
Multibarrier Waste Forms 
Part Ill: Process 

Considerations 

R. 0. Lokken 

October 1979 

Prepared for the U.S. Department of Energy 
under Contract EY-76-C-06-1830 

Pacific Northwest Laboratory 
Operated for the U.S. Department of Energy 
by Battelle Memorial Institute 



N O T I C E  

This repon war prepred as an iccownt of work sponsored by the United Stales Covemrncn~ Neither the 
United krra nor the Department of Energy, nor any of their employees, nor any of thdr contractors, 
subc~nrtacton, or their employes, makes any warranty. express or Implied, or assumes any legal liability 
cr rerponribility for the accuracy, csmpletemrs or u-fulnesr of any inlormarion. apparatus. producl or prcKas 
d l d d ,  or r e p r e n u  that its YK would not infringe privately owned rights. 

The views, opinions and conclusions contained in this report are those of the contractor and do not 
necessarily represent ~ h a e  of the United Stalt, Conrnrnent or rhe Unrted Stales Department 01 Energy. 

PACIFIC NORTHWEST tABORATORY 
operated by 

BATTELLE 
lor the 

UNITED STATES DEPARTMENT OF ENERGY 
Under Contracf EY-76-C-06-7830 

Pr~nied in !he Unlted !dater nf America 
Available from 

Natgonal Ttchnicrt Informr~~on knkt 
Unmd Srarm Oeprrtrnen~ af Cammerre 

5285 Poct Roral Road 
Springfield, Vlc~lnlr 22151 

Price: Pr in td  Copy S o ;  M1ALcrofichc U .W 



MULTIBARRIER WASTE FORMS 
PART 111: PROCESS CONSIDERATIONS 

R. 0. Lokken 

October 1979 

Prepared f o r  
t he  U.S. Department o f  Energy 
under Contract  EY-76-C-06-1830 

Pac i f  i c Northwest Laboratory 
Richland, Washington 99352 





SUMMARY 

The mu1 ti b a r r i e r  concept f o r  t he  s o l  i d i f  i c a t i o n  and s torage o f  r ad io -  

a c t i v e  waste u t i l i z e s  up t o  t h r e e  b a r r i e r s  t o  i s o l a t e  rad ionuc l i des  f rom t h e  

environment: a  s o l i d i f i e d  waste i n n e r  core, an impervious coat ing,  and a meta l  

ma t r i x .  The coa t i ng  and meta l  m a t r i x  g i v e  t h e  composite waste form enhanced 
B 

i ne r t ness  w i t h  improvements i n  thermal s t a b i  1  i ty, mechanical s t reng th ,  and 

leach res is tance .  M u l t i b a r r i e r  Waste Forms P a r t  I: Development descr ibes 

research and development t h a t  r e s u l t e d  i n  one-1 i t e r  demonstrat ion encapsul a t -  

i ons  o f  f o u r  mu1 t i b a r r i e r  waste forms o f  nonrad ioac t i ve ,  s imulated waste 

compos i ti on s  . M u l t i b a r r i e r  Waste Forms P a r t  11: Charac te r i za t i on  and 

Eva lua t i on  evaluates t h e  f o u r  waste forms w i t h  respec t  t o  thermal s t a b i l i t y ,  

mechanical s t reng th ,  and leach  res i s tance .  ( 2 )  

P r e l i m i n a r y  process f l o w  r a t e s  and m a t e r i a l  cos t s  were evaluated f o r  f o u r  

mu1 ti b a r r i  er  waste forms w i t h  t h e  process complex i t y  i nc reas ing  t hus l y :  

Glass marbles ( l e a s t  complex) 

Uncoated supe rca l c i  ne 

G l  ass-coated superca l  c i  ne 

PyC/A1203-coated superca l  c i  ne (most complex) 

Th i s  r e p o r t  d iscusses t h e  process va r i ab les  and t h e i r  e f f e c t  on o p t i m i z a t i o n  

o f  p roduc t  q u a l i t y ,  p rocess ing  s i m p l i c i t y ,  and m a t e r i a l  cos t .  An expanded 

engi neer ing  f e a s i b i l i t y  s tudy  i s  be ing  conducted a t  P a c i f i c  Northwest Labora- 

t o r y  by R. L. T rea t  on t e n  a1 t e r n a t i  ve waste f i x a t i o n  processes. These 

s tud ies  i nc l  ude in-depth ana l ys i s  of remote adaptabi  1  i ty ,  process complex i t y  

and costs ,  and m a t e r i a l  requirements and costs .  
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MULTI BARR I ER WASTE FORMS 

PART I I I: PROCESS CONSIDERATIONS 

INTRODUCTION 

l The Radioact ive Waste Immobi l i z a t i o n  Program conducted by the  P a c i f i c  

Northwest Laboratory (PNL) f o r  t he  Department o f  Energy (DOE) has as one o f  i t s  

ob jec t i ves  the development o f  processes f o r  conver t ing  h igh - leve l  l i q u i d  waste 

(HLLW) from a l t e r n a t i v e  f u e l  cyc les  and U.S. defense programs t o  s o l i d  forms 

demonstrated t o  be phys i ca l l y ,  chemically, and r a d i o l y t i c a l l y  s tab le  and i n e r t .  

During the  past 20 years, numerous waste forms and processes have been proposed 

f o r  s o l i d i f i c a t i o n  o f  nuclear wastes. The waste forms have ranged from simple 

concepts such as d i r e c t  storage o f  ca l c ine  t o  complex forms u t i l i z i n g  c r y s t a l -  

l i n e  products, coat ings, and metal matr ices.  Because o f  the  increas ing  number 

of op t ions  dur ing  recent  years, increased d i f f i c u l t y  i s  encountered i n  d i f f e r -  

e n t i a t i n g  the  opt ions and making r e a l i s t i c  comparisons. 

A major p a r t  o f  PNL's program has been d i r e c t e d  towards development of 

low-melt ing (1000 t o  1 1 5 0 ~ ~ )  boros i  1 i c a t e  glasses. ( 3 y 4 )  However, t o  pro-  

v ide f o r  waste streams not  r e a d i l y  v i t r i f i a b l e  and t o  ensure t h a t  other  opt ions 

f o r  encapsulat ion o f  f i s s i o n  product  waste were considered, an e f f o r t  was 

i n i t i a t e d  i n  1973 t o  develop a l t e r n a t i v e  waste forms based upon a m u l t i b a r r i e r  

concept (F igure  1). The m u l t i b a r r i e r  concept aims t o  separate the  

rad ionuc l ide-conta in ing  inner  core ma te r ia l  and the  environment by the  use o f  

coat ings and metal matr ices. The r e s u l t a n t  composite waste form e x h i b i t s  

enhanced iner tness  due t o  improved thermal s t a b i  1 i t y  and mechanical strength, 

and the  added b a r r i e r s  improve leach res is tance.  

The f e a s i b i l i t y  o f  producing lab-scale m u l t i b a r r i e r  waste forms was demon- 

s t r a t e d  by the encapsulat ion o f  o n e - l i t e r  volumes o f  simulated waste glass 

marbles and coated and uncoated supercalcine. ( 5 )  Fol lowing lab-scale demon- 

s t r a t i o n  o f  the m u l t i b a r r i e r  concept, an eva lua t ion  o f  t he  waste forms must 

consider both the  l e v e l  o f  iner tness achieved ( r i s k  ana lys is )  and the  process 

engineering o f  producing the  waste forms i n  a f u l l - s c a l e  operat ion. 
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FIGURE 1. Mu1 t i b a r r i e r  Concept f o r  I s o l a t i n g  Nuclear Waste 

As the  requ i red  l e v e l  of iner tness  or  s t a b i l i t y  increases, the  techno log ica l  

complexity of, t h e  processes would genera l ly  be expected t o  increase, approach- 

i n g  the  l i m i t s  o f  engineering f e a s i b i l i t y .  This general t rend has not  been 

character ized i n  s u f f i c i e n t  d e t a i l  t o  i d e n t i f y  an optimum t r a d e o f f  between 

waste form s t a b i l i t y  and complexity. 

~ u t z e ( ~ )  and Ross e t  a1.(7) reviewed the  p roper t i es  o f  c r y s t a l l i n e  and 

glass waste form opt ions  and concluded t h a t  e i t h e r  glass or  c r y s t a l l i n e  mater i -  

a l s  can be shown t o  have some advantage when a s i n g l e  p roper t y  i s  considered. 

However, t h e  d i f f e rences  are small and each mate r ia l  has both assets and l i a -  

b i l i t i e s .  With proper design, e i t h e r  type of waste form can be used t o  s o l i d -  

i f y  and conta in  r a d i o a c t i v e  waste. Lamb and  ole(*) have developed a 

p e l l e t i z e d  waste form f o r  h igh- leve l  z i r c o n i a  waste ca lc ines  which e x h i b i t s  

cesium leach r a t e s  10 t o  30 times less  than those o f  a comparable glass. 

Compar i ng metal-matr ix waste forms, Jard ine and s te ind ler ( ' )  concluded t h a t  

metal -matr ix encapsulat ion o f  comnerci a1 wastes may serve t o  increase t h e  

e f fec t ive  thermal c o n d u c t i v i t y  o f  the waste f orm and t o  produce composites 

having reduced ra tes  and improved mechanical strength. Simi 1 ar  conclusions 

have been reported by Lamb ( l o )  and Van Gee1 e t  a1 . (11 

ROSS('*) has reviewed 15 so l  i d i f  i c a t i  on processes and 14 cu r ren t  waste 

forms i n  regards t o  process complexity and concluded t h a t  t he  s implest  proc- 

esses are cas t  concrete and spent fue l  encapsulation. H igh ly  complex processes 



i nc lude cermets and coated p e l l e t s  i n  a metal mat r ix .  I n  a parametr ic perform- 

ance rank ing  o f  a l t e r n a t i v e  nuclear waste encapsulants, Hench ( I 3 )  has made 

s i m i l a r  rankings. 

Since the  goal of the m u l t i b a r r i e r  concept i s  t o  enhance the  iner tness  o f  

h igh- level  waste, a l l  process parameters and procedures should be f o r  optimum 

achievement o f  t h a t  goal ba l  anced against f u l  1 -sca le  process economics and 

waste f i x a t i o n  requirements. Four waste forms were considered f o r  t he  m u l t i -  

b a r r i  er inner  core: 

P y r o l y t i  c carbon- and a1 umi na-coated supercalcine (CVD coat ing)  

g l  ass-coated supercal c i  ne 

uncoated supercalc ine 

waste-gl ass marbles. 

The processes f o r  producing these waste forms i n  an i n e r t  encapsulated 

product were examined w i t h  t h e  given cons idera t ion  t h a t  requirements f o r  

inc reas ing  iner tness  u s u a l l y  increase the techno log ica l  complexi ty  o f  the  

waste f i x a t i o n  processes. Wi th in  each of t he  processes are p a r t i c u l  a r  

parameters t h a t  r e q u i r e  r e f  i nement t o  assure o v e r a l l  op t im i  z a t i  on o f  the  

process and resu l t s .  Process f l o w  char ts  f o r  t he  product ion o f  the  f o u r  

mu1 t i b a r r i e r  waste forms are shown schemat ica l ly  i n  F igures 2, 3, 4, and 5. 
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FIGURE 2- pyC/A12O3-~oated Supercalcine Process F l  owsheet 
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FIGURE 3. Glass-Coated Supercalcine Process Flowsheet 
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FIGURE 4. Uncoated Supercalcine Process Flowsheet 
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FIGURE 5. Waste-Glass Marble Process Flowsheet 



PROCESS FLOW RATES 

Flow r a t e  calculations have been performed for  four sample mu1 t i b a r r i e r  

waste form processes. I t  was assumed tha t  radioactive waste would be processed 
a t  a r a t e  equivalent to  5 metric tons ( t )  of uranium per 24-hr operating day. 
So l id i f i ca t ion  processes follow the  f i na l  concentration of HLLW t o  a volume of 
378.5 R / t  of uranium. The so l id  waste content of HLLW i s  58.7 kg/t of uranium. 
Figures 6 ,  7 ,  8 ,  and 9 show process flow sheets and calculated flow r a t e s  f o r  
PyC/A1203-coated supercal c i  ne, gl ass-coated supercalci ne, uncoated 
supercalcine, and waste-gl ass marble processes, respectively. 

Annual canis ter  and matrix requirements f o r  the processes are  presented 
i n  Table 1. The annual requirements were based upon the maximum allowable 

center l ine  temperature (based on e i t he r  the  softening temperature of the  cores 
or the me1 ti  ng temperature of the matrix) and a maximum allowable can is te r  
diameter of 0.61 m f o r  repository storage. Canister length was held constant 
a t  3 m. Annual material costs  f o r  components of the mul t ibarr ier  waste 
products are l i s t ed  in  Table 2. These costs  do not include process costs .  

k' 
PELLET1 ZER 

S l NTER l NG 
FURNACE 

FIGURE 6. PyC/A1203-Coated Supercalcine Process Flow Rates 



PELLET1 ZER 

FIGURE 7. Glass-Coated Supercalcine Process Flow Rates 

FIGURE 8. Uncoated Supercalcine Process Flow Rates 
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FIGURE 9 .  Waste-Glass Marble Process Flow Rates 



TABLE 1. Annual Canister  and M a t r i x  M a t e r i a l s  Requirements f o r  Various M u l t i b a r r i e r  Waste Products 

Maximum Number o f  T o t a l  Volume Waste Volume o f  
Center1 i ne Can Dia,  C a n i s t e r s  o f  Loading M a t r i x ,  

Waste Form M a t r i x  ~ e m ~ e r a t u r e , o ~ ( c )  m R e q u i r e d l y r  Waste Product ,  m3/yr v o l %  m3/yr 

Re fe rence  Gl ass -- 500 0.15 1310 7 4 3 5 - - 
Reference Glass -- 8 00 0.23 6 23 74 35 - - 
Glass ~ a r b l e ' ~ )  Pb-1OSn 300 0.55 169 123 2 1 4 9 

uncoated '  a)  A1 -12Si 600 
S u p e r c a l c i n e  

Gl  ass-Coated ( b )  A1-12Si 600 
S u p e r c a l c i n e  

~ ~ ~ / ~ 1 ~ 0 ~ - ~ o a t e d (  a)  Cu (65%) 800 
S u p e r c a l c i n e  
~ ~ ~ / ~ 1 ~ 0 ~ - ~ o a t e d (  a) Cu (65%) 800 
S u p e r c a l c i  ne 

( a )  60% p a c k i n g  
( b )  40% p a c k i n g  
( c )  Maximum temperature i s  based on e i t h e r  t h e  s o f t e n i n g  tempera tu re  of g l a s s  o r  t h e  s e r v i c e  tempera tu re  o f  t h e  m a t r i x  
( d )  Maximum s e l e c t e d  d iameter  o f  0.61 m f o r  r e p o s i t o r y  c o m p a t i b i l i t y  



TABLE 2. Annual Component Materials Costs f o r  Various Multibarrier  Waste Products 

Inner Core Encapsul a t  i on Tot a1 Vol ume 05 Annual Materials Costs, ( a )  $1000/ r 
Waste Form Matrix Waste Product, m Additives Coating Matrix C a n ~ s  e r  

- - - - - - Reference Gl ass ( b )  74 359 255 614 

GI ass ~ a r b l  e ( ~ )  Pb- 1 OSn 1 23 

Uncoated ( c )  A1 - 12Si 63 

4 

Supercal cine 
o Gl ass-coated(c) A1-12Si 69 

Supercal cine 

PyC/Al 203-Coated (C  ) C U  (65%) 84 
Supercal c i  ne 
P ~ C / A ~  203-coated ( d  ) C U  (65%) 126 
Supercal cine 

( a )  Material cos t s  only - does not include process costs;  based on 1979 cost  with 1979 do1 1 ars .  
( b )  500°C center  1 i ne 
( c )  60% packing 
( d )  40% packing 



OPTIMIZATION OF PROCESS STEPS 

The purpose of investigating various waste forms i s  to  provide the basis 
of optimizing the process economics and the inertness of the waste. Achieving 
over-all optimization enta i l s  optimizing a1 1 process step procedures. This 

would include supercalcine pel l e t i z a t i  on, application of coatings, waste 
loading, and matrix material selection, each of which will influence the 
others. 

In the coated supercalcine processes the pellet  core diameter and porosity 
must be control 1 ed through operational parameters of the pel 1 etizing process. 
The pel le t  diameter selection must be based on six main considerations: 

pelletizing efficiency, 
volume shrinkage during s i  ntering, 
sintering time, 
coating ease, 
temperature gradients w i t h i n  the pel le ts ,  and 
waste loading of coated pellets.  

Similarly, the desired pel le t  porosity must be determined with consideration 
of: 

pellet  strength, 
thermal conductivity, 
coati ng efficiency, 
waste loading, and 
process limitations. 

Larger pel le ts ,  while increasing waste loading by requiring less  frac- 
tional coating, increase sintering time and contain larger temperature gradi- 

ents within the pel le ts .  Larger pel le ts  require the use of a CVD drum coater 
for  applying A1203 coatings instead of a fluidized/vibrating bed coater as 

was used to  apply both PyC and A1203 coatings to  par t ic les  3 mn in dia- 

meter. Pel le ts  with near zero porosity would have maximum strength, thermal 
conductivity, and the volumetric waste loading; however, CVD coating i s  

simplified if there i s  a certain amount of porosity to  allow for  thermal 



expansion d i f ferences of coa t ings  and cores. A f ac to r  t h a t  must a l so  be con- 

sidered i s  t h e  minimum p o r o s i t y  ob ta inab le  through t h e  p e l l e t i z i n g  and s i n t e r -  

i n g  process. 

Gl.ass o r  g laze coa t i ng  i s  p r i m a r i l y  a  hand operat ion and would be d i f f i -  

c u l t  t o  automate. I t  would be i d e a l  i f  a  g lass  frit coa t i ng  cou ld  be app l i ed  

i n  t he  d i s c  p e l l e t i z e r  as suggested i n  F igu re  3. Fevelopment 3 f  t h i s  technique 

a t  t h i s  date has no t  been successful .  A d ipp ing  opera t ion  us ing  a  g laze s l i p  

was used t o  produce samples f o r  encapsulat ion demonstration. Th i s  technique 

would no t  be r e a d i l y  adaptable t o  remote f a c i l i t i e s .  No a l t e r n a t i v e  processes 

have been i d e n t i f i e d  f o r  g lass coat ing. 

Opt im iza t ion  o f  coa t i ng  th ickness  requ i res  i t e r a t i v e  eva lua t i on  o f  i n e r t -  

ness and economics. I nc reas ing  coa t i ng  th ickness  improves i ne r tness  bu t  a t  t h e  

same t ime  increases cos t  and coa t i ng  t ime. Thermal c o n d u c t i v i t y  and waste 

load ing  are decreased when coa t i ng  th ickness  i s  increased. 

Waste load ing  i n  coated p e l l e t s ,  de f ined  as the  f r a c t i o n  o f  waste i n  t he  

e n t i r e  p e l l e t ,  va r i es  w i t h  p e l l e t  diameter and coa t i ng  thickness. The waste 

l oad ing  i n  uncoated supercalc ine p e l l e t s  i s % 7 5  w t %  w i t h  a  p e l l e t  d e n s i t y  o f  
3  3.1 g/cm (73% TD- theo re t  i c a l  dens i t y )  . For comparati ve purposes, F igu re  10 

shows t h e  re1  a t i  onship between p e l  1  e t  d i  amter, coa t ing  th ickness,  and t h e  

weight  o f  waste i n  a  c y l i n d r i c a l  c a n i s t e r  10 f e e t  (304.8 cm) i n  l e n g t h  by 

1 f o o t  (30.5 cm) diameter f o r  t h r e e  waste forms. Waste l oad ing  o f  g lass  mar- 

b les,  which con ta in  no coat ing, i s  independent o f  marble diameter and has a  

va lue o f  35 wt%. I n  a l l  cases i t  i s  assumed the  waste-form p e l l e t s  are spher i -  

c a l  and arranged i n  hexagonal close-packed c o n f i g u r a t i o n  w i t h i n  the  can i s te r .  
i 

M a t r i x  ma te r i  a1 s e l e c t i o n  i s  governed by numerous cond i t i ons  and r e s t r i c -  

t i  ons: 1) thermal conduc t i v i t y ,  2 )  waste loading, 3 )  maximum a1 lowable temper- 

ature, 4 )  strength, 5 )  economics, 6 )  weight, 7 )  f a b r i c a t i o n  methods and 8 )  

matr ix /waste form in te rac t i ons .  The maximum temperature al lowed w i t h i n  t h e  

can i s te r  i s  determined by t h e  lowest  temperature a t  which e i t h e r  t he  metal  

m a t r i x  begins t o  m e l t  o r  the  p e l l e t s  and/or coa t ings  begin t o  sof ten.  Metal  

s e l e c t i o n  i s  c l o s e l y  dependent on can i s te r  s i z i n g  and waste loading. A h ighe r  

waste load ing  per p e l l e t  g ives  r i s e  t o  h igher  waste loadings per c a n i s t e r  and 
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FIGURE 10. Waste Contained i n  a Can is te r  10 ft x 1 ft Diameter 

subsequent ly h igher  vo lume t r i c  heat generat ion. Larger  heat genera t ion  d i c -  

t a t e s  t h e  need f o r  smal ler -d iameter  can i s te r s ,  which lower waste l o a d i n g  and 

decrease temperature g rad ien ts ,  and/or h igh-me l t ing  temperature metals, and/or 

meta ls  w i t h  h igher  thermal c o n d u c t i v i t i e s .  The a d d i t i o n  o f  s t reng th ,  weight,  

and cos t  as s e l  e c t i  on cons ide ra t i ons  g r e a t l y  compl i c a t e s  t h e  o p t i m i z a t i o n  

process. 



MATRIX OPTIMIZATION 

Mu1 ti b a r r i e r  waste forms development considers t he  bas ic  waste forms pre-  

v i o u s l y  discussed as a bas i s  o f  op t im iza t i on  o f  process economics and enhanced 

iner tness.  PyC/A1203-coated supercalc ine may be embedded i n  g r a v i t y -  

s i n te red  metal  mat r i ces  as a consequence of t h e  h igher  waste load ing  and subse- 

quent heat generat ion o f  supercalc ine (75 w t %  waste as compared t o  35 w t %  f o r  

g lass) .  Employing g r a v i t y - s i  n te red  mat r i ces  a1 lows t h e  use o f  meta ls  w i t h  

m e l t i n g  temperatures g rea ter  than the  temperatures expected w i t h i n  t h e  canis-  

te rs .  

Factors o ther  than the  m e t a l ' s  me1 t i n g  temperature must be considered i n  

m a t r i x  metal  op t im iza t i on  and se lec t ion ,  such as thermal conduc t i v i t y ,  

s t rength,  chemical s t a b i l i t y ,  and cost .  A1 though s t a i n l e s s  s t e e l  has a me1 t i n g  

temperature o f  % 1 5 0 0 ~ ~ ,  i t s  thermal c o n d u c t i v i t y  i s  o n l y  0.25 W / C ~ - ~ C ,  which 

decreases t o  0.036 W / C ~ - ~ C  i n  a s i n t e r e d  c o n d i t i o n  con ta in ing  50% po ros i t y .  

Using t h i s  lower value f o r  the  m a t r i x  thermal conduc t i v i t y ,  0.0196 w/c~- 'c  i s  

t he  ca l cu la ted  composite thermal c o n d u c t i v i t y  o f  duplex-coated superca lc ine  i n  

a g r a v i t y - s i  n te red  s t a i n l e s s  s t e e l  mat r i x ,  assuming 60 vol% packing of super- 

c a l c i n e  p e l  1 ets. The center1  i ne temperature i n  a 12-in. (30.5-cm) diameter 

c a n i s t e r  o f  t h i s  waste form i s  834'~. I t  was assumed t h a t  t he  c a n i s t e r  

w a l l s  were cooled by n a t u r a l  convect ion t o  a i r  a t  30'~. Using a g r a v i t y -  

s i n t e r e d  copper m a t r i x  w i t h  a thermal c o n d u c t i v i t y  o f  0.52 w/c~- ' c  would 

inc rease the  composite thermal c o n d u c t i v i t y  t o  0.155 ~/cm-Oc and decrease the  

c e n t e r l i  ne temperature t o  161°c, we1 1 be1 ow the  me1 t i n g  temperature o f  copper 

(1083'~).  S i m i l  a r l y ,  when i n c o r p o r a t i n g  the  coated supercalc ine cores i n  a 

cas t  a1 umi num m a t r i x  (composite thermal c o n d u c t i v i t y  o f  0.606 w/cm-OC), t he  

c e n t e r l i n e  temperature i s  decreased t o  71°c, ill u s t r a t i n g  the  f a c t  t h a t  

meta ls  w i t h  h igh  thermal c o n d u c t i v i t i e s  permi t  t h e  use o f  larger-d iameter  can- 

i s t e r s ,  assuming the  c a n i s t e r  acts  as an i n f i n i t e  c y l i n d e r  w i t h  heat t r ans fe r  

along t h e  r a d i a l  d i r e c t i o n .  

Another f a c t o r  t h a t  has a major e f f e c t  on c a n i s t e r  s i z e  1 i m i t a t i  ons i s  t he  

vo lumet r ic  waste 1 oading. Reducing the  vo lumet r ic  waste load ing  o f  duplex- 

coated supercalc ine f rom 60 vol% t o  50 vol% i n  a g r a v i t y - s i n t e r e d  copper m a t r i x  



increases composite thermal c o n d u c t i v i t y  t o  0.209 W / C ~ - ~ C ,  reduces vo lumet r ic  

heat generat i  on, and decreases the  c e n t e r l  i ne temperature of a  12-inch-diameter 

c a n i s t e r  t o  1 1 6 ~ ~ .  Fur ther  increases i n  thermal c o n d u c t i v i t y  cou ld  be gained 

through the  use o f  cast, 100% dense meta ls  such as aluminum and copper a l loys .  

F igu re  11 shows the  r e 1  a t i  ons h i p  o f  c a n i s t e r  c e n t e r l  i ne temperatures t o  canis-  

t e r  diameter f o r  duplex-coated supercalc ine i n  var ious  matr ices.  The super- 

c a l c i n e  cores have 4-mn diameters w i t h  20-pm PyC coat ings  and 60-pm A1203 

coat ings; s i n te red  mat r i ces  are assumed t o  be 50% dense. Thus, i t  becomes 

apparent t h a t  achiev ing the  grea tes t  poss ib le  thermal c o n d u c t i v i t y  through 

optimum vo lumet r ic  waste fo rm packing and a  cas t  m a t r i x  a l lows grea ter  waste 

loadings per c a n i s t e r  based on r e l a t i v e  heat generat ion and heat d i ss ipa t i on .  

For  example, a t  a  l i m i t i n g  temperature of 2 5 0 ~ ~  f o r  duplex-coated super- 

ca l c i ne  i n  a  g r a v i t y - s i n t e r e d  copper mat r i x ,  50% more waste can be incorpora ted  

i n  a  c a n i s t e r  w i t h  50 vol% load ing  than w i t h  60 vol% load ing  because the  former 

can use l a r g e r  can is te rs ,  and because o f  t h e  h igh  c o n d u c t i v i t y  and lower vo lu-  

m e t r i c  heat generat i  on. 

Improvement o f  the  mechanical s t reng th  o f  the  composite waste form i s  t he  

second means o f  achiev ing t h e  o b j e c t i v e  o f  t h e  mu1 t i b a r r i e r  concept. Composite 

waste forms, l i k e  a l l  waste forms, must e x h i b i t  good impact s t reng th  i n  t he  

event o f  an acc ident  ( d u r i n g  shipment t o  an u l t i m a t e  d isposal  s i t e ) .  The over- 

a l l  s t reng th  o f  the  composite, l a r g e l y  dependent on the  s t reng th  o f  the  metal  

m a t r i x  and can is te r ,  i s  d i f f i c u l t  t o  op t im ize  because o f  t h e  complex nature o f  

t he  f i n a l  product  and the  e f f e c t s  o f  r a d i o a c t i v e  waste p a r t i c l e s  on the  mat r i x .  

The o v e r a l l  s t reng th  of t he  composite, there fo re ,  must be evaluated w i t h  

respec t  to :  

waste-matrix geometry ( vo lume t r i c  waste loading) ,  

se l f  hea t ing  of waste p e l l e t s ,  

i r r a d i a t i o n  e f f e c t s ,  and 

waste f orm/matr ix /canis ter  reac t ions .  

The se l f -heat ing  c h a r a c t e r i s t i c  o f  the  waste p e l l e t s  may be advantageous 

or de t r imenta l  t o  t h e  o v e r a l l  s t reng th  of t h e  wastelmetal composite. I n  

extreme cases, enough heat may be generated t o  cause m e l t i n g  o f  t he  metal  

m a t r i x  o r  so f ten ing  o f  waste g lass  marbles. Thermal expansion d i f fe rences  



FIGURE 11. Canister  Center1 i ne Temperatures f o r  CVD-Coated 
Supercalcine i n  Various Matr ices 

between the  waste p e l l e t s  and the  m a t r i x  may cause i n t e r n a l  s t resses i n  t h e  

p e l l e t s .  Loss o f  s t rength  may a lso  occur as the  temperature o f  the  ma t r i x  

reaches a p o i n t  where annealing begins. Annealing sof tens metals by r e l i e v i n g  

stresses, removing defects, and c r e a t i n g  l a rge r  g ra ins- - tha t  i s ,  a l l ow ing  the  

metal t o  approach an e q u i l i b r i u m  cond i t ion .  Waste can is te rs  cou ld  e x h i b i t  t h i s  

behavior as a r e s u l t  o f  the  self-contained, time-dependent heat generat ion. 



CONCLUSIONS 

I n  t h i s  p r e l i m i n a r y  s tudy t h e  process complex i t y  o f  f o u r  m u l t i b a r r i e r  

waste fo rm concepts was found t o  inc rease  t hus l y :  

Glass marbles ( l e a s t  complex) . Uncoated superca lc ine  
, 

G l  ass-coated superca l  c i  ne 

P y C I A l  20g-coated superca l  c i  ne (most complex) 

From e a r l i e r  s tud ies( ' )  i t  was found t h a t  i ne r t ness  increases i n  a s i m i l a r  

manner. It, there fo re ,  becomes necessary t o  decide whether economics, com- 

p l e x i t y ,  o r  i ne r t ness  i s  o f  g rea tes t  importance. Ach iev ing  enhanced i ne r t ness  

u s u a l l y  d i c t a t e s  i n c r e a s i n g  m a t e r i a l  costs,  process costs,  o r  both, i n  a d d i t i o n  

t o  i nc reas ing  complex i ty .  S e l e c t i o n  o f  a m u l t i b a r r i e r  waste form w i l l  neces- 

s a r i l y  be based on a balance t h a t  cons iders  t h e  magnitude and r e l a t i v e  impor- 

tance o f  each f a c t o r  w i t h  r espec t  t o  t he  t ype  o f  waste t o  be s o l i d i f i e d .  

S ince  these process cons ide ra t i ons  were l i m i t e d  t o  f o u r  m u l t i b a r r i e r  waste 

forms w i t h  comnerci a1 waste, a d d i t i o n a l  s t ud ies  must be conducted t o  determine 

t h e i r  a p p l i c a b i l i t y  t o  o the r  types of waste and t h e  remote a d a p t a b i l i t y  and 

process costs .  A1 t e r n a t i  ve waste forms such as t he  above mu1 t i  b a r r i e r  concepts 

have rece i ved  l e s s  development e f f o r t  than g l  ass; consequent ly f u r t h e r  

research and devel  opment i s  needed t o  def i ne process i  ng v a r i a b l e s  conducive t o  

produc ing waste forms w i t h  improved p r o p e r t i e s .  
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