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ELECTRICAL PROPERTIES OF NEUTRON-
TRANSMUTATION-DOPED GERMANIUM 

Marilyn Rodder 

Department of Materials Science and Mineral Engineering and 
Department of Instrument Science and Engineering, 

Lawrence Berkeley Laboratory, University of California 
Berkeley, California 94720 

Abstract 

Electrical properties of neutron-transmutation-doped germanium 
(NTD Ge) and nearly uncompensated gallium-doped germanium have been 
measured as functions of net-impurity concentration (?. x 10 cm 
< Nft - « D < 5 x 10 1 6cm" 3) and temperature (0.3 K _< T <_ 300 K). 

The method of impurity conduction as a function of carrier concen­
tration and compensation was investigated in the low temperature hop­
ping regime. For nearest neighbor hopping, the resistivity is expected 
to vary as p = p expU/T) while Mott's theory of variable range hoo­
ping predicts that p = p exp(&/T) in the low temperature limit. 
In contrast, our results show that the resistivity can best be approx-

1/2 imated oy p = p exp(a/T) ' in the hopping regime down to 0.3 K. 
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1. Background 

1.1 Introduction 
Although semiconductors have been studied for many years, they 

actually became popular only after Schockley, Bardeen and Brattain 
invented the transistor in 1947. Because of this invention, 
research and development of semiconductors was heavily pursued. Their 
most direct uses take advantage of their unique electrical behavior, 
as in transistors, amplifiers and memory devices. Other applications 
include those which combine electrical and optical effects such as 
sensing devices, for example, in strain gauges, nuclear radiation 
sensing devices and low temperature semiconducting bolometers used for 
detection of far infrared radiation. 

1.2 Crystal Structure 
Semiconductors are extremely versatile in their applications 

because their electrical conductivities range from metallic to insu­
lating depending on temperature and doping. Besides the elemental 
semiconductors, Si and Ge, there are many compound semiconductors such 
as GaAs, GaP and InSb. Ternary and quaternary compound semiconductors 
are becoming very important for solid state lasers, photodiodes and 
light-emitting diodes. The elemental semiconductors (Group IV) all 
crystallize in the diamond structure, in which each atom is surrounded 
by four covalently bonded neighboring atoms, forming a regular tetra­
hedron as s "T*n in Fig. la. The Group III—V compounds crystallize in 
the zincblende structure. Thus in GaAs, each Ga atom is heteropolarly 
surrounded by four As atoms as in Fig. lb. 
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(a) W 

Fig. 1. Tetrahedral bonds in Ge and GaAs. Black dots represent coval-
ently bonded electrons. 

1.3 Energy Bands 
Electrical conduction in crystalline solids—semiconduction—can 

be understood quantitatively in terms of enercy bands, that is, elec­
tron energies versus k-space. A common method of describing electron 
energies is to use a model which starts with a free assembly of elec-
trons , and then to consider the changes in their movement resulting 
from the restrictions presented by the crystal lattice. 

First, consider a free electron in space. The time independent 
Schrodinger equation for the free electron is: 

v 2v = (-2mE/8 ) (1.1) 

where * is the wave function, and E is the energy of the electron. 
Then: 

V = A exp(ikr) + B exp(-ikr) (1.2) 
where k is the wave vector describing the momentum of the electron, r 
is the position vector, and |Y| is the probability of finding the 
electron anywhere in space. The energy, in the one-dimensional case 
is: ; 

E = (h 2/2m)k Z (1.3) 



as shown in Fig. 2a . But unlike electrons in free space, the values 
that k can have are quantized, due to the de Broglie relationship 
between the electron wavelength, x, and its momentum, p: 

\ = h/p 
a/2 p = (2U1E)1 

such that k, equal t o 2ir/x i s : 

2ir/x. ( 2mE) 1 / 2 / h 

\ i i * f\ 1K A\. 

(1.4a) 

(1.4b) 

(1.4c) 

M 
-7T/a 0 TT/i 

*»-k 

(a) (b) (c) 
XBL 828-11223 

Fig. 2. E vs. k in one dimension for (a) free electrons, (b) electrons 
moving in a periodic potential, and (c) E vs. reduced wave 
number. The scale of k in Fig. 2c has been expanded for visu­
al clarification. 

Bloch extended this model to that of a crystal lattice in which 
there is a periodically varying potential due to the charges at the 
lattice sites , as in Fig. 3. 

ZtJIl-BM IB 

V(X) 

I 
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A 
i ', 

A i 
i 

Fig. 3. The variation in crystal potential with distance between lat­
tice sites. 
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Bloch showed that solutions to the one-dimensional wave functions would 
be: 

<Fk = ukexp(ikx) (1.5a) 

and ¥(x ± a) = exp(±ika)f(£) (1.5b) 
where a is the lattice periodicity, exp(ikx) represents a plane wave 
and iv(x) has the same periodicity as the lattice. Thus, if there 
are N lattice sites and v(x + Na) = *(x), then exp(ikNa) = 1. The 
resulting allowed k are: 

k = 2*n/Na n = (0,±1,±2,±3...). (1.6) 
This leads to discontinuities in E versus k which occur at the values 
k - nu/a, as shown in Fig. 2b. These discontinuities can be understood 
as follows. For an electron of wavelength x = 2a such that k = it/a, we 
have the condition of Bragg reflection. Such an electron can no longer 
be represented, as a traveling wave. Instead, it should be represented 
as a standing wave comprised of two waves, exp(ikx) and exp(-ikx), 
which travel in opposite directions. The summation of the two waves 
leads to two solutions of different allowed energies at k = u/a. The 
allowed energy states thus fall into bands separated by forbidden gaps. 

If the energy of a state is described in terms of a reduced wave 
number restricted to the range -n/a £ k £ rc/a, and a quantum number tc 
describe the band to which the state belongs, then the band structure 
will have the form in Fig. 2c. In order to describe the electron 

* energies as a function of k, one defines the effective mass m : 

m* = h 2/(d 2E/dk 2) (1.7a) 
and o * •} 

E = (hW2m )kd (1.7b) 
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The inverse value of the effective mass is the curvature in the E 
versus k dependence shown in Fig. 2c. 

1.4 Density of States 
Proceeding from the concept of quantization, a "density of states" 

can be introduced . In three-dimensional k-space, the number of 
states in a volume element dk = dk xdk dk z is: 

(L 3)dk/8* 3 (1.8) 
where we consider a cubic volume of side L and k = 2irn/L (n = 
0,±1,±2,...). Then, the number of states between k and (k + dk) is: 

(L 3)(4uk 2)dk/8* 3. (1,9) 
The density of states per unit energy range and volume, for given spin 
direction, is N(E). For a volume L = 1, 

N(E) = 4itk2dk/8it3. (1.10) 
? ? ir 

Since E = h k /2m , the density of states is then 
N(E) = l/4» 2){2mW) 3 / 2,/E~ (1.11) 

The concentration of electrons per unit volume can be found by inte­
grating over the density of states Fermi distribution product. The 
Fermi-Dirac distribution function is defined by : 

f(E) . [exp{(E - EF)/kTJ + l ] - 1 (1.12) 
where f(E) is the probability that a state of energy E is occupied, 
Ep is the Fermi energy, k is Boltzmann's constant, and T is the 
absolute temperature. Ep i s the energy value which is defined at 
absolute zero temperature so that the integral over N(E) and f(E), up 
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to E F equals the number of all the electrons, n, per unit volume E p is 
given by : 

2 f N(E)dE = n (1.13) 

The number of electrons in each orbital state can be two, one for each 
spin direction, which leads to the factor 2 before the integral. f(E) 
versus E is shown in Fig. 4. 

1| •=: |T=0 

f(E) 1/2 -

Fig. 4. The Fermi-Dirac distribution function versus the energy of an 
electron state. At T = 0, f = 1 for E < Ep and f = 0 for 
E > Ep, so that all the electrons fall into the lowest 
energy states. For T > 0, the distribution function is 
exactly 1/2 at E = Ep. 

1.5 Intrinsic Semiconduction 
From the previous section, we know that current cannot flow in a 

pure semiconductor at zero temperature because all the states below 
Ep are filled, with no unoccupied states for electrons to flow. 
However, for T > 0, an electron can be freed from the covalent bond by 
means of thermal excitation. This creates both a conducting electron 
and a hole, which can be thought of as a positively charged particle 
whose motion results from a shift of a valence electron. Under an 
applied field, the motion of electrons and holes is in opposite direc­
tions givino rise to electrical conductivity. Thus, we have "intrin­
sic" semiconduction in a pure semiconductor. 
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The energies of electrons and holes can be described in terms of the 
energy bands of section 1.3. The "valence band" is defined as the high­
est occupied band at T = 0, and the "conduction band" is the lowest unoc­
cupied band at T = 0. Thus, the energy necessary to free an electron 
from a bond is given by the energy gap, E-, between the two bands. For 
T > 0 then, those electrons with enough energy to cross the forbidden 
energy gap will conduct in the lowest available conduction band states, 
whereas the holes conduct in the valence band, as in Fig. 5. 

E e E e 

1 

_'VB 
-»*X 

+ + T + + + 

(a) (b) 
XBL 828-11226 

Fig.. 5. Intrinsic semiconductor (a) at low temperatures and (b) at 
higher temperature where electrons can be excited across the 
bandgap. 

A second way to excite electrons across the bandgap is by photon 
absorption. If the light is of a wavelength such that hv > E-, 
electron-hole pairs will be generated, and photoconduction will occur. 

The concentration of electrons n and holes p in thermal semicon-
duction is dominated by generation and recombination. At equilibrium, 
the following relationship holds : 

n + p i (np) (1.14) 
where (np) refers to the unexcited state, or recombination. For n and 
p small compared to the number of states in the crystal, thermodynamics 
predicts: 

np -•= K (1.15) 
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where K is a function of temperature only. Then, by defining 
n = p = n., we have for intrinsic material: 

np = n. 2. (1.16) 

Using Eq. 1.12 one can approximate f (E) , the so-called "Boltzmann t a i l " 

for (E - EF) » ScT, to be: 

f(E) =exp[(E F -E)/kT]. (1.17) 

Using this result and Eq. 1.11, we have: 

n = n. - jf(E)N(E)dE = Ncexp[(EF - E c)/kT] (1.18a) 

for Nc = 2(2*m*kT/h 2) 3 / 2 (1.18b) 

where n is the concentration of electrons and N is the density of 

states in the conduction band (CB). Similarly, the concentration of 

holes in the valence band (VB) i s : 

p = Nyexp[(Ev - EF)/kT] (1.19a) 

for Ny = 2(2nm h*kT/h 2) 3 / Z (1.19b) 

where Nv is the density of states in the valence band. Combining 

Eqs. 1.18a and 1.19a, we have for the intr insic concentration: 

n . 2 = NcNvexp(-EG/kT). (1.20) 

1.6 Extrinsic Semi conduction 
The discussion of conduction in section 1.5 applies to a pure 

semiconductor. In most applications, however, semiconductors are 
doped with impurities which supply most of the carriers, thereby pro­
viding "extrinsic" semiconduction. Typical technologically important 
concentrations range from 10 cm - 3 to more than 10 2 0cnT 3. 
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15 3 The most commonly encountered doping concentrations lie around 10 cm 
or - 100 ppb, a very pure substance indeed! The most common dopants for 
Si and Ge are those elements of Group III and V. 

1,6=1 Elemental Donors in Si ana Ge - The Group V elements (As, P, 
Bi, Sb) have five valence electrons. Four of the electrons contri- bute 
to the letrahedral bond of the host crystal (usually Group IV), while the 
fifth electron migrates through the crystal, as with P in a Ge crystal as 
shown in F ig . 6. 

I I I 
— G» — G» — G» — 

I • • I 
— G»=» P —Ge — 

I I I 
— G» — G t — G« — 

I I I _ 

F ig . 6. Subs t i tu t iona l dopant atom pos i t ions in an elemental semicon­
ductor f o r a donor w i th extra e lec t ron . 

In the case of a phosphorus impur i ty , the impuri ty consists of a 

pos i t i ve ion , P binding an electron i n i t s Coulomb f i e l d . However, 

the Coulomb a t t r ac t i on between the P and a f ree e lect ron is weak 

due to the large r e l a t i ve d i e l e c t r i c constant of the semiconductp-

c r y s t a l . The Coulomb po ten t ia l i s : 

V(r) = - e 2 / 4 T C r e 0 r (1.21) 

where e r i s the r e l a t i v e d i e l e c t r i c constant of the medium. The 

values of e f o r Si and Ge are 11.7 and 16.0, raspect ive ly , showing 
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a decrease in the i n te rac t i on f o r ce . This screening is responsible 

f o r the small binding energy of the e lect ron at the donor s i t e . Using 

the bohr model , we f i nd that t h i s small binding energy i s re lated 
* 

t o the Bohr radius of the donor e lec t ron , a : 

a* = t i 2 K/m*e Z (1.22) 

where K = 4ue E . In Eq. 1.22, m i s the e f f ec t i ve mass, and "n and 

c are constants. This i s essent ia l l y the resu l t of what i s ca l led the 

e f fec t i ve mass theory, which predic ts su rp r i s ing ly wel l both binding 

energies and Bohr r a d i i . Donors which can be described w i th t h i s 

simple model are ca l led in analogy to hydrogen, "hydrogenic". A t y p i ­

cal binding energy corresponding to the ground state of the doror in 

Ge is EQ= 0.01 eV. This i s small compared to the baidgap, E G , which 

is 0.7 eV f o r Ge at room temperature. As shewn i n F ig . 7, the level i s 

so close to the conduction band that almost a l l donors lose t h e i r e lec­

t rons, i . e . , are ionized at room temperature. 

E. 
C.H 

DONORS 

ACCEPTORS 

:—~—r~-.—.. - •—:—~*VB 

F ig . 7. Donor level pos i t i on at conduction band edge, and (b) accep­
t o r level pos i t i on at valence band edge at room temperature. 
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The concentration of electrons n is for all practical purposes, equal 
to the concentration of donors N™, if N n » n.,. From Eq. 1.16: 

n = N D » n i (1.23a) 

P = n^/NQ (1.23b) 

1.6.2 Acceptors - In order to make the host crystal conducting 
with holes instead of electrons, Group III acceptors (B, Al, Ga, In) 
which are trivalent impurities and which accept electrons to complete 
the tetrahedral bond of the host are used. When the vacancy of the 
electron bond is filled by an electron moving into the site from an­
other bond, a hole is introduced in the latter bond. The hole then 
migrates throughout the crystal. The acceptor is negatively charged 
since it has entrapped the additional electron. The positively charged 
hole is attracted and bound by the acceptor with a small binding energy 
of - 0.01 eV, in close analogy to the "hydrogenic" model used for 
donors. Thus, essentially all the acceptors are ionized at room tem­
perature. The acceptor level lies just above the valence band edge, 
as in Fig. 7. This level corresponds to the hole being captured by 
the acceptor. When an acceptor is ionized (i.e., by an electron ex­
cited from the top of the valence band to fill the hole), the hoi? 
jumps to the top of the valence band and becomes a free carrier. 

That donors and acceptors lie in the bandgap does not contradict 
the model described in section 1.3 because the model was for a pure 
crystal. Extrinsic semiconductors contain impurity states, or imper­
fections. Furthermore- impurity states which are bound states are 
localized, not delocalized as are Bloch electrons. Impurity states 
are thus nonconducting. 
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1.6.3 Compensation - Compensation is the result of the presence 
of both donors and acceptors and can be achieved by introducing Group 
III acceptors into n-type material or Group V donors into p-type mate­
rial. Compensation K is defined as the ratio of the concentration of 
minority impurities to majority impurities. Thus, in a semiconductor 
w H h N. acceptors and N D donors, with N^ > N D, the compensation is: 

K = N n/N A (1.24) 

The effects of compensation will be explained in chapter six. 

1.7 Band Structure of Real Semiconductors 
In section 1.3, a conduction band centered it k = 0 was assumed. 

However, the band structures of real semiconductors have regions where 
the energy E(k) is not quadratic in k, so that those states cannot be 
represented by a single effective mass introduced in section 1.3. 

5 Figure 8a shows the band structure in germanium . 

iBl B2B-imfl 

Fig. 8. (a) Band structure of Ge plotted along the [100] and [111] 
directions, and (b) ellipsoidal energy surface corresponding 
to primary valleys along the <111> directions. 
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The conduction band has its minimum along the [111] direction at the 
zone edge. Due to the cubic symmetry in the k -, k - and k - direc-

x y z 

tions, the energy band must have tetrahedral synmetry. Thus, there are 
actually eight minima, shown in Fig. 8b. This modifies Eq. 1.22, so 
that m will be some average between the respective longitudinal and 
transverse masses of m, = 1.6 m and m t = 0.082 m for germanium. 
This gives a value of a = 45 A for Ge, where the dielectric constant is 
k = 16 and the lattice constant is 5.65 A. This is a large radius, so 
that impurity orbits overlap at relatively low impurity concentrations. 

Because we have eight conduction band minima in Ge, there are then 
eight solutions to the lowest energy state. This degeneracy is not 
allowed by the symmetry of the lattice; thus, corrections need to be 
made in calculating the effective mass for the ground state. 

The behavior of an electron in a crystalline solid is determined 
4 by the Schrodinger equation : 

[-"h2/2mv2 + V(r)]t (r) = Ei-fr) (1.25) 
where V(r) is the crystal potential "seen" by the electron, and f(?) 
and E are respectively, the state function and energy of the electron. 
If Eq. 1.25 is modified to account for the longitudinal and transverse 
masses, m, and m t, the result for the ground state is: 

{(-T\2l2m^) 7 2(x) + (-fl2/2mt)[5'2(y) + 9 2(z)] + V(r)}V(r) = 
Ef(r). (1.26) 

It is always possible to write the solution to Eq. 1.25 as: 
Y(r) = u(r)f(r) (1.27) 

where u(r) has the same symmetry as the lattice and f(r) is a hydrogen-
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like envelope function. It can be shown that the ground state enve­
lope function f(f) which satisfies Eq. 1.26 for the ground state 
function is: 

f(r) - exp(-r/a ) (1.28) 
where r > r and 4*rJ3 is the atomic volume. Equations 1.26 to 1..28 a a 
then, represent the modifications to the ground state energy states of 
a donor impurity. The other singly bound energy states can be repre­
sented by Eqs. 1.25, 1.27 and 1.28. 

1.8 Calculating Energy Bands: The Tight-Binding Approximation 
One method used to calculate Eq. 1.25 is by the "tight-binding" 

c 
method . This method assumes a crystalline array of N potential 
wells, as shown. 

V(x) 
J J + 1 .. 

Fig. 9. The potential energy of an electron in a crystal, where W 0, Wj and W2 are energy levels. 
In each well, the electrons have bound states with energies W Q, w,, 
. . . W n and wave functions t0, 4-^, . . . t . When the electron move 
from one well to another, a band containing N states is formed from 
each bound state of a single well. The wave function describing this 
motion is: 
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^-N^^E^ikX.J^Cr-Xj) (1.29) 

where X. describes the position of the j atom and p .(r - X,) is the 
atomic orbital centered around the j atom. The energy of the elec­
tron described by f. is given, according to quantum mechanics , by: 

E(k) - < \\H\\> (1.30) 

where H is the Hamiltonian of the electron. The value E (k) of the 
energy of an electron with this wave function is: 

E n ^ ' Wn + J(*nk* A V'nk) d 3 x ^ 3 1 > 
where AV is the difference between the potential energy V and that of 
the simple well. If it is assumed that only nearest-neighbor inter­
actions give the most significant overlap integrals, then for a simple 
cubic lattice with lattice constant, a: 

En(k) . W n - B - 2I(coskxa + cosk a + coskza) (1.32a) 

where B = -Jl*^ | 2iVd 3x, (1.32b) 

and I is the "overlap energy integral", where 
I — <*i+t A V * i ) d 3 x (1.32c) 

Thus, according to the tight-binding approximation, the spread between 
the minimum and maximum energies of the band is proportional to the 
overlap integral I. The bandwidth 8 in this approximation is B = 2zl, 
where z is the number of nearest neighbors in the lattice . 

1.9 Anderson Localization 
The tight-binding model above assumes that the donor sites form a 

periodic lattice. Although the impurity sites occupy substitutional 
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positions of the host crystal, they have a low enough concentration 
that we can regard them as randomly distributed. This is known as 
lateral disorder. The value of the overlap integral I in Eq. 32c will 
then change from site to site due to the random donor distribution. 

Anderson considered the effect of the fluctuations by consider­
ing what, happens when a potential V is added to each lattice site in 
the tight-binding approximation. V was allowed to lie between the 
limits ± VQ, as shown in Fig. 10. 

v(») 
1 1 1 1 1 I 1 »• 

(b) 
Fig. 10. One-dimensional random potential energy introduced by 

Anderson for (a) V 0 = 0 and (b) V 0/B large. 

Anderson showed that there exists a critical value (VQ/B)crit such 
that the solutions to the Schrodinger equation will lead to "localized" 
wave functions, where localization means that no conductivity can occur 
in the lattice at absolute zero temperature. He then proved, using the 
Born approximation for the mean free path, that for (V^/5) just less 

j 
than (Vg.'B)crit, the minimum value for the conductivity will be: 

"min = (»/4z)(e 2/hd c)|(B/V 0)crit} 2 (1.33) 

where d is the average distance between impurity centers. Calcula­
tions estimate that (Vg/B)crit = 2. The effect of disorder is to 
produce localization of states, even though there may be strong over­
lap between wave functions of adjacent states. 
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Thus, if the Anderson criterion of V Q ^ 2B is satisfied for a 
particular band, all states in the band will be localized. If the 
Anderson criterion is not satisfied, then the states are localized in 
one range of energies and not localized in another where the two 
ranges are separated by a critical energy E . The effects of Ander­
son localization will be further discussed in Chapter 6. 

2. Electrical Conduction in Doped Semiconductors 
2.1 Introduction 
The most fundamental electronic property of materials is electrical 

conductivity. Both electrons and holes contribute to electrical cur­
rent. For a sample with only one type of carrier—for example, elec­
trons—the electrical conductivity o is defined as: 

a = ne 2x e/m e* (2.1) 

where T is the average time between collisions of an electron. The 
electrical conductivity of a material depends on two factors: 1) the 
number of current carriers per unit volume, and 2) the mobility of the 
carriers under an applied field. The electrical mobility v is de­
fined as the ratio v 1$, the velocity per unit field strength. Since 
the drift velocity in the field is: 

« e = -e^/mg*, (2.2a) 

then, y g = eT e/m e* (2.2b) 

and o e = neu e (2.2c) 
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Analogously, in a sample which is p-type we have the conductivity of 
holes a h: 

o h = pe x h/m h = peu h (2.3) 

for hole mobility m and average tirae between collisions of a hole 
T, . If there are both electrons and holes in a sample, their cur­
rents and conductivities are additive. The total conductivity a is: 

" = °e * % (2-4) 
A second commonly used parameter is the resistivity p: 

P = 1/a = 1/neu. (for n-type) (2.5a) 

= l/penh (for p-type) (2.5b) 

2.2 Temperature Dependence of the Conductivity: Low Concentration 
(<10 1 5cm - 3) 

The temperature dependences of the resistivity and carrier con­
centration of semiconductors doped with low impurity concentrations 
(- 10 cm" ) are shown in Figs. 11a and lib. The resistivity changes 
with temperature primarily as a result of the change in carrier concen­
tration n. At temperatures far above room temperature, there is appre­
ciable intrinsic carrier concentration, and In n will vary inversely to 
the temperature with a slope of (-En/2k), as seen from Eq. 1.20. The 
3/? T dependence of N in Eq. 1.18b is generally small compared to the 

exponential dependence of T in Eq. 1.18a. As the temperature decreases, 
the thermal energy of the intrinsic carriers decreases, such that their 
concentration decreases and the resistivity increases. This is shown in 
segment 1 of Figs. 11a and lib. 
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f*< 
1/T 

(a) 

l/T 
(b) 

Fig. 11. (a) Carrier concentration and (b) resistivity relationships 
as a function of temperature. 

At about room temperature, extrinsic impurity conduction dominates and 
there is complete ionization of donors (in n-type material) or acceptors 
(in p-type material). Thus, in segment 2 of Fig. 11a, we find: 
n = INQ — N.l in the extrinsic region. The drop in resistivity in 
this range is due to the temperature dependence of the mobility u. The 
carrier mobility increases with decreasing temperature due to a decrease 
in "lattice scattering". Lattice vibrations lead to shorter mean free 
paths for carriers and carriers travel faster at higher temperatures, thus 
shortening the time between collisions. Both factors decrease the mobil­
ity at high temperatures. 

As the temperature drops below about 100 K, the carriers begin to 
freeze out on the donor/acceptor centers in n-type/p-type material. The 
free carrier concentration then drops, as in segment 3 of Fig. 11a and the 
resistivity correspondingly increases. The slopes of segments 3 and 4 in 
the freeze-out region of the concentration curve are described by approxi-
mations . Consider, for example, and n-type semiconductor (N n > N„). 
Charge neutrality requires that: 

n • (N A - P A) - p + (ND - n„) 

where N. and NQ are the total concentrations of acceptor and donor 
centers; and p. and n D are the concentrations of holes and electrons 
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on centers. Thus, the concentration of electrons in donor centers is 
n D = N 0f(E D). The rate of loss of electrons from donor centers to the 
conduction band is: 

k l N C ( N D " NA " n ) ( 2 > 7 ) 

where N c is the number of empty conduction band states, (N D - N A - n) 
is the number of filled, or neutral, donors and k^ is a proportional­
ity constant. The rate of return of electrons to the donors is: 

k2n(n + N A ) . (2.8) 

At equilibrium, 

n(n + N A)/N C(N D - Nft - n) = kj/kg = K (2.9a) 

ar.d K = exp(E Q - Ec)/kT (2.9b) 

For n >> N„, and n < Np,, Eq. 2.9a reduces to: 

n = (N cN D) 1 / 2exp(E D - Ec)/2kT (2.10) 

while for n « N„, 

n = N C[(N Q - N A)/N f t]exp(E D - Ec)/kT (2.11) 

Equation 2.10 applies to segment 3 of the In n versus T curve where 
n > N A and n (E D - E.)/2kT. As n decreases to n < N„, the slope 
increases as in Eq. 2.11 to n (En, - Ep)/kT, shown in segment 4. 

2.3 Temperature Dependence of the Conductivity: High Concentration 
(> 10 I 5cm~ 3) 

The effects of increased impurity concentration on the carrier 
concentration and resistivity curves as a function of temperature, are 
shown in Figs. 12a and b. As Ng increases, (Nn - N A) increases in the 
extrinsic region, and the resistivity correspondingly decreases. The 
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relationship between the resistivity and impurity concentration at low 
temperatures becomes more complicated. As the impurity concentration 
is increased, a point is reached where charge transport is no longer 
due to free carriers, but is instead due to charge transport between 

p impurities, known as impurity conduction. At medium impurity con-
centrations (- 10 era" ), "hopping" transport occurs as electrons hop 
from occupied to unoccupied localized donor centers. The resistivity 
thsn follows the exponential relationship, p = p exp(A/Tn) for 

q 
0.25 <. n <_ 1. The value of n depends upon whether variable range or 

17 — 3 nearest-neighbor hopping occurs. At high concentrations (> 10 cm J ) , 
"banding" occurs in which impurity state wavefunctions overlap signifi­
cantly and lose their localized character. This leads to a metallic 
type of conduction, with conduction occurring at all temperatures. 
Theories concerned with hopping and banding transport in impurity 
bands, as well as the effects of compensation will be presented in 
Chapter 6. 

1/T 1/T 
(a) (b) 

XBL B2B-11224 

Fig. 12. Effects on high impurity concentration on (a) carrier concen­
tration and (b) res is t iv i ty curves as a funr.tion of tempera­
ture . 
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3. Impurity Doping Methods 
3.1 Introduction 

Semiconductor doping is accomplished by introducing desired impuri­
ties into specified areas of a semiconductor device. Due to the vari­
ety of doping requirements needed for modern electronic devices, sever­
al doping methods have been developed. Two methods, impurity diffusion 
and ion implantation, are commonly used to dope standard thin layer 
devices of thicknesses of about 1000 A or less. This discussion of 
doping, however, will emphasize bulk techniques used to dope devices of 
greater thickness. The two most common bulk doping methods are doping 
during crystal growth and neutron transmutation doping (NTD). 

Because device performance and reliability are critically affected 
by impurity levels, there is a strong incentive to first develop large, 
ultra-pure semiconductor single crystals. Once the starting semicon­
ductor material has been purified of foreign atoms, it is then doped 
deliberately to the desired impurity level. In the case of ultra-pure 
germanium, a net concentration of shallow impurity centers of about 

10 3 10 cm , corresponding to a net-impurity concentration of one in 
more than 10 germanium atoms has been achieved'. 

3.2 Purification 
Commercially produced polycrystalline germanium used as starting 

material normally contains boron, phosphorus and aluminum at levels of 
12 13 3 ~ 10 to 10 c m . In order to reduce these impurity concentrations 

by two to three orders of magnitude, one can use the principle of solid-
liquid impurity segregation. Thus, for a given impurity there is a 
specific ratio of concentrations found in the liquid C. , and in the 
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solid C when the phases are in equilibrium {Fig. 13a). This ratio, 
called the segregation coefficient, k, is defined as: 

k - CJ/C-L. (3.1) 

The value of k in Eq. 3.1 is appropriate only when the interface is at 

equilibrium. Because the segregation is therefore altered by any f i ­

nite growth velocity such that impurities must diffuse through a d i f ­

fusion layer at the interface, an effective segregation coefficient 

k -- is found to be: 

k e f f = [ l + ( l / k Q - 1) exp(- fslD)Tl (3.2) 

where D is the d i f fus iv i ty of impurities in the l iqu id , f is the growth 

rate and S is the width of the diffusion layer, 
c c 

Cs 

CL 

Cs 

(a) (b) 

Fig. 13. Solute concentrations at (a) equilibrium and (b) finite 
growth rate at the solid-liquid interface. 

Zone purification and multiple "normal freeze" growth are most 
commonly used to purify germanium. In zone purification , a narrow 
liquid zone of germanium is melted by means of an RF field which is 
passed slowly along a long bar of germanium contained in a "boat" 
(Fig. 14). The molten zone is moved from one end of the bar to the 
other end, and the process is repeated several times in order to col­
lect the impurities by segregation into one end of the bar. 

Cs H^ 
—v 
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Fig. 14. Schematic of zone purif ication process. 
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Fig. 15. Schematic of normal freeze growth method. 
In the "normal freeze" method shown in Fig. 15, impurities with 

k < 1 become concentrated in the melt. This results in a high concen­
tration of impurities in the tail end of the crystal. The pure "seed" 
ends of preceding crystals are then used to grow subsequent crystals 
of higher purity. 

Although both zone purification and the multiple normal freeze 
growth method can be theoretically used to produce perfectly pure 
crystals, there are practical limitations. Interactions between the 
molten germar.lum, the container and the ambient in the zone refiner 

q or crystal puller limit the purification to concentrations of 10 to 
10 cm" . In the case of the purest graphite containers available. 
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phosphorus and boron are found to contaminate germaniurr to concen­
trations > 10 cm . Synthetic quartz, a more suitable material, con-

in 3 
taminates germanium with - 10 cm phosphorus and higher order com­
pounds of oxygen, aluminum and silicon . 

In addition, the composition of the atmosphere surrounding the melt 
controls the equilibrium between formation and dissociation of impurity 
complexes, and the mobility of undesirable impurities. High vacuum is 
generally not the preferred ambient because of the very long mean free 
paths of atoms and molecules. The long mean free path increases the 
probability for an impurity to reach the melted germanium. As a 
result, a reducing gas ambient such as hydrogen is usually preferred. 

3.3 Doping During Crystal Srowth 
Doping can also be achieved during single crystal growth. The 

most common growth technique for germanium is the Czochralski method . 
Doping is achieved either by adding the intended dopant element in 
pure form to the melt or by adding a piece of heavily doped semicon­
ductor called the "master dopant" to the melt. The former method is 
seldomly used because it is difficult to control accurately the ex­
tremely small amounts of added dopant. Oxidation, evaporation or 
interaction with the crucible and atmosphere can reduce the elemental 
dopant drastically. Impurity segregation causes a variation of im­
purity concentration along the crystal axis. Impurity striations— 
local fluctuations in the impurity concentration—occur in all crystals 
grown from the melt. Various methods have been devised to obtain con­
stant impurity concentration profiles. Depending on the segregation 
coefficient (k < 1), one can add more dopant (k > 1) or more pure 
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semiconductor material (k < 1). These fluctuations are caused by 
three effects . First, crystal rotation occurs in a non-perfectly 
cylindrical group of isotherms since the isotherms must be snaped so 
that a single high-purity crystal of the desired diameter can be grown. 
For each revolution, the solid/liquid interface may pass through a 
"hot" or "cold" point, thereby modifying the crystal growth rate and 
effective segregation coefficient. This results in variations of im­
purity concentration. Secondly, incorporation of impurities changes 
the melting point, which can cause oscillations in the growth rate and 
effective segregation coefficient, as in Fig. 16a and b. The third 
cause of impurity striations is due to formation of convection cells 
in the melt. These cells stir the melt in patterns which affect the 
homogeneity of the impurity concentration. To break these convection 
cells, one can use magnetic field gradients—which cause eddy currents 
in the melt—to reduce impurity striations . However, the problem 

of producing homogeneously-doped and compensated semiconductor single 
12 crystals in melt-doped and grown crystals remains . As will be 

seen later, small doping fluctuations become important at low tempera­
tures. At temperatures below about 1-2 K, dopant concentration fluc­
tuations of a few percent lead to resistivity fluctuations of more 
than an order of magnitude. As a result, efforts to eliminate this 
problem have resulted in the development of a doping technique known 
as neutron transmutation doping (NTD). The NTD process and its advan­
tages will be discussed in the next section. 
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3.4 Neutron Transmutation Doping 

3.4.1 Introduction - As discussed in section 3.3, impurity s t r i a -

tions occur in crystals which have dopants incorporated during growth 

from a melt. Because the res is t iv i ty of impurity conduction, in t ro­

duced in section 2.3, is c r i t i ca l l y dependent on impurity separation 

and degree of compensation, i t is desirable to dope semiconductors by 

a method which allows perfectly homogeneous doping. 

Fig. 16. (a) Etched segment of a Te-doped InSb crystal grown in the 
presence of (b) thermal oscillations in the melt. (From " J . 
Electrochem. Soc." 119, 1218 (1972). 

13 3.4.2 The NTD Process - Neutron transmutation doping is based 

upon thennal neutron irradiation of an undoped semiconductor. Because 

neutrons are neutral particles, their penetration range is very long. 

In the absence of any electrical charge, neutrons readily reach the 

nucleus. The number of neutron captures by semiconductor nuclei per 

unit volume N is riven by: 

N - N T o c * (3 .3 ) 

where N. Is the number of target nuclei per unit volume, o is the 

capture cross section, and » » tft is the fluence (flux times time). 
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The magnitudes of the impurity concentrations can thus be varied, 
since they depend on the neutron flux and exposure times. It can be 
shown that for low neutron energies, the capture cross section is re­
lated to the energy by^ : 

o c a E _ 1 / 2 a 1/v (3.4) 

where v is the neutron velocity. The cross section is thus related to 
the probability of interaction between the nucleus and the neutron, 
such that the probability of neutron capture is increased at low neu­
tron energies. 

Since the addition of a neutron causes the nucleus to become ex­
cited, the target nucleus emits high energy gamma radiation after neu­
tron capture. The energy of gamma rays can be measured accurately. 
The gamma ray spectrum is an accurate and unique signature of a given 

14 nucleus. Neutron activation analysis , a tracer technique which is 
9 3 sensitive to impurity levels as low as 10 cm , is based on the 

measurement of gamma ray spectra. If the product isotope is unstable, 
further decay occurs until a stable isotopic state is reached. 

Before discussing neutron transmutation doping of germanium, we 
will consider the simpler case of silicon, which is of major techno­
logical importance. Of the - 8,000 tons of semiconductor silicon pro-

22 2^ 
duced in 1981, 40 tons were neutron transmutation doped * . Al­
though this is a small percentage of the total silicon market, NTD Si 
is critical to the production of very high voltage, high power devices, 
which are extremely expensive. This is in contrast to the more popu­
lar devices of extremely small voltage and low power used in the semi­
conductor industry. 
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In the case of s i l i con, three stable isotopes are present. Absorp-
18 t ion of neutrons leads to the following reactions : 

(92.3%) !*Si(n,r) fgsi 
(4.7%) ?JS1(n,T) f js i 
(3.1%) ?gS1(n,T) ftSi - H? + $", o c = 0.108b 

t , / 9 - 2.62h 
The f i r s t two reactions do not produce dopants. However, the Si 

31 — 

isotope which is 3 .1* abundant is transmuted to Si which then B 

decays with a ha l f - l i f e of 2.62 h to the stable isotope *P, a donor. 

The desired phosphorus isotope further decays: 

llP{n,y) lp * l2

6S + if , a c = 0.19b 
t 1 / 2 = 14.3d 

This process occurs, however, only after substantial dopant levels 

have been reached. 
32 The undesirable P is the primary source of radioactivity in 

si l icon and leads to unwanted sulfur in the crystal. This secondary 

reaction l imits the NTD method to P > lncm for S i . In the range 
32 p < 5 ncm, the P act iv i ty can be reduced by using low neutron f lux 

2 32 

densities (- 10 n/cmsec) because P production varies with the 

square of the neutron f lux. However, this leads to prolonged irradia­

tion tiiios and unattractively high costs, ^or higher res is t iv i ty 
32 

material, p > 10 ncm, the formation of P can be reduced by using 
1 r o 

high neutron f lux densities (~ 10" n/cm sec). Due to the use of 
0 1 

shorter irradiation times, there- is incomplete decay of the Si 
activity within the radiation time such that there are fewer P atoms available for production of -^P. 
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°c(b) tl/2 Type 
3.25 11.2d P 
0.52 82.8m n 
0.16 11.3h n 

1.7 21.1m n 
4.6 14.lh n 
4.4 26.3h n 

Although silicon is the only semiconductor which is commercially 
doped by NTD, the process can be used for other semiconductors. Shown 
below are the neutron capture reactions which yield dopant isotopes in 
germanium and gallium arsenide, respectively: 

TABLE I. 

Isotope 
Fraction Reaction 
( 20.5%) ^Ge(n.r) ^ G e ->• I|Ga + K 
( 36.5*) ^Ge(n,t) ?|Ge + ?5

3As + u -

( 7.8%) 3fjGe(n,v) IjGe + 33AS + a" * Se + e" 

( 60.1*) 3
6fca(n,Y) ^Ga + jJjJGe + B " 

( 39.9?) ^Ga(n.Y) sfGa -> ̂ Ge + B " 
(100.01; pjAsfn.v) 3^\s + l%Se * B " 

Of the above cases of Si, Ge and GaAs, only germanium yields a 
compensated material, while silicon and gallium arsenide yield strict­
ly n-type dopants. For germanium, the compensation ratio will be: 

K = - ^ = * ^ ^ l = 0.322 

The values for selenium are counted twice because selenium is a doubly 
charged donor and can thus compensate two acceptors. We believe that 
the va*ue K = 0.322 is more accurate than the value K = 0.40 used in 
other sources, based on older capture cross section data * . 

Following neutron irradiation, the NTD msterial is thermally an­
nealed of radiation damage caused by residual high-energy neutrons 
present in the thermal neutron beam. The primary sources of radiation 
damage are the fast neutron knock-on displacements and gamma and beta 
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recoil damages which produce massive numbers of atom displacements 
compared to the dopant atoms produced. Typical numbers of displace-

4 6 ments for each dopant atom produced are as high as 10 to 10 in 
silicon . Of these, the displacements from fast neutron knock-on 

3 recoil can be expected to be about 10 times higher than the damage 
1 O 

from thermal neutron recoil . Fast neutrons therefore dominate the 

displacement damage unless thernal-to-fast neutron ratios exceed 

1000:1. Typically, the rat io of thermal-to-fast neutrons is only 

about 10:1 to 50:1, but there are reactorswhich can achieve ratios 
Of) 

higher than 1000:1 . The thermal neutron capture cross sections 
for germanium and gallium arsenide are much larger than those for 
silicon, as shown in Table I. As a result, the displacement damage by 
thermal neutrons, relative to fast neutrons, is greater than it is in 
silicon. 

Radiation damage introduces defect levels in the bandgap, which 
causes reductions in free carrier concentrations, carrier mobility and 
minority free carrier lifetime. Thermal annealing recovers the elec­
trical activity of the dopant impurities by healing the damage. Al­
though the free carrier concentration and mobility can be recovered 
during the annealing cycle, the minority free carrier lifetime is not 
fully recovered. This is not well understood but it is thought that 
the lifetime is strongly affected by the purity of the starting mater-14 ial and the cleanliness of the reactor . For germanium and silicon, 
thermal annealing temperatures of 400-450*C and 800-850°C, respective-

21 ly, are commonly used . 
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3.4.3 The Advantages of the NTD Process - Using the NTD process, 
one obtains reproducible, homogeneously-doped semiconductors of a known 
compensation such that NTD is advantageous over conventional doping 
methods as discussed in section 3.3. 

Because all reactors producing NTD material rotate the ingots in 
order to improve radial uniformity, the accuracy in the doping can be 
controlled to better than 1% for small samples . This is far supe­
rior to conventional methods for which the doping inaccuracy may be as 

13 high as 25% . Figure 17 shows the accuracy attainable in terms of 
percentage deviation of mean dopant concentration. Also shown is a 
comparison of the spreading resistance as a function of radial distance 
for both NTD and conventional methods. 

13 The narrow resistivity variation (as low as ± 4 % ) attainable 
in NTD material leads to devices of more uniform electrical character­
istics, especially in voltage and switching characteristics. This is 
particularly important in high power silicon devices, which require 
high breakdown voltages. The uniform resistivity allows a uniform 
avalanche breakdown across the device. Finally, the NTD method is 
particularly desirable for infrared detectors in which considerations 
of low operating temperatures and high sensitivity often require close 
compensation of shallow impurities. 
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Fig. 17. Illustration of irradiation target accuracy obtained on sam­
ples irradiated at the University of Missouri Research Reac­
tor. The insert is a schematic of the spreading resistance 
traces across a wafer for conventionally doped and NTD Si. 
[After J.M. Meese, Neutron Transmutation Doping in Semicon­
ductors, Plenum Press, New York, 3 (1979)J. 

4. Measurement Techniques 
4.1 Resistivity Measurements 

The resistivity is the inverse of the conductivity a = neu, where 
n is the concentration of charge carriers (cm ), e is the charge of 
the electron (» 1.6 x 10 9As) and y is the mobility (cm 2/Vs). The 
resistivity p of a homogeneous material is the resistance R of a unit 
cube measured between one pair of parallel faces. With R = PL/A, we 
find p * RA/L(n cm). It can be determined by various methods, for 
example, by using the so-called "four-point" probe or the "two-poinf 
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probe , shown respectively in Fig. 18a and b. With the four-point 
probe, one passes a current I through the two outer probes, while the 
two inner probes act as high impedance voltage sensors so that the 
resistivity p is : 

p = (V/I)u«/ln2 ncm for 6 << s (4.1a) 
P = (V/I)2ns nan for s » s (4.1b) 

where <5 is the sample thickness and s is the thickness between probes. 
Another technique is the two-point probe, used to measure the spreading 

I or 

resistance of a sample ' . This technique allows the local resist­
ivity on a pm scale to be determined; thus, impurity striations on a 
wafer can be measured. 

gtwiwiwtp WDwaito 

>-S-H S' » 

(a) (b) 
Fig. 18. (a) The four-point probe, (b) The two-point probe. Probes 

of a hardened and highly conductinq alloy are pressed on the 
sample surface. 

4,:. Hall Effect 
4.2.1 Basic Configuration - The most commonly used method to de­

termine carrier concentration and the type of the carriers ( + or -) is 
the Hall effect technique . Together with a resistivity measurement, 
tthe carrier mobility car be determined: u = 1/pne. The standard Hall 
effect configuration is shown in Fig. 19. A current I is passed 
through the sample in the x-direction. By applying a magnetic field B 
in the z-directic*, the Lorentz force acting on electrically charged 
carriers causes disp'acement of the carriers in the y-direction. 
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There is thus a build-up of an internal electric field (or Hall field) 
E H > which will cancel the effect of the Lorentz forces. 

, „ , ^ 

rBz 
— X 

>SL 323-1124* 

-13„ 
Fig. 19. Basic configuration for Hall effect measurements. 
Once equilibrium has been established, in typically less than 10" sec 
the Hall force is equal to the Lorentz force, and: 

e(v x B) = eE„ 

V„/b EHy = sz\ Wx 
for a current density 0 = I/bd, and Hall coefficient R„. In the H* 
general case, where one type of carrier predominates: 

and 

J x - v xen 

R H = 1/ne. 

H 

Above, n is the carrier concentration and e is the charge on an 
electron. If both electrons and holes contribute to conduction, R, 
can be shown to be: 

R H = d/e)[(p - b2n)/(p + bn) 2] 

where b = vnlv„ is the ratio of the electron to hole mobility. 
4.2.1 Van der Pauw Method - In 1958, a method of measuring re­

sistivity and Hall effect of flat, thin samples (lamellae) was intro­
duced by L.J. van der Pauw^ . For this method, the electrical con-
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tacts must be sufficiently small and located at the circumference of 
the sample. Furthermore, the sample should be of constant thickness 
and must not have isolated holes. 

Van der Pauw showed that for an arbitrarily shaped sample of con­
stant thickness 6 with successive contacts A,B,C,D as described above 
and shown in Fig. 20, the resistivity can be expressed as: 

p - (,6/ln2)[( R A B j C D • R B C j D A ) / 2 ] x f. 

R.„ C D is the resistance obtained from the voltage across contacts A and 
B, divided by the current through contacts C and D. R g c Q A is analo­
gous to R f l B C Q, and f is a function of the ratio R A B C D : R B C DA o n 1 y 

as shown in Fig. 2 1 2 6 . In the case of a circular or rectangular sample, 
f = 1. 

Fig. 20. Van der Pauw's use of conforraal transformation to determine 
the resistivity of an arbitrarily shaped sample of thickness 

1 2 5 iO 2 5 10 2 2 5 10 3 

(RAB.CD/ RBC,DA) 

Fig. 21. The function f used to determine the specific resistivity of 
a specimen with an arbitrary contour as a function of the 
resistance ratio Rl2.34/R23,41» [after L.u. van der 
Pauw, Phillips Res. ftepts., 13 (1958) 1]. 
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Both the Hall mobility and free carrier concentration can be found by 
measuring the change uf resistance, R B D „ c wher. a magnetic field B is 
applied perpendicular to the sample. The hall coefficient R„ is then: 

RH = ( w R B D , A C ) / B 

A R B 0 AC 1 S t h e c n a n 9 e °f resistance due to the magnetic field. The 
Hall mobility p„ is then given by: 

»H " ( « R B D , A C ) / B o 

and the free carrier concentration is: 
n = B / e M R B M C . 

Van der Pauw and others have made estimates of the error intro­
duced by using contacts of finite size and not located at the circum-

25 ference of the sample. It has been shown that the van der Pauw 
geometry is quite insensitive to deviations from the ideal geometry. 
In Fig. 22, one seas that the error in sheet resistance is only second 
order dependent on the ratio of contact length to the length of one 
side of a square-shaped sample' .27 

Fig. 22. Normalized sheet resistance error E with contacts centered 
on each side of a square specimen with dimensions as shown 
in the insert as a function the ratio of contact length to 
side of the square, [after M.G. Buehler and J.H. David, 
Natl. Bureau of Stds., Special Publ. 400-29 (1967) 64], 
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5. Experimental and Data 
5.1 Sample Preparation 

Wafers of ultra-pure p-type germanium crystal #516 were cut per­
pendicular to the <113> axis of crystal growth (Fig. 23), and were 
lapped with 600 and 1900 grit lapping compound. The six wafers, taken 
along the lengths 3.3 to 5.2 cm of the 17 cm long crystal, had impur­
ity concentrations of 3.4 x 10 to 4.0 x 10 cm . Neutron 
transmutation doping (NTD) to gallium concentrations of 2 x 10 cm 
< I, < 5 x 10 cm"*' was done on the wafers by J.M. Meese at the 
University of Missouri Research Reactor. About one year after 
neutron irradiation—after the decay of many half-lives of the longer 
living Ge (t, .- = 12d)—two samples from each wafer of size 
- 7 x 7 x 2 mm were cut with a string saw and lapped . This was 
followed by etching (~ 15 sees) of the samples in a 3:1 HN0,:HF so­
lution and quenching in electronic grade methanol. Next, the samples 
were thermally annealed at 400°C for six hours in dry argon in order 
to heal radiation damage incurred during the NTD process. 

In order to compare NTD germanium (with compensation K = 0.322) 
with nearly uncompensated germanium, wafers of ultra-pure crystal #582 
were cut at lengths 13.2, 14.5 and 15.5 along the crystal as shown in 

is ** Fig. 24. These wafers have gallium concentrations of 2.4 x 10 cm 

•Details of sample preparation are described in the Appendix. 
••Additional samples of size - 0.4 x 0.4 x 0.6 mm were later tested 
with resistance as a function of T, identical to that of the larger 
samples. 
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to 1.1 x 10 ci , respectively, as shown in the impurity concentra-
3 tion profile. Two samples of size - 7 x 7 x 2 mm were cut from each 

wafer. 
5.2 Contact Preparation 

In order to provide ohmic p contacts over a large temperature range, 
the samples were doubly implanted at room temperature with boron ions at 
100 keV at . dose of 2 x 10 1 4cm" 2 and 130 keV at a dose of 4 x 10 1 4cm - 2. 
This was followed by annealing at 250°C for one hour in dry argon. The 
top 500 A of the germanium surface were etched off in a 5% NaOCl solu­
tion for 30 seconds. RF sputtering of 400 A of titanium and 8000 A of 
gold in argon was followed by annealing for 20 minutes at 250°C in 
argon. To obtain contacts in the corners of the samples on both sides, 
one protects the small corner contact area with Picein wax and etches 
the gold in a 1:4 I„ + KI solution. The titanium layer stops this 
etchant and protects the underlying boron implanted layer. The titan­
ium was removed in a few seconds in 1% HF. Finally, the p layer was 
removed in a 3:1 HF:HN0, etching solution. After removal of the 
Picein wax from the corner contact areas, 5 mil copper wires were 
soldered onto the contact pads using pure, fresh indium without any 
application of flux. Finally, pure indium foil strips were used to 
connect the front and back side contacts in each corner as in Fig. 
25. Charge injection from each double pad is approximating the 
behavior of the ideal contact geometry very well. Ideal contacts 
would have been infinitely narrow, positioned along the edge of each 
corner. 
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Fig. 25. Method of forming electrical contacts on germanium sample. 
5.3 Measurement 

Variable temperature Hall effect measurements (van der Pauw method) 
were made on the p-type Ge samples over the temperature range 0.3 K to 

on 

300 K using liquid helium . A magnetic field of 6000 gauss was 
used in the temperature range 300 K - 77 K, while a field of 1200 gauss 
was applied below 77 K. Thus, magnetoresistance effects were mini-29 mized. The Hall effect apparatus shown in Fig. 26 uses a silicon 
diude thermometer screwed down to a copper base which can be used over 
a temperature range of - 1.5 K to 300 K. The samples, positioned along 
the extended copper base shown in Fig. 27, lie in ar, evacuated chamber 
(~ 10 torr), and are surrounded by three radiation shields to pre­
vent penetration of light or thermal energy. Cigarette paper lined 
with high vacuum grease lies between the cold finger and the sample 
to prevent electrical contact and subsequent short circuit of the Ge 
sample. Helium is passed from a dewar through the evacuation shroud 
into the sample chamber. For measurements down to 1.5 K, the liquid 
He bath is pumped on with a rough pump down to below 1 mm. 

5.4 Data 
Plots of resistivity and concentration as a function of inverse 

temperature are shown, respectively, in Figs. 28 and 29. From the 



44 

-HELIUM CYLINDER 

FLEX LINE T 

VACUUM SHl.OUD 

1°=- SUITABLE SHROUD 
SUPPORT ft CLAMP 

XBL 828-11237 

Fig. 26. Variable tenperature Hall effect apparatus. 



45 

ADJUSTABLE THERMAL 
iMHt-DANCE I PHASE 

SEPARATOR 

SAFETY PRESSURE 
RELIEF 

ADJUSTABLE POSITION 
PRESSURE HAT 

EVACUATION 
VALVE 

FLOW VALVE 
REGULATOR 

PRESSURE RELIEF 
VENT VALVE 

iiv. 

HELIUM VENT-VACUUM 
PUMPING LINE FOR 

OPERATION BELOW 4.2K 
ELECTRICAL 

FEEDTHROUGH FOR 
ir*~- INSTRUMENTATION 

t HEATER LEADS 

PRESSURE RELIEF 

:v. 
— HIGHLY POLISHED 
ALUMINUM RADIATION 

SHIELD 

VACUUM SHROUD 

COOPER SAMPLE MOUNT 
WITH 50 OHM WOUND 
HEATER t PROVISION 
FOR DT-500 SENSOR 

SAMPLE POSITION 
(TYPICAL) 

OPTICAL PORTS 

LIQUID HELIUM 
WITHDRAWAL 

TUBE-INSERTED 
INDEWAR 

XBL 828-11242 

Fig. 27. Schematic of sample chamber. 



46 

T(K) 
«7 50 25 10 5 4 3 2.5 
0 1 1 i 1 1 1 t i 

2.4*10 l5UNCOIWP 
/ i«10 1 5 UNCOMP 

i 

o6 ~ 
M— 2*1015NTD 

0 s - U0x I 6UNC0MP 

_____—4*10 1 5NTD 

0« - -6»10 1 5NTD 

o3 

. _ ^ - 9 x l 0 1 5 NTO 
-

o2 _ 

0' 

2x l0 1 6 NTD 

5xl0 1 6 NTD 
-0° -

-2 i l i i i i 1 1 I 1 
40 80 120 160 200 240 280 320 360 400 440 480 

1000/T (K_1) XBL 8 ? j >57 

Fig. 28. Plots of resistivity versus 1000/T for NTD Ge and uncompensated 
Ge samples. 



47 

80 100 120 
1000/T ( K"1) 

160 180 200 

XBL 828-11254 

Fig. 29. Hole concentration versus inverse temperature. 



48 

resistivity plots, values of A and p which satisfy the relation 
P = P expU/T n) have been derived for the low temperature range 
and have been tabulated in Table II for the NTD Ge samples. 

TABLE I I . 

Sample 

NTD 1 

(cm" 3) 

2.0 x 1 0 1 5 

-o 
(a cm) 

1.4 x 10 5 

A 

8.95 
NTD 2 4.0 x 1 0 1 5 4000.0 6.90 
NTD 3 6.0 x 1 0 1 5 1230.0 6.72 
NTD 4 9.0 x 1 0 1 5 430, C 4.90 
NTO 5 2.0 x 1 0 1 6 34.0 4.39 
NTO 6 5.0 x 1 0 1 6 3.3 2.82 

UNCOMP 1 2.4 x 1 0 1 5 

UNCOMP 2 3.0 x 1 0 1 5 

UNCOMP 3 1.1 x 1 0 1 5 

Plots of in o versus T - n for n equal to 1, 1/2 and 1/3 have been 
made in order to determine the best fit for the value of n. These 
plots are shown for samples NTD Ge 4 and NTD Ge 5 In Figs. 30 and 31, 
respectively. As can be seen, the closest fit is obtained with 
n = 1/2; however, the quality of the fit does not depend critically on 
the value of n. In Fig. 29, the slope of the hole concentration 
versus 10 J/T is shown to approximately satisfy the relationship 
noexp[(Ey - E A)/2kT], as described in section 2.2. The majority 
impurity, gallium, is located 0.0108 eV above the valence band. This 
corresponds to a slope of 0.054 eV for uncompensated material. Our 

12 3 
data shows a slope of 0.057 eV down to p - 10 cm in very good 

agreement wi th theory. 
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6. Theories for Electrical Conduction in Semiconductors 
In the following discussion, models incorporating the movement of 

electrons in n-type material will be used, although our experimental 
results have been obtained with p-type Ge. This has been done in an 
effort to describe the conduction processes in a simple manner, by 
avoiding the complications which arise in considering the differences 
between holes and electrons. This has also been done in view of the 
fact that no theories have been developed specifically for the conduc­
tion mechanisms in heavily-doped and compensated p-type semiconductors. 

6.1 Low Temperature Impurity Conduction Mechanisms 
Impurity conduction, introduced in section 2.3, was first observed 

Oft O 
by Busch and Labhart in SiC and later by Hung and Gleissman in 
Ge. Impurity conduction, unlike ordinary semiconduction, increases 

p nearly exponentially with impurity concentration. This led Hung to 
suggest that, at temperatures below about 5 K in Ge, impurity conduc­
tion occurs because of charge exchanges between impurity sites. For 
impurity centers which have a small overlap of their wavefunctions, 
this exchange occurs due to the probability that a carrier can tunnel 
from an occupied to an unoccupied impurity center. 

This can occur only if there is some compensation in order to pro­
vide unoccupied sites. For low impurity concentrations, the effect of 
adding compensators is to lower the resistivity p of impurity conduc­
tion since there is the creation of more empty centers into which car­
riers can jump, shown in Fig. 32a. At higher degrees of compensation, 
P increases due to the decreasing number of mobile carriers occupying 
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majority centers (Fig. 32b). Finally, in the case of complete compen­
sation, impurity conduction vanishes. Then, as in Fig. 32c, all donors 
are empty and all acceptors are occupied with electrons. Since the 
overlap is small, impurity conduction is noticeable only at low tem­
peratures when the number of carriers excited into the conduction band 
is extremely small. 

E _— V i l - yjY^ CB VB 
(a) (b) (c) 

XBL 328-11235 
Fig. 32. The effects of (a) low compensation, (b) higher compensation 

and (c) complete compensation for low impurity concentrations 
(<10i5 Cm- 3). 

As the concentration of impurities increases, the overlap of the 
wavefunctions of adjacent impurities becomes so strong that carriers 
are no longer localized around individual impurities and conduction 
can proceed without compensation. The resistivity is then expected to 
be finite for zero compensation, and to increase steadily until it 
becomes infinite for complete compensation. A metallic type of con­
duction then occurs. Hdre, metallic refers to those materials whose 
conductivity approaches a finite value at absolute zero temperature. 
"Insulating" materials then, are materials which approach zero conduc­
tivity at absolute zero temperature. 

4 Mott introduced the idea that this transition from tunnelling 
to metallic type of conduction may occur abruptly at a critical con­
centration n given by: 

n c
1 / 3 a H * = 0.26 (6.1) 
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where a„ is the effective Bohr radius of the impurity center as 
17 -3 in Eq. 1.22. For germanium, n = 1.7 x 10 cm and for silicon, 

18 —3 n = 1.9 x 10 cm . The value of the conductivity when metallic 
conduction occurs was then shown to be: 

.2 
a c = 0.026 e^/hdc (6.2) 

where d , the average distance between impurity centers at n , is 
about 2.5 a„. The result for the conductivity in Eq. 6.2 corres­
ponds to the value of the conductivity which would be obtained in Eq. 
1.33, for values of (V /B) -t = 2 and number of nearest neighbors, 
z = 6. That z = 6 is used is based upon the assumption of a random 
distribution of centers. Equations 6.1 and 6.2 apply to impurity con­
centrations just above those of the experimental results. For' our 
data which lies in the transition region (- 10 cm to 10 cm ), 
an explanation of impurity conduction is given in section 6.2. 

6.2 Characteristic Concentration Regions 
Conduction processes in a doped semiconductor generally depend on 

three parameters: temperature, impurity concentration and compensa­
tion K. There are three regimes of impurity conduction in the metal-
insulator transition. In the low concentration regime, for which 

* 1 fi T 
d > 5a H (corresponding to |N. - NJ < 10 cm for Ge), conduction 

9 o 
occurs in the conduction band via electrons excited from the D donors 
with an activation energy e,, as in Fig. 33, curve A. This is also 

3 shown experimentally in Fig. 28 in the curves of p versus 10 /T in the 
range 100 K < T < 10 K. At low temperatures, conduction occurs by 
phonon-assisted hopping from occupied to unoccupiei! impurity centers 
with an activation energy e,. 
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& * " 
l/T 

Fig. 33. Activation energies e\, ez> e 3 f o r t n e three regimes of 
impurity conduction in the metal-insulator transition. 

The intermediate concentration regime, with 5 >_ d/a H > 3, corres­
ponds to 10 1 6cm~ 3 <_ N„ - N Q < 6 x 10 cm . In this regime, there 
are three different energy bands which dominate in the three tempera­
ture regions of Fig. 33, curve B. As before, there is an activation 
energy e, for conduction to occur in the conduction band at high tem­
peratures. In the intermediate temperature region (#15 K < T < 4 K), 
conduction occurs with an activation energy, c2> v i a doubly occupied 
donors in the D~ band. The D~ states correspond to donors which are 
negatively charged by binding an extra electron. The binding energy is 
ep = 0.01 e 0, where e 0 is that binding energy for an isolated hydrogen­
like cionor. Thus, their energy is larger than that of the D° states, 
but less than that of the conduction band electrons. The bands for 
the D° and D" states are known as the lower and upper Hubbard bands, 
respectively. The D" states are only important for conduction in a 
limited concentration region before they merge with the ground states 
and form metallic conduction at high impurity concentration-. This 
activation energy, E , of the D" states, is noticeable in Fig. 28, for 
the uncompensated germanium sample of 1.1 x 10 cm impurity concen­
tration. Finally, at low temperatures, hopping conduction occurs with 
an activation energy e,. 
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The metallic impurity band range begins at the edge of the metal-
insulator transition, at ti.: critical concentration n of Eq. 6.1. 
The corresponding resistivity as a function of tempera i.y,"e is shown in 
curve C of Fig. 33. Values of the activation energies e,, e 2 and 
c 3 are tabulated in Table III. A plot of activation energy versus 
carrier concentration is shown in Fig. 34. 

TABLE III. 

Sample 
N A - " D 

(cm" 3) 
e l 

MI 
1.19 x 10~Z 

e 2 

MI 
e 3 

Ml 
NTD 1 2.0 x 1 0 1 5 

e l 
MI 

1.19 x 10~Z 

e 2 

MI 
7.72 x 10"* 

NTD 2 4.0 x 1 0 1 5 1.14 x 10"Z — 5.95 x 1 0 - 4 

NTD 3 6.0 x 1 0 1 5 1.12 x 10""2 — 5.79 x 1 0 - 4 

NTD 4 9.0 x 1 0 1 5 9.91 x 10~ 3 — 4.22 x 1 0 - 4 

NTD 5 2.0 x 1 0 1 6 7.89 x 10~ 3 — 3.78 x 10" 4 

NTD 6 5.0 x 1 0 1 6 5.63 x 10~ 3 — 2.43 x 1 0 - 4 

UNCOMP 1 2.4 x 1 0 1 5 8.64 x 1 0 - 3 __ Undetermined 
UNCOMP 2 3.0 x 1 0 1 5 7.06 x 10~ 3 — Undetermined 
UNCOMP 3 1.1 x 1 0 1 6 5.47 x 10~ 3 3.04 x 10" 3 1.31 x 10~ 3 

6.3 Density of States for the Metal-Insulator Transition 
Density of states diagrams for the concentration regimes of sec-

g 

tion 6.2 are shown in Fig. 35. In Fig. 35, n increases by a factor 
of about 50 from (a) to (d), so that the scale of N(E) increases pro­
portionally. In Fig. 35a, for n <<n , the neutral donor states D* 
lie fcD below the conduction band edge, while the singlet D - states 
are barely bound at the band edge. Because their wave functions arc 
about four times broader than those of the 0* states, they form a 
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Fig. 34. Activation energies, ej, e? and E3, versus carrier concentra­
tion, Nfl - Np. for both NTD Ge and uncompensated Ge samples. 
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wider band. The Anderson localization criterion, described in section 
1.9, will then no longer hold for the upper Hubbard band. If E is 
defined as the mobility edge of the D~ band, the energy into this 
band is (E c - E p ) . 

b) n jsn e 

c) n c <n<n c b 

d) n>n c b 

Fig. 35. Density of states N(E) as a function of increasing net 
impurity concentration n. 

As the impurity concentration increases to n < n (in Fig. 35b), 
the 0° and D~ bands merge due to stronger overlap of wavefunctions 
and e- decreases. At n = n c, E c = Ep and e 2 = 0 because the states 
near the Fermi level become extended, and the transition to the metal­
lic impurity band conduction occurs. As n increases to n > n , the 
conduction band edge shifts downward due to the screening effect of 
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the positively charged donor ions (as in section 1.6.1), which causes 
the dielectric constant to increase (Fig. 35c). 

There is another transition which occurs at a concentration n ., 

in which the conduction band edge falls below the Fermi level, and 
very few states are localized (Fig. 35d). Thus, for n > n ,, truly 
metallic conduction as is found in an impure material prevails. 

6.4 Effects of Compensation 
In applying the ideas of sections 6.1 to 6.3, the Fermi level Ep 

cannot always be calculated by integrating the product of N(E)F(E) in 
Eq. 1.18 and applying charge neutrality as described in section 1.4. 
This is because the sum of the concentrations [0*] + [D ] + [D~] = [D] 
must be maintained, and because the relative density of states changes 
with compensation and carrier excitation. For example, compensation 
increases [D ] and decreases [D~], consequently raising E and 
decreasing Ep. This increases e 2 - (Ec - Ep) to the point that conduc­
tion in the D" band can no longer compete with e, activated hopping in 
the D* - D band, and we no longer see conduction in the upper Hubbard 
band at high compensation. Compensation also decreases the metal-insul­
ator transition because the positively-charged donor sites (in n-type 
material) which are randomly distributed in the material, add to the 
variation in electric fields which act upon the remaining donor sites. 
This produces Anderson localization, as describad in section 1.9. 

6.5 Theories of the Hetal-to-Insulator Transition 
Theories of the metal-to-insulator transition for doped semicon­

ductors are concerned with impurity conduction in the form of ther­
mally-activated hopping as described in section 6.2. Two types of 
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hopping can be distinguished: "nearest-neighbor" hopping and "vari­
able range" hopping. 

"Nearest-neighbor" or "Miller-Abrahfims" hopping uses as a 
basis the value of the overlap energy integral I given in Eq. 1.32c. 
It is then assumed that for hydrogen-like functions, the value of I 
may be written as: 

1 = f(l + a d c ) + | ( a d c ) 2 e 2
a/k exp(- 0d c) (6.3) 

where d is the distance between impurity centers and o = 1/au. In 
the theory of Miller and Abrahams, the exponential term of Eq. 6.3 is 
taken to be small, such that an electron moves only to its nearest 
neighbor and the resistivity will be: 

p = p Q expU 3/kT). (6.4) 

In the above expression, the activation energy, e3 is given by: 
c 3 = (e 2/ K)(4*N D/3) 1 / 3(l - 1.35 K 1 / 3 ) 

for compensation K = N„/N D and K < 0.03. For higher K, a more compli­
cated expression is obtained in which e, reaches a minimum near K = 0.5. 
Their theory is found to be in good agreement only for low impurity con­

ic o 
centrations (< 10 cm ) in both germanium and silicon. 

32 "Variable-range" hopping introduced by Mott gives a resistivity 
relationship of the form: 

p = A exp(B/T 1 / 4) (6.5) 
where A and B are experimentally determined constants. In this one-
dimensional derivation, Mott considers that in the low temperature 
limit, the probability of finding a phonon of energy large enough to 
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initiate hopping between neighboring states of differing energies 
becomes very small. As a result, the electron hops large distances to 
find a state of similar energy. In this theory, charge transport is 
due to the motion of electrons near the Fermi level. An electron is 
found to hop to a site of energy E * Er. + W at a distance R from the 
initial site, when the hopping rate p is at a maximum: 

o a exp(-2e.R - W/kT). (6.6) 
The optimum values of R and W are found by assuming a density of states 

57 of the form : 

N(E) - N Q E Y (6.7) 

where N and y are postive constants and E is the energy difference 
from the Fermi level. The number of sites within a radius R and energy 
W available to an electron near the Fermi level is: 

(4,.R3/3) "$N(E)dE. (6.8) 

If Eq. 6.8 is set equal to one, the distance R that an electron must 
hop to find at least one unoccupied state of energy E <_ E f + W is: 

R = [3(Y + 1 ) / 4 » N 0 W ( Y + 1 , ] 1 ( 3 (6.9) 

By substituting Eq. 6.9 into Eq. 6.6, the optimum hopping energy is 
obtained: 

W = [(y + l) 4(2akT) 3/36*N 0)] 1 / ( l r + J ) (6.10) 

Thus, the hopping rate and resistivity are related to the temperature: 

in p - T^ + 1>/<* + 4> (6.11) 
Setting y » 0, Hott's expression (Eq. 6.5) for variable range hopping 
is obtained. However, expressions 6.5 through 6.11 neglect intersite 
electron-electron interactions. Specifically, in the low temperature 
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limit, intersite Coulomb interactions introduce a gap at the Fermi 
level for one-electron hops, so that N(E F) vanishes at E p and is 
finite elsewhere. 

According to Mott, the Coulomb gap of one-electron hops disappears 
4 as variable range hopping sets i n . He predicts that even in the 

limit as T » 0, Eq. 6.5 is still valid, if one uses a smaller, tem­
perature-dependent value of A. Efros , on the other hand, believes 
that a residual gap remains, even for multi-electron hops. In Efros' 
theory, the density of states with energy near the Fermi level for 
polaran-like excitations approaches zero as: 

N(E - E p) = 3 K
3(E - E F) 2/2*e 6. 

Efros then concludes that the low temperature resistivity should be of 
the form: 

p a e x p ( T 0 / T ) 1 / 2 

where T = e /kxa . Only the theory of Efros is consistent with the 
data for the NTD samples, as shown in Figs. 30 and 31 of p versus T" n 

for NTD Ge 4 and NTD Ge 5 at T < 5 K. This temperature dependence has 
also been observed in both bulk GaAs and n-Si . Using a value of 
* 11? 1/? 
a = 45 for Ge, one obtains V' = 8.6 K ' which is in fair agree­
ment with the experimental values of Table 1 for the NTD Ge samples. 
However, Efros' theory neglects an explicit explanation of dopant con-

11? 

centration and compensation dependence for the value T*' . In review­
ing the theories of the metal-to-insulator transition for doped semicon­
ductors, it is apparent that the dependence of the critical concentra­
tion n c on compensation is not accounted for. As compensation increases, 
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the effects of disorder and Anderson localization become dominant so 
that compensation clearly needs to be included in the model of hopping 
conduction. However, the role of electron-impurity interactions are 
not well understood, and the various theories of hopping continue to 
be controversial. As a result, additional low temoerature measure­
ments and further studies of the effects of compensation are needed. 

7. Conclusions 
The resistivity of neutron transmutation doped germanium (NTD Ge) 

has been measured as a function of net-impurity concentration 
{2 x 10 1 5cm" 3 < Nft - N Q < 5 x 10 1 6cm~ 3), and temperature 
(0.3 K <̂  T £ 300 K), at a compensation K - 0.322. The MTO Ge samples 
were compared with ultra-pure gallium-doped samples, which are nearly 
uncompensated (2.4 x 10 1 5cm" 3 <. [Ga] <_ 1.1 x 10 1 6cm~ 3). 

Our results indicate that the resistivity can be approximated by 
p » k. expU/T ) in the hopping conduction regime down to 0.3 K. 
This resistivity dependence on temperature is most consistent with 
Efros' theory for variable range hopping, where Efros predicts that 
In p o (T / T ) 1 ' 2 with T Q - 74.0 K 1 ' 2 for germanium. However, 
Efros' theory does not include an explicit explanation of dopant con­
centration and compensation dependence for the value T*' . In 
the NTD Ge samples, for a given N. - N Q, we find that k and A are 
constant within the crystals down to dimensions of - 0.3 mm and most 
probably much smaller, and they can be reproduced in any high-purity 
Ge single crystal by a predictable thermal neutron exposure and a 
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thermal annealing cycle. Neutrori transmutation doping is thus advan­
tageous over conventional doping of a crystal during the melt because 
it allows reproducible homogeneous doping at a fixed, known compensa­
tion. This makes NTD Ge a prime candidate for very low temperature 
bolometer applications. 
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APPENDIX: SAMPLE PREPARATION 

A. Wafer Preparation 
1. Obtain ultra-pure germanium crystal wafers which have been neutron 

transmutation doped to the desired impurity levels. 
2. About one year after neutron irradiation, after many half-lives of 

the longer living 'J-Ge (t]/2 - i2 days), the wafers are annealed 
in dry argon gas to heal the radiation damage, according to the 
schedule below: 

TIME(K..5) 
XBL 828-11231 

By slowly cooling the wafers, unwanted impurities such as copper 
are forced to precipitate out of the wafers. 

3. Mount wafers onto a carbon block, using dental wax as the adhesive. 
4. Cut the wafers to the desired size using a wire saw. (Our sam­

ples were cut, sing a 0.010" thick wire saw, to sizes of 
- 7 x 7 x 1.9 m m 5 ) . The samples are simultaneously cut and 
lapped by using a suspension of 1900-grit lapping compound in 
mineral oil as an abrasive. 

5. Remove the samples from the carbon block. 
6. Cleanse the samples of the remaining dental wax using pure 

tri-chloroethylene ^TCE) which is heated to below its boiling 
point. 

7. Dry the samples in air. 
8. The samples are etched in a 3:1 HN03:HF solution for abou, 45 

sees - 1 min., or until a shiny, damage-free surface appears. 
9. Quench the wafers in methanol. 
10. Soak the wafers in \% HF for ~ 10 min. or until the wafers are 

hydrophobic. 
11. Quickly dry the samples in air. 
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B. Ion Implantat ion 

1 . The samples are doubly ion implanted on both sides at room 
temperature w i th boron ions a t an energy o f : 

100 keV at a dose of 2 x 10l4cm-2 
and 130 keV at a dose of 4 x lO^cm" 2 

2. The top 500 A of Ge is etched o f f i n a 5% NaOCl so lu t ion f o r - 30 
sec i n order to reach the depth of near maximum B concentrat ion. 

3. Anneal the samples a t 250*C fo r one hour in dry argon. 

C. MetaMization 

1 . RF sput ter ing i s used to deposit 400 A of T i , fo l lowed by 8000 A 
of Au on the sample surfaces on both s ides. 

2. Samples are etched b r i e f l y (~ 10 sec) in 3:1 HN03:HF to remove 
surface contamination. 

3. Quench the samples in methanol and dry them in a i r . 

4. Samples are annealed at 250°C f o r one hour in dry argon. 

5. The sample corners on the f r on t and backsides are protected wi th 
Picein wax (S-14975, low T; Sargent Welch). The Picein wax is 
d i l u ted wi th TCE to the desired consistency, painted onto the 
corners, and allowed to dry . 

6. .'lie bare sides of the samples are lapped gent ly wi th 1900-gr i t 
lapping compound to remove any Au and Ti deposited on them. 

7. The Au, not protected by Picein wax, i s removed from the top and 
bottom surfaces in a 4 :1 K1:12 so lu t i on . 

8. S im i la r l y , the excess Ti is i ns tan t l y etched away in a 1 % HF 
so lu t ion . 

9. The samples are etched f o r - 20 sec in a 3:1 HN03:HF so lu t i on , 
in order to remove the boron implanted layer from the non-contact 
areas. 

10. Quench the samples in methanol. 

11. Transfer the samples to pure TCE, and remove the Picein wax. 
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12. Quench and rinse the samples in methanol. 

13. Dry the samples rapidly in a i r . 

0. Electrical Contact Formation 

1. Using a soldering iron, melt a very small amount of In onto the 
four Au contacts on the front side of the sample. 

2. Cut and t in 5 mil Cu-40 wire lengths with Sn-60 solder f lux. 

3. Melt a very small amount of In onto one end of the tinned wire 
lengths. 

4. Attach one tinned and In-coated wire end to each of the sample 
corners on the front side, by re-heating the corners just long 
enough to re-malt the In. 
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