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Thesis:
Markerless imaging systems could potentially track data points with an
analysis of the local curvature of its acquired surfaces.
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I. ABSTRACT

The purpose of this project is to develop a method of tracking data points for
computer vision systems using curvature analysis. This is of particular interest to
fellow researchers at the Lab, who have developed a markerless video computer
vision system and are in need of such a method to track data points. A three
dimensional viewing program was created to analyze the geometry of surface
patches. Virtual surfaces were plotted and processed by the program to determine
the Mean and Gaussian Curvature Parameters for each point on the surface, thus
defining each point’s surface geometry type. Preliminary results indicate that

coordinate independent curvature analysis shows great promise and could solve the

tracking dilemma faced by those in the field of markerless imaging systems.




II. INTRODUCTION

A new computer vision technology, called CyberSight, has been developed at
Lawrence Livermore National Laboratory. It is capable of acquiring three-

dimensional range data of moving surfaces at video speed. It was developed by

LLNL researchers Lu and Johnson, with whom I worked this past semester.

CyberSight shows great promise in many fields. It has applications in
biomechanics, security, entertainment, and other fields. For biomechanical
analyses, CyberSight could be used for studying virtually any motion, generating
precise data which could be easily reduced to yield kinematic data. For security
purposes, it could be adapted for facial recognition. Movie companies are interested
in the possibilities of using “virtual actors” in their films, with CyberSight’s fine
detail of musculature and bony prominences.

However, these applications are not yet possible for CyberSight. As a
markerless data acquisition system, data tracking methods must be developed to
relate different frames from concatenated movies. Though tracking has been a
dilemma in computer vision for quite some time, it is the subject that was worked
on in this project. The goal is to lay a foundation for future efforts in computer

vision tracking.




III. CURVATURE ANALYSIS

The specific possibility of tracking that was investigated was the analysis of

local curvature. This seemed a logical area of inquiry, as CyberSight is capable of

generating very fine' surfaces to analyze.

The crux of curvature analysis lies in the ability to acquire the first and second

order partial derivatives of the surface at any point of inspection. This is due to the

fact the surface geometry type is governed by two parameters, the Mean Curvature

and Gaussian Curvature, which are defined by these partial derivatives as follows™:

Mean Curvature, H:
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Based on the sign of H and K, the surface geometry type is then defined:

H<0, K>0 Peak H<0, K<0
H>0 K>0 Pit H=0, K<0
H<0, K=0 Ridge H>0, K<0
H=0, K=0 Flat H>0, K=0

! CyberSight generates surfaces at a spatial resolution of roughly one millimeter (mm).
? Li, page 233.
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Curvature analysis is attractive in addressing the issue of tracking. H and K
are invariant to translations and rotations', so objects of constant surface geometry
undergoing these transformations in space can still be recorded with CyberSight and
still yield the same geometry type if analyzed by curvature analysis routines. As no
curvature analysis packages were readily available, the research was focused on
creating such a package for insertion into CyberSight’s existing image processing

code for later use.

IV. METHODOLOGY

A. PointGrab as a visualization tool

CyberSight'’s final, processed images are roughly 500 X 500 pixels, and are
viewed with a graphics package called VISION. This package requires a rather
complex interface, with the user inputting Lisp commands to call C code. In

addition, VISION displays a set image, and cannot view data from any viewpoint.

Considering these hindrances with its rather slow processing time, and the choice to

write stand alone software to replace VISION was made.

A graphics program was written to carry out the research. At first written to
serve basic needs, more complex routines were added to the program as required.
The program, called PointGrab, has been the primary visualization tool of this

research throughout the semester.

! Ibid., page 233.




PointGrab has many functions, including the following:

e View a three dimensional data set from any spherical viewpoint
e Transform and stretch data sets in space

e Plot a curvature map of a data set

* Yield percentage curvature compositions of a data set

B. Virtual shapes as a test of routines

CyberSight is not a perfect system -- that is, it is not free from error. From the
frame-grabbing phase to each of the processing steps, error can be introduced to the
data. With this in mind, testing any curvature analysis routines on real, processed
images would not be prudent. Instead, virtual shapes were created as control
surfaces for the testing of any curvature algorithms.

Virtual shapes are nothing more than computer generated shapes. Since they
are not “real,” they need not be processed (erroneously) by any image processing
routines. Therefore, they are mathematically “perfect” up to 8 decimal places', and
serve as a natural control for any attempts at curvature analysis. |

Virtual surfaces were created with a separate program for each shape, using
the following process:

1) An orthogonal XY grid was created. This was usually 25 X 25, based on
memory constraints.

2) For each point, its corresponding (x, y) location was found.

3) Each point’s X and Y location were inserted into the equation for the shape
generated by the program, yielding each point’s Z value.

4) The data set was then input into a special file format that PointGrab could
read, consisting of (x, y, z) points and line connections.

! The eight refers to the number of decimal places in a double precision floating point variable.




The goal was to generate as smooth a surface as possible, but aforementioned

memory limitations prevented such surfaces from being generated for an entire

shape. So a small surface patch of each shape was created for analysis.
Virtual surfaces have been the data sets directly tested with the curvature
algorithms this semester. Some of the shapes include a sphere, paraboloid, cylinder,

cone, and plane. Some examples are below.
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C. Surface normal generation

To achieve coordinate independent curvature analysis, a local coordinate
system had to be defined for each point, with the new Z axis being each point’s
surface normal. Since the surface was a collection of points and not a continuous
function where z = f(x, y), the surface normal was not explicitly defined. So a

method of generating each point’s surface normal had to be devised.




As shown below, a 3 X 3 patch of points, centered about the point of interest,

is generated for every point.

From each patch, four vectors are defined, originating from the center point
and heading towards each of the four cardinal directions (one point excursions in

the +/- X, Y directions) as shown.

Four independent surface normals were calculated by crossing the adjacent
vectors in a circular order; that is, so that the cross products always point_ed
outward, or always pointed inward. Whichever direction that was chosen was set as
the cross product convention for the surface normal generation of each patch.

The four surface normals were then averaged to yield the final (working)
surface normal vector for each point, as shown below. This method is simple and

was proven effective, barring any gross outliers in the data set.




D. Transformation about the surface normal

Once the surface normal had been calculated, it was necessary to make it the

new Z axis. To do so, the data points in each patch needed to be transformed about

their surface normals. However, general data transformations require three new

axes to transform a system.

Since curvature is coordinate independent, the only requirement for analysis
with local coordinate system is the surface normal as the Z axis. Therefore, the X
and Y axes can be arbitrary, as long as they define an orthogonal coordinate basis.
Here a decision was made: the new X axis was chosen as the direction from the
center point (X, y) to the point one unit further down the old X axis (x+1,y). TheY
axis naturally followed with Z cross X, and the orthogonal coordinate basis was
determined.

From this new basis, the data in each patch is transformed with the following

relation:
Ng="T,'%q, where
g represents the new (transformed) XYZ patch as [x" y’ 2’ 1] (row vector)

Rg represents the old (pre-transformed) XYZ patch as [x y z 1] (column vector)

T, represents the inverse transformation, which is listed below:

! McKerrow, page 153.




— _ - x=xi+xj+xk
X, X, X, —pX —pX —PDX x v T X,
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Above, x, y, z represent the new axes, and p represents the translation vector relating

the old origin with the new origin (the patch center).

E. Reconstructing the orthogonal grid

Once the patch was transformed, it no longer retained the XY orthogonality
that it once had. This was expected, as only a unit normal parallel to the old Z axis
could retain orthogonal patch points. So each resulting patch was a bit distorted, as

shown below:
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For H and K to be determined, a regular orthogonal grid needed to be
reassembled in the new coordinate system. A smaller orthogonal patch, based on

the new X and Y, was defined inside the old grid, with data points being separated by

a distance 9, as shown below:
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The x and y values of the grid were predetermined +/- d excursions about the

center point, but the Z values were unknown. To find them, a planar interpolation
was used, with the following procedure:
1) The four vectors are redefined, exactly like with the surface normal

generation, but with the new transformed patch. This defines four quadrants,
as shown.

2) The vectors were crossed, to generate four normals, just as before.
However, the each normal was then used to define a plane for each
quadrant’. The equation for each plane is of the form of Ax + By + Cz = 0.

3) An cross product routine determined which planes the projections of the —
new grid points fell on with respect to the Z axis.

4) The (x, y) values of each point on the grid were inserted into its
corresponding plane equation, yielding the Z value of each point’s projection
on the plane.

With the Z values determined, the new orthogonal data patch had been

completed, and calculation of H and K could then commence.

! Thomas & Finney, page 734.




F. Acquiring Hand K

After all of the data manipulation, acquiring H and K became a trivial task.
Using grid point Z values, the partial derivatives were simply calculated. The newly
constructed orthogonal grid made the calculus straightforward, as each data point
was already separated an equal distance d.

Based on the new, transformed grid, shown below,
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The following equations were used (z[n] equals the z value of point n):

7 = (z[5] - z[4]) 7 = (z[1]1- z[4]
* ox Y dy
(z[5]—z[4]D) _ (z[4]-2z[3]) (z[1]—z[4]) _ (z[4]-z[7])
7 =—0x ox 7 =0 dy
= ax » ay
(z[2]-z[1]) _ (z[5]-z[4)])
7 = dx ox
xy Jy

As an aside, dx = dy = 9 in the newly transformed grid, but the deltas have been left

in their original format to clarify their usage in the equations.

13




These equations were applied to each patch, calculating values for each of the
partial derivatives necessary to evaluate H and K. H and K were than calculated,

using the equations mentioned in the Curvature Analysis section.

G. Color Coding

After H and K were determined, the surface geometry type of each point was

determined from the signs of H and K, as previously mentioned. What remained

was a question of how the data could be identified graphically.

A color coding scheme was chosen to identify the point’s curvature. This
served to facilitate curvature identification (rather than by using special dots or
shapes for points), and it made groupings of a set curvature type easy to pick out.

The actual carrying out of the color coding scheme was rather simple. A color
was chosen and displayed for each geometry type, and a legend was displayed at the
top of the graphics window. Percentage statistics of each curvature type present in a

surface were also available in a text window.




For example, in the picture above, the curvature plot for a paraboloid is
shown. The darker dots surrounding the top represent peak curvature, while the
dots near the bottom represent ridge curvature. This plot is typical of curvature

analyses carried out this semester.

V. RESULTS & CONCLUSIONS

The fuel for the pursuit of curvature tracking was the hope that curvature
data could be truly coordinate independent and invariant with rotations and
translations. After all of the aforementioned routines were programmed, compiled,

and carried out, this indeed was the case.

15




Data was correctly marked for its curvature by PointGrab, which was not of
any great import. But when the data was transformed arbitrarily in space, with

various rotations and changes of origin, each point’s curvature remained the same.

This indeed did verify that curvature analysis is invariant to data transformations.

Current work is being done to insert PointGrab’s algorithms for curvature
analysis directly into CyberSight's image processing code. This would provide a
means to apply curvature analysis to real data acquired by CyberSight, providing the
real test for curvature tracking.

With all this said and done, a basic foundation has been laid for curvature
tracking of computer vision data. Hopefully it can be put to good use towards the

ultimate end of automatic tracking of curvature “landmarks” on scanned surfaces.
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