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SUMMARY

The multibarrier concept for the solidification and storage of radio-
active waste utilizes up to three barriers to isolate radionuclides from the
environment: a solidified waste inner core, an impervious coating, and a metal
matrix. The coating and metal matrix give the composite waste form enhanced
inertness with improvements in thermal stability, mechanical strength, and
Teach resistance. Multibarrier Waste Forms Part I: Development describes
research and development that resulted in one-liter demonstration encapsulat-
ions of four multibarrier waste forms of nonradioactive, simulated waste

compositions.(l) Multibarrier Waste Forms Part II: Characterization and
Evaluation evaluates the four waste forms with respect to thermal stability,

(2)

mechanical strength, and leach resistance.

Preliminary process flow rates and material costs were evaluated for four

multibarrier waste forms with the process complexity increasing thusly:

e Glass marbles (least complex)

e Uncoated supercalcine

e Glass-coated supercalcine

. PyC/A1203-coated supercalcine (most complex)
This report discusses the process variables and their effect on optimization
of product quality, processing simplicity, and material cost. An expanded
engineering feasibility study is being conducted at Pacific Northwest Labora-
tory by R. L. Treat on ten alternative waste fixation processes. These
studies include in-depth analysis of remote adaptability, process complexity
and costs, and material requirements and costs.
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MULTIBARRIER WASTE FORMS
PART III: PROCESS CONSIDERATIONS

INTRODUCTION

The Radioactive Waste Immobilization Program conducted by the Pacific
Northwest Laboratory (PNL) for the Department of Energy (DOE) has as one of its
objectives the development of processes for converting high-level liquid waste
(HLLW) from alternative fuel cycles and U.S. defense programs to solid forms
demonstrated to be physically, chemically, and radiolytically stable and inert.
During the past 20 years, numerous waste forms and processes have been proposed
for solidification of nuclear wastes. The waste forms have ranged from simple
concepts such as direct storage of calcine to complex forms utilizing crystal-
line products, coatings, and metal matrices. Because of the increasing number
of options during recent years, increased difficulty is encountered in differ-
entiating the options and making realistic comparisons.

A major part of PNL's program has been directed towards development of
Tow-melting (1000 to 1150°C) borosilicate g]asses.(3’4)
vide for waste streams not readily vitrifiable and to ensure that other options

However, to pro-

for encapsulation of fission product waste were considered, an effort was
initiated in 1973 to develop alternative waste forms based upon a multibarrier
concept (Figure 1). The multibarrier concept aims to separate the
radionuclide-containing inner core material and the environment by the use of
coatings and metal matrices. The resultant composite waste form exhibits
enhanced inertness due to improved thermal stability and mechanical strength,
and the added barriers improve leach resistance.

The feasibility of producing lab-scale multibarrier waste forms was demon-
strated by the encapsulation of one-liter volumes of simulated waste glass
marbles and coated and uncoated superca]cine.(s) Following lab-scale demon-
stration of the multibarrier concept, an evaluation of the waste forms must
consider both the level of inertness achieved (risk analysis) and the process
engineering of producing the waste forms in a full-scale operation.
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FIGURE 1. Multibarrier Concept for Isolating Nuclear Waste

As the required level of inertness or stability increases, the technological
complexity of.the processes would generally be expected to increase, approach-
ing the limits of engineering feasibility. This general trend has not been
characterized in sufficient detail to identify an optimum tradeoff between
waste form stability and complexity.

Lutze(s) and Ross et a].(7) reviewed the properties of crystalline and
glass waste form options and concluded that either glass or crystalline materi-
als can be shown to have some advantage when a single property is considered.
However, the differences are small and each material has both assets and lia-
bilities. With proper design, either type of waste form can be used to solid-
ify and contain radioactive waste. Lamb and Co]e(g) have developed a
pelletized waste form for high-level zirconia waste calcines which exhibits
cesium leach rates 10 to 30 times less than those of a comparable glass.
Comparing metal-matrix waste forms, Jardine and Steind]er(g) concluded that
metal-matrix encapsulation of commercial wastes may serve to increase the
effective thermal conductivity of the waste form and to produce composites
having reduced rates and improved mechanical strength, Similar conclusions
have been reported by Lamb(lo) and Van Geel et a].(ll)

Ross(lz) has reviewed 15 solidification processes and 14 current waste
forms in regards to process complexity and concluded that the simplest proc-
esses are cast concrete and spent fuel encapsulation. Highly complex processes



include cermets and coated pellets in a metal matrix. In a parametric perform-

(13)

ance ranking of alternative nuclear waste encapsulants, Hench has made

similar rankings.

Since the goal of the multibarrier concept is to enhance the inertness of
high-level waste, all process parameters and procedures should be for optimum
achievement of that goal balanced against full-scale process economics and
waste fixation requirements. Four waste forms were considered for the multi-
barrier inner core:

e Pyrolytic carbon- and alumina-coated supercalcine (CVD coating)
e glass-coated supercalcine

¢ uncoated supercalcine

e waste-glass marbles.

The processes for producing these waste forms in an inert encapsulated
product were examined with the given consideration that requirements for
increasing inertness usually increase the technological complexity of the
waste fixation processes. Within each of the processes are particular
parameters that require refinement to assure overall optimization of the
process and results. Process flow charts for the production of the four
multibarrier waste forms are shown schematically in Figures 2, 3, 4, and 5.
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FIGURE 2. PyC/A1203-Coated Supercalcine Process Flowsheet
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PROCESS FLOW RATES

Flow rate calculations have been performed for four sample multibarrier
waste form processes. It was assumed that radioactive waste would be processed
at a rate equivalent to 5 metric tons (t) of uranium per 24-hr operating day.
Solidification processes follow the final concentration of HLLW to a volume of
378.5 &/t of uranium. The solid waste content of HLLW is 58.7 kg/t of uranium.
Figures 6, 7, 8, and 9 show process flow sheets and calculated flow rates for
PyC/A1203-coated supercalcine, glass-coated supercalcine, uncoated
supercalcine, and waste-glass marble processes, respectively.

Annual canister and matrix requirements for the processes are presented
in Table 1, The annual requirements were based upon the maximum allowable
centerline temperature (based on either the softening temperature of the cores
or the melting temperature of the matrix) and a maximum allowable canister
diameter of 0.61 m for repository storage. Canister length was held constant
at 3 m. Annual material costs for components of the multibarrier waste
products are listed in Table 2. These costs do not include process costs.
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TABLE 1. Annual Canister and Matrix Materials Requirements for Various Multibarrier Waste Products

Max imum Canis?es Number of Total Volume Waste Volume of
Centerline Dia, Canisters of Loading Matrix,
Waste Form Matrix Temperature,OC(C) m Required/yr Waste Product, m3/yr vol% m3/yr
Reference Glass -- 500 0.15 1310 74 35 --
Reference Glass -- 800 0.23 623 74 35 --
Glass Marb]e(a) Pb-10Sn 300 0.55 169 123 21 49
Uncoated(a) A1-12S1 600 0.61 71 63 45 25
Supercalcine
G]ass-Coated(b) A1-125i 600 0.61 77 69 41 28
Supercalcine
PyC/A1,03-Coated(@)  Cu (65%) 800 0.61 94 84 34 34
Supercalcine
PyC/A1203-Coated(a) Cu (65%) 800 - 0.61 141 126 21 76

Supercalcine

(a) 60% packing

(b) 40% packing

(c) Maximum temperature is based on either the softening temperature of glass or the service temperature of the matrix
(d) Maximum selected diameter of 0.61 m for repository compatibility



ol

TABLE 2. Annual Component Materials Costs for Various Multibarrier Waste Products

Inner Core Encapsulation Total Volume o§ Annual Materials Costs, (a) $1000/yr
Waste Form Matrix Waste Product, m“yr Additives Coating Matrix Canister Total
Reference Glass(b) -- 74 359 -- -- 255 614
Glass Marble(C) Pb-10Sn 123 359 - 826 140 1325
Uncoated (€) A1-125] 63 295 -- 80 65 440
Supercalcine
G]ass-Coated(C) A1-12Si 69 295 17 87 71 470
Supercalcine
PyC/A1203-Coated(C)Cu (65%) 84 295 19 473 87 874
Supercalcine
PyC/A1203-Coated(d)Cu (65%) 126 295 19 1064 130 1508
Supercalcine

(a) Material costs only - does not include process costs; based on 1979 cost with 1979 dollars.
(b) 5000C centerline

(c) 60% packing
(d) 40% packing



OPTIMIZATION OF PROCESS STEPS

The purpose of investigating various waste forms is to provide the basis
of optimizing the process economics and the inertness of the waste. Achieving
over-all optimization entails optimizing all process step procedures. This
would include supercalcine pelletization, application of coatings, waste
loading, and matrix material selection, each of which will influence the
others.

In the coated supercalcine processes the pellet core diameter and porosity
must be controlled through operational parameters of the pelletizing process.
The pellet diameter selection must be based on six main considerations:

e pelletizing efficiency,

e volume shrinkage during sintering,

e sintering time,

e coating ease,

e temperature gradients within the pellets, and

o waste loading of coated pellets.
Similarly, the desired pellet porosity must be determined with consideration
of:

e pellet strength,

e thermal conductivity,

e coating efficiency,

e waste loading, and

e process limitations.

Larger pellets, while increasing waste loading by requiring less frac-
tional coating, increase sintering time and contain larger temperature gradi-
ents within the pellets. Larger pellets require the use of a CVD drum coater
for applying A1203 coatings instead of a fluidized/vibrating bed coater as
was used to apply both PyC and A1203 coatings to particles 3 mm in dia-
meter. Pellets with near zero porosity would have maximum strength, thermal
conductivity, and the volumetric waste loading; however, CVD coating is
simplified if there is a certain amount of porosity to allow for thermal

11



expansion differences of coatings and cores. A factor that must also be con-
sidered is the minimum porosity obtainable through the pelletizing and sinter-
ing process.

Glass or glaze coating is primarily a hand operation and would be diffi-
cult to automate. It would be ideal if a glass frit coating could be applied
in the disc pelletizer as suggested in Figure 2. Development of this technique
at this date has not been successful. A dipping operation using a glaze slip
was used to produce samples for encapsulation demonstration. This technique
would not be readily adaptable to remote facilities. No alternative processes
have been identified for glass coating.

Optimization of coating thickness requires iterative evaluation of inert-
ness and economics. Increasing coating thickness improves inertness but at the
same time increases cost and coating time. Thermal conductivity and waste
loading are decreased when coating thickness is increased.

Waste loading in coated pellets, defined as the fraction of waste in the
entire pellet, varies with pellet diameter and coating thickness. The waste
loading in uncoated supercalcine pellets is 75 wt% with a pellet density of
3.1 g/cm3 (73% TD-theoretical density). For comparative purposes, Figure 10
shows the relationship between pellet diamter, coating thickness, and the
weight of waste in a cylindrical canister 10 feet (304.8 cm) in length by
1 foot (30.5 cm) diameter for three waste forms. Waste loading of glass mar-
bles, which contain no coating, is independent of marble diameter and has a
value of 35 wt¥%. In all cases it is assumed the waste-form pellets are spheri-

cal and arranged in hexagonal close-packed configuration within the canister.
i
Matrix material selection is governed by numerous conditions and restric-

tions: 1) thermal conductivity, 2) waste loading, 3) maximum allowable temper-
ature, 4) strength, 5) economics, 6) weight, 7) fabrication methods and 8)
matrix/waste form interactions. The maximum temperature allowed within the
canister is determined by the lowest temperature at which either the metal
matrix begins to melt or the pellets and/or coatings begin to soften. Metal
selection is closely dependent on canister sizing and waste loading. A higher
waste loading per pellet gives rise to higher waste loadings per canister and

12
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FIGURE 10. Waste Contained in a Canister 10 ft x 1 ft Diameter

subsequently higher volumetric heat generation. Larger heat generation dic-
tates the need for smaller-diameter canisters, which lower waste loading and
decrease temperature gradients, and/or high-melting temperature metals, and/or
metals with higher thermal conductivities. The addition of strength, weight,
and cost as selection considerations greatly complicates the optimization
process. ‘
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MATRIX OPTIMIZATION

Multibarrier waste forms development considers the basic waste forms pre-
viously discussed as a basis of optimization of process economics and enhanced
inertness. PyC/A1203-coated supercalcine may be embedded in gravity-
sintered metal matrices as a consequence of the higher waste loading and subse-
quent heat generation of supercalcine (75 wt% waste as compared to 35 wt% for
glass). Employing gravity-sintered matrices allows the use of metals with
melting temperatures greater than the temperatures expected within the canis-
ters.

Factors other than the metal's melting temperature must be considered in
matrix metal optimization and selection, such as thermal conductivity,
strength, chemical stability, and cost. Although stainless steel has a melting
temperature of m1500°C, its thermal conductivity is only 0.25 W/cm—OC, which
decreases to 0.036 W/cm-°C in a sintered condition containing 50% porosity.
Using this Tower value for the matrix thermal conductivity, 0.0196 W/em-0C is
the calculated composite thermal conductivity of duplex-coated supercalcine in
a gravity-sintered stainless steel matrix, assuming 60 vol% packing of super-
calcine pellets. The centerline temperature in a 12-in. (30.5-cm) diameter
canister of this waste form is 834°C. It was assumed that the canister
walls were cooled by natural convection to air at 30°C. Using a gravity-
sintered copper matrix with a thermal conductivity of 0.52 W/cm-OC would
increase the composite thermal conductivity to 0.155 W/cm-2C and decrease the
centerline temperature to 161°C, well below the melting temperature of copper
(1083°C). SimiTarly, when incorporating the coated supercalcine cores in a
cast aluminum matrix (composite thermal conductivity of 0.606 W/cm-OC), the
centerline temperature is decreased to 71°C, illustrating the fact that
metals with high thermal conductivities permit the use of larger-diameter can-
isters, assuming the canister acts as an infinite cylinder with heat transfer
along the radial direction.

Another factor that has a major effect on canister size limitations is the
volumetric waste Toading. Reducing the volumetric waste loading of duplex-
coated supercalcine from 60 vol% to 50 vol% in a gravity-sintered copper matrix

14



increases composite thermal conductivity to 0.209 w/cm-OC, reduces volumetric
heat generation, and decreases the centerline temperature of a 12-inch-diameter
canister to 116°C. Further increases in thermal conductivity could be gained
through the use of cast, 100% dense metals such as aluminum and copper alloys.
Figure 11 shows the relationship of canister centerline temperatures to canis-
ter diameter for duplex-coated supercalcine in various matrices. The super-
calcine cores have 4-mm diameters with 20-um PyC coatings and 60-um A1203
coatings; sintered matrices are assumed to be 50% dense. Thus, it becomes
apparent that achieving the greatest possible thermal conductivity through
optimum volumetric waste form packing and a cast matrix allows greater waste
loadings per canister based on relative heat generation and heat dissipation.
For example, at a limiting temperature of 250°C for duplex-coated super-
calcine in a gravity-sintered copper matrix, 50% more waste can be incorporated
in a canister with 50 vol% loading than with 60 vol% loading because the former
can use larger canisters, and because of the high conductivity and lower volu-
metric heat generation.

Improvement of the mechanical strength of the composite waste form is the
second means of achieving the objective of the multibarrier concept. Composite
waste forms, like all waste forms, must exhibit good impact strength in the
event of an accident (during shipment to an ultimate disposal site). The over-
all strength of the composite, largely dependent on the strength of the metal
matrix and canister, is difficult to optimize because of the complex nature of
the final product and the effects of radioactive waste particles on the matrix.
The overall strength of the composite, therefore, must be evaluated with
respect to:

e waste-matrix geometry (volumetric waste loading),
e self heating of waste pellets,

e irradiation effects, and

e waste form/matrix/canister reactions.

The self-heating characteristic of the waste pellets may be advantageous
or detrimental to the overall strength of the waste/metal composite. In
extreme cases, enough heat may be generated to cause melting of the metal
matrix or softening of waste glass marbles. Thermal expansion differences

15
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between the waste pellets and the matrix may cause internal stresses in the
pellets. Loss of strength may also occur as the temperature of the matrix
reaches a point where annealing begins. Annealing softens metals by relieving

stresses, removing defects, and creating larger grains--that is, allowing the
metal to approach an equilibrium condition. Waste canisters could exhibit this
behavior as a result of the self-contained, time-dependent heat generation.
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CONCLUSIONS

In this preliminary study the process complexity of four multibarrier

waste form concepts was found to increase thusly:

e Glass marbles (least complex)

e Uncoated supercalcine

e Glass-coated supercalcine

. PyC/A1203-coated supercalcine (most complex)
From earlier studies(z) it was found that inertness increases in a similar
manner. It, therefore, becomes necessary to decide whether economics, com-
plexity, or inertness is of greatest importance. Achieving enhanced inertness
usually dictates increasing material costs, process costs, or both, in addition
to increasing complexity. Selection of a multibarrier waste form will neces-
sarily be based on a balance that considers the magnitude and relative impor-
tance of each factor with respect to the type of waste to be solidified.

Since these process considerations were limited to four multibarrier waste
forms with commercial waste, additional studies must be conducted to determine
their applicability to other types of waste and the remote adaptability and
process costs. Alternative waste forms such as the above multibarrier concepts
have received less development effort than glass; consequently further
research and development is needed to define processing variables conducive to
producing waste forms with improved properties.
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