
Multibarrier Waste Forms

Part III: Process

Considerations

R. O. Lokken

October 1979

Prepared for the U.S. Department of Energy
under Contract EY-76-C-06-1830

Pacific Northwest Laboratory
Operated for the U.S. Department of Energy
by Battelle Memorial Institute

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

The views, opinions and conclusions contained in this report are those of the contractor and do not necessarily represent those of the United States Government or the United States Department of Energy.

PACIFIC NORTHWEST LABORATORY
operated by
BATTELLE
for the
UNITED STATES DEPARTMENT OF ENERGY
Under Contract EY-76-C-06-1830

Printed in the United States of America
Available from
National Technical Information Service
United States Department of Commerce
5285 Port Royal Road
Springfield, Virginia 22151

Price: Printed Copy \$____*; Microliche \$3.00

*Pages	NTIS Selling Price
001-025	\$4.00
026-050	\$4.50
051-075	\$5.25
076-100	\$6.00
101-125	\$6.50
126-150	\$7.25
151-175	\$8.00
176-200	\$9.00
201-225	\$9.25
226-250	\$9.50
251-275	\$10.75
276-300	\$11.00

3 3679 00049 3207

MULTIBARRIER WASTE FORMS
PART III: PROCESS CONSIDERATIONS

R. O. Lokken

October 1979

Prepared for
the U.S. Department of Energy
under Contract EY-76-C-06-1830

Pacific Northwest Laboratory
Richland, Washington 99352

SUMMARY

The multibarrier concept for the solidification and storage of radioactive waste utilizes up to three barriers to isolate radionuclides from the environment: a solidified waste inner core, an impervious coating, and a metal matrix. The coating and metal matrix give the composite waste form enhanced inertness with improvements in thermal stability, mechanical strength, and leach resistance. Multibarrier Waste Forms Part I: Development describes research and development that resulted in one-liter demonstration encapsulations of four multibarrier waste forms of nonradioactive, simulated waste compositions.⁽¹⁾ Multibarrier Waste Forms Part II: Characterization and Evaluation evaluates the four waste forms with respect to thermal stability, mechanical strength, and leach resistance.⁽²⁾

Preliminary process flow rates and material costs were evaluated for four multibarrier waste forms with the process complexity increasing thusly:

- Glass marbles (least complex)
- Uncoated supercalcine
- Glass-coated supercalcine
- PyC/Al₂O₃-coated supercalcine (most complex)

This report discusses the process variables and their effect on optimization of product quality, processing simplicity, and material cost. An expanded engineering feasibility study is being conducted at Pacific Northwest Laboratory by R. L. Treat on ten alternative waste fixation processes. These studies include in-depth analysis of remote adaptability, process complexity and costs, and material requirements and costs.

CONTENTS

SUMMARY	iii
INTRODUCTION	1
PROCESS FLOW RATES	6
OPTIMIZATION OF PROCESS STEPS	11
MATRIX OPTIMIZATION	14
CONCLUSIONS	17
REFERENCES	18

FIGURES

1	Multibarrier Concept for Isolating High-Level Waste	2
2	PyC/Al ₂ O ₃ -Coated Supercalcine Process Flowsheet	3
3	Glass-Coated Supercalcine Process Flowsheet	4
4	Uncoated Supercalcine Process Flowsheet	4
5	Waste-Glass Marble Process Flowsheet	5
6	PyC/Al ₂ O ₃ -Coated Supercalcine Process Flow Rates	6
7	Glass-Coated Supercalcine Process Flow Rates	7
8	Uncoated Supercalcine Process Flow Rates	7
9	Waste-Glass Marble Process Flow Rates	8
10	Waste Contained in a Canister 10 ft Long x 1 ft Diameter	13
11	Canister Centerline Temperatures for CVD-Coated Supercalcine in Various Matrices	16

TABLES

1	Annual Canister and Matrix Materials Requirements for Various Multibarrier Waste Products	9
2	Annual Component Materials Costs for Various Multibarrier Waste Products	10

MULTIBARRIER WASTE FORMS
PART III: PROCESS CONSIDERATIONS

INTRODUCTION

The Radioactive Waste Immobilization Program conducted by the Pacific Northwest Laboratory (PNL) for the Department of Energy (DOE) has as one of its objectives the development of processes for converting high-level liquid waste (HLLW) from alternative fuel cycles and U.S. defense programs to solid forms demonstrated to be physically, chemically, and radiolytically stable and inert. During the past 20 years, numerous waste forms and processes have been proposed for solidification of nuclear wastes. The waste forms have ranged from simple concepts such as direct storage of calcine to complex forms utilizing crystalline products, coatings, and metal matrices. Because of the increasing number of options during recent years, increased difficulty is encountered in differentiating the options and making realistic comparisons.

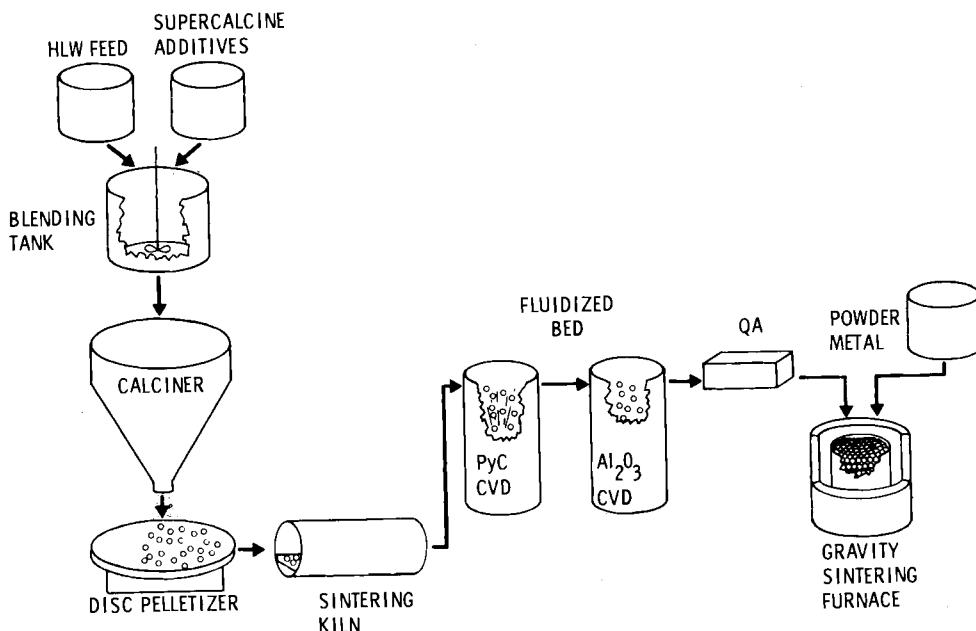
A major part of PNL's program has been directed towards development of low-melting (1000 to 1150°C) borosilicate glasses.^(3,4) However, to provide for waste streams not readily vitrifiable and to ensure that other options for encapsulation of fission product waste were considered, an effort was initiated in 1973 to develop alternative waste forms based upon a multibarrier concept (Figure 1). The multibarrier concept aims to separate the radionuclide-containing inner core material and the environment by the use of coatings and metal matrices. The resultant composite waste form exhibits enhanced inertness due to improved thermal stability and mechanical strength, and the added barriers improve leach resistance.

The feasibility of producing lab-scale multibarrier waste forms was demonstrated by the encapsulation of one-liter volumes of simulated waste glass marbles and coated and uncoated supercalcine.⁽⁵⁾ Following lab-scale demonstration of the multibarrier concept, an evaluation of the waste forms must consider both the level of inertness achieved (risk analysis) and the process engineering of producing the waste forms in a full-scale operation.

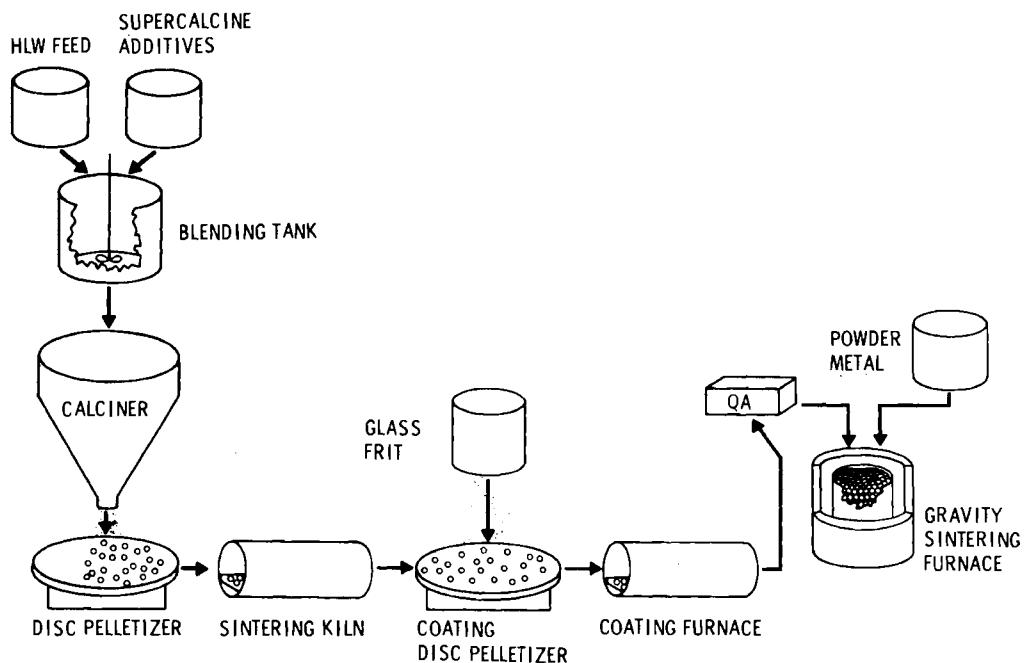
FIGURE 1. Multibarrier Concept for Isolating Nuclear Waste

As the required level of inertness or stability increases, the technological complexity of the processes would generally be expected to increase, approaching the limits of engineering feasibility. This general trend has not been characterized in sufficient detail to identify an optimum tradeoff between waste form stability and complexity.

Lutze⁽⁶⁾ and Ross et al.⁽⁷⁾ reviewed the properties of crystalline and glass waste form options and concluded that either glass or crystalline materials can be shown to have some advantage when a single property is considered. However, the differences are small and each material has both assets and liabilities. With proper design, either type of waste form can be used to solidify and contain radioactive waste. Lamb and Cole⁽⁸⁾ have developed a pelletized waste form for high-level zirconia waste calcines which exhibits cesium leach rates 10 to 30 times less than those of a comparable glass. Comparing metal-matrix waste forms, Jardine and Steindler⁽⁹⁾ concluded that metal-matrix encapsulation of commercial wastes may serve to increase the effective thermal conductivity of the waste form and to produce composites having reduced rates and improved mechanical strength. Similar conclusions have been reported by Lamb⁽¹⁰⁾ and Van Geel et al.⁽¹¹⁾


Ross⁽¹²⁾ has reviewed 15 solidification processes and 14 current waste forms in regards to process complexity and concluded that the simplest processes are cast concrete and spent fuel encapsulation. Highly complex processes

include cermets and coated pellets in a metal matrix. In a parametric performance ranking of alternative nuclear waste encapsulants, Hench⁽¹³⁾ has made similar rankings.


Since the goal of the multibarrier concept is to enhance the inertness of high-level waste, all process parameters and procedures should be for optimum achievement of that goal balanced against full-scale process economics and waste fixation requirements. Four waste forms were considered for the multibarrier inner core:

- Pyrolytic carbon- and alumina-coated supercalcine (CVD coating)
- glass-coated supercalcine
- uncoated supercalcine
- waste-glass marbles.

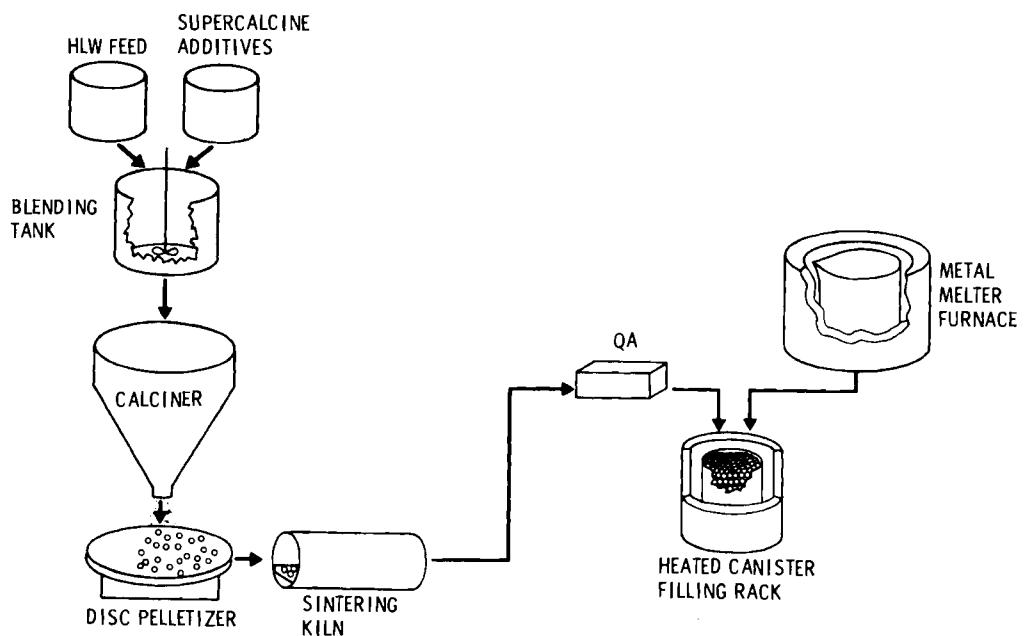

The processes for producing these waste forms in an inert encapsulated product were examined with the given consideration that requirements for increasing inertness usually increase the technological complexity of the waste fixation processes. Within each of the processes are particular parameters that require refinement to assure overall optimization of the process and results. Process flow charts for the production of the four multibarrier waste forms are shown schematically in Figures 2, 3, 4, and 5.

FIGURE 2. PyC/Al₂O₃-Coated Supercalcine Process Flowsheet

FIGURE 3. Glass-Coated Supercalcine Process Flowsheet

FIGURE 4. Uncoated Supercalcine Process Flowsheet

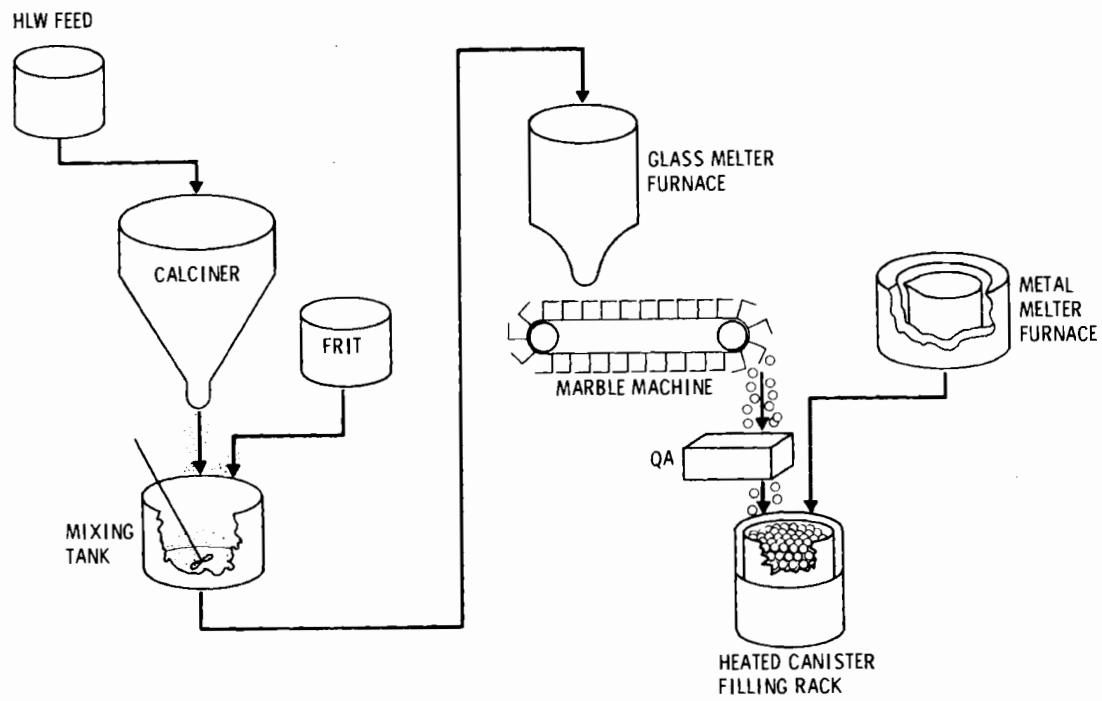
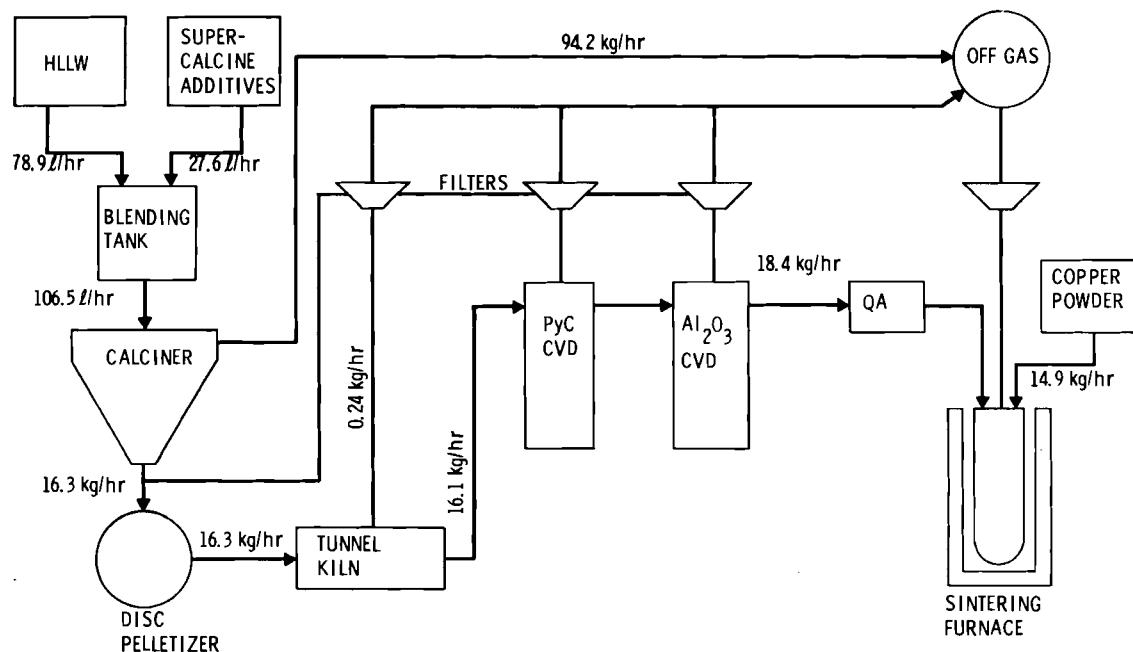



FIGURE 5. Waste-Glass Marble Process Flowsheet

PROCESS FLOW RATES

Flow rate calculations have been performed for four sample multibarrier waste form processes. It was assumed that radioactive waste would be processed at a rate equivalent to 5 metric tons (t) of uranium per 24-hr operating day. Solidification processes follow the final concentration of HLLW to a volume of 378.5 l/t of uranium. The solid waste content of HLLW is 58.7 kg/t of uranium. Figures 6, 7, 8, and 9 show process flow sheets and calculated flow rates for PyC/Al₂O₃-coated supercalcine, glass-coated supercalcine, uncoated supercalcine, and waste-glass marble processes, respectively.

Annual canister and matrix requirements for the processes are presented in Table 1. The annual requirements were based upon the maximum allowable centerline temperature (based on either the softening temperature of the cores or the melting temperature of the matrix) and a maximum allowable canister diameter of 0.61 m for repository storage. Canister length was held constant at 3 m. Annual material costs for components of the multibarrier waste products are listed in Table 2. These costs do not include process costs.

FIGURE 6. PyC/Al₂O₃-Coated Supercalcine Process Flow Rates

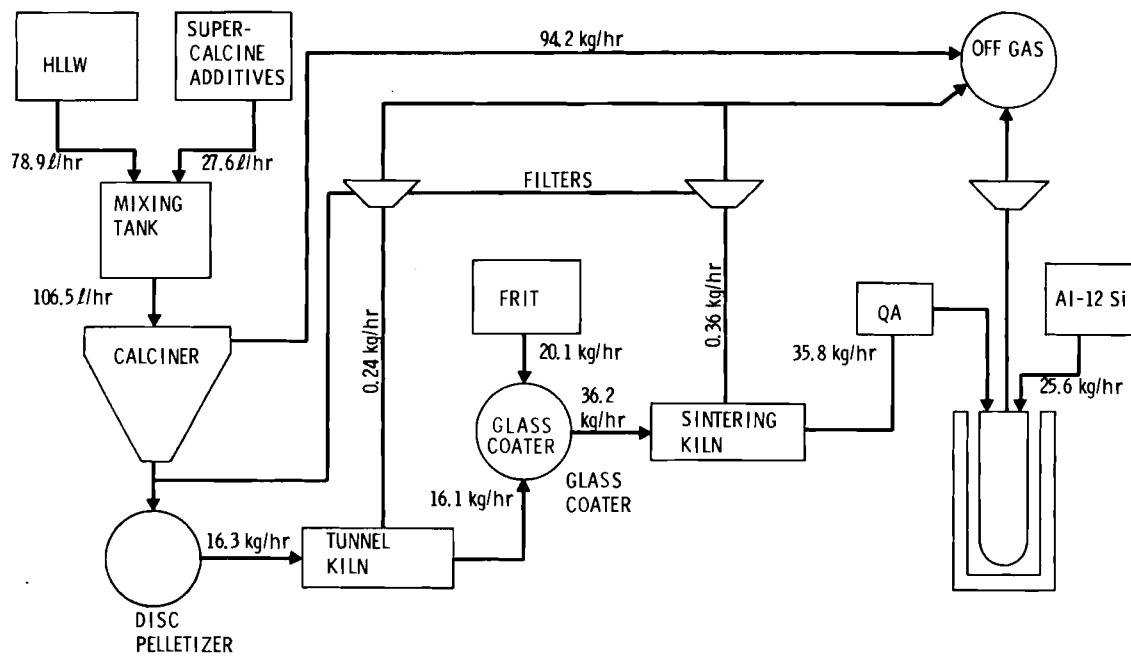


FIGURE 7. Glass-Coated Supercalcine Process Flow Rates

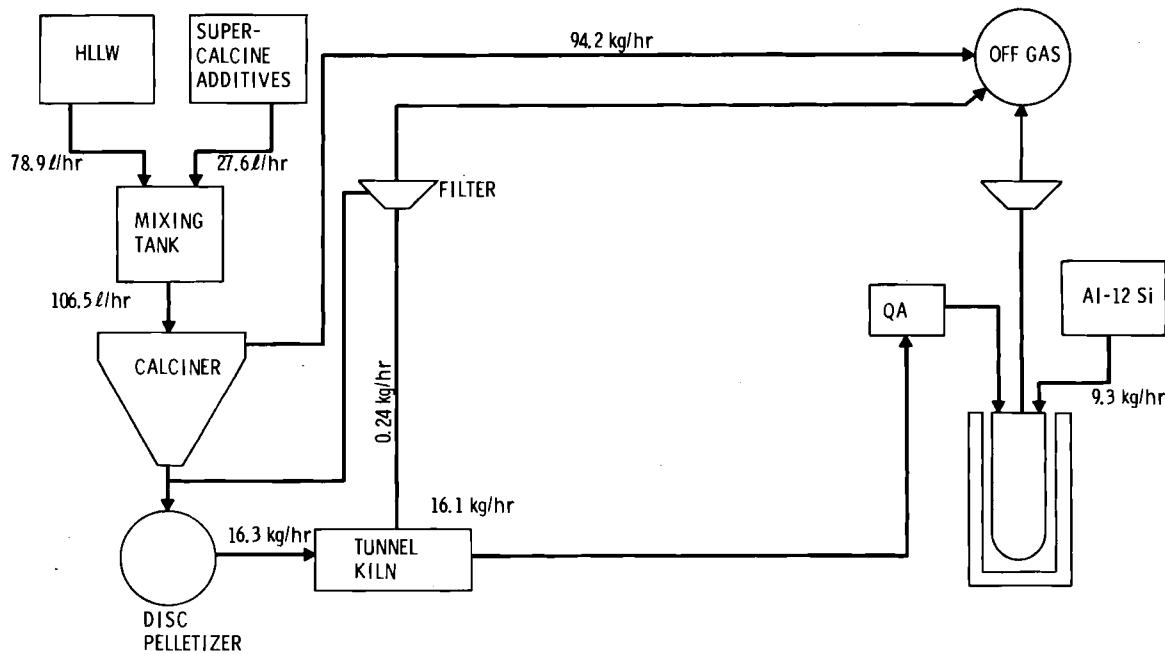


FIGURE 8. Uncoated Supercalcine Process Flow Rates

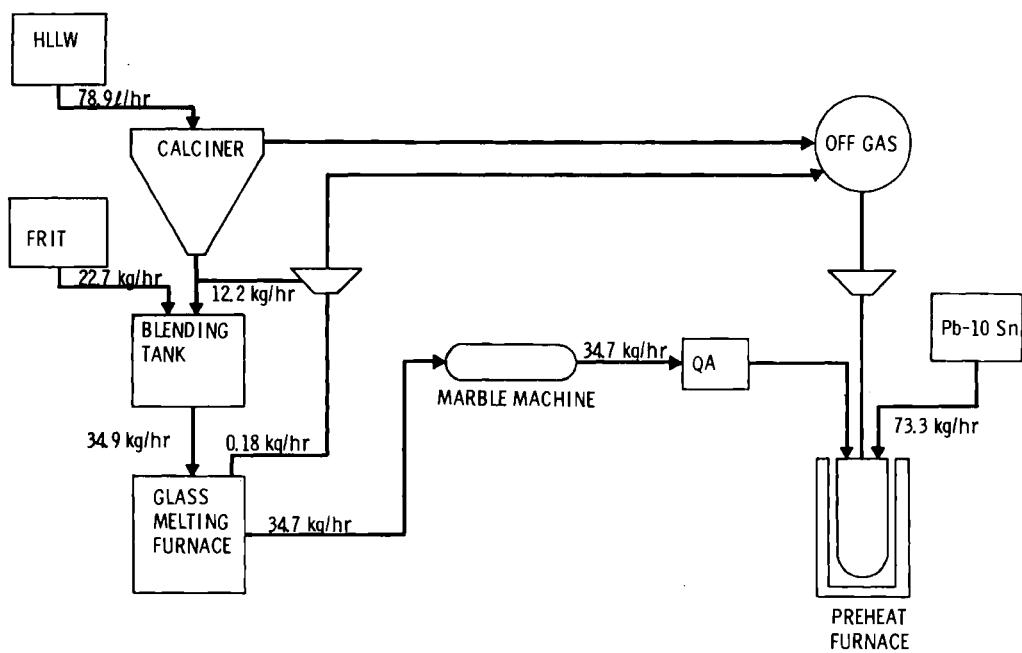


FIGURE 9. Waste-Glass Marble Process Flow Rates

TABLE 1. Annual Canister and Matrix Materials Requirements for Various Multibarrier Waste Products

Waste Form	Matrix	Maximum Centerline Temperature, °C(c)	Canister Dia, (d) m	Number of Canisters Required/yr	Total Volume of Waste Product, m ³ /yr	Waste Loading vol%	Volume of Matrix, m ³ /yr
Reference Glass	--	500	0.15	1310	74	35	--
Reference Glass	--	800	0.23	623	74	35	--
Glass Marble ^(a)	Pb-10Sn	300	0.55	169	123	21	49
Uncoated ^(a)	Al-12Si	600	0.61	71	63	45	25
Supercalcine							
Glass-Coated ^(b)	Al-12Si	600	0.61	77	69	41	28
Supercalcine							
PyC/Al ₂ O ₃ -Coated ^(a)	Cu (65%)	800	0.61	94	84	34	34
Supercalcine							
PyC/Al ₂ O ₃ -Coated ^(a)	Cu (65%)	800	0.61	141	126	21	76
Supercalcine							

(a) 60% packing

(b) 40% packing

(c) Maximum temperature is based on either the softening temperature of glass or the service temperature of the matrix

(d) Maximum selected diameter of 0.61 m for repository compatibility

TABLE 2. Annual Component Materials Costs for Various Multibarrier Waste Products

Inner Core Waste Form	Encapsulation Matrix	Total Volume of Waste Product, m ³ /yr	Annual Materials Costs, (a) \$1000/yr	Additives	Coating	Matrix	Canister	Total
Reference Glass(b)	--	74	359	--	--	--	255	614
Glass Marble(c)	Pb-10Sn	123	359	--	--	826	140	1325
Uncoated(c)	Al-12Si	63	295	--	--	80	65	440
Supercalcine								
Glass-Coated(c)	Al-12Si	69	295	17	--	87	71	470
Supercalcine								
PyC/Al ₂ O ₃ -Coated(c)Cu (65%)		84	295	19	--	473	87	874
Supercalcine								
PyC/Al ₂ O ₃ -Coated(d)Cu (65%)		126	295	19	--	1064	130	1508
Supercalcine								

(a) Material costs only - does not include process costs; based on 1979 cost with 1979 dollars.

(b) 500°C centerline

(c) 60% packing

(d) 40% packing

OPTIMIZATION OF PROCESS STEPS

The purpose of investigating various waste forms is to provide the basis of optimizing the process economics and the inertness of the waste. Achieving over-all optimization entails optimizing all process step procedures. This would include supercalcine pelletization, application of coatings, waste loading, and matrix material selection, each of which will influence the others.

In the coated supercalcine processes the pellet core diameter and porosity must be controlled through operational parameters of the pelletizing process. The pellet diameter selection must be based on six main considerations:

- pelletizing efficiency,
- volume shrinkage during sintering,
- sintering time,
- coating ease,
- temperature gradients within the pellets, and
- waste loading of coated pellets.

Similarly, the desired pellet porosity must be determined with consideration of:

- pellet strength,
- thermal conductivity,
- coating efficiency,
- waste loading, and
- process limitations.

Larger pellets, while increasing waste loading by requiring less fractional coating, increase sintering time and contain larger temperature gradients within the pellets. Larger pellets require the use of a CVD drum coater for applying Al_2O_3 coatings instead of a fluidized/vibrating bed coater as was used to apply both PyC and Al_2O_3 coatings to particles 3 mm in diameter. Pellets with near zero porosity would have maximum strength, thermal conductivity, and the volumetric waste loading; however, CVD coating is simplified if there is a certain amount of porosity to allow for thermal

expansion differences of coatings and cores. A factor that must also be considered is the minimum porosity obtainable through the pelletizing and sintering process.

Glass or glaze coating is primarily a hand operation and would be difficult to automate. It would be ideal if a glass frit coating could be applied in the disc pelletizer as suggested in Figure 3. Development of this technique at this date has not been successful. A dipping operation using a glaze slip was used to produce samples for encapsulation demonstration. This technique would not be readily adaptable to remote facilities. No alternative processes have been identified for glass coating.

Optimization of coating thickness requires iterative evaluation of inertness and economics. Increasing coating thickness improves inertness but at the same time increases cost and coating time. Thermal conductivity and waste loading are decreased when coating thickness is increased.

Waste loading in coated pellets, defined as the fraction of waste in the entire pellet, varies with pellet diameter and coating thickness. The waste loading in uncoated supercalcine pellets is ~75 wt% with a pellet density of 3.1 g/cm^3 (73% TD-theoretical density). For comparative purposes, Figure 10 shows the relationship between pellet diameter, coating thickness, and the weight of waste in a cylindrical canister 10 feet (304.8 cm) in length by 1 foot (30.5 cm) diameter for three waste forms. Waste loading of glass marbles, which contain no coating, is independent of marble diameter and has a value of 35 wt%. In all cases it is assumed the waste-form pellets are spherical and arranged in hexagonal close-packed configuration within the canister.

Matrix material selection is governed by numerous conditions and restrictions: 1) thermal conductivity, 2) waste loading, 3) maximum allowable temperature, 4) strength, 5) economics, 6) weight, 7) fabrication methods and 8) matrix/waste form interactions. The maximum temperature allowed within the canister is determined by the lowest temperature at which either the metal matrix begins to melt or the pellets and/or coatings begin to soften. Metal selection is closely dependent on canister sizing and waste loading. A higher waste loading per pellet gives rise to higher waste loadings per canister and

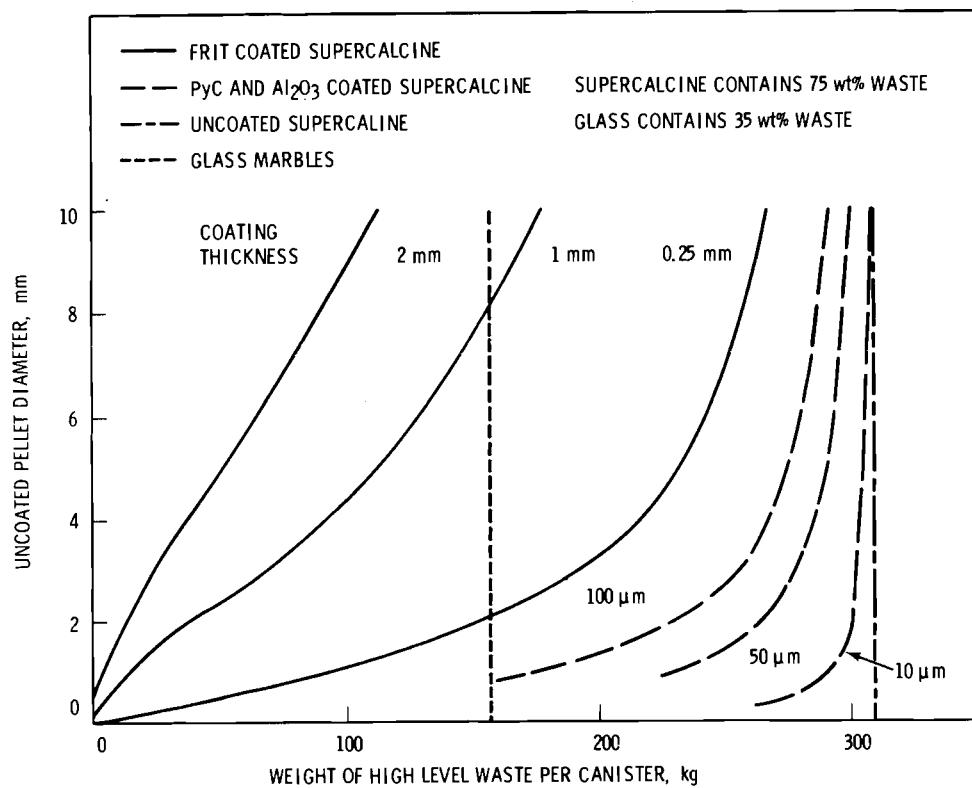


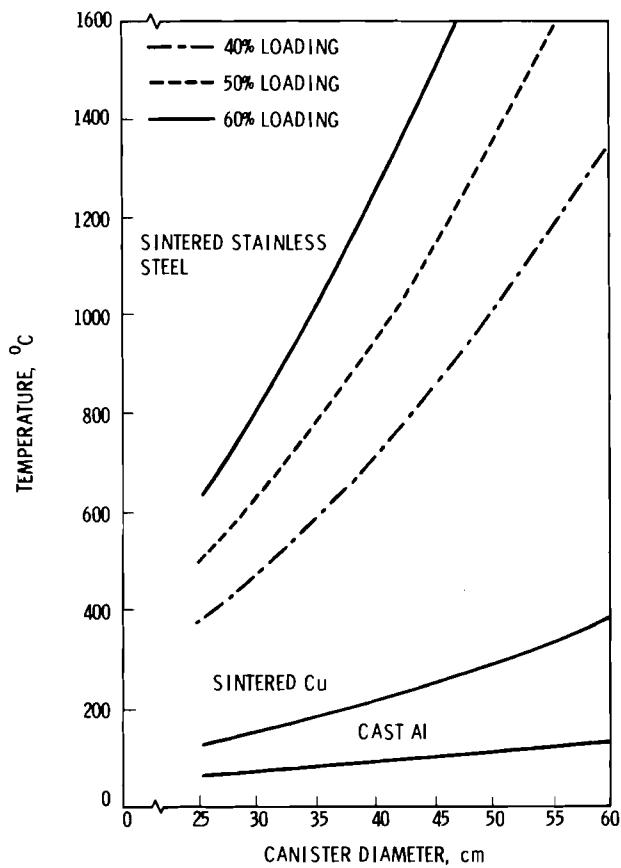
FIGURE 10. Waste Contained in a Canister 10 ft x 1 ft Diameter

subsequently higher volumetric heat generation. Larger heat generation dictates the need for smaller-diameter canisters, which lower waste loading and decrease temperature gradients, and/or high-melting temperature metals, and/or metals with higher thermal conductivities. The addition of strength, weight, and cost as selection considerations greatly complicates the optimization process.

MATRIX OPTIMIZATION

Multibarrier waste forms development considers the basic waste forms previously discussed as a basis of optimization of process economics and enhanced inertness. PyC/Al₂O₃-coated supercalcine may be embedded in gravity-sintered metal matrices as a consequence of the higher waste loading and subsequent heat generation of supercalcine (75 wt% waste as compared to 35 wt% for glass). Employing gravity-sintered matrices allows the use of metals with melting temperatures greater than the temperatures expected within the canisters.

Factors other than the metal's melting temperature must be considered in matrix metal optimization and selection, such as thermal conductivity, strength, chemical stability, and cost. Although stainless steel has a melting temperature of $\sim 1500^{\circ}\text{C}$, its thermal conductivity is only 0.25 W/cm- $^{\circ}\text{C}$, which decreases to 0.036 W/cm- $^{\circ}\text{C}$ in a sintered condition containing 50% porosity. Using this lower value for the matrix thermal conductivity, 0.0196 W/cm- $^{\circ}\text{C}$ is the calculated composite thermal conductivity of duplex-coated supercalcine in a gravity-sintered stainless steel matrix, assuming 60 vol% packing of supercalcine pellets. The centerline temperature in a 12-in. (30.5-cm) diameter canister of this waste form is 834°C . It was assumed that the canister walls were cooled by natural convection to air at 30°C . Using a gravity-sintered copper matrix with a thermal conductivity of 0.52 W/cm- $^{\circ}\text{C}$ would increase the composite thermal conductivity to 0.155 W/cm- $^{\circ}\text{C}$ and decrease the centerline temperature to 161°C , well below the melting temperature of copper (1083°C). Similarly, when incorporating the coated supercalcine cores in a cast aluminum matrix (composite thermal conductivity of 0.606 W/cm- $^{\circ}\text{C}$), the centerline temperature is decreased to 71°C , illustrating the fact that metals with high thermal conductivities permit the use of larger-diameter canisters, assuming the canister acts as an infinite cylinder with heat transfer along the radial direction.


Another factor that has a major effect on canister size limitations is the volumetric waste loading. Reducing the volumetric waste loading of duplex-coated supercalcine from 60 vol% to 50 vol% in a gravity-sintered copper matrix

increases composite thermal conductivity to $0.209 \text{ W/cm}^{-2}\text{C}$, reduces volumetric heat generation, and decreases the centerline temperature of a 12-inch-diameter canister to 116°C . Further increases in thermal conductivity could be gained through the use of cast, 100% dense metals such as aluminum and copper alloys. Figure 11 shows the relationship of canister centerline temperatures to canister diameter for duplex-coated supercalcine in various matrices. The supercalcine cores have 4-mm diameters with 20- μm PyC coatings and 60- μm Al_2O_3 coatings; sintered matrices are assumed to be 50% dense. Thus, it becomes apparent that achieving the greatest possible thermal conductivity through optimum volumetric waste form packing and a cast matrix allows greater waste loadings per canister based on relative heat generation and heat dissipation. For example, at a limiting temperature of 250°C for duplex-coated supercalcine in a gravity-sintered copper matrix, 50% more waste can be incorporated in a canister with 50 vol% loading than with 60 vol% loading because the former can use larger canisters, and because of the high conductivity and lower volumetric heat generation.

Improvement of the mechanical strength of the composite waste form is the second means of achieving the objective of the multibarrier concept. Composite waste forms, like all waste forms, must exhibit good impact strength in the event of an accident (during shipment to an ultimate disposal site). The overall strength of the composite, largely dependent on the strength of the metal matrix and canister, is difficult to optimize because of the complex nature of the final product and the effects of radioactive waste particles on the matrix. The overall strength of the composite, therefore, must be evaluated with respect to:

- waste-matrix geometry (volumetric waste loading),
- self heating of waste pellets,
- irradiation effects, and
- waste form/matrix/canister reactions.

The self-heating characteristic of the waste pellets may be advantageous or detrimental to the overall strength of the waste/metal composite. In extreme cases, enough heat may be generated to cause melting of the metal matrix or softening of waste glass marbles. Thermal expansion differences

FIGURE 11. Canister Centerline Temperatures for CVD-Coated Supercalcine in Various Matrices

between the waste pellets and the matrix may cause internal stresses in the pellets. Loss of strength may also occur as the temperature of the matrix reaches a point where annealing begins. Annealing softens metals by relieving stresses, removing defects, and creating larger grains--that is, allowing the metal to approach an equilibrium condition. Waste canisters could exhibit this behavior as a result of the self-contained, time-dependent heat generation.


CONCLUSIONS

In this preliminary study the process complexity of four multibarrier waste form concepts was found to increase thusly:

- Glass marbles (least complex)
- Uncoated supercalcine
- Glass-coated supercalcine
- PyC/Al₂O₃-coated supercalcine (most complex)

From earlier studies⁽²⁾ it was found that inertness increases in a similar manner. It, therefore, becomes necessary to decide whether economics, complexity, or inertness is of greatest importance. Achieving enhanced inertness usually dictates increasing material costs, process costs, or both, in addition to increasing complexity. Selection of a multibarrier waste form will necessarily be based on a balance that considers the magnitude and relative importance of each factor with respect to the type of waste to be solidified.

Since these process considerations were limited to four multibarrier waste forms with commercial waste, additional studies must be conducted to determine their applicability to other types of waste and the remote adaptability and process costs. Alternative waste forms such as the above multibarrier concepts have received less development effort than glass; consequently further research and development is needed to define processing variables conducive to producing waste forms with improved properties.

REFERENCES

1. Rusin, J. M., R. O. Lokken, J. M. Lukacs, K. R. Sump, M. F. Browning and G. J. McCarthy. 1978. Multibarrier Waste Forms Part I: Development. PNL-2668-1, Pacific Northwest Laboratory, Richland, Washington.
2. Rusin, J. M., J. W. Wald and W. J. Gray. 1974. Multibarrier Waste Forms Part II: Characterization and Evaluation. PNL-2668-2, Pacific Northwest Laboratory, Richland, Washington.
3. Mendel, J. E., et al. 1977. Annual Report on the Characteristics of High-Level Waste Glasses. BNWL-2252, Pacific Northwest Laboratory, Richland, Washington.
4. Ross, W. A., et al. 1978. Annual Report on the Characteristics of High-Level Waste Glasses. PNL-2625, Pacific Northwest Laboratory, Richland, Washington.
5. Rusin, J. M., et al. 1978. "Development of Multibarrier Nuclear Waste Forms." In Proceedings of Symposium on Science Underlying Radioactive Waste Management. Boston, Massachusetts, November 1978.
6. Lutze, W. 1979. "Glassy and Crystalline High-Level Nuclear Waste Forms: An Attempt of Critical Evaluation." CONF-790420. In Proceedings of Ceramics in Nuclear Waste Management. Technical Information Center, Oak Ridge, Tennessee.
7. Ross, W. A., J. E. Mendel, R. P. Turcotte and J. M. Russin. 1979. "A Comparison of Glass and Crystalline Waste Materials." CONF-790420. In Proceedings of Ceramics in Nuclear Waste Management. Technical Information Center, Oak Ridge, Tennessee.
8. Lamb, K. M. and H. S. Cole. April 1979. Development of a Pelleted Waste Form for High-Level ICPP Zirconia Wastes. ICP-1185, Allied Chemical Corporation.
9. Jardine, L. J. and M. J. Steindler. May 1978. A Review of Metal-Matrix Encapsulation of Solidified Radioactive High-Level Waste. ANL-78-19, Argonne National Laboratory, Argonne, Illinois.
10. Lamb, K. M. March 1978. Final Report: Development of a Metal Matrix for Incorporating High-Level Commercial Wastes ICP-1144, Allied Chemical Corporation.
11. Van Geel, J., et al. 1979. "Incorporation of Solid High-Level Wastes into Metal and Nonmetal Matrices." NUREG/CP-0005. In Proceedings of High-Level Radioactive Solid Waste Forms, National Technical Information Service, Springfield, Virginia.

12. Ross, W. A., J. M. Rusin, and J. L. McElroy. February 1979. "Processes for Production of Alternative Waste Forms." In Proceedings of Symposium on Waste Management, Tucson, Arizona.
13. Hench, L. L. 1979. "Alternative Forms for the Storage of Nuclear Waste." Testimony given to Hearings on Nuclear Waste Management, Subcommittee on Energy Research and Production, U.S. House of Representatives Committee on Science and Technology, May 15-17, 1979, Washington, D.C.

DISTRIBUTION

<u>No. of Copies</u>	<u>No. of Copies</u>
<u>UNITED STATES</u>	
A. A. Churm DOE Chicago Patent Group 9800 South Cass Avenue Argonne, IL 60439	C. H. George DOE Office of Nuclear Waste Management Washington, DC 20545
R. E. Cunningham Deputy Director, Div. of Fuel Cycle and Materials Office of Nuclear Safety Materials and Safeguards Room 562 Nuclear Regulatory Commission 7915 Eastern Avenue Silver Springs, MD 20910	C. A. Heath DOE Office of Nuclear Waste Management Washington, DC 20545
J. B. Martin Assistant Director for Radioactive Waste Management Branch NRC Division of Materials and Fuel Cycle Facility Licensing Washington, DC 20555	G. Oertel DOE Office of Nuclear Waste Management Washington, DC 20545
D. M. Rohrer High-Level Waste Technical Development Branch Nuclear Regulatory Commission Washington, DC 20545	Sheldon Meyer DOE Office of Nuclear Waste Management Washington, DC 20545
W. G. Belter DOE Division of Biomedical and Environmental Research Earth Sciences Branch Washington, DC 20545	R. G. Romatowski DOE Office of Nuclear Waste Management Washington, DC 20545
W. E. Mott DOE Division of Environmental Control Technology Washington, DC 20545	A. F. Perge DOE Office of Nuclear Waste Management Washington, DC 20545
C. R. Cooley DOE Office of Nuclear Waste Management Washington, DC 20545	D. L. Vieth DOE Office of Nuclear Waste Management Washington, DC 20545
	R. D. Walton DOE Office of Nuclear Waste Management Washington, DC 20545
	J. Neff, Program Manager Department of Energy Columbus Program Office 505 King Avenue Columbus, OH 43201

<u>No. of Copies</u>	<u>No. of Copies</u>
DOE Idaho Operations Office P.O. Box 2108 Idaho Falls, ID 83401	G. H. Daly DOE Division of Waste Products Washington, DC 20545
J. B. Whitsett DOE Idaho Operations Office P.O. Box 2180 Idaho Falls, ID 83401	J. L. Jardine Argonne National Laboratory 9700 South Cass Avenue Argonne, IL 60439
E. S. Goldberg DOE Savannah River Operations Office P.O. Box A Aiken, SC 29801	M. J. Steindler/L. E. Trevorrow Argonne National Laboratory 9700 South Cass Avenue Argonne, IL 60439
27 DOE Technical Information Center	Battelle Memorial Institute Office of Nuclear Waste Isolation Attn: Ms. Beverly Rawles 505 King Avenue Columbus, OH 43201
G. L. Ritter Exxon Nuclear Idaho P.O. Box 2800 Idaho Falls, ID 83401	N. E. Carter Office of Nuclear Waste Isolation Battelle Memorial Institute 505 King Avenue Columbus, OH 43201
Exxon Nuclear Idaho (File Copy) P.O. Box 2800 Idaho Falls, ID 83401	M. Kehnemuyi Office of Nuclear Waste Isolation Battelle Memorial Institute 505 King Avenue Columbus, OH 43201
G. W. Johnson TRU Waste Management Program DOE Albuquerque Operations Office P.O. Box 5400 Albuquerque, NM 87185	P. L. Hofmann Office of Nuclear Waste Isolation Battelle Memorial Institute 505 King Avenue Columbus, OH 43201
J. A. Buckham Allied-General Nuclear Services P.O. Box 847 Barnwell, SC 29812	2 Brookhaven National Laboratory Reference Section Information Division Upton, Long Island, NY 11973
A. Williams Allied-General Nuclear Services P.O. Box 847 Barnwell, SC 29812	
J. L. Crandall E. I. duPont deNemours & Company Savannah River Laboratory Aiken, SC 29801	

<u>No. of Copies</u>	<u>No. of Copies</u>
Combustion Division Combustion Engineering, Inc. Windsor, CT 06095	P. H. Permar E. I. duPont deNemours Co. Savannah River Laboratory Aiken, SC 29801
Lawrence J. Smith TRU Waste Systems Office Bldg. T-790 Rockwell International Rocky Flats Plant P.O. Box 464 Golden, CO 80401	R. Williams Electric Power Research Institute 3412 Hillview Avenue P.O. Box 10412 Palo Alto, CA 94304
E. Vejvoda, Director Chemical Operations Rockwell International Rocky Flats Plant P.O. Box 464 Golden, CO 80401	Environmental Protection Agency Technology Assessment Division (AW-559) Office of Radiation Programs U.S. Environmental Protection Agency Washington, DC 20460
Research Library Battelle Memorial Institute 505 King Avenue Columbus, OH 43201	R. G. Barnes General Electric Company 175 Curtner Avenue (M/C 160) San Jose, CA 95125
7 C. D. Zerby Union Carbide Corporation Nuclear Division Office of Waste Isolation P.O. Box Y Oak Ridge, TN 37830	L. H. Brooks Gulf Energy and Environmental Systems P.O. Box 81608 San Diego, CA 92138
M. D. Boersma E. I. duPont deNemours Co. Savannah River Laboratory Aiken, SC 29801	2 Central Research Library Document Reference Section Oak Ridge National Laboratory (DOE) Oak Ridge, TN 37830
A. S. Jennings E. I. duPont deNemours Co. Savannah River Laboratory Aiken, SC 29801	3 Los Alamos Scientific Laboratory P.O. Box 1663 Los Alamos, NM 87544
S. Mirshak E. I. duPont deNemours Co. Savannah River Laboratory Aiken, SC 29801	C. J. Kershner Monsanto Research Corporation Mound Laboratory P.O. Box 32 Miamisburg, OH 45342

<u>No. of Copies</u>	<u>No. of Copies</u>
J. G. Cline, General Manager NYS Atomic and Space Development Authority 230 Park Avenue, Rm. 2425 New York, NY 10017	G. J. McCarthy Department of Chemistry North Dakota State University Fargo, ND 58102
John Pomeroy Technical Secretary National Academy of Sciences Committee of Radioactive Waste Management National Research Council 2101 Constitution Avenue Washington, DC 20418	Rod Ewing University of New Mexico Albuquerque, NM 87131
2 M. A. Thompson Rockwell International Rocky Flats Division Golden, CO 80401	J. P. Duckworth Plant Manager Nuclear Fuels Services, Inc. P.O. Box 124 West Valley, NY 14171
L. Henning Electric Power Research Institute 3412 Hillview Avenue P.O. Box 10412 Palo Alto, CA 94304	J. L. Larocca, Chairman Engineering Research and Development Authority Empire State Plaza Albany, NY 12223
W. C. McClain Union Carbide Corporation (ORNL) Chemical Technology Division P.O. Box Y Oak Ridge, TN 37830	D. R. Anderson Sandia Laboratories Albuquerque, NM 87185
A. P. Roeh, Manager Process Evaluation Branch Allied Chemical Corporation 550 Second Street Idaho Falls, ID 83401	W. Weart Division 1140 Sandia Laboratories Albuquerque, NM 87185
J. R. Berreth Allied Chemical Corporation 550 Second Street Idaho Falls, ID 83401	O. E. Jones Sandia Laboratories Albuquerque, NM 87185
Allied Chemical Corporation (File Copy) 550 Second Street Idaho Falls, ID 83401	J. W. Bartlett The Analytical Sciences Corp. 6 Jacob Way Reading, MA 01867
	R. E. Blanco Union Carbide Corporation (ORNL) Chemical Technology Division P.O. Box Y Oak Ridge, TN 37830

<u>No. of Copies</u>	<u>No. of Copies</u>
J. O. Blomeke Union Carbide Corporation (ORNL) Chemical Technology Division P.O. Box Y Oak Ridge, TN 37830	Rene Amavis EURATOM Health Physics Division 29, Rue Aldringer Luxembourg, BELGIUM
D. E. Ferguson Union Carbide Corporation (ORNL) Chemical Technology Division P.O. Box Y Oak Ridge, TN 37830	G. G. Strathdee Atomic Energy of Canada, Ltd. W.N.R.E. Pinawa, Manitoba ROE 1L0 CANADA
R. A. Beall U.S. Department of Interior Bureau of Mines Albany Research Center 1450 W. Queen Avenue Albany, OR 87321	M. Tomlinson Director of Chemistry & Materials Science Division Atomic Energy of Canada, Ltd. Whitehell Nuclear Research Establishment Pinawa, Manitoba, CANADA
R. G. Post College of Engineering University of Arizona Tucson, AZ 85721	K. D. B. Johnson Atomic Energy Research Establishment Harwell, Didcot, Berks, ENGLAND
J. K. Johnstone Sandia Laboratories Albuquerque, NM 87107	J. A. C. Marples Atomic Energy Research Establishment Horwell, Didcot Berks, ENGLAND
S. E. Logan University of New Mexico Albuquerque, NM 87131	D. W. Clelland United Kingdom Atomic Energy Authority Risley, ENGLAND
M. J. Plodinec duPont Company, Aiken (DOE) E. I. duPont deNemours and Co. Savannah River Laboratory Aiken, SC 29801	P. J. Regnaut Centre d'Etudes Nucleaires de Fontenoy-aux Roses Boite Postale 6 92 - Fontenay-aux Roses FRANCE
<u>FOREIGN</u>	
2 International Atomic energy Agency Kartner Ring 11 P.O. Box 590 A-1011, Vienna, AUSTRIA	

<u>No. of Copies</u>	<u>No. of Copies</u>
Y. J. Sousselier Center d'Etudes Nucleaires de Fontenoy-aux Roses Boite Postale 6 92 - Fontenay-aux Roses FRANCE	F. Laude Centre de Marcoule B.P. 170 30200 Baguols-Sur-Ceze FRANCE
Bundesministerium fur Forschung und Technologie Stressemannstrasse 2 5300 Bonn WEST GERMANY	H. Krause Kerforschungszentrum Karlsruhe SmbH (KfK) Postfach 3640 07500 Karlsruhe WEST GERMANY
Center for Atomic Energy Documentation (ZAED) Attn: Dr. Mrs. Bell P.O. Box 3640 7500 Karlsruhe WEST GERMANY	R. V. Amalraj C.W.M.F. Project P.O. Kalpakkam Chingleput Dist. Tamil Nadu, INDIA
Hans W. Levi Hahn-Meitner Institut 1 Berlin 39 Glienickerstr, 100 WEST GERMANY	N. S. Sunder Rajan Bhabha Atomic Research Centre Government of India Hall No. 5 Trombay Bombay 85 INDIA
E. R. Merz Institut fur Chemische Technologie Kernforschungsanlage Julich GmbH D517 Julich Postfach 365 Federal Republic WEST GERMANY	Dr. Piero Risoluti AGIP NUCLEARE c/o COMB Casaccia C.P. 2400 Rome ITALY
R. Bonniaud Centre de Marcoule B.P. 170 30200 Baguols-Sur-Ceze FRANCE	F. Gera CHEN CSN Casaccia L.I.S. C.P. 2400, 00100 Rome, ITALY
C. Sombret Centre de Marcoule B.P. 170 30200 Baguols-Sur-Ceze FRANCE	S. Tashiro Japan Atomic Energy Research Institute Environmental Safety Research Laboratory 1-1-13, Shibashi Minatopku, Tokyo JAPAN

<u>No. of Copies</u>	<u>No. of Copies</u>
<u>ONSITE</u>	<u>72 Pacific Northwest Laboratory</u>
6 <u>DOE Richland Operations Office</u>	W. J. Bjorklund H. T. Blair W. F. Bonner D. J. Bradley J. L. Buelt L. R. Bunnell L. A. Chick T. D. Chikalla W. J. Gray O. F. Hill E. R. Irish J. H. Jarrett Y. B. Katayama R. S. Kemper D. E. Larson R. O. Lokken (15) J. M. Lukacs R. P. Marshall J. L. McElroy (2) G. L. McVay G. B. Mellinger J. E. Mendel W. J. Mikols R. D. Nelson R. E. Nightingale D. E. Olesen C. R. Palmer A. M. Platt D. L. Prezbindowski F. D. Roberts W. A. Ross J. M. Rusin (10) J. W. Shade D. H. Siemens R. P. Turcotte J. W. Wald W. J. Weber H. H. Van Tuyl J. H. Westsik, Jr. L. D. Williams W. K. Winegardner Technical Information (5) Publishing Coordination (2)
13 <u>Rockwell Hanford Operations</u>	H. Babad L. C. Brown R. A. Deju R. J. Gimera D. R. Gustavson E. J. Kosiancic C. M. Manry I. E. Reep J. H. Roecker D. D. Wodrich D. M. Strachen M. J. Kupfer File Copy
	<u>Exxon</u>
	S. J. Beard
2 <u>Joint Center for Graduate Study</u>	
	J. Cooper L. C. Olsen
2 <u>UNC Nuclear Industries</u>	
	T. E. Dabrowski A. E. Engler
	<u>Westinghouse Hanford Company</u>
	A. G. Blasewitz

