic Concentration Regions

Conduction processes in a doped semiconductor generally depend on
three parameters: temperature, impurity concentration and compensa-
tion K. There are three regimes of impurity conduction in the metal-
insulator transition, In the low concentration regime, for which
dC > Sa; (corresponding to |NA - NDI < 1016cm'3 for Ge), conduction
occurs in the conduction bandg via electrons excited from the D° donors
with an activation energy €1y as in Fig. 33, curve A. This is also
shown experimentally in Fig. 28 in the curves of p versus 103/T in the
range 100 K < T < 10 K. At Tow temperatures, conduction occurs by
phonon-assisted hopping from ocrupied to unoccupied impurity centers

with an activation energy €qe
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Fig. 33, Activation energies e1, €2, €3 for the three regimes of
impurity conduction in the metal-insulator transition.

*
The intermediate concentration regime, with 5 > d/aH > 3, corres-

3 < NA - ND <6x lolﬁcm'a. In this regime, there

pands to 10 6ca™
are three different energy bands which dominate in the three tempera-
ture regions of Fig. 33, curve B. As before, there is an activation
energy ¢, for conduction to occur in the conduction band at high tem-
peraturas. In the intermediate temperature region (#15 K < T < 4 K},
conduction occurs with an actjvatijon energy, €39 via doubly occupied
donors in the D™ band. The D states correspond to donors which are
negatively charged by binding an extra electron. The binding energy is
ep = 0.0 ¢,, where g, is that binding energy for an isolated hydrogen-
like donor. Thus, their energy is larger than that of the D° states,
but less than that of the conduction band electrons. The bands for

the D° and D™ states are known as the lower and upper Hubbard bands,
respectively. The D™ states are only important for conduction in a
limited concentration region before they merge with the ground states
and form metallic conduction at high impurity concentration-. This
activation energy, €5 of the D™ states, is noticeable in Fig. 28, for
the uncompensated germanium sample of 1.1 x 1016cm"3 impurity concen-
tration, Finally, at low temperatures, hopping conduction accurs with

an activation energy €g



55

The metallic impurity band range begins at the edge of the metal-

insulator transition, at tn. critical concentration n. of Eg. 6.1,

The corresponding resistivity as a function of tempersiurce is shown in

curve C of Fig. 33. Values of the activation energies €1» €y and

€3

carrier concentration is shown in Fig. 34.

TABLE 111
N - %o £

Sample {cm™) {eV)

NTD 1 2.0x10%  1.19 x 1072
NTD 2 4.0 x 0% 1.14x 1072
NTD 3 6.0 x 1015  1.12 x 1072
NTD 4 9.0 x 1015 9.91 x 1073
NTD 5 2.0 x 101®  7.89 x 103
NTD 6 5.0 x 1016 5,63 x 1073
uncow 1 2.4 x 105 g.64 x 1073
uncow 2 3.0 x 101 7.06 x 1073
uncow 3 1.1 x 1016 5.47 x 1073

6.3 Density of States for the Metal-Insulator Transition

3.04 x 1073

are tabulated in Table III. A plot of activation energy versus

€3
(en)
7.72 x 1074
5.95 x 1074
5.79 x 107
4.22 x 107%
3.78 x 1074
2.43 x 107
Undetermined
Undetermined
1.31 x 1073

Density of states diagrams for the concentration regimes of sec-

tion 6.2 are shown9 in Fig. 35. In Fig. 35, n increases by a factor

of about 50 from {a) to (d), so that the scale of N(E) increases pro-

portionally. In Fig. 35a, for n <<n, the neutral donor states D°

tie ED below the conduction band edge, while the singlet D~ states

are barely bound at the band edge.

Because their wave functions are

about four times broader than those of the D° states, they form a
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Fig. 34, Activation energies, €1, €2 and e3, versus carrier concentra-
tion, Np -~ Np, for both NTD Ge and uncompensated Ge samples.
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wider band. The Anderson localization criterion, described in section
1.9, will then no longer hold for the upper Hubbard band. If Ec is
defined as the mobility edge of the D™ band, the energy into this

band is (Ec - EF).

P
s
J
- i
o} / a) nan;
z
7
{
!
b} ngn,
Eg E¢
CcB
€} Ne<nengy,
E d) mngy
Ec Er
w26

Fig. 35. Density of states N(E) as a function of increasing net
impurity concentration n.

As the impurity concentration increases to n < ne (in Fig. 3%5b),
the D° and D™ bands merge due to stronger overlap of wavefunctions

and € decreases. At n=n Ec = EF and €y = 0 because the states

cl
near the Fermi level become extended, and the transition to the metal-

lic impurity band conduction occurs. As n increases ton > n_, the

C’
conduction band edge shifts downward due to the screening effect of
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the positively charged donor ions (as in section 1.6.1}, which causes
the dielectric constant to increase (Fig. 35¢).

There is another transition which occurs at a concentration Neps
in which the conduction band edge falls below the Fermi level, and
very few states are localized (Fig. 35d). Thus, for n > Nepe truly
metallic conduction as is found in an impure material prevails.

6.4 Effects of Compensation

In applying the ideas of sections 6.1 to 6.3, the Fermi level EF
cannot always be calculated by integrating the product of N(E)F(E) in
Eq. 1.18 and applying charge neutrality as described in section 1.4.
This is because the sum of the concentrations [D°] + [D+] + [D7] = [D]
must be maintained, and because the relative density of states changes
with compensation and carrier excitation. For example, compensation
increases [D+] and decreases [D”], consequently raising Ec and
decreasing E.. This increases €y = (Ec - EF) to the point that conduc-
tion in the D~ band can no longer compete with €3 activated hopping in
the D° - D+ band, and we no longer see conduction in the upper Hubbard
band at high compensation. Compensation also decreases the metal-insul-
ator transition because the positively-charged donor sites (in n-type
material) which are randomly distributed in the material, add to the
variation in electric fields which act upon the remaining donor sites.
This produces Anderson localization, as described in section 1.9.

6.5 Theories of the Metal-tu-Insulator Transition

Theories of the metal-to~insulator transition for doped semicon-
ductors are concerned with impurity conduction in the form of ther-

mally-activated hopping as described in section 6.2. Two types of
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hopping can be distinguished: ‘'"nearest-neighbor" hopping and "vari-
able range" hopping.

"Nearest-neighbor" or "Miller-Abrahams" hopping31 uses as a
basis the value of the overlap energy integral I given in Eq. 1.32c.
It is then assumed that for hydrogen-1ike functions, the value of I

may be written as:

[= 31 +ad) * 3ad)? eark exp(-ady) (6.3)

where d is the distance between impurity centers and « = 1/ay. In
the theory of Miller and Abrahams, the exponential term of Eq. 6.3 is
taken to be small, such that an electron moves only to its nearest
neighbor and the resistivity will be:

p = py expleg/kT), (6.4)
In the above expression, the activation energy, e3 is given by:

e3 = (&%) (aay3301 - 135 k113

for compensation K = NA/ND and K < 0.03. For higher K, a more compli-
cated expression is obtained in which €3 reaches a minimum near K = 0.5.
Their theory is found to be in good agreement only for low impurity con-
centrations (< 1015cm'3) in both germanium and silicon.

32

"Yariable-range" hopping introduced by Mot gives a resistivity

relationship of the form:

o = A exp(8/T/%) (6.5)
where A and B are experimentally determined constants. In this one-
dimensional derivation, Mott considers that in the low temperature

1imit, the probability of finding a phonon of energy large enough to
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initiate hopping between neighboring states of differing energies
becnmes very small. As a result, the electron hops large distances to
find a state of similar energy. In this theory, charge transport is
due to the motion of electrons near the Fermi level. An electron is
found to hop to a site of energy E = EF + W at a distance R from the

initial site, when the hopping rate p is at a maximum:

p a exp(-2aR - W/KT). (6.6)
The optimum values of R and W are found by assuming a density of states
of the form57:

N(E) = NEY (6.7)

where No and y are postive constants and E is the energy difference
from the Fermi level. The number of sites within a radius R and energy
W available to an electron near the Fermi level is:
3 W

(44R7/3) 0SN(E)dE. (6.8)
If Eq. 6.8 is set equal to one, the distance R that an electron must
hop to find at least one unoccupied state of energy E < EF + W is:

R = [3(y + Dsaniu(y * D103 (6.9)
By substituting £g. 6.9 into Eq. 6.6, the optimum hopping energy is
obtained:

W= [y + DY2akT) 36001 (v + 9) (6.10)
Thus, the hopping rate and resistivity are related to the temperature:

n o = T (¥*4) (6.11)
Setting vy = 0, Mott's expression (Eq. 6.5) for variable range hopping

is obtained. However, expressions 6.5 through 6.11 neglect intersite

electron-electron interactions. Specifically, in the low temperature
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1imit, intersite Coulomb interactions introduce a gap at the Fermi
level for one-electron hops, so that N(EF) vanishes at EF and is
finite elsewhere.

According to Mott, the Coulomb gap of one-electron hops disappears
as variable range hopping sets in4. He predicts that even in the
limit as T » 0, Eq. 6.5 is still valid, if one uses a smaller, tem-

34, on the other hand, believes

perature-dependent value of A, Efros
that a residual gap remains, even for multi-electron hops. In Efros'
theory, the density of states with energy near the Fermi level for

polaran-1ike excitations approaches zero as:

N(E - Eg) = 3E(E - Ep)%raned.

Efros then concludes that the low temperature resistivity should be of
the form:

o a exp(T /)12

where To = ezlkxa*. Only the theory of Efros is consistent with the
data for the NTD samples, as shown in Figs. 30 and 31 of » versus T
for NTD Ge 4 and NTD Ge 5 at T < 5 K. This temperature dependence has

35 36,

also been observed in both bulk GaAs”> and n-Si Using a value of

a" = 45 for Ge, one obtains Ti’z = 8,6 K”2 which is in fair agree-
ment with the experimental values of Table 1 for the NTD Ge samples.
However, Efros' theory neglects an explicit explanation of dopant con-
centration and compensation dependence for the value Té’z. In review-
ing the theories of the metal-to-insulator transition for doped semicon-

ductors, it is apparent that the dependence of the critical concentra-

tion ne on compensation is not accounted for. As compensation increases,
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the effects of disorder and Anderson .localization become dominant so
that compensation clearly needs to be included in the model of hopping
conduction. However, the role of electron-impurity interactions are
not well understood, and the various theories of hopping continue to
be controversial. As a result, additional low temperature measure-

ments and further studies of the effects of compensation are needed.

7. Conclusions

The resistivity of neutron transmutation doped germanium (NTD Ge)
has been measured as a function of net-impurity concentration
(2 x 1015¢m™3 SN -Ny<c5x 1016cm'3), and temperature
(0.3 K < T < 300 K), at a compensation K = 0,322. The NTD Ge samples
were compared with ultra-pure gallium-doped samples, which are nearly
uncompensatad (2.4 x 1015cm‘3 < [6a < 1.1 x 1016cm'3).

Our results indicate that the resistivity can be approximated by
o= k1 exp(A/Tllz) in the hopping conduction regime down to 0.3 K.
This resistivity dependence on temperature is most consistent with
Efros' theory for variable range hopping, where Efros predicts that
Inpa (TOIT)I/2 with To = 74.0 Kll2 for germanium. However,
Efros' theory does not include an explicit explanation of dopant con-
centration and compensation dependence for the value Tglz. In
the NTD Ge samples, for a given NA - "D' we find that k and A are
constant within the crystals down to dimensions of ~ 0.3 mm and most
probably much smaller, and they can be reproduced in any high-purity

Ge single crystal by a predictable thermal neutron exposure and a
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thermal annealing cycle. Neutrom transmutation doping is thus advan-
tageous over conventional doping of a crystal during the melt because
it allows reproducible homogeneous deping at a fixed, known compensa-
tion. This makes NTD Ge a prime candidate for very low temperature

bolometer applications.
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APPENDIX: SAMPLE PREPARATION

Wafer Preparation

Obtain ultra-pure germanium crystal wafers which have been neutron
transmutation doped to the desired impurity levels.

About one year after neutron irradiation, after many half-lives of
the longer 11v1ng lge (LIAZ = 12 days), the wafers are annealed
in dry argon gas to heal the radiation damage, according to the
schedule below:

400

T{°C)

T T T -

0 10 20 30
TIME(E..5)

XBL 828-11231

By slowly cooling the wafers, unwanted impurities such as copper
are forced to precipitate out of the wafers.

HMount wafers onto a carbon block, using dental wax as the adhesive.

. Cut the wafers to the desired size using a wire saw. (Our sam-

ples were cut, <ing a 0.010" thick wire saw, to sizes of
~7x7 x1.9mm). The samples are simultaneously cut and
lapped by using a suspension of 1900-grit lapping compound in
mineral oil as an abrasive.

Remove the samples from the carboi block.

Cleanse the samples of the rema1n1ng dental wax using pure
tri-chloroethylene (TCE) which is heated to below its boiling
point.

Dry the samples in air.

The samples are etched in a 3:1 HNO3:HF solution for abou. 45
secs ~ 1 min., or until a shiny, damage-free surface appears.

Quench the wafers in methanol.

Soak the wafers in 1% HF for ~ 10 min, or unt11 the wafers are
hydrophobic,

Quickly dry the samples in air.
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Jon Implantation

. The samples are doubly ion implanted on both sides at room

temperature with boron ions at an energy of:

100 keV at a dose of 2 x 1014cm-2
and 130 keV at a dose of 4 x 1014cm-2

The top 500 A of Ge is etched off in a 5% NaOC1 solution for ~ 30
sec in order to reach the depth of near maximum B concentration.

Anneal the samples at 250°C for one hour in dry argon.

Meta'lization

RF sputtering is used to deposit 400 A of Ti, followed by 8000 A
of Au on the sample surfaces on both sides.

Samples are etched briefly (~ 10 sec) in 3:1 HNO3:HF to remove
surface contamination.

Quench the samples in methanol and dry them in air.

Jamples are annealed at 250°C for one hour in dry argon.

The sample corners on the front and backsides are protected with
Picein wax (S-14975, low T; Sargent Welch). The Picein wax is
diluted with TCE to the desired consistency, painted onto the
corners, and allowed to dry.

e bare sides of the samples are lapped gently with 1900-grit
Tapping compound to remove any Au and Ti deposited on them,

The Au, not protected by Picein wax, is removed from the top and
bottom surfaces in a 4:1 KI:I» solution.

Similarly, the excess Ti is instantly etched away in a 1% HF
solution.

. The samples are etched for ~ 20 sec in a 3:1 HNO3:HF solution,

in order to remove the boron implanted layer from the non-contact
areas.

Quench the samples in methanol.

Transfer the samples to pure TCE, and remove the Picein wax.
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Quench and rinse the samples in methanol,

Dry the samples rapidly in air.

Electrical Contact Formation

Using a soldering iron, melt a very small amount of In onto the
four Au contacts on the front side of the sample.

Cut and tin 5 mil Cu-40 wire Tengths with 5n-60 solder flux.

Melt a very small amount of In onto one end of the tinned wire
Tengths.

Attach one tinned and In-coated wire end to each of the sample
corners on the front side, by re-heating the corners just long
enough to re-melt the In.
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