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The fus ion- f i s s ion  hybr id  b lanke t  p roposed . fo r  t h e  Tandem Mirror  Hybrid Reactor employs 
thorium metal  a s  t h e  f e r t i l e  ma te r i a l .  Based on t h e  ENDFIB-IV nuc lea r  d a t a ,  t h e  2 3 3 ~  and 
t r i t i u m  product ion r a t e  and b lanke t  energy m u l t i p l i c a t i o n  averaged over  t h e  b lanke t  l i f e t i m e  
of about  9  ~ ~ - ~ r / m ~  a r e  0.76 and 1.12 p e r  D-T neu t ron  and 4.8, r e spec t ive ly .  A t  t h e  t ime of 
t h e  b lanke t  d i scha rge ,  t h e  233U enrichment i n  t h e  thorium metal  is  about  3%. The thorium 
c r o s s  s e c t i o n s  given by t h e  ENDFIB-IV and V were reviewed, and the  important  p a r t i a l  c r o s s  
s e c t i o n s  such a s  (n ,2n) ,  (n.3n) and (n.y) were found t o  be known t o  210-20% i n  t h e  r e s p e c t i v e  
energy range of i n t e r e s t .  A s e n s i t i v i t y  s tudy  showed t h a t  t h e  23311 and t r i t i u m  product ion 
r n t c  and b lanke t  energy mul t ip l i caCior~  a r e  r e l a t i v e l y  s e n s i t i v e  t o  t h e  thorium cap tu re  and 
f i s s i o n  c ross  s e c t i o n  u n c e r t a i n t i e s .  I n  o r d e r  t o  p r e d i c t  t h e  above parameters  w i t h i n  + I%,  t h e  
Th(n,y) and Th(n,Vf) c r o s s  s e c t i o n s  must be measured wi th in  about f2% i n  t h e  energy range 
3 3 0 0 0  keV and 13.5--15 MeV, r e spec t ive ly .  The p r e s e n t  l e v e l  o f  unce r t a in ty  i n  t h e s e  d a t a  is  
210 and 5%. Th i s  i n d i c a t e s  t h a t  a l though p r e s e n t l y  adequate  f o r  pre l iminary des ign ,  a d d i t i o n a l  
c r o s s  s e c t i o n  measurements t o  improve t h e  accuracy o f  t h e  Th(n,y) and Th(n,vf)  c r o s s  s e c t i o n s  
in t h e s e  energy ranges mcly.be needed i n  o r d e r  t o  a c c u r a t e l y  c a l c u l a t e  t h e  b lanke t  performance 
thorium-base fus ion- f i s s ion  hybrid r e a c t o r  b lanke t s .  

(Fus ion- f i s s ion  hybrid blanket .  Th(n,2n) ,  Th(n,3n),  Th(n ,v f ) ,  Th(n,y) ,  t r i t i u m  breeding,  
uranium product ion,  b lanket  energy m u l t i p l i c a t i o n ,  c r o s s  s e c t i o n  u n c e r t a i n t y ,  c r o s s  
s e c t i o n  s e n s i t i v i t y )  

In t roduc t ion  of view and n e c e s s i t a t e s  use of d i v e r s e  and redundant 
b lanke t  a u x i l i a r y  coo l ing  systems. Assuming only 

A wide v a r i e t y  of fus ion- f i s s ion  hybrid system a d i a b a t i c  hea t ing ,  t h e  a f t e r h e a t  meltdown time f o r  a  
concepts  have been r e c e n t l y  suggested and eva lua ted  by h igh  power dens i ty  uranium-base blanket  can be a s  
many i n v e s t i g a t o r s . '  The concept of p lac ing  a  b lanke t  s h o r t  a s  one minute. For t h e  lower power thorium- 
of f e r t i l e  m a t e r i a l  around a  fus ion  plasma t o  form a  base  blanket  des igns ,  t h e  a f t e r h e a t  a d i a b a t i c  meltdown 
hybrid  system is most a t t r a c t i v e  because of the  f l e x i -  t ime can be a s  long a s  one hour under s i m i l a r  l o s s  of 
b i l i t y  such a  system can have t o  produce e i t h e r  thermal  coo l ing  circumstances. '  
power o r  f i s s i l e  f u e l ,  o r  both. I n  t h e s e  concepts ,  t h e  
b lanke t s  c o n s i s t  of e i t h e r  a  2 3 8 ~  o r  2 3 2 ~ h  f e r t i l e  Thorium-base hybr id  b lanke t s  a r e  a l s o  a t t r a c t i v e  
zone which s e r v e s  t o  mul t ip ly  t h e  f u s i o n  neutrons  v i a  because of t h e  bred f u e l .  2 3 3 ~  is s u p e r i o r  t o  2 3 9 ~ ~  
(n ,2n) ,  (n,3n) and (n ,v f )  r e a c t i o n s ,  t o  enhance t h e  f o r  use  i n  a  thermal spectrum burner  r eac to r . '  I n  
thermal  power ou tpu t  th rou  h  f i s s i o n  r e a c t i o n s  and/or  a d d i t i o n  t o  s u p e r i o r  f u e l  c y c l e  performance 2 3 3 ~  o f f e r s  
t o  r o d u ~ c  l issllr  l u e l s  (539Pu ur l l3U) from d 3 8 ~ ( n , Y )  t h e  p o s s i b i l i t y  f o r  i s o t o p i c  den.turing wi th  2 3 8 ~  which 
o r  ','Th (n.y) r eac t ions .  I n  genera l ,  t h e  uranium-base may improve p r o l i f e r a t i o n  and d i v e r s i o n  r e s i s t a n c e .  
b l anke t s  produce a  l a r g e  amount of thermal  power, mul t i -  
p ly ing  the  i n c i d e n t  fus ion  neutron energy by about a  I n  t h e  Tandem Mirror  Hybrid Reactor (TMHR) s tudy  ,' 
f a c t o r  of 10 by f a s t  f i s s i o n  of t h e  2 3 8 ~ .  They a l s o  a  helium-cooled thorium metal  b l anke t  was chosen a s  t h e  
produce up t o  two f i s s i l e  atoms pe r  D-T neutron i n  gas-cooled blanket  cand ida te  based on t h e  cons ide ra t ion  
a d d i t i o n  t o  t h e  breeding of adequate t r i t i u m  t o  s u s t a i n  of b e t t e r  bred f u e l  ( 2 3 3 ~  ve r sus  2 3 9 ~ ~ ) .  good f u e l  pro- 
t h e  system (T/n > 1 ) .  The thorium-base b lanke t s  pro- duc t ion  and economics, p o s i t i v e  n e t  e l e c t r i c i t y  pro- 
duce more modest amounts of thermal power which is  duc t ion  and reasonable  t o l e r a n c e  of t h e  l o s s  of coo lan t  
genera l ly  only two o r  t h r e e  t imes t h a t  of t h e  i n c i d e n t  flow acc iden t .  '' 
fus ion  neutrons .  The f i s s i l e  atom product ion r a t e  i n  
these  b lanke t s  is  no t  more than one pe r  D-T neutron i f  The performance of thorium blanket  concepts f o r  
t h e  s e l f - s u s t a i n i n g  t r i c i u ~ u  product ion is t o  be main- fus ion- f i s s ion  hybrid systems depend on t h e  neutron 
t a ined .  ' When e i t h e r  uranium o r  thorium b lanke t  is  and energy m u l t i p l i c a t i o n  i n  t h e  blanket  through (n ,2n) ,  
e x p o ~ e d  t o  t h e  fus ion  neu t ron  e n v i r o l ~ l u r ~ ~ t  t h e  bred (n,3n) and f i s s i o n  r e a c t i o n s .  The thorium c r o s s  sec-  
f i s s i l e  f u e l  concen t ra t ion  accumulates s o  a s  t o  i n c r e a s e  t i o n  u n c e r t a i n t i e s  and t h e i r  e f f e c t  on t h e  blanket  ' 

t h e  f i s s i o n i n g  r a t e  and t h u s  t h e  thermal power output .  nuc leon ic  performance a r e  n a t u r a l l y  of concern from 
The n e t  f i s s i l e  f u e l  product ion r a t e  changes r e l a t i v e l y  .. t h e  b lanke t  des ign p o i n t  of view. The thorium p a r t i a l  
l i t t l c ,  however, u n t i l  V r c y  111g11 I l s u l l e  concencracions c r o s s  s e c t i o n s  such a s  (n ,2n) ,  (n,3n) around the  D-T 
('10%) a r e  reached, whereupon product ion and f i s s i o n  neutron energy range and (n ,y)  i n  t h e  in te rmed ia te  
tend t o  e q u i l i b r a t e .  energy range a r e  expected t o  be s u b j e c t  t o  uncer ta in-  

t i e s  of about f10-20%. The thorium f a s t  f i s s i o n  c r o s s  
Because of tlie h igher  b lanke t  thermal  output  i n  s e c t i o n  is  a l s o  known t o  55% only. A s e n s i t i v i t y  s t u d y  

t h e  uranium o r  f i s s i l e  en r i ched  b lanke t s  which is  of t h e s e  c r o s s  s e c t i o n  u n c e r t a i n t i e s  is t h e  main pur- 
mainly due t o  f i s s i o n  r e a c t i o n s ,  t h e  f i s s i o n  product pose of t h i s  paper.  From t h e  r e s u l t s  o f  t h i s  s tudy,  
and a c t i n i d e  i n v e n t o r i e s  i n  t h e s e  b lanke t s  can be l a r g e .  t h e  d e s i r e d  accurac ies  of t h e  r e l a t e d  p a r t i a l  c ross  
The l o c a l  nuc lea r  hea t ing  and after-shutdown decay h e a t  s e c t i o n s  can t h u s  be  recommended f o r  t h e  accura te  com- 
a r e  t h u s  high compared t o  those  of t h e  thorium-base p u t a t i o n  of t h e  performance of thorium fus ion- f i s s ion  
b lanke t s  which possess  more modest b lanket  thermal hybr id  b lanke t s .  
output .  The f i s s i o n  product decay h e a t  can cause melt-  
down of t h e  f u e l  i f  a  l o s s  of coolant  flow acc iden t  The blanket  conf igura t ion  and nucleonic  perform- 
occurs ,  which is a  seve re  concern from t h e  s a f e t y  po in t  ance a r e  desc r ibed  b r i e f l y  i n  t h e  next  s e c t i o n .  A 
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review of  t h e  s t a t u s  of t h e  thorium n u c l e a r  d a t a  is 
then given,  followed by a  d i s c u s s i o n  of  t h e  s e n s i t i v i t y  
s tudy  of t h e  thorium c r o s s  s e c t i o n  u n c e r t a i n t i e s  t o  t h e  
nuc leon ic  performance of t h i s  b l anke t .  The conclud'ing 
remarks and recommendations of t h i s  s tudy  a r e  sum- 
marized i n  t h e  l a s t  s e c t i o n .  

Thorium Fusion-Fission Hybrid Blanket  Model 

The helium cooled thorium metal  TMHR b lanke t  con- 
sists of a  10 mm f i r s t  w a l l ,  a  0.11 m t h i c k  thorium 
meta l  zone, a  0.4 m L iz0  zone and a  0.1 m 316 s t a i n l e s s  
s t e e l  r e f l e c t o r f h o t  s h i e l d .  The b lanke t  c o n f i g u r a t i o n  
and m a t e r i a l  compositions a r e  t a b u l a t e d  i n  Table  I. 

Table  I. Thorium Fusion-Fiss ion Hybrid Blanket 
Conf igurat ion and M a t e r i a l  Compositions 

Thickness 
Composition Remarks 

Plasma 

Vacuum 

F i r s t  w a l l  

. 5 1 0.40 1 6.5% Inconel  + 10% helium Tr i t ium 
+ 83.5% L ~ ? o ( ~ )  breeding 

4  

R e f l e c t o r /  
ho t  s h i e l d  

- -  

of t h e  t h e o r e t i c a l  d e n s i t y  of t h i s  m a t e r i a l  is  

0.11 

considered t o  account f o r  t h e  packing e f f e c t .  

The n e u t r o n i c  c a l c u l a t i o n s  were performed u s i n g  
t h e  one-dimensional d i s c r e t e  o r d i n a t e s  t r a n s p o r t  code, 
A N I S N ~  wi th  P3S6 approximation i n  c y l i n d r i c a l  geometry. 
A 3 1  t h ~  n ~ i c l ~ a r  d a t a  except  thorium a r c  from t h c  
DLC-379 l i b r a r y  which is based on ENDFIB-IV and were 
co l l apsed  i n t o  25 neu t ron  and 21 gamma-ray group s t r u c -  
t u r e 8 u s i n g  an 1/E weight ing spectrum. The group energy 
boundar ies  a r e  t h e  same a s  g iven i n  Ref. 10. The 
thorium n u c l e a r  d a t a  and a l l  y a r t i a l  c r o s s  s e c r i o n s  
s t u d i e d  i n  t h i s  paper a r e  from t h e  DLC-41 l 1  l i b r a r y  
which used ENDFIB-IV d a t a  and were a l s o  c o l l a p s e d  i n t o  
t h e  same group s t r u c t u r e  us ing t h e  same weight ing 
spcetrum. 

6.5% Inconel  + 10% helium 
+ 83.5% thorium(a) 

The resonance s e l f - s h i e l d i n g  c o r r e c t i o n  of  thorium 
c r o s s  s e c t i o n  is  n o t  t r e a t e d  i n  t h i s  s tudy .  Thc c f f c c t s  
of t h e  group c o l l a p s i n g  weight ing f u n c t i o n  and resonance 
s e l f - s h i e l d i n g  corrscti .nn a r e  n o t  known. However, from 
t h e  pub l i shed  r e s u l t s  of t h e  23% b l a n k e t s ,  '"" i t  is 
known t h a t  t h e  e f f e c t  of t h e  weight ing f u n c t i o n  is very  
smal l12 and t h e  resonance s e l f - s h i e l d i n g  c o r r e c t i o n  may 
reduce t h e  238u(n,y) r e a c t i o n  r a t e  by about  4%.13 It 
is be l i eved  t h a t  t h e  r e s u l t s  of  t h i s  s e n s i t i v i t y  s tudy  
w i l l  s t i l l  apply  t o  t h e  case  when t h e  weight ing func- 
t i o n  and rcoonancc s c l f - s h i e l d i n g  c o r r r c t i u u  a r e  CrraLed. 

233U production 

When t h e  b l anke t  i s  f r e s h  wi thout  neutron i r r a d i a -  
t i o n ,  t h e  thorium metal  zone c u a t a i u s  no 2 3 3 ~ ,  and on ly  
f a s t  f i s s i o n  of  t h e  thorium metal  c o n t r i b u t e s  t o  t h e  
b l anke t  energy m u l t i p l i c a t i o n ,  which is de f ined  a s  t h e  
r a t i o  of t o t a l  b l anke t  n u c l e a r  h e a t i n g  t o  t h e  i n c i d e n t .  
D-T neu t ron  energy. As t h e  neutron i r r a d i a t i o n  pro- 
ceeds ,  t h e  23% concen t ra t ion  i n c r e a s e s  and i ts f i s s i o n -  
ing  a l s o  adds t o  t h e  b l anke t  energy mul t ip l i cae ion .  The 
Th(n,y) r e a c t i o n  r a t e  a l s o  i n c r e a s e s  due t o  t h e  i n c r e a s e  
of neutron popula t ion i n  t h e  b lanket .  However, 23% 
f i s s i o n  burns  t h e  2 3 3 ~  atoms and , r e s u l t s  i n  a  s l i g h t  
dec rease  of  t h e  n e t  2 3 3 ~  product ion r a t e .  The t r i t i u m  

roduc t ion  r a t e ,  which r e l i e s  on t h e  6 ~ i ( n , a )  and 
7Li (n ,n1a )  r e a c t i o n s  wi th  t h e  neu t rons  l eak ing  i n t o  
t h e  l i t h i u m  zone from t h e  thorium zone, i n c r e a s e s . a s  
t h e  23% c o n c e n t r a t i o n  i n  t h e  b l anke t  becomes l a r g e r .  
The i r r a d i a t i o n  l i f e t i m e  of  t h e  b l anke t  module is 
l i m i t e d  by t h e  burnup l i m i t  of t h e  thorium metal.  T h i s  
burnup des ign  l i m i t  is  about  1% a t  t h e  peak l o c a t i o n .  
which occur s  immediately behind t h e  f i r s t  wa l l  and 
corresponds  t o  an  accumulated f i r s t  w a l l  neutron 
exposure of about  9  ~ ~ - ~ r / m ~ .  A f t e r  t h e  9 ~ ~ - ~ r / m 2  
b lanke t  l i f e t i m e  is  reached,  t h e  2 3 3 ~  concen t ra t ion  
i n  t h e  thorium metal  is about 3%. The b lanke t  is  then 
discharged and replaced wi th  f r e s h  b l anke t  modules. 
The nuc leon ic  performance of t h e  thorium f u s i o n - f i s s i o n  
hybr id  b l a n k e t  a t  t h e  beginning and end of ' l i f e  a r e  
p resen ted  i n  Table  11. Note t h a t  i n  t h i s  t a b l e  t h e  
t ime  averaged t r i t i u m  breeding r a t i o  is  about 1.12, 
adequate  f o r  t r i t i u m  s e l f - s u f f i c i e n c y ,  a l though i t  i s  
1.00 a t  t h e  beginning of  l i f e  and i n c r e a s e s  t o  1.24 
t r i t o n s  p e r  D-T neu t ron  a t  t h e  end of l i f e .  The n e t  
23% product ion r a t e  which is  0.80 and 0.73 a t  t h e  
beginning and end of l i f e ,  r e s p e c t i v e l y ,  i s  time- 
averaged t o  be 0.76 atoms pe r  D-T neutron.  The b l a n k e t  
energy m u l t i p l i c a t i o n ,  which is  about  2.7 a t  t he  begin- 
n ing of l i f e ,  i nc reases - to  7.1 a t  t h e  end of l i f e ,  w i t h ,  
a  time-averaged v a l u e ,  M, of about 4.8. 

Table  11. Nucleonic Performance of t h e  Thorium 
Fusion-Fiss ion Hybrid Blankets  a t  t h e  
Beginning and End of L i f e  (React ions  
p e r  TI-7: Neutron) 

T r i t i u m  breedine, r a t i o  1 1.001 3  1 1.2428 

Nucleonic 
Performance 

Parameter 

As s t a t e d  i n  t h e  previous  s e c t i o n ,  t h i s  b lanket  
concept u t i l i z e s  t h e  neutron and energy m u l t i p l i c a t i o n s  
from Th(n Zn), Th(n,3n) and thorium f a s t  f i s s i o n  a s  
w e l l  a s  2 3 3 ~  f i s s i o n  r e a c t i o n s  when 23311 atoms accumu- 
l a t e .  From Table  I1 we s e e  t h a t  t h e  a d d i t i o n a l  number 
of neu t rons  coming o u t  of  t h e  Th(n,Zn) and Th(n.3n) 
r e a c t i o n s  is about 0.54 p e r  D-T neutron.  I t  is  almost 

Beginning 
of L i f e  

(NO 2 3 3 ~ )  

7'37 
uln,Yj 

2331~(n,2n) 

2 3 3 ~ ( n ,  3n) 

2 3 3 ~ ( n , f )  

2 3 3 ~ ( n , ~ f )  

Net 2 3 3 ~  product ion 

Blanket energy 
m u l t i p l i c a t i o n ( a )  

End 
of L i f e  

(3% 2 3 3 ~ )  

a ~ e f i n e d  a s  t h e  r a t i o  of b l anke t  thermal 
ou tpu t  t o  i n c i d e n t  D-T neutron energy. 

- 

- 

- .  

- 

- 

0.7983 

2.7 

0.0208 

0.0031 

0.0003 

0.2641 

0.6942 

0.6546 

7.1 



Table  111. F r a c t i o n a l  Con t r ibu t ions  t o  Nuclear React ion Rates  i n  t h e  
Thorium Fusion-Fission Hybrid Blanket i n  Spec i f i ed  Energy Ranges 

a ~ t  t h e  end of l i f e ,  -3% 2 3 3 ~  i n  t h e  thorium. 

unchanged throughout t h e  b lanke t  l i f e t i m e .  The amount 
of mul t ip l i ed  neu t rons  due t o  f i s s i o n i n g  is a  func t ion  
of accumulated 2 3 3 ~  concen t ra t ion  i n  t h e  b lanke t  due t o  
t h e  f i s s i o n i n g  of 2 3 3 ~ .  Ac t h e  beginning of l i f e  i t  is  
only 0.26 pe r  D-T neutron,  i n c r e a s i n g  t o  about 0.70 a t  
t h e  end of l i f e .  The o v e r a l l  number of a v a i l a b l e  neu- 
t r o n s  a r e  t h u s  about 1.80 and 2.24 pe r  D-T neutron a t  
t h e  beginning and end of l i f e ,  r e s p e c t i v e l y .  

Energy Range 
(MeV) 

13.5 - 14.9 

2.5 - 13.5 

0.41 - 2.5 

3.4 - 0.41 

0.35 - 3.4 x 

Thermal - 0.35 x 1 o - ~  

The c o n t r i b u t i o n s  of t h e  v a r i o u s  p a r t i a l  n u c l e a r  
c r o s s  s e c t i o n s  i n  each s p e c i f i e d  energy range a r e  pre- 
sented i n  Table  111. From t h i s  t a b l e  we s e e  t h a t  t h e  
most important  Th(n,2n) ,  Th(n,3n) and Th(n,vf)  r e a c t i o n s  
a r e  i n  t h e  h igh  energy range,  p a r t i c u l a r l y  around t h e  
D-T neu t ron  energy, i . e . ,  13.5 - 15 MeV. The energy 
below 13.5 MeV a l s o  c o n t r i b u t e s  about  10 and 21% t o  t h e  
Th(n,Zn) and Th(n,vf)  r e a c t i o n s ,  r e s p e c t i v e l y .  The 
t r i t i u m  product ion from 7 ~ i ( n , n ' a )  r e a c t i o n s  a l s o  f avors  
t h e  h igh  energy ranges  a s  can be  seen from Table  111. 

, However, more than 50% of t h e  2 3 3 ~  product ion from 
2 3 2 ~ h ( n , y )  r e a c t i o n s  and tritium product ion from 6 ~ i ( n , a )  
r e a c t i o n s  occur  i n  t h e  energy range 3.4 - 410 keV. I n  
t h e  range 0.4 - 2.5 MeV, t h e  2 3 3 ~  product ion r a t e  is  
about 19% of t h e  t o t a l .  About 27% of t h e  t r i t i u m  pro- 
duc t ion  from 6Li (n ,a )  r e a c t i o n s  is from t h e  energy range 
of 0.35 - 3.4 keV. When t h e  2 3 3 ~  concen t ra t ion  reaches  
3%. 2 3 3 ~  f i s s i o n i n g  occurs  mostly i n  t h e  in te rmed ia te  
energy range, namely about 57% i n  t h e  range 3.4 - 410 keV 
and about 30% i n  t h e  range 0.4 - 2 .5  MeV. Table 111 a l s o  
r e v e a l s  t h a t  t h e  source  neutron energy group, 13.5--15 MeV 
produces about 12% of  t h e  t o t a l  2 3 3 ~ .  

Th(n,vf)  

78.6 

12.6 

8 .8  

0 .0  

- 
- 

Th(n,vf) .  The number of prompt neu t rons  per f i s -  
s i o n  event  (Jp)  i n  2 3 2 ~ h  appear s  t o  be known t o  about 
+1% and is  no t  l i k e l y  t o  be a  s i g n i f i c a n t  source  of 
u n c e r t a i n t y .  The Th(n,vf)  c r o s s  s e c t i o n  appears  t o  be  
known t o  about 25% above 1  MeV. Below 1 MeV, t h e  
Th(n,vf)  c r o s s  s e c t i o n  is h igh ly  unce r t a in  but  very 
smal l .  The ENDFIB-IV Th(n,vf)  c r o s s  s e c t i o n s  a r e  10 
t o  15% smal l e r  than r e c e n t  d i f f e r e n t i a l  c r o s s  s e c t i o n  
measurements. A l a r g e r  2 3 2 ~ h ( n , v f )  c r o s s  s e c t i o n  w i l l  
be  used i n  t h e  ENDFIB-V d a t a  s e t  f o r  2 3 2 ~ h .  The 2 3 2 ~ h  
prompt f i s s i o n  neutron energy spectrum appear s  t o  be 
r e p r e s e n t a b l e  wi th  a  Maxwellian f i s s i o n  neu t ron  tem- 
p e r a t u r e  of 1.21 2  0.05 MeV. 

Th(n,Zn) 

90.1 

9.9 

- 

- 
- 

- 

Th(n,2n) and Th(n.3nl.  The Th(n.2n) c r o s s  sec- 
t i o n s  appear t o  be  known t o  about 215%. The ENDFIB-V 
2 3 2 ~ h ( n ,  2n) c r o s s  s e c t i o n  w i l l  be s i g n i f i c a n t l y  lower 
than t h e  ENDFIB-IV d a t a  about 8 MeV (about 10% lower i n  
t h e  important  13 t o  15 MeV energy range) .  The 
2 3 2 ~ h ( n . 3 n )  c r o s s  s e c t i o n  is es t ima ted  t o  be about 
230%. E s s e n t i a l l y  no d i r e c t  exper imental  d a t a  e x i s t s  
because 2 3 0 ~ h  has  too long a  ha l f  l i f e  t o  use the  
a c t i v a t i o n  method. 

Th(n,y) 

11.7 

2.5 

18.9 

57.5 

8 .0  

1.4 

Th(n,3n) 

98.4 

1.6 

- 
- 

- 
- 

2 3 3 ~ ( n  v f r .  The 233U(n,vf) c r o s s  s e c t i o n  is ." ? ...- 
r e l a t i v e l y  w e l l  known and should be unce r t a in  t o  25% 
o r  l e s s  over  t h e  e n t i r e  energy range of i n t e r e s t  wi th  
cons ide rab ly  smal l e r  unce r t a in ty  i n  t h e  low thermal  
range nea r  0.025 eV. The prompt f i s s i o n  neutron energy 
spectrum of 2 3 3 ~  is  a l s o  w e l l  known and very s i m i l a r  t o  
23513. 

Cross Sec t ion  U n c e r t a i n t i e s  F i s s i l e  Product ion Reaction 

6 ~ i ( n , a )  

. 0.0 

0.2 

2.4 

53.11 

26.5 

17.5 

As explained i n  t h e  previous  s e c t i o n s ,  t h i s  thorium 
fus ion- f i s s ion  hybr id  b lanke t  employs thorium i n  metal  
fur111. Tile blanket  nucleonic  performance is highly  
dependent on t h e  s t a t u s  of t h e  thorium nuc lea r  c r o s s  
s e c t i o n  u n c e r t a i n t i e s .  I n  o rde r  t o  provide informat ion 
f o r  eva lua t ing  t h e  importance of s e n s i t i v i t y  t o  p a r t i a l  
c r o s s  s e c t i o n  u n c e r t a i n t y ,  t h e  s t a t u s  o f  t h e  thorium 
nuc lea r  c r o s s  s e c t i o n s ,  which inc lude  (n ,2n) ,  (n ,3n) ,  
(n ,y ) ,  ( n , v f ) ,  ( n , e l a s t i c )  and ( n , i n e l a s t i c ) ,  a r e  
reviewed i n  t h i s  s e c t i o n .  l 4  Based on t h i s  review, t h e  
r e s u l t s  of t h i s  s e n s i t i v i t y  s tudy  can be eva lua ted  t o  
o f f e r  recomme~~dacio~io f o i  f u r t t ~ o r .  iloprovement i n  c r o s s  
s e c t i o n  da ta .  Also included i n  t h i s  s e c t i o n  a r e  t h e  
s t a t u s  of t h e  2 3 3 ~ ( n , ~ f )  c r o s s  s e c t i o n ,  and those  of t h e  
c o n s t i t u e n t s  of iron- and nickel-based s t r u c t u r a l  a l l o y s ,  
namely C r ,  N i  and Fe. The impact of t h e  t r i t i u m  pro- ' ducing c r o s s  s e c t i o n s ,  6 ~ i ( n , a )  and 7 ~ i ( n , n ' a ) ,  a r e  a l s o  
discussed.  

The 2 3 2 ~ h ( n , y )  c r o s s  s e c t i o n  i n  the  10 t o  1000 keV 
energy range has been the  s u b j e c t  of cons ide rab le  d i s -  
cuss ion  i n  r e c e n t  yea r s .  Much of t h e  d i scuss ion  has  
been caused by t h e  pub l i ca t ion  o f  very low (20 t o  25%) 
Th(n,y) d a t a  by Macklin and Ha lpe r in , l s  wi th  very smal l  
claimed u n c e r t a i n t i e s .  The unce r t a in ty  i n  t h e  o lde r  
a c t i v a t i o n  d a t a  of Lindner,  e t  a l . ,  has r e c e n t 1  been 
d r a s t i c a l l y  reduced by new measurements of t h e  r33Pa 
decay gamma ray emission p r o b a b i l i t y .  It now appears 
l i k e l y  t h a t  t h e  Macklin and Halper in  Th(n,y) measure- 
ment was a f f l i c t e d  wi th  s i m i l a r  (but  more seve re )  prob- 
lems a s  occurred i n  t h e  Moxon and Chaftey 238U(n,y) 
measurements us ing t h e  same technique which were l a t e r  
r ev i sed  upward. It is s i g n i f i c a n t  t o  no te  t h a t  t h e  
Th(n,y) c r o s s  s e c t i o n  measured by Moxon and chaffey16 
using a  technique wi th  known problems agreed very w e l l  
wi th  t h e  Macklin and Halper in  d a t a  i n  t h e  10 t o  100 keV 
energy range where t h e  two experiments over lap.  

7 ~ i ( n , n ' a )  

40.7 

59.3 

- 
- 
- 
- 

Neutron M u l t i p l i c a t i o n  React ions  The unce r t a in ty  i n  t h e  ENDFIB-IV Th(n,y) c ross  
r) s e c t i o n  i n  che 3 t o  3000 keV energy range i s  es t imated 

The p r i n c i p a l  neutron m u l t i p l i c a t i o n  r e a c t i o n s  i n  t o  be +iO% i n  s p i t e  of t h e  much l a r g e r  d i f f e r e n c e s  i n  
a  hybr id  fus ion- f i s s ion  b lanke t  us ing thorium appear t o  t h e  publ ished exper imental  c r o s s  s e c t i o n  da ta .  This  is  
be t h e  Th(n ,v f ) ,  Th(n.2n) and Th(n,3n) r e a c t i o n s ,  and because of the  e x c e l l e n t  agreement between c a l c u l a t e d  
a f t e r .  some blanket  exposure ,  t h e  2 3 3 ~ ( n , v f )  r e a c t i o n .  and i n t e g r a l  experiment va lues  of 2 3 2 ~ ~ 1 ~ ~ 9 0 ~  obtained 

233U(n,vf)(a) 

4.6 

4.6 

29.5 

57.0 

3.8 

0.5 



i n  t h e  f a s t  b reede r  f i s s i o n  r e a c t o r  programs i n  bo th  t h e  
U. S. ' ' and Switzer land.  ' The u n c e r t a i n t y  i n  t h e  eva l -  
uated (n ,y)  r e a c t i o n  d a t a  f o r  2 3 2 ~ h  appears  t o  be s i m i -  
l a r  t o  o r  maybe even s l i g h t l y  l e s s  than  f o r  2 3 8 ~  i n  
t h i s  energy range. 

The u n c e r t a i n t y  i n  t h e  Th(n,y) c r o s s  s e c t i o n s  a t  
e n e r g i e s  above about 3  MeV i n c r e a s e  r a p i d l y  t o  220% o r  
more. The Th(n,y) r e a c t i o n  is s m a l l  above 3  MeV s o  
t h a t  hybr id  f u s i o n  b l a n k e t  des ign  u n c e r t a i n t i e s  a r e  no t  
much a f f e c t e d  by t h e  i n c r e a s e d  u n c e r t a i n t y .  

Other React ions  

The neutron energy spectrum i n  t h e  thorium p o r t i o n  
of t h e  b l anke t  and t h e  number and energy spectrum of 
t h e  neu t rons  r each ing  t h e  l i t h i u m  reg ion  w i l l  be  i n f l u -  
enced by o t h e r  c r o s s  s e c t i o n s  such a s  t h e  Th-e la s t i c  
and i n e l a s t i c  c r o s s  s e c t i o n s  a s  w e l l  a s  ( t o  a  l e s s e r  
e x t e n t )  by t h e  c r o s s  s e c t i o n s  of  t h e  Incone l  used i n  
t h e  f i r s t  w a l l  and a s  t h e  thorium reg ion  c l add ing  and 
s t r u c t u r a l  suppor t .  

Thorium T o t a l  Cross Sec t ion .  The ENDFIB-IV Th 
t o t a l  c r o s s  s e c t i o n  d a t a  appears  t o  b e  10 t o  2 0 % ' t o o  
low p a r t i c u l a r l y  below 1 MeV and w i l l  b e  r e v i s e d  upward 
f o r  t h e  ENDFIB-V l i b r a r y .  The ENDFIB-v Th t o t a l  c r o s s  
s e c t i o n s  a r e  claimed t o  b e  known t o  23% over  t h e  0.01 
t o  14 MeV energy range w i t h  about 25% u n c e r t a i n t y  above 
about 15 MeV. The t r ansmiss ion  through t h e  thorium 
reg ion  t o  t h e  l i t h i u m  reg ion  i s  d i r e c t l y  a f f e c t e d  by 
t h i s  u n c e r t a i n t y .  

Thorium E l a s t i c  and I n e l a s t i c  Cross  Sec t ions .  
Measured e l a s t i c  s c a t t e r i n g  c r o s s  s e c t i o n s  u s u a l l y  
i n c l u d e  some c o n t r i b u t i o n s  from low Q va lue  i n e l a s t i c  
s c a t t e r i n g  which a r e  almost impossible  t o  expe r imen ta l ly  
s e p a r a t e .  From a  computat ional  p o i n t  of view, no s i g -  
n i f i c a n t  e r r o r  is in t roduced  by t h i s  f a c t  a l though 
publ ished u n c e r t a i n t i e s  f o r  t h e  e l a s t i c  c r o s s  s e c t i o n s  
a r e  inc reased  by t h i s  exper imenta l  problem. The Th(n,n)  
c r o s s  s e c t i o n  is probably  known t o  about 210% over  t h e  
0.1 e n  15 MPV energy range. It should  be noted t h a t  
t h e  ENDFIB-IV and ENDFIB-V e v a l u a t i o n s  d i f f e r  s i g n i f i -  
c a n t l y  w i t h  t h e  ENDFIB-V d a t a  h i g h e r  by about 10% below 
about  80 keV and about 10% lower i n  t h e  1  t o  4  MeV 
range. Th i s  is because of t h e  o n s e t  of  s i g n i f i c a n t  
i n e l a s t i c  compet i t ion above about 50  keV. E l a s t i c  
s c a t t e r i n g  angu la r  d i s t r i b u t i o n s  computed from model 
c a l c u l a t i o n s  ag ree  reasonably  w e l l  w i t h  exper imenta l  
d a t a  where a v a i l a b l e .  

Considerable  exper imenta l  d a t a  on t h e  T h ( n , n t )  
r e a c t i o n  has  been ob ta ined  s i n c e  t h e  ENDFIB-III/IV 
~ h ( n , n ' )  e v a l u a t i o n s  were performed. The claimed 
u n c e r t a i n t y  i n  t h e  ENDFIB-V eva lua ted  T h ( n , n t )  d a t a  is  
t 1 0  t o  15%. The ENDFIB-V T h ( n , n t )  d a t a  w i l l  be about 
15 t o  20% h ighe r  than t h e  ENDFIB-IV d a t a  i n  t h e  1  t o  7  
MeV energy range wi th  c o n s i d e r a b l e  d i f f e r e n c e s  i n  t h e  
d e t a i l s  of t h e  i n e l a s t i c  s c a t t e r i n g  angu la r  d i s t r i b u -  
t i o n s .  The d e t a i l s  of t h e  angu la r  d i s t r i b u t i o n s  a r e  
n o t  very  s i g n i f i c a n t  t o  b l anke t  des ign  s t u d i e s  excep t  
f o r  t h e i r  impact on t h e  mean energy l o s s  pe r  c o l l i s i o n  
which i s  important  i n  determining t h e  neutron energy 
spectrum i n  t h e  thrnium reg ion  which s t r o n g l y  a f f e c t s  
t h e  t r i t i u m  product ion i n  the  l i t h i u m  reg ion  by t h e  
7 ~ i ( n , n  'a )T th resho ld  r e a c t i o n .  

S t r u c t u r a l  M a t e r i a l  Cross Sec t ions .  The Cr, Fe 
and N i  c r o s s  s e c t i o n s  a r e  known t o  t h e  same, o r  i n  most 
cases ,  b e t t e r  accuracy than t h e  thor ium c r o s s  s e c t i o n s .  
Since Incone l  i s  only  about  7% of  t h e  thorium and 
l i t h i u m  reg ions ,  t he  u n c e r t a i n t i e s  i n  t h e s e  c r o s s  sec-  
t i o n s  w i l l  n o t  be very  s i g n i f i c a n t  i n  tl~r o v e r a l l  sys-  
tem u n c e r t a i n t i e s  and a  conse rva t ive  s i m p l i f i c a t i o n  
would be t o  assume t h e  same u n c e r t a i n t i e s  f o r  Cr ,  Fe 
and N i  a s  f o r  thotiuin. 

6 ~ i ( n , a ) ~  and 7 ~ i ( n  n t a ) T  React ions .  The 
6 ~ i ( n , a ) ~  r e a c t i o n  is a  ; e l l  known r e a c t i o n  t h a t  is  
o f t e n  used a s  a  secondary s t anda rd  a g a i n s t  which o t h e r  
c r o s s  s e c t i o n s  a r e  measured. The u n c e r t a i n t y  i n  t h e  
6 L i ( n , a ) ~  r e a c t i o n  c r o s s  s e c t i o n s  should  be +5% o r  
l e s s  ove r  t h e  e n e r g i e s  o f  i n t e r e s t  i n  hybr id  fus ion-  
f i s s i o n  b lanke t  des igns .  A s tudy  performed by S t e i n e r  
and  obia as" showed t h a t  t h e  6 ~ i ( n , a )  c r o s s  s e c t i o n  i s  
adequate  f o r  t r i t i u m  breeding c a l c u l a t i o n s  wi th in  1%. 
The 7 ~ i ( n , n ' a ) ~  r e a c t i o n  is somewhat l e s s  important  i n  
t h i s  t ype  of  hybr id  b l a n k e t  des ign ,  s i n c e  more than 
90% of t h e  t r i t i u m  b reed ing  is c o n t r i b u t e d  from t h e  
6 L i ( n , a ) ~  r e a c t i o n .  I n  t h i s  case ,  t he  c u r r e n t  evalua-  
t i o n  may be adequate  i n  p r e d i c t i n g  t h e  nuc leon ic  per- 
formance w i t h i n  1  t o  2%. ' 

S e n s i t i v i t y  Study 

Method of Study 

The method of  t h e  c r o s s  s e c t i o n  s e n s i t i v i t y  s tudy  
employed he re  i s  based on t h e  l i n e a r  p e r t u r b a t i o n  theo ry  
a s  desc r ibed  by B a r t i n e ,  e t  aZ. The c a l c u l a t i o n s  of  
t h e  s e n s i t i v i t i e s  were performed us ing  t h e  ORNL devel-  
oped s e n s i t i v i t y  a n a l y s i s  code,  SWANLAKE. ' The d i r e c t  
and a d j o i n t  f l u x  d i s t r i b u t i o n s  r equ i red  t o  perform t h e  
s e n s i t i v i t y  c a l c u l a t i o n s  were computed us ing ANISN. 
The a'greement of  t h e  Th(n ,y)  and 6 ~ i ( n , c c )  r e a c t i o n  
r a t e s  i n  t h e  r e g u l a r  and a d j o i n t  c a l c u l a t i o n s  is 
e x c e l l e n t  w i t h i n  about 1%. The c a l c u l a t i o n s  f o r  
f i s s i o n  r e a c t i o n  r a t e s  a r e  a l s o  i n  good agreement 
w i t h i n  about  2%. The 7 ~ i ( n , n ' a )  r e a c t i o n  r a t e s  d i f f e r  
by about 4%. However due t o  i t s  r e l a t i v e l y  smal l  con- 
t r i b u t i o n  t o  t h e  o v e r a l l  t r i t i u m  b reed ing ,  - lo%,  t h e  
o v e r a l l  t r i t i u m  breeding r a t i o s  s t i l l  ag ree  wi th in  1%. 

R e s u l t s  and Discuss ions  

The o v e r a l l  s e n s i t i v i t i e s  of t h e  thorium p a r t i a l  
c r o s s  s e c t i o n s  t o  t h e  nuc leon ic  performance of the  
thorium f u s i o n - f i s s i o n  hybr id  b l anke t  a r e  p resen ted  i n  
Tables  I V  and V f o r  t h e  b l anke t  a t  t h e  beginning and 
end of  l i f e ,  r e s p e c t i v e l y .  A l l  q u a n t i t i e s  a r e  g iven 
i n  u n i t s  of pe rcen t  pe r  1% of c r o s s  s e c t i o n  inc rease .  

At t h e  beginning of l i f e ,  t h e  23% product ion r a t e  
is most ly  a f f e c t e d  by t h e  (n ,y)  and (n ,v f )  c r o s s  s e c t i o n  
u n c e r t a i n t i e s .  It i n c r e a s e s  by about 0.44 and 0.14% 
i f  t h e  (n ,y)  and ( n , v f )  c r o s s  s e c t i o n s  a r e  r a i s e d  by I%,  
r e s p e c t i v e l y .  A t  t h e  end of l i f e ,  i t  becomes l e s s  sen-  
s i t i v e  and drops  t o  0.28% f o r  Th(n,y) c r o s s  s e c t i o n .  
Tho ef fect  ~ I I P  t o  Th(n ,v f l  c r o s s  s e c t i o n  u n c e r t a i n t y  is 
a l s o  very  s m a l l ,  These r e s u l t s  a r e  r evea led  i n  Tab les  
I V  and V. 

Table I V .  S e n s i t i v i t i e s  of  Thorium P a r t i a l  Cross 
Sec t ion  U n c e r t a i n t i e s  t o  23% Product ion,  
Thorium F i s s i o n  and Tr i t i um Product ion 
Rates  i n  a  Thorium Fusion-Fission Hybrid 
Blanket a t  t h e  Beginning of L i f e  (Percent  
p e r  1% Cross  Sec t ion  Inc rease )  

The t r i t i u m  breeding r a t i o  is  s e n s i t i v e  t o  t h e  
Th(n,y) c r o s s  s e c t i o n  u n c e r t a i n t y  a t  t h e  beginning of 
l i f e .  It dec reases  by about 0.33% a s  t h e  Th(n,y) c r o s s  
s e c t i o n  is r a i s e d  by 1%. However a t  t h e  end of l i f e ,  

-- 

Cross 
Sec t ion  

Type Th(n,y)  

~ 

Th(n , f )  
6  

L i ( n , a )  7 ~ i ( n , n ' a )  

T r i t i um 
Breeding 

Ra t io  



Table V. S e n s i t i v i t i e s  of Thorium P a r t i a l  Cross 
Sec t ion  U n c e r t a i n t i e s  t o  2 3 3 ~  Product ion,  
Thorium and 2 3 3 ~  F i s s i o n  and Tr i t ium 
Production Rates  i n  a Thorium Fusion-Fission 
Hybrid Blanket a t  t h e  End of L i f e  ( a )  
(Percent  pe r  1% Cross Sec t ion  Inc rease )  

a3% 2 3 3 ~  i n  thorium. 

t h e  t r i t i u m  breeding r a t i o  becomes r e l a t i v e l y  insens i -  
t i v e  t o  a l l  c r o s s  s e c t i o n  u n c e r t a i n t i e s .  This  can a l s o  
be observed from Tables I V  and V. The thorium f i s s i o n  
reac t ion  r a t e  and thus  t h e  b lanke t  energy m111.tiplication 
a r e  very s e n s i t i v e  t o  t h e  Th(n, f )  c r o s s  s e c t i o n  uncer- 
t a i n t y .  The f i s s i o n  r e a c t i o n  r a t e  i n c r e a s e s  by about  
1% a s  t h e  corresponding c r o s s  s e c t i o n  is  r a i s e d  by 1%, 
no mat ter  whether t h e  b lanke t  is f r e s h  o r  i r r a d i a t e d .  
The 233U(n,f) r e a c t i o n  r a t e ,  which becomes very impor- 
t a n t  toward t h e  end of l i f e  when t h e  2 3 3 ~  concen t ra t ion  
inc reases ,  is a l s o  s e n s i t i v e  t o  t h e  Th(n,y) and Th(n , f )  
c r o s s  s e c t i o n  u n c e r t a i n t i e s .  It changes by about -0.15 
and 0.3%, r e s p e c t i v e l y ,  a s  t h e  Th(n,y) and Th(n,f )  c r o s s  
s e c t i o n s  i n c r e a s e  by 1%. 

I f  t h e  c r o s s  s e c t i o n  u n c e r t a i n t i e s  shown i n  t h e  
evaluated f i l e s  a s  d i scussed  i n  t h e  previous  s e c t i o n  
a r e  coupled wi th  t h e  above c a l c u l a t e d  s e n s i t i v i t i e s ,  
t h e  adequacy of t h e  c u r r e n t l y  a v a i l a b l e  thorium n u c l e a r  
d a t a  f o r  hybr id  design c a l c u l a t i o n s  can be assessed.  
From t h e  previous  s e c t i o n ,  t h e  Th(n,vf)  and 2 3 3 ~ ( n , v f )  
c r o s s  s e c t i o n s  appear t o  be known t o  about  25%. This  
means t h a t  t h e  b lanke t  energy m u l t i p l i c a t i o n  w i l l  be 
known only t o  about 22.5 and 4% a t  t h e  beginnin and 
end of l i f e ,  r e spec t ive ly .  However, a l l  t h e  235U and 
t r i t i u m  product ion r a t e s  seems t o  be w i t h i n  21% due t o  
these  c r o s s  s e c t i o n  u n c e r t a i n t i e s .  The Th(n,2n) and 
Th(n,3n) c r o s s  s e c t i o n  u n c e r t a i n t i e s  a r e  about 215 and 
30%, r e s p e c t i v e l y .  The u n c e r t a i n t i e s  i n  p r e d i c t i n g  t h e  
23% and t r i t i u m  product ion r a t e s  a r e  thus  about 21.2 
and 7% and 22.8 and 2%, r e s p e c t i v e l y ,  due t o  t h e  
Th(n,2n) and Th(n,3n) c r o s s  s e c t i o n  u n c e r t a i n t i e s .  The 
b lanke t  energy m u l t i p l i c a t i o n ,  however, can be p red ic ted  
wi th in  20.5%. The Th(n.y) c r o s s  s e c t i o n  is known t o  
about 210% i n  t h e  3--31)00 k e V  range. The u n c e r t a i n t i o s  
due t o  t h i s  c r o s s  s e c t i o n  unce r t a in ty  i n  p r e d i c t i n g  t h e  
2 3 3 ~  and t r i t i u m  product ion r a t e s  and blanket  energy 
m u l t i p l i c a t i o n  a r e  up t o  24.5, 3 .3  and 2%. respectively. 
The Th(n,n) and Th(n ,n t )  c r o s s  s e c t i o n s  a r e  known t o  
about 210 and 10-15%, re spec t ive ly .  However, t h e  hybr id  
blanket  does n o t  appear t o  be s e n s i t i v e  t o  these  c r o s s  
s e c t i o n  unr.e.rt,aj,ntj,es. 

0.017 
-0.028 

0.019 
0.021 
0.132 

-0.149 

nTh(n,y)Th(n,f)233U(n,f) 

0.003 
-0.003 
-0.019 
-0.008 

1.005 
-0.015 

Cross 
S e c t i o  
Type 

(n,n) 
( n , n t )  
(n,2n) 
(n,3n) 
(n ,vf)  
(n,y) 

Concluding Remarks and Recommendations 

0.064 
0.067 
0.084 
0.092 
0.140 

'0 .282 

The s e n s i t i v i t i e s  of t h e  nucleonic  performance 
c h a r a c t e r i s t i c s  of a t y p i c a l  thorium fus ion- f i s s ion  
hybr id  b lanke t  t~ t h e  important  thorium p a r t t a l  c r o s s  
s e c t i o n  u n c e r t a i n t i e s  were ca lcu la ted .  The conc lus ions  
and recommendations of t h i s  s tudy a r e  summarized a s  
fol lows : 

6 
L i ( n , a )  

0.013 
-0.010 
-0.022 
-0.007 

0.134 
-0.008 

1. The 23% product ion r a t e  is s e n s i t i v e  t o  t h e  
Th(n,y) c r o s s  s e c t i o n  unce r t a in ty .  I n  o r d e r  t o  
o b t a i n  a conf iden t  23311 product ion r a t e  w i t h i n  
+ I % ,  t h e  Th(n,y) c r o s s  s e c t i o n  must be  measured 
a c c u r a t e l y  wi th in  about  +2% versus  t h e  p r e s e n t l y  
a v a i l a b l e  'lo%, p a r t i c u l a r l y  i n  t h e  energy range 
3'3000 keV. 

2. The thorium f i s s i o n  r e a c t i o n  r a t e  and thus  t h e  
b lanke t  energy m u l t i p l i c a t i o n  depend s i g n i f i -  
c a n t l y  on t h e  accuracy of t h e  Th(n,vf)  c r o s s  sec- 
t i o n  i t s e l f .  For t h e  blanket  energy m u l t i p l i c a -  
t i o n  t o  be w i t h i n  f l % ,  t h e  Th(n,vf)  c r o s s  s e c t i o n  
must be measured w i t h i n  about 22% versus  t h e  
p resen t  25%, i n  t h e  high energy range 13.5-15 MeV 

7 
L i ( n , n t a )  

-0.139 
-0.727 

0.215 
0.335 

-0.129 
-0.028 

3. The t r i t i u m  breeding r a t i o  is  s e n s i t i v e  t o  bo th  
Th(n,y) and (n ,vf)  c r o s s  s e c t i o n  u n c e r t a i n t i e s .  
I n  o r d e r  t o  p r e d i c t  t h e  t r i t i u m  breeding w i t h i n  
+ I % ,  t h e  Th(n,y) and (n ,v f )  c r o s s  s e c t i o n s  could be 
a c c u r a t e  w i t h i n  about 23 and 210%. r e s p e c t i v e l y .  

Tr i t ium 
Breeding 

Ra t io  

-0.011 
-0.072 
-0.001 

0.022 
0.112 

-0.010 

I n  g e n e r a l ,  i t  appears  t h a t  t h e  hybr id  b lanke t  per- 
formance is  no t  h igh ly  s e n s i t i v e  t o  t h e  nuclear  d a t a  
u n c e r t a i n t i e s .  The accuracy wi th  which t h e  important 
r e a c t i o n  c r o s s  s e c t i o n s  is  p r e s e n t l y  known appears  t o  
be adequate  f o r  pre l iminary design bu t  i t  is expected 
t h a t  f u r t h e r  measurements of Th(n,y) c r o s s  s e c t i o n ,  
p a r t i c u l a r l y  i n  t h e  3 t o  3000 keV range,  and of t h e  
Th(n,vf)  c r o s s  s e c t i o n  i n  t h e  13.5 t o  15 MeV range w i l l  
be  needed f o r  a c c u r a t e  d e t a i l e d  design.  
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